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Abstract This paper is the sequel to our study of heat kernel on Ricci shrinkers [29]. In this

paper, we improve many estimates in [29] and extend the recent progress of Bamler [2]. In

particular, we drop the compactness and curvature boundedness assumptions and show that

the theory of F-convergence holds naturally on any Ricci flows induced by Ricci shrinkers.
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1 Introduction

A Ricci shrinker (Mn, g, f) is a complete Riemannian manifold (Mn, g) coupled with a

smooth function f satisfying

Rc + Hess f =
1

2
g, (1.1)

where the potential function f is normalized so that

R+ |∇f |2 = f. (1.2)

The study of shrinkers is an essential component of analyzing the singularity formation

of solutions to the Ricci flow. For a Ricci flow with type-I curvature bound, it was proven

by Enders-Müller-Topping [20] that any proper blow-up sequence converges smoothly to a

nontrivial Ricci shrinker. For general compact Ricci flows, it was proven by Bamler [4] that the

finite-time singularities are modeled on Ricci shrinkers containing a singular set by using the

theory of F-convergence developed in [2–4].

In dimension 2 or 3, all Ricci shrinkers are completely classified (cf. [8, 22, 32, 34], etc.).

We know that R2, S2,R3, S3, S2 × R and their quotients form the complete list. In particular,

all low-dimensional Ricci shrinkers have bounded and nonnegative sectional curvature.

In higher dimensions, the complete classification of Ricci shrinkers seems out of reach.

Subject to an additional curvature assumption, some partial classifications are also known (cf.
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[18, 26, 27, 30, 32, 33]). In general, it is still unclear if there exists any Ricci shrinker with

unbounded sectional curvature.

On the one hand, Ricci shrinkers can be regarded as critical metrics which generalize the

classical positive Einstein manifolds. On the other hand, for any Ricci shrinker, there exists an

associated self-similar solution to the Ricci flow (cf. Section 2). As a special class of Ricci flows,

Ricci shrinkers have many known important properties of compact Ricci flows. In [29], many

fundamental analytic tools, including the maximum principle, optimal log-Sobolev constant

estimate, the no-local-collapsing theorems, etc., were established for Ricci flows associated with

Ricci shrinkers. Many heat kernel estimates including the differential Harnack inequality and

the pseudolocality theorem were also shown in [29].

In this paper, we continue to focus on Ricci flows associated with Ricci shrinkers without

any curvature assumption. Based on the techniques and results in [29] and [2], we obtain further

results, including a Gaussian bound on the heat kernel, no-local-collapsing and non-expanding

estimates, an ε-regularity theorem, etc.. All of these results are stronger than their counterparts

in [29]. It is important to notice that we have no assumption of curvature at all. If we assume

bounded curvature on non-compact manifolds, then many results are already known (cf. [5, 10]).

The pointed Nash entropy (cf. Definition 3.18) plays an important role in [2], which first

appeared in [35, Section 5] and was systematically studied in [24]. In [29], we use Perelmam’s en-

tropy µ (see (2.1)) to characterize the optimal log-Sobolev constant and the local non-collapsing.

The pointed Nash entropy, which is always bounded below by µ, has the advantage of being

local in the spacetime of Ricci flows. In [24], it was proven that the Nash entropy is Lipschitz.

Moreover, the oscillation of the Nash entropy in the spacetime was established in [2]. We gen-

eralize the Nash entropy and its fundamental estimates to the Ricci flows associated with Ricci

shrinkers; see Theorem 3.23 and Corollary 4.19.

Theorem 1.1 Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. Then

for any s < t < 1, the Nash entopy N ∗s (x, t) := N(x,t)(t−s) is smooth and satisfies the following

estimates on M × (s, 1):

|∇N ∗s | ≤
√

n

2(t− s)
and − n

2(t− s)
≤ �N ∗s ≤ 0. (1.3)

The proof of (1.3) is based on an integral estimate of the heat kernel (cf. Theorem 3.16),

which was initially obtained in [2] for compact Ricci flows. A key application of Theorem 1.1

is to estimate the local oscillation of the Nash entropy (cf. Corollary 3.25). Using the Nash

entropy properties and the heat kernel estimates, we obtain the improved no-local-collapsing

and non-expanding result (cf. Theorem 4.2 and Theorem 4.7).

Theorem 1.2 (No-local-collapsing and non-expanding) Let (Mn, g(t))t<1 be the Ricci

flow associated with a Ricci shrinker. For any x ∈M and t < 1,

|Bt(x, r)|t ≤ C(n) exp
(
N(x,t)(r

2)
)
rn,

and if R ≤ r−2 on Bt(x, r), then

|Bt(x, r)|t ≥ c(n) exp
(
N(x,t)(r

2)
)
rn.

Note thatN(x,t)(r
2) ≤ 0 (cf. Corollary 3.22), it is clear that Theorem 1.2 provides a uniform

volume ratio upper bound, independent of base point and radius. This clearly improves the
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known volume upper bounds (cf. [9, 23, 25]). On the other hand, as µ ≤ N(x,t)(r
2), the

non-collapsing estimate in Theorem 1.2 also improves the one in [29].

An important concept introduced in [2] is the H-center (cf. Definition 3.11). Roughly

speaking, an H-center is a point around which the conjugate heat kernel is concentrated (cf.

Proposition 3.13). In addition, for any two conjugate heat kernels, the W1-Wasserstein distance

between them can be roughly measured by the distance between two H-centers. We prove the

existence of an Hn-center, where Hn = (n − 1)π2/2 + 4, for any conjugate heat kernel, by

generalizing the monotonicity of the variance obtained in [2] to our setting (cf. Proposition

3.10, Proposition 3.12). By using these concepts and related techniques, we have the following

heat kernel estimates (cf. Theorem 4.9, Theorem 4.15, Theorem 4.16).

Theorem 1.3 (Heat kernel estimates) Let (Mn, g(t))t<1 be the Ricci flow associated with

a Ricci shrinker satisfying µ ≥ −A. Then the following properties hold:

(i) There exists a constant C = C(n,A, δ) > 1 such that

C−1

(t− s)n2
exp

(
− d2s(x, y)

C−1(t− s)

)
≤ H(x, t, y, s) ≤ C

(t− s)n2
exp

(
− d

2
s(x, y)

C(t− s)

)
(1.4)

for any −δ−1 ≤ s < t ≤ 1 − δ and dt(p, x) ≤ δ−1. Here, the point p is a minimum point of f ,

regarded as Ricci shrinker’s base point.

(ii) For any ε > 0, there exists a constant C = C(n, ε) > 0 such that

H(x, t, y, s) ≤
C exp

(
−N(x,t)(t− s)

)
(t− s)n2

exp

(
− d2s(z, y)

(4 + ε)(t− s)

)
(1.5)

for any s < t < 1 and any Hn-center (z, s) of (x, t).

The Gaussian estimate (1.5) was previously proven in [2] for compact Ricci flows, with

4 + ε replaced by 8 + ε. Our proof uses an iteration argument by showing that if (1.5) fails, one

can find a new spacetime point (x′, t′) with an Hn-center (z′, s) such that H(x′, t′, y, s) has a

worse bound than (1.5). Eventually, we will arrive at a contradiction if t′ is sufficiently close

to s. The proof in our case is more involved since we do not have a global heat kernel bound

as (1.5) when t is close to s, which is always available for compact Ricci flows. Therefore, in

the iteration process, we must carefully choose the sequence of spacetime points so that they

all fall into a compact set. Then the contradiction comes from the local heat kernel estimate

(cf. Corollary 4.12), since the scalar curvature is locally bounded.

Once we have the estimate (1.5), the upper bound in (1.4) follows since the distance between

(x, s) and (z, s) can be well-controlled. Moreover, the lower bound in (1.4) is already contained

in [29] in a different guise. We also obtain the gradient estimate of the heat kernel; see Theorem

4.6.

By the monotonicity of the W1-Wasserstein distance between two conjugate heat kernels (cf.

Proposition 3.7), it is natural to consider new P ∗-parabolic neighborhoods in the spacetime of

the Ricci flow, as pointed out in [2] (cf. Definition 5.1, (5.1), (5.2)). Comparing the P ∗-parabolic

neighborhoods with the conventional ones, we have the following result (cf. Proposition 5.7,

Proposition 5.9, Proposition 5.10, Proposition 5.13).

Theorem 1.4 Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker satis-

fying µ ≥ −A. Then the following properties hold:
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(i) Given δ ∈ (0, 1), t0 ∈ (−∞, 1), T± ≥ 0 and S ≥ 0, there exists a constant C =

C(n,A, δ) > 1 such that

P ∗(p, t0;S,−T−, T+) ⊂ Q(p, t0;
√

2S + C,−T−, T+) ⊂ P ∗(p, t0;
√

2S + 2C,−T−, T+),

provided that t0 − T− ≥ −δ−1.

(ii) There exists a constant ρ = ρ(n,A) ∈ (0, 1) satisfying the following property: given

(x0, t0) ∈M × (−∞, 1) and r > 0, suppose that R ≤ r−2 on P (x0, t0; r,−(ρr)2, (ρr)2). Then

P (x0, t0; ρr) ⊂ P ∗(x0, t0; r,−(ρr)2, (ρr)2) and P ∗(x0, t0; ρr) ⊂ P (x0, t0; r,−(ρr)2, (ρr)2).

The proof of Theorem 1.4 involves the distance distortion estimates globally with respect to

p and locally under the scalar curvature control. Moreover, one needs to locate the Hn-center of

(p, t0) or (x0, t0). Notice that, if t0+T+ < 1, Theorem 1.4 implies that any P ∗(p, t0;S,−T−, T+)

is precompact, i.e., its closure is compact. By using the estimates of the Nash entropy and P ∗-

neighborhoods, one has the following ε-regularity theorem (cf. Theorem 5.15), which was proven

in [2] for compact Ricci flows. Here, rRm is the spacetime curvature radius, whose definition

can be found in Definition 5.14.

Theorem 1.5 (ε-regularity theorem) There exists a small constant ε = ε(n) > 0 satisfying

the following property.

Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. Given (x, t) ∈ M ×
(−∞, 1) and r > 0, suppose that N(x,t)(r

2) ≥ −ε, then rRm(x, t) ≥ εr.

Based on the results and techniques generalized (or slightly improved) from [2], we can gen-

eralize the theory about metric flows and F-convergence in [3] and [4] from compact Ricci flows

to the setting of Ricci flows associated with or induced by Ricci shrinkers (cf. Definition 2.2).

In particular, a pointed Ricci flow induced by a Ricci shrinker can be regarded as a metric

flow pair in the sense of [3, Definition 5.1]. Therefore, any sequence of pointed Ricci shrinkers

induced by Ricci shrinkers with µ ≥ −A, by taking a subsequence, will F-converge to a limit

metric flow admitting concrete structure theorems (cf. Theorem 6.10, Theorem 6.12). As an

application of the theory of F-convergence, we have the following two-sided pseudolocality the-

orem. Notice that the forward pseudolocality theorem was proven in [29, Theorem 24]. Thus,

to obtain a two-sided pseudolocality, it suffices to obtain a backward pseudolocality, which is

proven in Theorem 6.21.

Theorem 1.6 (Two-sided pseudolocality theorem) For any α > 0, there is an ε(n, α) > 0

such that the following holds.

Let (Mn, g(t))t<1 be a Ricci flow associated with a Ricci shrinker. Given (x0, t0) ∈ M ×
(−∞, 1) and r > 0, if

|Bt0(x0, r)| ≥ αrn, |Rm| ≤ (αr)−2 on Bt0(x0, r),

then

|Rm| ≤ (εr)−2 on P (x0, t0; (1− α)r,−(εr)2, (εr)2).

