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Abstract For a general normed vector space, a special optimal value function called a

maximal time function is considered. This covers the farthest distance function as a special

case, and has a close relationship with the smallest enclosing ball problem. Some properties

of the maximal time function are proven, including the convexity, the lower semicontinuity,

and the exact characterizations of its subdifferential formulas.
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1 Introduction

The maximal time problem is widely used in machine learning and support vector machines.

The optimal value function of the maximal time problem is called the maximal time function.

Let X be a normed space and let Q ⊂ X be a nonempty, bounded and closed set. The maximal

time function CQ|K for the point x to reach the target set Q with the constant dynamic K is

defined by

CQ|K (x) := inf {t ≥ 0 : Q ⊂ x+ tK} , for all x ∈ X. (1.1)

When K is the closed unit ball of X, then the maximal time function (1.1) reduces to the

corresponding farthest distance function as follows:

MQ (x) := sup {‖x− ω‖ : ω ∈ Q} .

There is an essential difference between CQ|K (x) and MQ (x): the set K defining CQ|K (x) is

possibly asymmetric, while the unit ball is always symmetric. The properties of the farthest

distance function can be found in References [1–4].

The maximal time function has a close relationship with the smallest enclosing ball problem;

it asks for the smallest ball that encloses all of the given balls. Mordukhovich and Nam et al.
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[5] proved that the smallest enclosing ball problem can be modeled with maximal time function

(1.1) as the following optimization problem:

minimize C (x) subject to x ∈ Ω.

Here Ω ⊂ X is a nonempty closed constraint set and

C(x) := max
{
CQi|K (x) : i = 1, · · · , n

}
.

Hence, it is a significant endeavour to study the properties of the maximal time function for

the smallest enclosing ball problems.

Similar to the maximal time function, the minimal time function is defined as

TQ|K (x) := inf {t ≥ 0 : (x+ tK) ∩Q 6= ∅} ;

this signifies the minimal time for the point x to reach the target set Q following the dynamic

K. General and generalized differentiation properties of the minimal time function have been

studied extensively; see, e.g., [6–11] and the references therein. In [6–8], the proximal and

the Fréchet subdifferentials of the minimal time function in which K is a bounded, closed and

convex set that contains the origin as an interior point were considered. Further extensions

to the case, where the origin is not necessarily an interior point of K, were considered in [10].

Without the calmness, subgradients of the minimal time function were obtained in [11, 12].

Moreover, the subdifferential and some other properties regarding the minimal time function

with K being unbounded were presented in [9], and the minimal time function associated with

a collection of sets were considered in [13].

The minimal time function is the optimal value function of time optimal control problems

[14]. Hence, the known results regarding the minimal time function TQ|K(·) are based on

time optimal control theory. However, the maximal time function CQ|K(·) does not have this

advantages. Until now, there have not been many studies done on the maximal time function.

We try to draw some relevant conclusions regarding the maximal time function. In this paper,

we obtain the convexity and the lower semicontinuity of the maximal time function and prove

that the subdifferential of CQ|K(·) can be characterized in terms of the corresponding normal

cones of an enlarged set of Q and the support function of K.

The rest of this paper is organized as follows: In Section 2, we present some related def-

initions and preliminaries widely used in the sequel. In Section 3, we give our main results

about some general properties of the maximal time function. Finally, in Section 4, we establish

estimates for the subdifferential of the maximal time function.

2 Preliminary

Let X be a real normed vector space with the norm denoted by ‖ · ‖, and let X∗ denote

the topological dual of X. The canonical paring 〈 · , · 〉 is between X∗ and X. Suppose that

f : X → R̄ is an extended real-valued function and x̄ ∈ dom f := {x ∈ X : f (x) <∞}. Now,

we recall some definitions and notations, most of them were derived from [15].

• The function f is convex on a convex set Ω iff, for every x, y ∈ Ω and λ ∈ [0, 1], one has

that

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) .
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• The function f is said to be lower semicontinuous at x̄ iff, for any sequence {xn} that

converges to x̄, one has that

lim inf
n→∞

f (xn) ≥ f (x̄) .

The function f is called lower semicontinuous iff it is lower semicontinuous at every point of its

domain.

• The function f is said to be `-Lipschitz continuous iff, for a given constant ` ≥ 0, one has

that

|f (x)− f (y)| ≤ ` ‖x− y‖ , for all x, y ∈ X.

• The subdifferential of convex function f at x̄ is defined by

∂f (x̄) := {ξ ∈ X∗ : 〈ξ, y − x̄〉 ≤ f (y)− f (x̄) , for all y ∈ X}.

• The normal cone of a convex set Ω ⊂ X at x ∈ Ω is the set

NΩ (x) := {ξ ∈ X∗ : 〈ξ, y − x〉 ≤ 0, for all y ∈ Ω} .

• The support function of a set K ⊂ X is defined by

=K (ξ) := sup
x∈K
〈ξ, x〉 .

• The asymptotic cone of K at x ∈ K is defined by

K∞(x) := {d ∈ X : x+ td ∈ K, for all t > 0} ,

where K ⊂ X is a closed and convex set. An equivalent representation of K∞(x) is

K∞(x) =
⋂
t>0

K − x
t

.

This shows that K∞(x) is a cone that contains the origin. Moreover, K∞(x) is closed and

convex because K is a closed and convex set, and the intersection of closed (convex) sets is

closed (convex).

• The Minkowski function generated by K is given by

ρK (x) := inf{t ≥ 0 : x ∈ tK, for all x ∈ X},

where K ⊂ X is a convex set and 0 ∈ K.

The main results of this paper are based on the following results of [5, 9, 15]:

Proposition 2.1 ([15]) The Minkowski function ρK(·) is a positively homogenous and

subadditive extended real-valued function. Suppose, further, that 0 ∈ int K. Define that

` := inf

{
1

r
: B (0; r) ⊆ K, r > 0

}
.

Then ρK(·) is an `-Lipschitz function. In particular, ρK(x) ≤ ` ‖x‖ for all x ∈ X.

Proposition 2.2 ([5]) Suppose that K ⊂ X is convex and that 0 ∈ int K. Then the

maximal time function (1.1) has the following representation:

CQ|K (x) = sup {ρK (ω − x) : ω ∈ Q} .

Moreover, if K is the closed unit ball of X, then

CQ|K (x) = sup {‖x− ω) ‖ : ω ∈ Q} .
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Proposition 2.3 ([9]) Suppose that K is a closed convex set. Then, for all x1, x2 ∈ K,

one has that

K∞(x1) = K∞(x2);

that is, the asymptotic cone does not depend on x ∈ K. Thus, the asymptotic cone is denoted

as K∞, for simplicity.

Proposition 2.4 ([9]) Suppose that K is a closed convex set. Then the following are

equivalent:

(a) d ∈ K∞;

(b) there exists a sequence {tn} ⊆ [0,∞[ such that tn → 0, and a sequence {kn} ⊆ K with

tnkn → d.

Proposition 2.5 ([9]) If K is a closed convex set and contains the origin, then

K∞ =
⋂
t>0

tK.

3 General Properties of the Maximal Time Function

In this section, we study the general properties of maximal time function (1.1), including

the convexity, the lower semicontinuity and the Lipschitz continuity. These properties are of

independent interest.

3.1 Convexity of the Maximal Time Function

Theorem 3.1 If K is a nonempty convex set, then the maximal time function CQ|K (·)
is a convex function.

Proof Let x, y be in the domain of the maximal time function, and let 0 ≤ λ ≤ 1.

Denote xλ := λx + (1− λ) y, r1 := CQ|K (x), and r2 := CQ|K (y). From the definition of the

maximal time function, we have, for any ε > 0, that there exists, ti (i = 1, 2) with

ri ≤ ti < ri + ε, Q ⊂ x+ t1K and Q ⊂ y + t2K.

Then, for any ω ∈ Q, there exist k1 and k2 ∈ K such that

ω = x+ t1k1 = y + t2k2.

Since K is convex, one has that

ω = λω + (1− λ)ω = λ (x+ t1k1) + (1− λ) (y + t2k2)

= λx+ λt1k1 + (1− λ) y + (1− λ) t2k2 = xλ + λt1k1 + (1− λ) t2k2

∈ xλ + λt1K + (1− λ) t2K ⊂ xλ + [λt1 + (1− λ) t2]K.

It follows that Q ⊂ (xλ + [λt1 + (1− λ) t2]K), since ω is arbitrary. By the definition of

CQ|K (xλ), one has that

CQ|K (xλ) ≤ λt1 + (1− λ) t2 ≤ λr1 + (1− λ) r2 + ε.

As ε→ 0+, we have that

CQ|K (xλ) ≤ λCQ|K (x) + (1− λ)CQ|K (y) .