Another application of the F-converge is the following integral estimate of curvature, which

originates from the estimate of Cheeger-Naber [12]. For more details, see Theorem 6.23 and

Corollary 6.24.
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Theorem 1.7 Let (Mn, g, f, p) be a Ricci shrinker in M(A). Then∫
d(p,·)≤r

|Rm|2−ε dV ≤
∫
d(p,·)≤r

r−4+2ε
Rm dV ≤ Crn+2ε−2,∫

d(p,·)≥1

|Rm|2−ε

dn+2ε−2(p, ·)
dV ≤

∫
d(p,·)≥1

r−4+2ε
Rm

dn+2ε−2(p, ·)
dV ≤ C

for any ε > 0 and r ≥ 1, where rRm(·) = rRm(·, 0) and C = C(n,A, ε).

This rest of the paper is organized as follows. Section 2 discusses some properties of

Ricci flows associated with Ricci shrinkers, including the existence of cutoff functions and

maximum principles. In Section 3, we prove some estimates and properties regarding the

variance, H-centers and the Nash entropy. Section 4 focuses on various estimates of the heat

kernel. In Section 5, we prove the theorems about the parabolic neighborhoods and the ε-

regularity theorem. In the last section, we generalize the theory of F-convergence in our setting

and prove some applications in Ricci shrinkers.

2 Preliminaries

For any Ricci shrinker (Mn, g, f), the scalar curvature R ≥ 0 from [14, Corollary 2.5] and

R > 0 unless (Mn, g) is isometric to the Gaussian soliton (Rn, gE), by the strong maximum

principle.

With the normalization (1.2), the entropy is defined as

µ = µ(g) := log

∫
e−f

(4π)n/2
dV. (2.1)

Notice that eµ is uniformly comparable to the volume of the unit ball B(p, 1) (cf. [25,

Lemma 2.5]). It was proven in [29, Theorem 1] that µ is the optimal log-Sobolev constant for

all scales. Following [28], we have

Definition 2.1 Let M(A) be the family of Ricci shrinkers (Mn, g, f) satisfying

µ(g) ≥ −A. (2.2)

Recall that any Ricci shrinker (Mn, g, f) can be considered a self-similar solution to the

Ricci flow. Let ψt : M →M be a family of diffeomorphisms generated by 1
1−t∇f and ψ0 = id.

In other words, we have

∂

∂t
ψt(x) =

1

1− t
∇f

(
ψt(x)

)
. (2.3)

It is well known that the rescaled pull-back metric g(t) := (1− t)(ψt)∗g satisfies the Ricci flow

equation for any −∞ < t < 1,

∂tg = −2Rcg(t) and g(0) = g. (2.4)

Sometimes we encounter Ricci flow obtained from the above Ricci flow through time-shifting

and rescaling. We emphasize the possible extra time-shifting and rescaling by the following

definition.

Definition 2.2 For any Ricci shrinker, the Ricci flow defined in (2.4) is called the asso-

ciated Ricci flow. Any Ricci flow obtained from the associated Ricci flow via time-shifting and

rescaling is called the Ricci flow induced by a Ricci shrinker.
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Clearly, a Ricci flow associated with a Ricci shrinker must be a Ricci flow induced by a

Ricci shrinker, but the reverse is generally not true. In this article, if not mentioned explicitly,

the associated Ricci flow is the default.

Next, we recall the function F (x, t) := τ̄ f(x, t), where τ̄ := 1 − t and f(x, t) := (ψt)∗f ,

satisfies the following identities (see [29, Section 2] for proofs):

∂tf = |∇f |2, (2.5)

∂tF = −τ̄R, (2.6)

τ̄R+ ∆F =
n

2
, (2.7)

τ̄2R+ |∇F |2 = F, (2.8)

�F = −n
2
. (2.9)

Here, we define � := ∂t −∆t and drop the subscript g(t) or t if there is no confusion. Based

on these identities, we have the following estimates of F .

Lemma 2.3 (Lemma 1 of [29]) There exists a point p ∈M where F attains its infimum

and F satisfies the quadratic growth estimate

1

4
(dt(x, p)− 5nτ̄ − 4)

2
+ ≤ F (x, t) ≤ 1

4

(
dt(x, p) +

√
2nτ̄

)2
(2.10)

for all x ∈M and t < 1, where a+ := max{0, a}.
Thanks to (2.10), F (x, t) grows like d2t (x, p)/4, and hence one can obtain a family of cutoff

functions by composing F with a cutoff function on R. More precisely, we fix a function

η ∈ C∞([0,∞)) such that 0 ≤ η ≤ 1, η = 1 on [0, 1] and η = 0 on [2,∞). Furthermore,

−C ≤ η′/η 1
2 ≤ 0 and |η′′| ≤ C for a universal constant C > 0. For each r ≥ 1, we define

φr := η

(
F

r

)
. (2.11)

Then φr is a smooth function on M × (−∞, 1). The following estimates of φr were proven in

[29, Lemma 3]:

(φr)−1|∇φr|2 ≤ Cr−1, (2.12)

|φrt | ≤ Cτ̄−1, (2.13)

|∆φr| ≤ C(τ̄−1 + r−1), (2.14)

|�φr| ≤ Cr−1, (2.15)

where the constant C depends only on the dimension n.

For later applications, we recall the following volume estimate proven in [29, Lemma 2].

Lemma 2.4 There exists a constant C = C(n) > 0 such that for any Ricci shrinker

(Mn, g, f) with p ∈M a minimum point of f ,

|Bt(p, r)|t ≤ Crn.

Next, we recall the following version of the maximum principle on Ricci shrinkers, which

was proven in [29, Theorem 6] and will be frequently used.

Theorem 2.5 (Maximum principle on Ricci shrinkers I) Let (M, g(t))t<1 be the Ricci

flow associated with a Ricci shrinker. Given any closed interval [a, b] ⊂ (−∞, 1) and a function
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u which satisfies �u ≤ 0 on M × [a, b], suppose that∫ b

a

∫
M

u2+(x, t)e−2f(x,t) dVt(x)dt <∞. (2.16)

If u(·, a) ≤ c, then u(·, b) ≤ c.
We also need the following version of the maximum principle, which was proven in [19,

Theorem 12.14] for Ricci flows with bounded curvature. Notice that if X ≡ 0, Theorem 2.6

follows from Theorem 2.5.

Theorem 2.6 (Maximum principle on Ricci shrinkers II) Let (M, g(t))t<1 be the Ricci

flow associated with a Ricci shrinker. Given any closed interval [a, b] ⊂ (−∞, 1) and a function

u which satisfies

Lu := �u− 〈∇u,X(t)〉 ≤ 0

on M × [a, b], suppose that X(t) is a bounded vector field on M × [a, b] and

u(x, t) ≤ Kekf(x,t) (2.17)

on M × [a, b] for some constants K > 0 and k < 1. If u(·, a) ≤ c, then u(·, b) ≤ c.
Proof We first construct a barrier function

φ(x, t) := KeB(t−a)+(1−ε)f(x,t),

where 1− ε > k and B is a constant determined later.

Claim There exists a constant B > 0 such that

Lφ ≥ φ. (2.18)

Proof of Claim By direct computations, we have

Lφ = φ
(
B + (1− ε)ft − (1− ε)2|∇f |2 − (1− ε)∆f − (1− ε)〈∇f,X〉

)
= φ

(
B + ε(1− ε)|∇f |2 − n(1− ε)

2τ̄
+ (1− ε)R− (1− ε)〈∇f,X〉

)
≥ φ

(
B + ε(1− ε)|∇f |2 − C1|∇f | −

n(1− ε)
2(1− b)

)
,

where we have used (2.6), (2.7) and the assumption that |X| ≤ C1. Therefore, (2.18) holds if

we choose

B =
C2

1

4ε(1− ε)
+
n(1− ε)
2(1− b)

+ 1.

We assume c = 0 by considering u − c instead of u. To complete the proof, we only need

to verify that for any δ > 0, u ≤ δφ on M × [a, b]. Otherwise, there exists (x′, t′) ∈ M × [a, b]

such that (u− δφ) (x′, t′) > 0. Due to the estimate (2.17) and our definition of φ, we know

that (u− δφ) (x, t) −→ −∞ as dt(x, p) −→ +∞ uniformly in t, i.e., u − δφ < 0 for dt(x, p)

large enough independent of t. Moreover, (u− δφ) (x, a) < 0 for all x ∈ M . Consequently,

there exists (x′′, t′′) ∈ M × (a, t′) such that (u− δφ) (x, t) ≤ 0 for all (x, t) ∈ M × [a, t′′] and

(u− δφ) (x′′, t′′) = 0. At (x′′, t′′), we compute

0 ≤ L (u− δφ) ≤ −δφ < 0,

which is a contradiction. In sum, our proof is complete. �
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3 Variance, H-center and Nash Entropy

Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. It was proven in

[29, Theorem 7] that there exists a positive heat kernel function H(x, t, y, s) for x, y ∈ M and

s < t < 1. More precisely,

�H(·, ·, y, s) = 0, lim
t↘s

H(·, t, y, s) = δy

and

�∗H(x, t, ·, ·) = 0, lim
s↗t

H(x, t, ·, s) = δx,

where � := ∂t − ∆ and �∗ := −∂t − ∆ + R. Furthermore, the heat kernel H satisfies the

semigroup property

H(x, t, y, s) =

∫
M

H(x, t, z, ρ)H(z, ρ, y, s) dVρ(z), ∀ x, y ∈M, ρ ∈ (s, t) ⊂ (−∞, 1), (3.1)

and the following integral relationships:∫
M

H(x, t, y, s) dVt(x) ≤ 1, (3.2)∫
M

H(x, t, y, s) dVs(y) = 1. (3.3)

For any (x, t) ∈ M × (−∞, 1), we define the conjugate heat kernel measure vx,t;s by

dvx,t;s(y) = H(x, t, y, s) dVs(y). It follows immediately from (3.3) that vx,t;s is a probabili-

ty measure on M . In particular, vx,t;t = δx.

With the help of the heat kernel, one can solve the (conjugate) heat solution from the given

initial condition. More precisely, it follows from [29, Lemma 5, Lemma 6] that

Theorem 3.1 Suppose that [a, b] ⊂ (−∞, 1) and ua is a bounded function on the time

slice (M, g(a)). Then

u(x, t) :=

∫
M

H(x, t, y, a)ua(y) dVa(y), ∀ t ∈ [a, b] (3.4)

is the unique bounded heat solution with the initial value ua. Similarly, suppose that wb is an

integrable function on the time slice (M, g(b)). Then

w(y, s) :=

∫
M

H(x, b, y, s)wb(x) dVb(x) (3.5)

is the unique conjugate heat solution with initial value wb such that

sup
s∈[a,b]

∫
|w|dVs <∞. (3.6)

Next, we recall the following gradient estimate, which slightly strengthens [29, Corollary

1].

Lemma 3.2 Let u be a bounded heat solution on M × [a, b] such that sup
M
|∇u(·, a)| <∞.