The proof of Theorem 3.1 is now complete. �



1700 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

3.2 Lower Semicontinuity of the Maximal Time Function

Theorem 3.2 If K is a nonempty, bounded and weakly closed set, then the function

CQ|K is lower semicontinuous.

Proof For any x ∈ dom CQ|K and a sequence {xn} that converges to x, we will prove

that

lim inf
n→∞

CQ|K (xn) ≥ CQ|K (x) .

The inequality holds clearly if lim inf
n→∞

CQ|K (xn) = ∞. Therefore we only need to consider

the case where lim inf
n→∞

CQ|K (xn) = γ ∈ [0,∞), and to show that γ ≥ CQ|K (x). Without

loss of generality, by the definition of maximal time function (1.1), there exists a sequence

{tn} ⊆ [0,∞) such that

CQ|K (xn) ≤ tn < CQ|K (xn) +
1

n
and Q ⊂ (xn + tnK) , for all n ∈ N.

For every n ∈ N, one has that

ω ∈ xn + tnK, for all ω ∈ Q. (3.1)

Now, consider two cases: γ > 0 and γ = 0.

If γ > 0, then tn > 0. Since K is a bounded and weakly closed set, one has that

ω − xn
tn

weakly−→ ω − x
γ
∈ K.

It follows from the arbitrary of ω that Q ⊂ (x+ γK). Hence CQ|K (x) ≤ γ.

If γ = 0, then tn → 0 as n→∞. From (3.1), we can see that, for any w ∈ Q, there exists

fnw ∈ K such that

w = xn + tnf
n
w, for all n ∈ N.

As n→∞, this implies that w = x; that is, Q = {x}. Hence, Q ⊂ x+ 1
nK. This implies that

0 ≤ CQ|K(x) ≤ 1
n for all n ∈ N. Letting n → ∞, we can get that CQ|K(x) = 0. Therefore,

CQ|K (x) ≤ γ. �

Without the assumption that K is bounded, we can also show that CQ|K is lower semicon-

tinuous. Let us start with the following theorem.

Theorem 3.3 Suppose that K is a nonempty, closed, convex set that contains the origin.

Then

CQ|K(x) = 0 if and only if Q ⊂ x+K∞.

Proof Assuming that CQ|K(x) = 0, for every n ∈ N, there exists tn ≥ 0 such that

Q ⊂ x+ tnK and lim
n→∞

tn = 0.

Hence, we can find kn ∈ K for every n ∈ N and ω ∈ Q with tnkn = ω − x. Therefore,

tnkn → ω − x as n→∞.

It follows from Proposition 2.4 that ω ∈ x+K∞. Hence, Q ⊂ x+K∞, by the arbitrariness of

ω.

Conversely, for any x satisfying Q ⊂ x+K∞, there exists d ∈ K∞ such that

ω = x+ d, for all ω ∈ Q.
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Since 0 ∈ K and d ∈ K∞, Proposition 2.3 and the definition of K∞ imply that n(ω − x) =

nd ∈ K; that is

ω − x ∈ 1

n
K, for all n ∈ N.

Hence, Q ⊂ x+ 1
nK, by the arbitrariness of ω. This implies that 0 ≤ CQ|K(x) ≤ 1

n for all

n ∈ N. Letting n→∞, we can get that CQ|K(x) = 0. The proof of theorem is complete. �

Theorem 3.4 Suppose that K is a nonempty, closed, convex set that contains the origin.

Then the function CQ|K(·) is lower semicontinuous.

Proof For any x ∈ dom CQ|K and a sequence {xn} that converges to x, we will prove

that

lim inf
n→∞

CQ|K (xn) ≥ CQ|K (x) .

It is obvious that the inequality holds when lim inf
n→∞

CQ|K (xn) =∞. Thus we only need to

consider the case where lim inf
n→∞

CQ|K (xn) = γ ∈ [0,∞) and r ≥ CQ|K (x) . It follows from the

definition of maximal time function (1.1) that there exists a sequence {tn} ⊆ [0,∞) such that

CQ|K (xn) ≤ tn < CQ|K (xn) +
1

n
and Q ⊂ (xn + tnK) , for all n ∈ N.

Therefore, for every n ∈ N, one has that

ω ∈ xn + tnK, for all ω ∈ Q.

Consider two cases: γ > 0 and γ = 0. First, for the case γ > 0 and closed K, we can obtain

that
ω − xn
tn

→ ω − x
γ
∈ K as n −→∞.

The arbitrariness of ω implies that Q ⊂ (x+ γK). Hence, CQ|K (x) ≤ γ.

Now, consider the case where γ = 0. For every n ∈ N, there exists kn ∈ K such that

ω = xn + tnkn, for all ω ∈ Q.

In this case, the sequence {tn} converges to 0, and

tnkn → ω − x, as n −→∞.

It follows from Proposition 2.4 that ω − x ∈ K∞. This implies that Q ⊂ x + K∞, since ω

is arbitrary. Employing Theorem 3.3, we have that CQ|K(x) = 0. Hence, γ ≥ CQ|K(x). The

proof of Theorem 3.4 is complete. �

Remark 3.5 Theorems 3.2 and 3.4 show that the maximal time function is lower semi-

continuous. The assumptions of K are absolutely different.

3.3 Lipschitz Continuity of the Maximal Time Function

Theorem 3.6 Let ` be defined as in Proposition 2.1. Suppose that K is nonempty, convex

set, and that 0 ∈ int K. Then the maximal time function CQ|K(·) is `-Lipschitz.

Proof Let x, y ∈ X and n ∈ N. It follows from Proposition 2.2 that there exists xn ∈ Q
such that

ρK (xn − x) > CQ|K (x)− 1

n
(3.2)
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and

CQ|K(y) ≥ ρK(xn − y). (3.3)

Applying (3.2) and (3.3), we have that

CQ|K (x)− CQ|K (y) ≤ ρK (xn − x) +
1

n
− ρK (xn − y) ≤ ρK (y − x) +

1

n
.

This, together with Proposition 2.1, yields that∣∣CQ|K (x)− CQ|K (y)
∣∣ ≤ ∣∣∣∣ρK (y − x) +

1

n

∣∣∣∣ ≤ ` ‖y − x‖+
1

n
= ` ‖x− y‖+

1

n
.

The conclusion is verified by letting n→∞. �

Remark 3.7 We should point out that the Lipschitz continuity of the maximal time

function were proven in Reference [5]. Here, we show it in a different and more detailed way.

4 Subdifferentials of the Maximal Time Function

In this section, we discuss the properties of the subdifferentials of the maximal time function

where K is convex. In this case, the maximal time function is also convex, by Theorem 3.1.

Now we show that subdifferential of the maximal time function CQ|K(·) can be described by

corresponding notions of normal cones of sublevel sets of CQ|K(·), and the support function of

K.

For r > 0, the r-sublevel set of CQ|K (·) is defined as follows:

Qr :=
{
x ∈ X : CQ|K (x) ≤ r

}
.

If K is a nonempty and convex set, it is easy to see that the r-sublevel set Qr is a convex set.

Now we show the inequality between the maximal time function and its r-sublevel set.

Proposition 4.1 Suppose that r > 0, that K is a nonempty, convex set, and that

CQ|K (x) <∞. Then

CQ|K (x) ≤ CQr|K (x) + r.

Proof According to the definition of CQr|K (x), we can see that, for any ε > 0, there

exists t ∈
[
CQr|K (x) , CQr|K (x) + ε

)
such that

Qr ⊂ (x+ tK) .

For any u ∈ Qr, there exists k ∈ K such that

u = x+ tk. (4.1)

Since u ∈ Qr, we can see that CQ|K (u) ≤ r. Therefore, there exists s ∈ [r, r + ε) such that

Q ⊂ (u+ sK). Then we can find k′ ∈ K with

ω = u+ sk′, for all ω ∈ Q.

It follows from (4.1) and the convexity of K that

ω = u+ sk′ = x+ tk + sk′ ∈ (x+ tK + sK) ⊂ (x+ (t+ s)K) .

Hence, Q ⊂ x+(t+ s)K, thanks to the arbitrariness of ω. Using the definition of CQ|K (x),

one has that

CQ|K (x) ≤ t+ s ≤ CQr|K (x) + r + 2ε.
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The conclusion is verified by letting ε→ 0+. �

To show our main results about the subdifferentials of the maximal time function, we start

with the following lemma:

Lemma 4.2 Suppose that K is a nonempty and convex set. Then, for t ≥ 0 and any

k ∈ K, one has that

CQ|K (x− tk)− t ≤ CQ|K (x) ≤ CQ|K (x+ tk) + t.

Proof For x ∈ X, t ≥ 0, and k ∈ K, we first prove the inequality CQ|K (x− tk) − t ≤
CQ|K (x). By the definition of maximal time function (1.1), we can see that, for any ε > 0,

there exists t′ ≥ 0 such that

CQ|K (x) ≤ t′ < CQ|K (x) + ε and Q ⊂ (x+ t′K) .