Then,

(i) we have

sup
M
|∇u(·, b)| ≤ sup

M
|∇u(·, a)|. (3.7)
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(ii) assuming that w is a nonnegative conjugate heat solution on M × [a, b] such that

sup
t∈[a,b]

∫
M

w dVt <∞, (3.8)

then we have

2

∫ b

a

∫
M

|Hessu|2w dVtdt =

∫
M

|∇u|2w dV

∣∣∣∣a
b

<∞. (3.9)

Proof (i) From �u = 0 and direct computation, we have

�|∇u|2 = −2|Hessu|2 ≤ 0. (3.10)

Therefore, (3.7) follows from Theorem 2.5, provided that∫ b

a

∫
M

|∇u|2e−2f dVtdt <∞. (3.11)

Now, we fix r � 1 and multiply both sides of �u = 0 by u(φr)2e−2f . By integrating on

M × [a, b], we obtain

1

2

∫
M

u2(φr)2e−2f dV

∣∣∣∣b
a

−
∫ b

a

∫
M

u2φrφrt e
−2f dVtdt+

∫ b

a

∫
M

u2(φr)2fte
−2f dVtdt+

1

2

∫ b

a

∫
M

u2(φr)2Re−2f dVtdt

=

∫ b

a

∫
M

{
−|∇(uφr)|2 + |∇φr|2u2 + 〈∇u2,∇f〉(φr)2

}
e−2fdVtdt

=

∫ b

a

∫
M

{
−|∇(uφr)|2 + |∇φr|2u2 + (2|∇f |2 −∆f)u2(φr)2 − 2u2φr〈∇φr,∇f〉

}
e−2fdVtdt.

Since R ≥ 0 and ft = |∇f |2 by (2.5), we have∫ b

a

∫
M

|∇(uφr)|2e−2fdVtdt+
1

2

∫
M

u2(φr)2e−2f dV

∣∣∣∣b
a

≤
∫ b

a

∫
M

{
|∇φr|2u2 + (|∇f |2 −∆f)u2(φr)2 + u2φr(φrt − 2〈∇φr,∇f〉)

}
e−2fdVtdt

=

∫ b

a

∫
M

{
|∇φr|2u2 +

1

1− t

(
f − n

2

)
u2(φr)2 + u2φr(φrt − 2〈∇φr,∇f〉)

}
e−2fdVtdt,

where we have used the identity ∆f − |∇f |2 = τ̄−1(f − n/2) from (2.7) and (2.8).

Since u is bounded on M × [a, b] and |∇f |2 ≤ f/(1 − b), it follows from (2.12), (2.13),

Lemma 2.3 and Lemma 2.4 that, by letting r → +∞,∫ b

a

∫
M

|∇u|2e−2fdVtdt ≤
1

2

∫
M

u2e−2f dV

∣∣∣∣a
b

+

∫ b

a

∫
M

1

1− t

(
f − n

2

)
u2e−2fdVtdt <∞,

and hence (3.11) holds.

(ii) Fix r � 1 and ε� 1. We calculate

∂t

∫
M

|∇u|2φrw dV =

∫
M

{
�(|∇u|2φr)w − (|∇u|2φr)�∗w

}
dV

=

∫
M

{
|∇u|2�φr + φr�|∇u|2 − 2〈∇|∇u|2,∇φr〉

}
w dV
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≤
∫
M

{
|∇u|2�φr − 2|Hessu|2φr + 4|Hessu||∇u||∇φr|

}
w dV

≤
∫
M

{
|∇u|2|�φr| − (2− ε2)|Hessu|2φr + 4ε−2|∇u|2|∇φr|2(φr)−1

}
w dV.

(3.12)

Since |∇u| is uniformly bounded by (3.7), it follows from (3.12), (2.12) and (2.15) that

2

∫ b

a

∫
M

|Hessu|2w dVtdt ≤
∫
M

|∇u|2w dV

∣∣∣∣a
b

if we let r → +∞ and ε → 0. The other inequality can be proven similarly, and hence (3.9)

holds. �

Next, we prove

Proposition 3.3 For any [a, b] ⊂ (−∞, 1), suppose that u and w are two smooth functions

on M × [a, b] satisfying �u = �∗w = 0. Then, the identity∫
M

uw dVa =

∫
M

uw dVb (3.13)

holds under one of the following additional assumptions:

(i) sup
t∈[a,b]

∫
M
|wu|dVt +

∫ b
a

∫
M
|w||∇u|dVtdt <∞.

(ii) sup
t∈[a,b]

∫
M
|wu|dVt +

∫ b
a

∫
M
|u||∇w|dVtdt <∞.

Proof (i) We take r � 1 and calculate

∂t

∫
M

wuφr dV =

∫
M

{w�(uφr)− (uφr)�∗w}dV

=

∫
M

w {u�φr + φr�u− 2〈∇u,∇φr〉}dV

=

∫
M

w {u�φr − 2〈∇u,∇φr〉}dV.

By using (2.12) and (2.15), we conclude∣∣∣∣∣
∫
M

wuφrdV

∣∣∣∣b
a

∣∣∣∣∣ ≤ C(r−1 + r−
1
2 )

∫ b

a

∫
M

|w|(|u|+ |∇u|) dVtdt.

By taking r →∞, we arrive at (3.13).

(ii) Similarly, we have

∂t

∫
M

uwφr dV =

∫
M

{(�u)wφr − u�∗(wφr)}dV

=

∫
M

u {−(�∗w)φr + w(∆φr + φrt ) + 2〈∇w,∇φr〉} dV

=

∫
M

u {w(∆φr + φrt ) + 2〈∇w,∇φr〉} dV.

Therefore, by (2.12), (2.13) and (2.14), we have∣∣∣∣∣
∫
M

wuφrdV

∣∣∣∣b
a

∣∣∣∣∣ ≤ C(r−1 + r−
1
2 + (1− b)−1)

∫∫
Kr

|u|(|w|+ |∇w|) dVtdt,

where Kr := {r ≤ F (x, r) ≤ 2r, a ≤ t ≤ b}. Consequently, by our assumption, (3.13) holds if

r →∞. �
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Remark 3.4 Suppose �u = �∗w = 0.

(i) If sup
M
|∇u(·, a)|+ sup

M×[a,b]
|u|+ sup

t∈[a,b]

∫
M
|w|dVt <∞, then assumption (i) holds by (3.7).

If sup
M×[a,b]

|u| + sup
t∈[a,b]

∫
M
|w|dVt < ∞ and u is positive, then |∇u| ≤ C/

√
t− a by [29, Lemma

18]. Therefore, (3.13) also holds by taking the limit for t↘ a.

(ii) If sup
M×[a,b]

|u|+ sup
t∈[a,b]

∫
M
|w|dVt <∞ and w(·, b) is a nonnegative function with compact

support, then assumption (ii) holds. Indeed, it follows from [29, Lemma 9] that∫ b

a

∫
M

|∇w|2

w
dVtdt <∞,

and hence∫ b

a

∫
M

|u||∇w|dVtdt ≤ C( sup
M×[a,b]

|u|)

(∫ b

a

∫
M

|∇w|2

w
dVtdt

) 1
2
(∫ b

a

∫
M

w dVtdt

) 1
2

<∞.

For later applications, we prove the following estimate of the heat kernel.

Lemma 3.5 For any y ∈ M and s < t < 1, we set u(x, t) := H(x, t, y, s) and w̄(x, t) :=

(4πτ̄)−
n
2 e−f(x,t). Then ∫

M

u(x, t)w̄(x, t) dVt(x) = w̄(y, s). (3.14)

Proof It is clear from the definition of w̄ that �∗w̄ = 0; see [29, Equation (28)]. Moreover,

for any [a, b] ⊂ (s, t], the assumption (ii) of Proposition 3.3 holds since∫ b

a

∫
M

u|∇w̄|dVtdt ≤
∫ b

a

∫
M

uw̄(1 + |∇f |) dVtdt

≤(4π(1− b))−n2
∫ b

a

∫
M

u(1 + (1− b)− 1
2 f

1
2 )e−f dVtdt

≤C
∫ b

a

∫
udVtdt ≤ C(b− a),

where we have used (2.8) and (3.2) and the constant C depends only on n and b.

By choosing b = t and letting a↘ s, the proof of Proposition 3.3 yields∫
M

uw̄φr dVt − w̄(y, s)φr(y, s) = o(r),

where o(r)→ 0 as r →∞. Therefore, we immediately obtain (3.14) by letting r →∞. �

Next, we recall the definition of W1-Wasserstein distance.

Definition 3.6 Let (X, d) be a complete metric space and µ1, µ2 two probability measures

on X. Then the W1-Wasserstein distance between µ1 and µ2 is defined by

dW1
(µ1, µ2) := sup

f

(∫
f dµ1 −

∫
f dµ2

)
,

where the supremum is taken for all bounded 1-Lipschitz functions f . We also use dtW1
to

denote the W1-distance with respect to g(t).

We prove the following monotonicity of the Wasserstein distance as [2, Lemma 2.7].

Proposition 3.7 Let (Mn, g(t))t<1 be a Ricci flow associated with a Ricci shrinker. For

[a, b] ⊂ (−∞, 1), let w1, w2 ∈ C∞(M × [a, b]) be two nonnegative conjugate heat solutions such
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that
∫
M
wi dVt = 1 for any t ∈ [a, b] and i = 1, 2. We define the probability measures with

dµi,t = wi(·, t) dVt, i = 1, 2. Then

dtW1
(µ1,t, µ2,t)

is increasing for t ∈ [a, b]. In particular, if t1 ≤ t2 < 1, then for any x1, x2 ∈M and t ≤ t1,

dtW1
(vx1,t1;t, vx2,t2;t)

is increasing and

dtW1
(vx1,t1;t, vx2,t2;t) ≤ dt1(x1, x2).

Proof Let t1 ≤ t2, t1, t2 ∈ [a, b] and consider a bounded function u1 ∈ C∞(M) with

sup
M
|∇u1(·, t1)| ≤ 1. Suppose that u is the unique bounded heat solution on M× [t1, t2] starting

from u1. Then it follows from Lemma 3.2 (i) that

sup
M
|∇u(·, t)| ≤ 1

for any t ∈ [t1, t2]. Clearly, we have∫
M

udµ1,t1 −
∫
M

udµ2,t1 =

∫
M

u(x, t1)w1(x, t1) dVt1(x)−
∫
M

u(x, t1)w2(x, t1) dVt1(x)

=

∫
M

u(x, t2)w1(x, t2) dVt2(x)−
∫
M

u(x, t2)w2(x, t2) dVt2(x)

=

∫
M

udµ1,t2 −
∫
M

udµ2,t2 ≤ d
t2
W1

(µ1,t2 , µ2,t2).

Here, we have used [29, Proposition 1] for the second equality. By taking the supremum over

all such u1, one obtains

dt1W1
(µ1,t1 , µ2,t1) ≤ dt2W1

(µ1,t2 , µ2,t2).

�

Next, we recall the following definition from [2, Definition 3.1].

Definition 3.8 (Variance) The variance between two probability measures µ1, µ2 on a

Riemannian manifold (M, g) is defined as

Var(µ1, µ2) :=

∫
M

∫
M

d2(x1, x2)dµ1(x1)dµ2(x2).

In the case µ1 = µ2 = µ, we write

Var(µ) = Var(µ, µ) =

∫
M

∫
M

d2(x1, x2)dµ(x1)dµ(x2).

We also define Vart as the variance with respect to the metric g(t).

For some basic properties of the variance, we refer the readers to [2, Lemma 3.2]. Next,

we prove some results which originate from [2, Corollary 3.7, Corollary 3.8]. Before that, we

first prove the following maximum principle on the product manifold (cf. [1, 7] for the related

survey).

Theorem 3.9 (Maximum principle on the product) Let (Mn, g(t))t<1 be a Ricci flow

associated with a Ricci shrinker. Given any closed interval [a, b] ⊂ (−∞, 1) and a function u

on M ×M × [a, b] such that

(∂t −∆x −∆y)u(x, y, t) ≤ 0. (3.15)
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Suppose that ∫ b

a

∫
M×M

u2+(x, y, t)e−2f(x,t)−2f(y,t) dVt(x)dVt(y)dt <∞. (3.16)

If u(·, a) ≤ c, then u(·, b) ≤ c.
Proof The proof follows almost verbatim from [29, Theorem 6], except that we multiply

(3.15) by u+(x, y, t)(φr(x)φr(y))2e−2f(x,t)−2f(y,t) and do the integration. Since no other new

ingredient is needed, we omit the details here. �

Proposition 3.10 Under the same assumptions as in Proposition 3.7, if we further assume

w1(·, b) and w2(·, b) have compact supports, then

Vart(µ1,t, µ2,t) +Hnt

is increasing for t ∈ [a, b], where Hn := (n− 1)π2/2 + 4. Moreover, for any x1, x2 ∈M ,

Vart(vx1,b;t, vx2,b;t) +Hnt

is increasing for t ≤ b. In particular,

Vart(vx1,b;t, vx2,b;t) ≤ d2b(x1, x2) +Hn(b− t) and Vart(vx,b;t) ≤ Hn(b− t).

Proof For any [c, d] ⊂ [a, b], we set that u ∈ C0(M ×M × [c, b]) ∩ C∞(M ×M × (c, b])

is the solution to the heat equation

(∂t −∆x −∆y)u = −Hn, u(·, c) = d2c .

Indeed, by the existence of the heat kernel, one may define

u(x, y, t) :=

∫
M

∫
M

H(x, t, z, c)H(y, t, w, c)d2c(z, w) dVc(z)dVc(w)−Hn(t− c). (3.17)

We first show that (3.17) is well-defined. In fact, it is clear that∫
M

∫
M

H(x, t, z, c)H(y, t, w, c)d2c(z, w) dVc(z)dVc(w)

≤2

(∫
M

H(x, t, z, c)d2c(z, p) dVc(z) +

∫
M

H(y, t, w, c)d2c(w, p) dVc(w)

)
, (3.18)

and the convergence of the last two integrals follows from [29, Corollary 5].

On the other hand, it follows from [2, Theorem 3.5] that

(∂t −∆x −∆y)d2t (x, y) ≥ −Hn. (3.19)

Combining (3.17) and (3.19), we claim that u(x, y, t) ≤ d2t (x, y) for any t ∈ [c, b]. Indeed,

this follows from the maximum principle Theorem 3.9 as long as the condition (3.16) is satisfied.

First, notice that∫ b

c

∫
M×M

d4t (x, y)e−2f(x,t)−2f(y,t) dVt(x)dVt(y)dt

≤8

∫ b

c

∫
M×M

(
d4t (x, p) + d4t (y, p)

)
e−2f(x,t)−2f(y,t) dVt(x)dVt(y)dt. (3.20)

From Lemmas 2.3 and 2.4, it is clear that (3.20) is bounded. In addition, it follows from

(3.18) that∫ b

c

∫
M×M

(u(x, y, t) +Hn(t− c))2 e−2f(x,t)−2f(y,t) dVt(x)dVt(y)dt
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≤8

∫ b

c

∫
M×M

(∫
M

H(x, t, z, c)d2c(z, p) dVc(z)

)2

e−2f(x,t)−2f(y,t) dVt(x)dVt(y)dt

+ 8

∫ b

c

∫
M×M

(∫
M

H(y, t, w, c)d2c(w, p) dVc(w)

)2

e−2f(x,t)−2f(y,t) dVt(x)dVt(y)dt

≤8

∫ b

c

∫
M×M

∫
M

H(x, t, z, c)d4c(z, p)e
−2f(x,t)−2f(y,t) dVc(z)dVt(x)dVt(y)dt

+ 8

∫ b

c

∫
M×M

∫
M

H(y, t, w, c)d4c(w, p)e
−2f(x,t)−2f(y,t) dVc(w)dVt(x)dVt(y)dt, (3.21)

where we have used the Cauchy-Schwarz inequality for the last inequality. From Lemma 3.5,

we obtain ∫ b

c

∫
M×M

∫
M

H(x, t, z, c)d4c(z, p)e
−2f(x,t)−2f(y,t) dVc(z)dVt(x)dVt(y)dt

≤
∫ b

c

∫
M

∫
M

∫
M

H(x, t, z, c)d4c(z, p)e
−f(x,t)−2f(y,t) dVt(x)dVc(z)dVt(y)dt

≤
∫ b

c

∫
M

∫
M

(
1− t
1− c

)n
2

d4c(z, p)e
−f(z,c)−2f(y,t) dVc(z)dVt(y)dt

≤
∫ b

c

∫
M

∫
M

d4c(z, p)e
−f(z,c)−2f(y,t) dVc(z)dVt(y)dt <∞,

by Lemmas 2.3 and 2.4. Similarly, the second term in (3.21) is also bounded. Therefore, we

have proven that u(x, y, t) ≤ d2t (x, y) for any t ∈ [c, b].

By our assumption, w1(·, b) and w2(·, b) have compact supports. Then it follows from [29,

Lemma 8, Lemma 9] that

wi(x, t) ≤ Cw̄(x, t) (3.22)

for any c ≤ t ≤ b and ∫ b

c

∫
M

|∇wi|2

wi
dVtdt ≤ C (3.23)

for some constant C > 0.

Next, we set w1 = w1(x, t), w2 = w2(y, t), φrx = φr(x) and φry = φr(y). Then we compute

∂t

∫
M

∫
M

uw1w2φ
r
xφ

r
y dVt(x)dVt(y)

=

∫
M

∫
M

(∂t −∆x −∆y)(uφrxφ
r
y)w1w2 dVt(x)dVt(y)

=

∫
M

∫
M

(
−Hnφ

r
xφ

r
y − u(∆xφ

r
xφ

r
y + ∆yφ

r
yφ

r
x)
)
w1w2 dVt(x)dVt(y)

+ 2

∫
M

∫
M

(∆xφ
r
x + 〈∇φrx,∇w1〉)uφryw2 + (∆yφ

r
y + 〈∇φry,∇w2〉)uφryw1 dVt(x)dVt(y).

(3.24)

From (3.23), we have(∫ b

c

∫
M

∫
M

|∇φrx||∇w1||u|φryw2 dVt(x)dVt(y)dt

)2
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≤

(∫ b

c

∫
M

∫
M

|∇φrx|2u2(φry)2w1w2 dVt(x)dVt(y)dt

)(∫ b

c

∫
M

|∇w1|2

w1
dVtdt

)

≤C
∫ b

c

∫
M

∫
M

|∇φrx|2u2w1w2 dVt(x)dVt(y)dt. (3.25)

Similarly, we have (∫ b

c

∫
M

∫
M

|∇φry||∇w2||u|φrxw1 dVt(x)dVt(y)dt

)2

≤C
∫ b

c

∫
M

∫
M

|∇φry|2u2w1w2 dVt(x)dVt(y)dt. (3.26)

Combining (3.22), (3.24), (3.25), (3.26) and the fact that −Hn(t − c) ≤ u ≤ d2t (x, y), we

conclude, by letting r →∞, that∫
M

∫
M

uw1w2 dVd(x)dVd(y)−
∫
M

∫
M

uw1w2 dVc(x)dVc(y) = −Hn(d− c). (3.27)

Since u ≤ d2t (x, y), it follows from (3.27) and the definition of the variance that

Vard(µ1,d, µ2,d) +Hnd ≥ Varc(µ1,c, µ2,c) +Hnc.

Now, we assume wi = H(xi, b, ·, ·) for i = 1, 2. Then it follows from [29, Lemma 23] that∫ b−ε

a

∫
M

|∇wi|2

wi
dVtdt ≤ C log ε−1. (3.28)

Therefore, one can use the same arguments as above, thanks to (3.28) and [29, Corollary 5], to

conclude that (3.27) still holds if [c, d] ⊂ [a, b − ε]. Since ε is arbitrary, we immediately show

that

Vart(vx1,b;t, vx2,b;t) +Hnt

is increasing for any t ≤ b. �

Next, we recall the definition of H-center, where the conjugate heat kernel measure is

concentrated.

Definition 3.11 (H-center) Given a constant H > 0, a point (z, t) ∈ M × (−∞, 1) is

called an H-center of (x0, t0) ∈M × (−∞, 1) if t ≤ t0 and

Vart(δz, vx0,t0;t) ≤ H(t0 − t).

In particular, we have

dtW1
(δz, vx0,t0;t) ≤

√
H(t0 − t). (3.29)

From Proposition 3.10, the following result is immediate; see [2, Proposition 3.12].

Proposition 3.12 Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker.

Given (x0, t0) ∈M × (−∞, 1) and t ≤ t0, there is at least one point z ∈M such that (z, t) is an

Hn-center of (x0, t0) and for any two such points z1, z2 ∈M , we have dt(z1, z2) ≤ 2
√
Hn(t0 − t).

The following result ensures that the conjugate heat kernel measure is concentrated around

an H-center; see [2, Proposition 3.13].
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Proposition 3.13 If (z, t) is an H-center of (x0, t0), then for any L > 0,

vx0,t0;t

(
Bt(z,

√
LH(t0 − t))

)
≥ 1− 1

L
. (3.30)

Combining the above Proposition with [29, Theorem 14], we obtain the following integral

bound for the conjugate heat kernel; see also [2, Theorem 3.14].

Proposition 3.14 If (z, t) is an Hn-center of (x0, t0), then for all r ≥ 0 and ε > 0 we

have

vx0,t0;t

(
M \Bt(z, r)

)
≤ C(n, ε) exp

(
− r2

(4 + ε)(t0 − t)

)
.

Proof We apply [29, Theorem 14] for A = M \ Bt(z, r), B = Bt(z,
√

2Hn(t0 − t)) and

σ = ε/8 to obtain

vx0,t0;t

(
M \Bt(z, r)

)
≤v−

8
ε

x0,t0;t

(
Bt(z,

√
2Hn(t0 − t))

)
exp

(
−
(
r −

√
2Hn(t0 − t)

)2
+

(4 + ε/2)(t0 − t)

)
≤C(n, ε) exp

(
− r2

(4 + ε)(t0 − t)

)
,

where we have used (3.30) for L = 2 and H = Hn. �

In order to obtain the estimates on the Nash entropy, we first generalize the improved

gradient estimate [2, Theorem 4.1] to our setting. We define the following antiderivative of the

1-dimensional heat kernel:

Φ(x) =

∫ x

−∞
(4π)−1/2e−t

2/4dt. (3.31)

Notice that Φt(x) := Φ(t−1/2x) is a solution to the 1-dimensional heat equation with initial

condition χ[0,∞).

Theorem 3.15 Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker.

Given [a, b] ⊂ (−∞, 1) and a solution u ∈ C∞(M × [a, b]) to the heat equation �u = 0 and a

constant T ≥ 0, suppose that u only takes values in (0, 1) and |∇(Φ−1T (u(·, a)))| ≤ 1 if T > 0.

Then |∇(Φ−1T+t−a(u(·, t)))| ≤ 1 for all t ∈ [a, b].

Proof We may assume that u takes values in (ε, 1−ε). Indeed, we can consider (1−2ε)u+ε

instead and let ε↘ 0. With the extra assumption, it follows from [29, Lemma 18] that

|∇u| ≤ C1√
t− a

(3.32)

on M × (a, b]. It is clear from the definition of Φt that sup
M
|∇(Φ−1T (u(·, a+ ε)))| → 0 if T ↘ 0.

Therefore, we only need to prove the case for T > 0 and then let T ↘ 0 and ε↘ 0.

Now, we set u(x, t) = ΦT+t−a ◦ h(x, t). It follows from the definition of Φt that

|h| ≤ C2 (3.33)

on M × [a, b]. Moreover, since |∇h(·, a)| ≤ 1, it follows from (3.33) and Lemma 3.2(i) that

|∇h| ≤ C3 (3.34)

on M × [a, b]. By direct computation, see [2, Theorem 4.1] for details, we have

�|∇h|2 = −2|Hessh|2 − 1

T + t− a
〈∇h2,∇|∇h|2〉+

1

2(T + t− a)
(1− |∇h|2)|∇h|2. (3.35)
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Therefore, if we set v = (|∇h|2 − 1)+, then it follows from (3.35) that

�v +
1

T + t− a
〈∇h2,∇v〉 ≤ 0.