Then, for any t ≥ 0 and k ∈ K, the convexity of K implies that

Q ⊂ (x− tk + tk + t′K) ⊂ (x− tk + (t+ t′)K) .

Therefore,

CQ|K (x− tK) ≤ t+ t′ ≤ t+ CQ|K (x) + ε.

The conclusion follows by letting ε→ 0+.

Now we prove the second inequality. Applying the first inequality, one can easily get that

CQ|K(x) = CQ|K(x+ tk − tk) ≤ CQ|K(x+ tk) + t.

This finishes the proof. �

Lemma 4.3 If K is a nonempty, affine set, and α > β > 0, then αK − βK ⊂ (α− β)K.

Proof For any k1, k2 ∈ K, one can see that

α

α− β
k1 + (1− α

α− β
)k2 ∈ K.

Hence, there exists k3 ∈ K such that

αk1 − βk2 = (α− β)k3 ∈ (α− β)K.

Then the arbitrariness of k1 and k2 imply that Lemma 4.3 holds. �

Theorem 4.4 Let r := CQ|K (x) < ∞. Suppose that K is a nonempty and affine set.

Then

∂CQ|K (x) = NQr
(x) ∩ {ξ ∈ X∗ : =K (−ξ) = 1} ,

where =K (ξ) := sup
x∈K
〈ξ, x〉 .

Proof Since K is affine, one can see that K is convex. Theorem 3.1 implies that the

maximal time function CQ|K (x) is a convex function. For any ξ ∈ ∂CQ|K (x), the definition of

Clark subdifferential implies that

〈ξ, y − x〉 ≤ CQ|K (y)− CQ|K (x) , for all y ∈ X. (4.2)

Since CQ|K (y) ≤ r on Qr, this implies that

〈ξ, y − x〉 ≤ CQ|K (y)− CQ|K (x) = CQ|K (y)− r ≤ 0, for all y ∈ Qr. (4.3)
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Thus, ξ ∈ NQr
(x). Now, let us show that =K (−ξ) = 1.

For any k ∈ K, t > 0 and y := x− tk, it follows from (4.2) and Lemma 4.2 that

〈ξ, y − x〉 = 〈ξ, (x− tk)− x〉 ≤ CQ|K (x− tk)− CQ|K (x) ≤ t. (4.4)

Dividing both sides of (4.4) by t, we can obtain that 〈ξ,−k〉 ≤ 1 for all k ∈ K. This implies

that

=K (−ξ) ≤ 1. (4.5)

The definition of r := CQ|K (x) implies that, for any ε ∈ (0, r), there exists t > 0 such that

t ∈
[
r, r + ε2

)
and Q ⊂ (x+ tK) . (4.6)

From (4.6) and Lemma 4.3, it follows that

Q ⊂ (x+ tK) ⊂ (x+ εk + tK − εk) ⊂ x+ εk + (t− ε)K.

Hence, CQ|K (x+ εk) ≤ t− ε. Applying (4.2) and (4.6), for y = x+ εk, one has

〈ξ, y − x〉 = 〈ξ, x+ εk − x〉 ≤ CQ|K (x+ εk)− CQ|K (x) ≤ t− ε− r ≤ ε2 − ε.

This yields that =K (−ξ) ≥ 1, by letting ε→ 0+.

Therefore, from (4.3) and (4.5), we can get that ∂CQ|K (x) ⊂ NQr (x)∩{ξ ∈ X∗ : =K (−ξ) = 1} .
Now we show that NQr

(x) ∩ {ξ ∈ X∗ : =K (−ξ) = 1} ⊂ ∂CQ|K (x). For any ξ ∈ NQr
(x)

satisfying that =K (−ξ) = 1, one has that

〈ξ, y − x〉 ≤ 0, for all y ∈ Qr. (4.7)

For any ε > 0, there exists k ∈ K such that

〈ξ,−k〉 > 1− ε. (4.8)

This proves that ξ ∈ ∂CQ|K (x); that is,

〈ξ, y − x〉 ≤ CQ|K (y)− CQ|K (x) , for all y ∈ X.

Let q := CQ|K (y). The discussion that follows is divided into three cases.

(i) If y ∈ X and q = r, then y ∈ Qr. From (4.7), we have

〈ξ, y − x〉 ≤ 0 = CQ|K (y)− CQ|K(x).