Since |∇h2| and v are uniformly bounded on M × [a, b] by (3.33) and (3.34), it follows from

Theorem 2.6 that v ≤ 0 on M × [a, b]. In other words, |∇h| ≤ 1 on M × [a, b]. Thus the proof

is complete. �

With the help of Theorem 3.15, one can follow verbatim as [2, Proposition 4.2] and [31,

Proposition 3.4] to obtain the following estimate.

Theorem 3.16 Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker and

[s, t] ⊂ (−∞, 1). Then, for any x ∈M , 1 ≤ p <∞ and measurable subset X ⊂M , we have

(t− s)
p
2

∫
X

(
|∇xH(x, t, ·, s)|
H(x, t, ·, s)

)p
dv ≤ C(n, p)v (X)

(
− log

(
v (X)

2

)) p
2

,

where dv = H(x, t, ·, s) dVs is the conjugate heat kernel measure. Moreover, for any x ∈M and

w ∈ TxM with |w|t = 1, it holds that

(t− s)
∫
M

(
∂wH(x, t, ·, s)
H(x, t, ·, s)

)2

dv ≤ 1

2
. (3.36)

In particular, we have

(t− s)
∫
M

∣∣∣∣∇xH(x, t, ·, s)
H(x, t, ·, s)

∣∣∣∣2 dv ≤ n

2
. (3.37)

Another application of Theorem 3.15 is the following Lp-Poincaré inequality; see [2, Theo-

rem 11.1].

Theorem 3.17 (Lp-Poincaré inequality) Let (Mn, g(t))t<1 be a Ricci flow associated

with a Ricci shrinker. Then, for p ≥ 1 and any [s, t] ⊂ (−∞, 1), we have∫
M

updvs ≤ C(p)(t− s)
p
2

∫
M

|∇u|pdvs,

for any u ∈ W 1,p(M, dvs) with
∫
M
udvs = 0. Here, dvs(y) = H(x, t, y, s)dVs(y). One may

choose C(1) =
√
π and C(2) = 2.

Proof The proof for p 6= 2 follows verbatim from [2, Theorem 11.1]. Only the last

statement for p = 2 needs to be proven. It follows from [29, Theorem 13] that the probability

measure dvs satisfies the log-Sobolev inequality with the constant 1
2(t−s) . It is a standard fact

that the log-Sobolev condition implies the Poincaré inequality; see [36, Theorem 22.17]. �

Next, we recall the definitions of the Nash entropy and W-entropy based at (x0, t0).

Definition 3.18 Given a Ricci flow (Mn, g(t))t<1 associated with a Ricci shrinker and a

point (x0, t0) ∈M × (−∞, 1), let

dv = dvx0,t0;t(x) = (4πτ)−
n
2 e−b(x,t) dVt = H(x0, t0, x, t) dVt,

where τ = t0 − t. Then Perelman’s W-entropy and the Nash entropy based at (x0, t0) are,

respectively, defined as

W(x0,t0)(τ) =

∫
M

(
τ(2∆b− |∇b|2 +R) + b− n

)
dv, (3.38)

N(x0,t0)(τ) =

∫
M

bdv − n

2
. (3.39)
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Now we prove some basic properties of N and W.

Proposition 3.19 The following properties hold with Definition 3.18.

(a) W(x0,t0)(0) = 0, and for any τ0 > 0,

W(x0,t0)(τ0) = −2

∫ τ0

0

τ

∫
M

∣∣∣Rc + Hess b− g

2τ

∣∣∣2 dvdτ. (3.40)

In particular, W(x0,t0)(τ) is nonpositive and decreasing.

(b) N(x0,t0)(0) = 0, and for any τ0 > 0,

N(x0,t0)(τ0) =
1

τ0

∫ τ0

0

W(x0,t0)(τ) dτ ≥ W(x0,t0)(τ0). (3.41)

(c) For any 0 < τ1 ≤ τ2,

N(x0,t0)(τ1)− n

2
log

(
τ2
τ1

)
≤ N(x0,t0)(τ2) ≤ N(x0,t0)(τ1). (3.42)

Proof Given (x0, t0) and τ , we first prove thatN(x0,t0)(τ) andW(x0,t0)(τ) are well-defined.

In what follows, all constants Ci > 1 depend on (x0, t0), τ and the given Ricci shrinker.

It follows from [29, Theorem 19] that for any r ≥ 1,∫
dt(x0,x)≥r

√
τ

dvt(x) ≤ C1e−
r2

8 . (3.43)

Therefore, there exists C2 > 1 such that∫
dt(p,x)≥r

dvt(x) ≤ C2e−
r2

C2 (3.44)

if r ≥ C2. In addition, it follows from [29, Theorem 15, Formula (203)] that

µ ≤ b(x, t) ≤ −3µ +
d2t0(x0, x)

3τ
+

4τ

3(1− t0)2
F (x, t0). (3.45)

From (3.45) and Lemma 2.3, there exists C3 > 1 such that

−C3 ≤ b(x, t) ≤ C3(1 + F (x, t0)). (3.46)

Since F is decreasing with respect to t by (2.6), it follows from (3.46) and Lemma 2.3 that

b(x, t) ≤ C3(1 + F (x, t)) ≤ C4(1 + d2t (p, x))

for some C4 ≥ C3. Consequently, we obtain

|b(x, t)| ≤ C4(1 + d2t (p, x)). (3.47)

Combining (3.44) and (3.47), we can estimate∫
M

|b(x, t)|dvt(x) ≤C4 + C4

∫
M

d2t (p, x)dvt(x)

=C4 + C4

∫
dt(p,x)≤C2

d2t (p, x)dvt(x)

+ C4

∞∑
k=1

∫
2k−1C2≤dt(p,x)≤2kC2

d2t (p, x)dvt(x)

≤C4 + C4C
2
2 + C4

∞∑
k=1

(2kC2)2C2e−2
2k−2C2 <∞. (3.48)
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Therefore, it follows from the definition (3.39) that N(x0,t0)(τ) is finite. Now, the fact that

W(x0,t0)(τ) is well-defined follows from Perelman’s differential Harnack inequality [29, Theorem

21].

(a) The identity (3.40) follows from [29, Remark 6]. Notice that the integral in (3.40) is

always finite by [29, Lemma 30]. In particular, W(x0,t0)(0) = limτ↘0W(x0,t0)(τ) = 0.

(b) We fix r � 1 and compute

∂τ

(
τ

∫
M

bφrdv

)
− n

2

=

∫
M

bφrdv − τ
∫
M

�(bφr)dv − n

2

=

∫
M

(
τ(2∆b− |∇b|2 +R)φr + bφr + τb�φr − 2τ〈∇b,∇φr〉 − n

2
(1 + φr)

)
dv, (3.49)

where we have used the fact that �b = −2∆b+ |∇b|2−R+ n
2τ . For τ0 > 0, we integrate (3.49)

from 0 to τ0 and obtain

τ0

(∫
M

bφrdv − n

2

)
=

∫ τ0

0

∫
M

(
τ(2∆b− |∇b|2 +R)φr + bφr + τb�φr − 2τ〈∇b,∇φr〉 − n

2
(1 + φr)

)
dvdτ. (3.50)

On the one hand, it follows from (2.15), (3.43) and (3.47) that

lim
r→∞

∫ τ0

0

∫
M

τ |b||�φr|dvdτ = 0. (3.51)

On the other hand, we estimate∫ τ0

0

∫
M

τ |∇b||∇φr|dvdτ ≤ Cr− 1
2 τ

1
2
0

(∫ τ0

0

∫
M

τ2|∇b|2dvdτ

)2

. (3.52)

Since the last integral is finite by [29, Lemma 25], it follows from (3.52) that

lim
r→∞

∫ τ0

0

∫
M

τ |∇b||∇φr|dvdτ = 0. (3.53)

Combining (3.50), (3.51) and (3.53), if we let r →∞, then

τ0

(∫
M

bdv − n

2

)
=

∫ τ0

0

∫
M

(
τ(2∆b− |∇b|2 +R) + b− n

)
dvdτ,

which is exactly (3.41). Notice that the last inequality in (3.41) follows from the fact that

W(x0,t0)(τ) is decreasing. Moreover, it follows from (3.41) andW(x0,t0)(0) = 0 thatN(x0,t0)(0) =

0.

(c) The inequality (3.42) follows in exactly the same way as in [2, Proposition 5.2 (5.7)], so

we omit the proof. �

Corollary 3.20 Under the same assumptions, we have∫
M

(|∇b|2 +R)dv ≤ n

2τ
. (3.54)∫

M

(
b−N(x0,t0)(τ)− n

2

)2
dv ≤ n. (3.55)
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Proof From the fact that N(x0,t0)(τ) ≥ W(x0,t0)(τ), we conclude that

lim
r→∞

∫
M

(2∆b− |∇b|2)φr +Rdv ≤ n

2τ
, (3.56)

where we have used the differential Harnack inequality [29, Theorem 21]. From integration by

parts, we have ∫
M

(2∆b− |∇b|2)φrdv =

∫
M

|∇b|2φr − 2〈∇b,∇φr〉dv. (3.57)

In addition, we can estimate

2

∫
M

|∇b||∇φr|dv ≤
∫
M

ε|∇b|2φr + ε−1
|∇φr|2

φr
dv. (3.58)

Therefore, it follows from (2.12), (3.56), (3.57) and (3.58) that∫
M

(1− ε)|∇b|2 +Rdv ≤ n

2τ
.

By letting ε↘ 0, we obtain (3.54).

Now, it follows from the Poincaré inequality Theorem 3.17 and (3.54) that∫
M

(
b−N(x0,t0)(τ)− n

2

)2
dv ≤ 2τ

∫
|∇b|2dv ≤ n,

and (3.55) is proven. �

Remark 3.21 From the proof of (3.54), W can be rewritten as

W(x0,t0)(τ) =

∫
M

(
τ(|∇b|2 +R) + b− n

)
dv,

which agrees with the original definition of Perelman [35, Formula (3.1)].

Corollary 3.22 Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker

(Mn, g, f) ∈M(A), then

0 ≥ N(x0,t0)(τ) ≥ W(x0,t0)(τ) ≥ µ ≥ −A (3.59)

for any (x0, t0) ∈ M × (−∞, 1) and τ > 0. In particular, given a Ricci shrinker, the Nash

entropy is always uniformly bounded.

Proof For fixed (x0, t0) and τ > 0, it follows from [29, Theorem 20] that b increases

quadratically. Therefore, it is easy to see that the function u, defined by u2 = (4πτ)−
n
2 e−b,

belongs to W 1,2
∗ (M) defined in [29, (92)]. From [29, Theorem 1] and the definition [29, (91)],

we immediately conclude that

W(x0,t0)(τ) ≥ µ(g(t0 − τ), τ) ≥ µ ≥ −A.

�

Following [2], we use the notation

N ∗s (x, t) := N(x,t)(t− s).

Similarly to [2, Theorem 5.9], we have

Theorem 3.23 Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker.

Then, for any s < t < 1, the following properties hold.
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(i) N ∗s is a Lipschitz function with Lipschitz constant
√

n
2(t−s) .

(ii) In the distribution sense, we have

− n

2(t− s)
≤ �N ∗s ≤ 0. (3.60)

Proof Without loss of generality, we assume s = 0 and consider t ∈ (0, 1). We first define

the following modified Nash entropy:

N r = N r(x, t) :=

∫
bφrdv − n

2
, (3.61)

where, as before, b = b(x,t)(y, 0) = −n2 log(4πt)− logH(x, t, y, 0) and dv = H(x, t, y, 0) dV0(y).

Claim N r converges to N ∗0 in C0
loc on M × (0, 1), as r →∞.

Proof of Claim Given a spacetime compact set K ⊂ M × (0, 1), all constants Ci > 1

below depend only K and the Ricci shrinker.

Similarly to (3.44), there exists C1 > 1 such that∫
d0(p,y)≥r

dv(y) ≤ C1e−
r2

C1 (3.62)

for any r ≥ C1. From the same argument leading to (3.47), we have

|b(x,t)(y, 0)| ≤ C2(1 + d20(p, y)). (3.63)

Combining (3.62), (3.63) and the fact that supp(φr) ∩M × {0} ⊂ {C3r ≤ d20(p, ·) ≤ C4r},
it is easy to show as (3.48) that

lim
r→∞

∫
M

|b(x,t)(y, 0)|(1− φr(y))dv(y) = 0 (3.64)

uniformly for (x, t) ∈ K. From (3.64), the Claim is proven.

Next, for any vector w ∈ TxM with |w|t = 1, we compute

∂wN r(x, t) =

∫
M

{(∂wb)Hφr + b(∂wH)φr}dV0

=

∫
M

{−(∂wH)φr + b(∂wH)φr}dV0 =: I + II, (3.65)

where H = H(x, t, y, 0). Notice that∫
M

Hφr dV0 =

∫
M

H(x, t, y, 0)φr(y) dV0(y)

is the heat solution starting from φr. Therefore, it follows from (3.7) and (2.12) that

|I| ≤
∣∣∣∣∇x ∫

M

H(x, t, y, 0)φr(y) dV0(y)

∣∣∣∣ ≤ Cr− 1
2 . (3.66)

Next, we estimate

II =

∫
M

b
∂wH

H
φrdv =

∫
M

(
b−N ∗0 −

n

2

) ∂wH
H

φrdv −
(
N ∗0 +

n

2

)
I.

Therefore, we have

|II| ≤
(∫

M

(
b−N ∗0 −

n

2

)2
dv

) 1
2

(∫
M

(
∂wH

H

)2

dv

) 1
2

+ Cr−
1
2 ≤

√
n

2t
+ Cr−

1
2 , (3.67)
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where we have used (3.36), (3.55) and (3.66). Combining (3.65), (3.66) and (3.67), we obtain

|∇xN r(x, t)| ≤
√
n

2t
+ Cr−

1
2 . (3.68)

Since N r converges to N ∗0 locally uniformly by the Claim, we immediately conclude from

(3.68) that N ∗0 is
√

n
2t -Lipschitz.

Next, by direct computation, we have

�N r(x, t) =

∫
M

∣∣∣∣∇xHH
∣∣∣∣2 φrdv − n

2t

∫
M

φrdv. (3.69)

Combining (3.37), (3.69) and the Claim, it follows immediately that

− n
2t
≤ �N ∗0 ≤ 0

in the distribution sense. �

Remark 3.24 Later, we will show that the conclusions in Theorem 3.23 hold in the

classical sense once we know the decay of the conjugate heat kernel; see Corollary 4.19.

As an application of Theorem 3.23, we prove the following oscillation of the Nash entropy.

Corollary 3.25 For any x1, x2 ∈M and s < t∗ ≤ t1, t2 < 1, we have

N ∗s (x1, t1)−N ∗s (x2, t2) ≤
√

n

2(t∗ − s)
dt
∗

W1
(vx1,t1;t∗ , vx2,t2;t∗) +

n

2
log

(
t2 − s
t∗ − s

)
. (3.70)

In particular, if s < t∗ = t2 ≤ t1 < 1, then

N ∗s (x1, t1)−N ∗s (x2, t2) ≤
√

n

2(t2 − s)
dt2W1

(vx1,t1;t2 , δx2) . (3.71)

If we further assume (x2, t2) is an Hn-center of (x1, t1), then

N ∗s (x1, t1)−N ∗s (x2, t2) ≤

√
nHn(t1 − t2)

2(t2 − s)
. (3.72)

Proof The proof follows verbatim from [2, Corollary 5.11]. The only difference is that

we consider N r as defined in (3.61) instead and let r →∞. �

4 Heat Kernel Estimates

Throughout this section, we assume that (Mn, g(t))t<1 is the Ricci flow associated with a

Ricci shrinker in M(A). First, we recall the following no-local-collapsing theorem proven in

[29, Theorem 22].

Theorem 4.1 For any x ∈M and t < 1, if R ≤ r−2 on Bt(x, r), then

|Bt(x, r)|t ≥ ceµrn (4.1)

for some constant c = c(n) > 0.

One can improve (4.1) by using the Nash entropy. Based on the Lipschitz property of the

Nash entropy, we can follow the same proof as that of [2, Theorem 6.1] to obtain the following

result. Notice that by (3.59), (4.2) is stronger than (4.1)
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Theorem 4.2 For any x ∈M and t < 1, if R ≤ r−2 on Bt(x, r), then

|Bt(x, r)|t ≥ c exp
(
N(x,t)(r

2)
)
rn (4.2)

for some constant c = c(n) > 0.

By using (3.55), we also have the following volume estimate around an Hn-center by fol-

lowing the same proof of [2, Theorem 6.2].

Theorem 4.3 For any x ∈M and t < 1, if (z, t− r2) is an Hn-center of (x, t), then

|Bt−r2(z,
√

2Hnr)|t−r2 ≥ c exp
(
N(x,t)(r

2)
)
rn (4.3)

for some constant c = c(n) > 0 and any r ≥ 0.

Next, we recall the following upper bound estimate of the heat kernel proven in [29, Theorem

15], which has already been used in the last section.

Theorem 4.4 For any x, y ∈M and s < t < 1, we have

H(x, t, y, s) ≤ e−µ

(4π(t− s))
n
2
. (4.4)

Instead of using the entropy µ, one can include the Nash entropy and obtain the following

result; see [2, Theorem 7.1].

Theorem 4.5 For any x, y ∈M and s < t < 1, we have

H(x, t, y, s) ≤ C(n)

(t− s)n2
exp

(
−N(x,t)(t− s)

)
. (4.5)

Proof The proof follows in almost the same way as [2, Theorem 7.1]. The main idea is

to improve the bound Z of the estimate

H(x, t, y, s) ≤ Z

(t− s)n2
exp

(
−N(x,t)(t− s)

)
.

Notice that such Z always exists by (4.4) and (3.59), which may depend on the Ricci shrinker.

Thanks to (3.70) and (4.3), we can follow the same argument as in [2, Theorem 7.1] to improve

Z to be Z/2, if Z is no smaller than a constant Z̄(n) depending only on n. �

With the help of Theorem 3.16, Corollary 3.25 and Theorem 4.5, we obtain the following

gradient estimate of the heat kernel as [2, Theorem 7.5], which improves [29, Lemma 18].

Theorem 4.6 For any x, y ∈M and s < t < 1, then

|∇xH|(x, t, y, s)
H(x, t, y, s)

≤
√

C

t− s

√√√√log

(
C exp

(
−N(x,t)(t− s)

)
(t− s)n2H(x, t, y, s)

)
(4.6)

for some constant C = C(n) > 0.

With the gradient estimate (4.6), one obtains the following non-expanding estimate as [2,

Theorem 8.1]. Notice that (4.7) generalizes the global volume estimate Lemma 2.4.

Theorem 4.7 For any x ∈M , t < 1 and r ≥ 0, we have

|Bt(x, r)|t ≤ C(n) exp
(
N(x,t)(r

2)
)
rn ≤ C(n)rn. (4.7)

Before we prove more refined heat kernel estimates, we first prove a series of lemmas.
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Lemma 4.8 (Distance comparison) For any δ ∈ (0, 1), there exists a constant L1 =

L1(n, δ) > 1 such that

dt(x, p) ≤ ds(x, p) + L1 ≤
L1√
1− t

(dt(x, p) + 1) + L2
1 (4.8)

for any x ∈M and −δ−1 ≤ s ≤ t < 1.

Proof From (2.6) and (2.8), we have

− F

1− t
≤ ∂tF = −(1− t)R ≤ 0.

Therefore, for any x ∈M ,

1− t
1− s

F (x, s) ≤ F (x, t) ≤ F (x, s). (4.9)

Consequently, (4.8) follows from the combination of Lemma 2.3 and (4.9). �

As an application of the distance comparison, we have the following lower bound of the

heat kernel.

Theorem 4.9 For any K > 1, δ ∈ (0, 1) and A > 0, there exists a constant C =

C(n,K, δ,A) > 1 satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1− δ and dt(x, p) ≤ K. Then

H(x, t, y, s) ≥ C−1

(t− s)n2
exp

(
− d2s(x, y)

C−1(t− s)

)
. (4.10)

Proof In the proof, all constants Ci > 1 depend on n,K, δ and A.

It follows from [29, Formula (203)] that

H(x, t, y, s) ≥ C−11

(t− s)n2
exp

(
−d

2
t (x, y)

3(t− s)
− 4(t− s)

3(1− t)2
F (y, t)

)
. (4.11)

From (4.8), we have

d2t (x, y) ≤ 2(d2t (x, p) + d2t (p, y)) ≤ C2(d2s(x, p) + d2s(p, y) + 1) ≤ C3(d2s(x, y) + 1), (4.12)

where we have used ds(x, p) ≤ C(dt(x, p) + 1) ≤ C(K + 1) by (4.8).

In addition, since F is decreasing with respect to t,

F (y, t) ≤ F (y, s) ≤ C4(d2s(p, y) + 1) ≤ C5(d2s(x, y) + 1) (4.13)

by Lemma 2.3. Combining (4.11), (4.12) and (4.13), it is easy to see (4.10) holds for some C.

�

Lemma 4.10 For any K > 1, δ ∈ (0, 1) and A > 0, there exist constants L2 =

L2(n,K, δ,A) > 1 and L3 = L3(n, δ, A) > 1 satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1− δ and dt(p, x) ≤ K, then for any Hn-center (z, s) of (x, t), we

have

ds(x, z) ≤ L2

√
t− s (4.14)

and

ds(z, p) ≤ dt(x, p) + L3

√
t− s. (4.15)
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Proof Since dt(p, x) ≤ K, it follows from [29, Theorem 19] that

vx,t;s
(
M \Bs(x, r

√
t− s)

)
≤ C2 exp

(
−r

2

5

)
(4.16)

for any r ≥ 1 and C2 = C2(n,K, δ,A) > 0. On the other hand, by Proposition 3.14, we have

vx,t;s
(
M \Bs(z, r

√
t− s)

)
≤ C(n) exp

(
−r

2

5

)
(4.17)

for any r ≥ 0. Combining (4.16) and (4.17), (4.14) follows immediately.

If we assume (z′, s) to be an Hn-center of (p, t), then (4.14) indicates that

ds(z
′, p) ≤ C3(n, δ, A)

√
t− s. (4.18)

Then it follows from Proposition 3.7 and (3.29) that

ds(z, p) ≤ds(z, z′) + ds(z
′, p)

≤dsW1
(δz, δz′) + C3

√
t− s

≤dsW1
(vx,t;s, vp,t;s) + dsW1

(δz, vx,t;s) + dsW1
(δz′ , vp,t;s) + C3

√
t− s

≤dt(x, p) + 2
√
Hn(t− s) + C3

√
t− s.

Therefore, (4.15) holds for L3 = C3 + 2
√
Hn. �

Next, we prove the following rough heat kernel estimate.

Proposition 4.11 For any K > 1, δ ∈ (0, 1) and A > 0, there exists a constant L4 =

L4(n,K, δ,A) > 1 satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1− δ and ds(x, p) + ds(y, p) ≤ K, then

H(x, t, y, s) ≤ L4

(t− s)n2
exp

(
− d2s(x, y)

L4(t− s)

)
. (4.19)

Proof Without loss of generality, we assume s = 0. In the proof, all constants Ci depend

on n,K, δ and A.