This implies that ξ ∈ ∂CQ|K (x).

(ii) If y ∈ X and q < r, then it follows from Lemma 4.2 that

CQ|K (y − (r − q) k) ≤ CQ|K (y) + r − q = r.

Then y − (r − q) k ∈ Qr. From (4.7), one can see that

〈ξ, y − (r − q) k − x〉 ≤ 0.

This, together with (4.8), implies that

〈ξ, y − x〉 ≤ 〈ξ, k〉 (r − q) ≤ (1− ε) (q − r) = (1− ε)
(
CQ|K (y)− CQ|K (x)

)
.

Letting ε→ 0+, one can get that ξ ∈ ∂CQ|K (x).

(iii) If y ∈ X and q > r, then, by the definition of CQ|K (y), for any ε ∈ (0, q − r), there

exists qε such that

qε ∈ [q, q + ε) and Q ⊂ (y + qεK) . (4.9)
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Fix any k ∈ K and denote that z := y + (qε − r) k. Lemma 4.3 implies that

Q ⊂ (y + qεK) ⊂ [y + (qε − r) k + qεK − (qε − r) k] ⊂ z + rK.

Thus CQ|K (z) ≤ r. This verifies z ∈ Qr. It follows from (4.7) that

〈ξ, z − x〉 ≤ 0. (4.10)

From (4.7), (4.9) and (4.10), we have that

CQ|K (y)− CQ|K (x)− 〈ξ, y − x〉 = q − r − 〈ξ, y − z〉 − 〈ξ, z − x〉

= q − r + (r − qε) 〈−ξ, k〉 − 〈ξ, z − x〉

≥ q − r + r − qε
≥ −ε.

Letting ε → 0+, we obtain the desired conclusion: ξ ∈ ∂CQ|K (x). Therefore, the proof of

Theorem 4.4 is complete. �

Define Q̄ as follows:

Q̄ := {x ∈ X : Q ⊂ x+K∞}.

By Theorem 3.3, one can see that if x ∈ Q̄, then CQ|K(x) = 0.Now, we establish a subdifferential

estimate of x ∈ Q̄.

Theorem 4.5 Let x ∈ Q̄. Suppose that K is a nonempty, affine set that contains the

origin. Then

∂CQ|K (x) ⊂ NQ̄ (x) ∩ {ξ ∈ X∗ : =K (−ξ) = 1} ,

where =K (ξ) := sup
x∈K
〈ξ, x〉 .

Proof For any ξ ∈ ∂CQ|K (x), the definition of the Clark subdifferential implies that

〈ξ, y − x〉 ≤ CQ|K (y)− CQ|K (x) , for all y ∈ X. (4.11)

Since CQ|K (x) = 0 on Q̄, this implies that

〈ξ, y − x〉 ≤ CQ|K (y)− CQ|K (x) = 0, for all y ∈ Q̄. (4.12)

Thus ξ ∈ NQ̄ (x). Now, let us show that =K (−ξ) = 1.

For any k ∈ K, t > 0 and y := x− tk, it follows from (4.2) and Lemma 4.2 that

〈ξ, y − x〉 = 〈ξ, (x− tk)− x〉 ≤ CQ|K (x− tk)− CQ|K (x) ≤ t.

Dividing both sides of the above inequality by t, we can obtain that 〈ξ,−k〉 ≤ 1 for all k ∈ K.
This implies that

=K (−ξ) ≤ 1.

One the other hand, the definition of CQ|K (x) = 0 implies that, for any σ > 0, there exists

t > 0 such that

0 < t < σ and Q ⊂ (x+ tK) . (4.13)

Let v ∈ K and 0 < ε < t. From (4.13) and Lemma 4.3, it follows that

Q ⊂ (x+ tK) ⊂ (x+ εk + tK − εk) ⊂ x+ εk + (t− ε)K.
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Hence, CQ|K (x+ εk) ≤ t− ε. Applying (4.11) and (4.13), for y = x+ εk, we have that

〈ξ, y − x〉 = 〈ξ, x+ εk − x〉 ≤ CQ|K (x+ εk)− CQ|K (x) ≤ t− ε ≤ ε2 − ε.

This yields that =K (−ξ) ≥ 1, by letting σ → 0+. �

Remark 4.6 The results of Theorems 4.4 and 4.5 are due to the assumption on the affine

property of the set K. This just covers some special cases such as the hyperplane. It would be

interesting to consider the general case where K is the closed unit ball.
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