Given 0 < t ≤ 1 − δ and x, y ∈ M with d0(x, p) + d0(y, p) ≤ K, we set d := d0(x, y). It

follows from Lemma 4.8 that

dl(x, p) + dl(y, p) ≤ C1 (4.20)

for any l ∈ [0, t]. Therefore, it follows from the local distance distortion estimate [29, Theorem

18] that there exists C2 > 1 such that if d ≥ C2

√
t,

C−12 d ≤ dl(x, y) ≤ C2d (4.21)

for any l ∈ [0, t]. Notice that if d ≤ C2

√
t, (4.19) follows immediately from (4.4). Consequently,

we may assume d ≥ C2

√
t and hence (4.21) holds.

For any l ∈ [0, t/2], we apply [29, Theorem 14] for sets Bl(x,
√
t), Bl(y,

√
t) and parameter

σ = 1 to obtain

vx,t;l

(
Bl(x,

√
t)
)
vx,t;l

(
Bl(y,

√
t)
)
≤ exp

(
−

(dl(x, y)− 2
√
t)2+

16t

)
≤ C3 exp

(
− d2

C3t

)
(4.22)

for some C3 > 1, where we have used (4.21). In addition, for any l ∈ [0, t/2] and dl(x, z) ≤
√
t,

it follows from [29, Theorem 18] that dt(x, z) ≤ C4

√
t. Therefore, it follows from [29, Theorem
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17] that

H(x, t, z, l) ≥ C−15 t−
n
2 ,

and hence

vx,t;l

(
Bl(x,

√
t)
)
≥ C−15 t−

n
2 |Bl(x,

√
t)| ≥ C−16 , (4.23)

where we have used the fact that R is bounded on Bl(x,
√
t) and the no-local-collapsing Theorem

4.1.

Combining (4.22) and (4.23), we obtain for any l ∈ [0, t/2] that∫
Bl(y,

√
t)

H(x, t, z, l) dVl(z) ≤ C7 exp

(
− d2

C3t

)
. (4.24)

In light of (4.4), for any l ∈ [0, t/2], the above inequality implies that∫
Bl(y,

√
t)

H2(x, t, z, l) dVl(z) ≤
C8

t
n
2

exp

(
− d2

C3t

)
. (4.25)

Integrating l from 0 to t/2, we have∫ t
2

0

∫
Bl(y,

√
t)

H2(x, t, z, l) dVl(z)ds ≤
C9

t
n
2−1

exp

(
− d2

C3t

)
. (4.26)

Consequently, the desired heat kernel estimate (4.19) follows from (4.26) and a parabolic mean

value inequality [6, Lemma 4.2]. Here, [6, Lemma 4.2] can be applied in our setting, since the

key ingredient is the existence of a nice local cutoff function, which is constructed in [6, Theorem

1.3] (see also Proposition 5.12). Once the existence of the local cutoff function is guaranteed,

one can follow verbatim the proof of [6, Lemma 4.2] to obtain the mean value inequality. �

We immediately obtain the following result by combining Lemma 4.10 and Proposition

4.11.

Corollary 4.12 For any K > 1, δ ∈ (0, 1) and A > 0, there exists a constant L5 =

L5(n,K, δ,A) > 1 satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1− δ and dt(x, p) + ds(y, p) ≤ K, then for any Hn-center (z, s) of

(x, t), we have

H(x, t, y, s) ≤ L5

(t− s)n2
exp

(
− d2s(z, y)

L5(t− s)

)
. (4.27)

Proof From (4.8), we have ds(x, p) + ds(y, p) ≤ C for some C = C(n,K, δ) > 0. Then

(4.27) follows from (4.14) and (4.19). �

Next, we prove the following technical result.

Lemma 4.13 There exists a positive constant Q̄ = Q̄(n) > 0 satisfying the following

property.

Suppose x, y ∈M , T ∈ (0, 1) and there exists an Hn-center (z, 0) of (x, T ) such that

H(x, T, y, 0) ≥ Qexp (−N ∗0 (x, T ))

T
n
2

exp

(
−d

2
0(z, y)

QT

)
(4.28)

for some Q ≥ Q̄. Then, for any Hn-center (z′, T1) of (x, T ), there exist a point x1 ∈M and an

Hn-center (z1, 0) of (x1, T1) such that

dT1(x1, z
′) ≤ 10√

Q
d0(z, y) (4.29)
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and

H(x1, T1, y, 0) ≥ Q1
exp (−N ∗0 (x1, T1))

T
n
2
1

exp

(
−d

2
0(z1, y)

Q1T1

)
, (4.30)

where T1 = T/8 and Q1 = 2Q.

Proof In the proof, all constants Ci > 1 depend only on n. We set

d := d0(z, y), a := H(x, T, y, 0), vt := vx,T ;t, and V :=
{
w ∈M | H(w, T1, y, 0) ≥ a

2

}
.

Notice that by (4.28) and (4.5), we have

C1
exp (−N ∗0 (x, T ))

T
n
2

≥ a ≥
√
Q ·
√
Q

exp (−N ∗0 (x, T ))

T
n
2

exp

(
− d2

QT

)
.

Thus if Q̄ is sufficiently large, we have Q > Q̄ > C2
1 and derive from the above inequality that

d2

T
≥ Q logQ

2
. (4.31)

It follows from the semigroup property (3.1) that

a =

∫
M

H(w, T1, y, 0)dvT1
(w)

=

∫
M\V

H(w, T1, y, 0)dvT1
(w) +

∫
V

H(w, T1, y, 0)dvT1
(w)

≤a
2
vT1

(M \ V ) +

∫
V

H(w, T1, y, 0)dvT1
(w)

≤a
2

+ C1T
−n2
1

∫
V

exp (−N ∗0 (w, T1)) dvT1(w), (4.32)

where we have used (4.5) for the last inequality. Moreover, it follows from (3.72) and the

Lipschitz property of N ∗0 that

−N ∗0 (z′, T1) ≤ −N ∗0 (x, T ) + C2

√
T − T1
T1

≤ −N ∗0 (x, T ) + C3 (4.33)

and

−N ∗0 (w, T1) ≤ −N ∗0 (z′, T1) +

√
n

2T1
dT1

(w, z′) ≤ −N ∗0 (x, T ) + C4T
− 1

2 dT1
(w, z′) + C4. (4.34)

Now, we define B := BT1
(z′, 10Q−

1
2 d). Then it follows from (4.34)that∫

V

exp (−N ∗0 (w, T1)) dvT1
(w)

≤eC4 exp (−N ∗0 (x, T ))

∫
V

eC4T
− 1

2 dT1 (w,z
′)dvT1

(w)

≤eC4 exp (−N ∗0 (x, T ))

(
e10C4T

− 1
2Q−

1
2 dvT1

(V ∩B) +

∫
M\B

eC4T
− 1

2 dT1 (w,z
′)dvT1

(w)

)
. (4.35)

It follows from Proposition 3.14 that∫
M\B

eC4T
− 1

2 dT1 (w,z
′)dvT1(w)

=
∞∑
k=1

∫
2k−1(10Q−

1
2 d)≤dT1 (w,z′)≤2k(10Q

− 1
2 d)

eC4T
− 1

2 dT1 (w,z
′)dvT1(w)
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≤
∞∑
k=1

eC42
kT−

1
2 10Q−

1
2 d

∫
dT1 (w,z

′)≥2k−1(10Q−
1
2 d)

dvT1
(w)

≤C5

∞∑
k=1

exp

(
C42kT−

1
2 10Q−

1
2 d− (2k−110Q−

1
2 d)2

5(T − T1)

)

≤C5

∞∑
k=1

exp

(
− (2k−110Q−

1
2 d)2

5T
+ C6

)
≤ C7 exp

(
−20d2

QT

)
, (4.36)

where we have used the fact that exp
(
− 20d2

QT

)
≤ Q−10 � 1 by (4.31).

Combining (4.28), (4.32), (4.35) and (4.36), we have

QT−
n
2 exp

(
− d2

QT

)
≤ C8T

−n2
1

(
e10C4T

− 1
2Q−

1
2 dvT1(V ∩B) + exp

(
−20d2

QT

))
. (4.37)

Since Q is large, by (4.31) we have

Q exp

(
19d2

QT

)
≥ Q 21

2 ≥ 2C88
n
2 .

Then it is not hard to see from (4.37) that vT1(V ∩B) > 0. Thus there exists a point x1 ∈ V ∩B
which satisfies (4.29). Then we take an Hn-center (z1, 0) of (x1, T1). The point-selecting process

is illustrated in Figure 1.

TB

TA

TC

������������������������������������������������������������������������������������������������������������������������

BB
E

F

A

B C

D

Figure 1

It follows from Proposition 3.7 and (3.29) that

d0(z, z1) =d0W1
(δz, δz1)

≤d0W1
(vx,T ;0, vx1,T1;0) + d0W1

(δz, vx,T ;0) + d0W1
(δz1 , vx1,T1;0)

≤dT1

W1
(vx,T ;T1 , δx1) +

√
HnT +

√
HnT1

≤dT1

W1
(vx,T ;T1 , δz′) + dT1(z′, x1) +

√
HnT +

√
HnT1

≤
√
Hn(T − T1) +

√
HnT +

√
HnT1 + 10Q−

1
2 d

≤3
√
HnT + 10Q−

1
2 d. (4.38)

Therefore, we conclude

d0(z1, y) ≥ d− d0(z, z1) ≥ (1− 10Q−
1
2 )d− 3

√
HnT , (4.39)
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and hence

d20(z1, y) ≥ (1− 10Q−
1
2 )2

2
d2 − 9HnT. (4.40)

Since x1 ∈ V , from the definition of V and (4.28), we have

H(x1, T1, y, 0) ≥ a

2
≥ Qexp (−N ∗0 (x, T ))

2T
n
2

exp

(
− d2

QT

)
. (4.41)

We claim

Q
exp (−N ∗0 (x, T ))

2T
n
2

exp

(
− d2

QT

)
≥ Q1

exp (−N ∗0 (x1, T1))

T
n
2
1

exp

(
−d

2
0(z1, y)

Q1T1

)
. (4.42)

Indeed, it follows from (4.34) that

−N ∗0 (x1, T1) ≤ −N ∗0 (x, T ) + C9(1 + d(QT )−
1
2 ). (4.43)

On the other hand, by (4.40), we have

exp

(
d20(z1, y)

Q1T1
− d2

QT
− C9

√
d2

QT
− C9

)

≥ exp

(
1

QT

(
2(1− 10Q−

1
2 )2 − 0.9

)
d2 − 36Hn

Q
− C10

)
≥ exp

(
d2

QT
− 36Hn

Q
− C10

)
≥
√
Q exp

(
−36Hn

Q
− C10

)
≥ 4 · 8n2 , (4.44)

where we have used (4.31) for the second last inequality. As Q̄ is sufficiently large, it is clear

that (4.42) follows from the combination of (4.43) and (4.44). Consequently, we obtain (4.30)

by (4.41). �

Proposition 4.14 For any x, y ∈M and t ∈ (0, 1),

H(x, t, y, 0) ≤ Q̄exp (−N ∗0 (x, t))

t
n
2

exp

(
−d

2
0(z, y)

Q̄t

)
, (4.45)

where (z, 0) is any Hn-center of (x, t) and Q̄ is the same constant in Proposition 4.13.

Proof Supposing otherwise, there exist x, y ∈ M , T ∈ (0, 1) and an Hn-center (z, 0) of

(x, T ) such that

H(x, T, y, 0) ≥ Q̄exp (−N ∗0 (x, T ))

T
n
2

exp

(
−d

2
0(z, y)

Q̄T

)
. (4.46)

Now, we define Qk = 2kQ̄ and Tk := 8−kT for k ∈ N. If we set x0 = x and z0 = z, then we

claim there are sequences xk, z
′
k and zk satisfying

(a) (z′k, Tk) is an Hn-center of (xk−1, Tk−1).

(b) (zk, 0) is an Hn-center of (xk, Tk).

(c) dTk(xk, z
′
k) ≤ 10Q

− 1
2

k−1d0(zk−1, y).

(d) d0(zk, zk−1) ≤ 3
√
HnTk−1 + 10Q

− 1
2

k−1d0(zk−1, y).

(e) we have the heat kernel estimate

H(xk, Tk, y, 0) ≥ Qk
exp (−N ∗0 (xk, Tk))

T
n
2

k

exp

(
−d

2
0(zk, y)

QkTk

)
. (4.47)



1668 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

The existence of xk, z
′
k and zk satisfying (a)–(e) is obtained by Lemma 4.13 and an inductive

argument. Notice that (d) is guaranteed by (4.38).

Claim bk := dTk(xk, p) is uniformly bounded.

Proof of the Claim We set dk := d0(zk, y) for k ∈ N. It follows from (d) that

dk ≤ dk−1 + d0(zk, zk−1) ≤
(

1 + 10Q
− 1

2

k−1

)
dk−1 + 3

√
HnTk−1. (4.48)

Therefore, it is easy to derive from (4.48) and the definitions of Qk and Tk that

dk ≤ K1 <∞ (4.49)

for some constant K1 depending on d0(z, y), T, Q̄ and n. From (c) and (4.49), we have

dTk(xk, z
′
k) ≤ 10Q

− 1
2

k−1dk−1 ≤ 10K1Q
− 1

2

k−1. (4.50)

Moreover, since (z′k, Tk) is an Hn-center of (xk−1, Tk−1), it follows from (4.15) that

dTk(z′k, p) ≤ dTk−1
(xk−1, p) + L3

√
Tk−1 − Tk ≤ bk−1 + L3T

1
2

k−1, (4.51)

where L3 = L3(n, δ, A) > 0 for some fixed constant δ ∈ (0, 1) with T ≤ 1− δ. Combining (4.50)

and (4.51), we obtain

bk ≤ bk−1 + 10K1Q
− 1

2

k−1 + L3T
1
2

k−1. (4.52)

From (4.52), it is clear that bk is uniformly bounded, and the Claim is proven.

Thanks to the Claim, we can apply Corollary 4.12 to obtain an upper bound of the heat

kernel, which contradicts the lower bound (4.47) when k is sufficiently large. �

Now, we state the main theorem of this section regarding the heat kernel upper bound,

which generalizes and slightly improves [2, Theorem 7.2].

Theorem 4.15 (Mn, g(t))t<1 is the Ricci flow associated with a Ricci shrinker. For any

ε > 0, there exists a constant C = C(n, ε) > 0 such that

H(x, t, y, s) ≤
C exp

(
−N(x,t)(t− s)

)
(t− s)n2

exp

(
− d2s(z, y)

(4 + ε)(t− s)

)
, (4.53)

for any s < t < 1 and any Hn-center (z, s) of (x, t).

Proof Without loss of generality, we assume s = 0. The proof is a modification of the

proof of Lemma 4.13 and all constants Ci > 1 depend on n and ε.

Supposing otherwise, there exist x, y ∈ M , T ∈ (0, 1), ε > 0 and an Hn-center (z, 0) of

(x, T ) such that

H(x, T, y, 0) ≥ Qexp (−N ∗0 (x, T ))

T
n
2

exp

(
− d20(z, y)

(4 + ε)T

)
, (4.54)

where Q is a large constant to be determined later. We also set θ ∈ (0, 1) as a small parameter

and θ31 = θ. Define

d := d0(z, y), a := H(x, T, y, 0), vt := vx,T ;t, Tθ := θT,

V :=
{
w ∈M | H(w, Tθ, y, 0) ≥ a

2

}
.

From (4.54) and (4.5), we have

exp

(
d2

T

)
≥
{
C−11 Q

}4+ε
. (4.55)
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Now, we assume (z′, Tθ) is an Hn-center of (x, T ) and set B := BTθ (z
′, (1− θ1)d). Similarly to

(4.34), we have

−N ∗0 (w, Tθ) ≤ −N ∗0 (x, T ) + C2θ
− 1

2T−
1
2 dTθ (w, z

′) + C2θ
− 1

2 . (4.56)

By the same argument as (4.36), we apply Proposition 3.14 for ε/4 to obtain, if θ < θ̄(ε),∫
M\B

eC2θ
− 1

2 T−
1
2 dTθ (w,z

′)dvTθ (w)

≤C3

∞∑
k=1

exp

(
C22kθ−

1
2T−

1
2 (1− θ1)d− (2k−1(1− θ1)d)2

(4 + ε/4)(1− θ)T

)

≤C3

∞∑
k=1

exp

(
− (2k−1(1− θ1)d)2

(4 + ε/3)(1− θ)T
+ C4θ

−1
)

≤C5 exp

(
− ((1− θ1)d)2

(4 + ε/3)(1− θ)T
+ C4θ

−1
)
. (4.57)

Similarly to (4.37), we obtain

QT−
n
2 exp

(
− d2

(4 + ε)T

)
≤C6T

−n2
θ

(
eC2θ

− 1
2 T−

1
2 (1−θ1)dvTθ (V ∩B) + eC6θ

−1

exp

(
− ((1− θ1)d)2

(4 + ε/3)(1− θ)T

))
. (4.58)

We claim that vTθ (V ∩B) > 0. Indeed, it follows from (4.55) that

Q exp

((
(1− θ1)2

(4 + ε/3)(1− θ)
− 1

(4 + ε)

)
d2

T

)
≥Q exp

(
c(ε)d2

T

)
≥ Q1+c(ε)C

−c(ε)
1 ≥ 2C6θ

−n2 eC6θ
−1

,

where c(ε) > 0 depends only on ε > 0 and we choose θ < θ̄(ε) and Q sufficiently large. Therefore,

the claim follows from (4.58).

We choose a point x1 ∈ V ∩B and an Hn-center (z1, 0) of (x1, Tθ). Similarly to (4.38), we

have

d0(z, z1) ≤ 3
√
HnT + (1− θ1)d, (4.59)

and hence

d0(z1, y) ≥ θ1d− 3
√
HnT . (4.60)

Moreover, as (4.43), we have by (4.56),

−N ∗0 (x1, Tθ) ≤ −N ∗0 (x, T ) + C2θ
− 1

2 (T−
1
2 d+ 1). (4.61)

Now, by virtue of Proposition 4.14 and the definition of V , we have

Q̄ exp

(
−d

2
0(z1, y)

Q̄Tθ

)
≥ H(x1, Tθ, y, 0) · T n

2 · exp (N ∗0 (x1, Tθ)) ≥
1

2
Q exp

(
− d2

(4 + ε)T

)
. (4.62)

Since d20(z1, y) ≥ θ21d2/2− 9HnT from (4.60), it follows from (4.61) and (4.62) that

Q exp

((
1

2θ1Q̄
− 1

(4 + ε)
− 1

)
d2

T
− C7θ

−1
)
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≤Q exp

((
1

2θ1Q̄
− 1

(4 + ε)

)
d2

T
− C2θ

− 1
2T−

1
2 d

)
≤ 2Q̄θ−

n
2 exp

(
9Hn

Q̄θ

)
, (4.63)

provided that θ ≤ θ̄(ε, Q̄). However, (4.63) is impossible by (4.55) if Q is sufficiently large.

In sum, we obtain a contradiction and (4.53) holds. �

Combining Lemma 4.10 and Theorem 4.15, we have the following estimate, which improves

[29, Theorem 20].

Theorem 4.16 For any K > 1, δ ∈ (0, 1) and A > 0, there exists a constant C =

C(n,K, δ,A) > 1 satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1− δ and dt(x, p) ≤ K, then

H(x, t, y, s) ≤ C

(t− s)n2
exp

(
− d

2
s(x, y)

C(t− s)

)
. (4.64)

Remark 4.17 Given (x0, t0) ∈M × (−∞, 1), if we set

H(x0, t0, y, s) = (4π(t0 − s))−
n
2 e−b(y,s),

then it follows from Theorem 4.9 and Theorem 4.16 that b(y, s) increases quadratically.

Combining (4.64) and the standard regularity theory of the parabolic equation (cf. [21]),

we have the following derivative estimate of higher orders.

Corollary 4.18 Given (x0, t0) ∈M × (−∞, 1) and s0 < t0, there exists a small parabolic

neighborhood P = Bt0(x0, r)× [t0 − r2, t0 + r2] such that for any m1,m2 ∈ N

|∂m1
t ∇m2

x H(x, t, y, s0)| ≤ 1

r2m1+m2
· Q

(t0 − s0)
n
2
· exp

(
−
d2s0(x0, y)

Q(t0 − s0)

)
(4.65)

for some constant Q > 1 and any (x, t) ∈ P and y ∈M .

Note that when (y, s0) is fixed, H(x, t, y, s0) is a heat solution. The scale r in the above

Corollary is a constant much smaller than the curvature radius at (x0, t0). It indicates that

one can take differentiation under the integral sign if the integrand involves the heat kernel in

many cases. As an application, we can follow the same proof as in Theorem 3.23 to estimate

|∇N ∗s | and �N ∗s without using φr. Therefore, one obtains

Corollary 4.19 The Nash entropy N ∗s (x, t) is smooth on M × (s, 1) satisfying

|∇N ∗s | ≤
√

n

2(t− s)
and − n

2(t− s)
≤ �N ∗s ≤ 0

in the classical sense.

We end this section by proving the following hypercontractivity; see [2, Theorem 12.1].

Theorem 4.20 Suppose that (x0, t0) ∈M × (−∞, 1) and 0 < τ1 < τ2. Let u ∈ C2(M ×
[t0 − τ2, t0 − τ1]) be a nonnegative function satisfying �u ≤ 0 and having at most polynomial

spatial growth in the sense that

|u(x, t)| ≤ m(dmt (p, x) + 1) (4.66)

for some m ∈ N. If 1 < q0 ≤ p0 <∞ with

τ2
τ1
≥ p0 − 1

q0 − 1
,
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then for dvt := dvx0,t0;t,(∫
M

up0dvt0−τ1

)1/p0

≤
(∫

M

uq0dvt0−τ2

)1/q0

. (4.67)

Proof Without loss of generality, we assume t0 = 0. We set p = p(t) = 1+ τ2(q0−1)|t|−1

for t < 0. Notice that p(−τ2) = q0 and p(−τ1) ≥ p0 by our assumption.

When t < 0, direct calculation shows that

∂t

∫
M

upφrdvt −
∫
M

up�φrdvt

=

∫
M

(
ṗup log u+ pup−1�u− p(p− 1)|∇u|2up−2

)
φr − 2〈∇up,∇φr〉dvt

≤ ṗ
p

∫
M

φrup log updvt −
p− 1

p

∫
M

|∇up|2

up
φrdvt − 2

∫
M

〈∇up,∇φr〉dvt. (4.68)

Moreover, we have for any ε� 1,

2

∫
M

|∇up||∇φr|dvt ≤ ε
∫
M

|∇up|2

up
φrdvt + ε−1

∫
M

up|∇φr|2dvt. (4.69)

Combining (4.68) and (4.69), we have

∂t

(∫
M

upφrdvt

) 1
p

=
1

p

(∫
M

upφrdvt

) 1
p−1(

∂t

∫
M

upφrdvt −
ṗ

p

(∫
M

upφrdvt

)
log

(∫
M

upφrdvt

))
≤1

p

(∫
M

upφrdvt

) 1
p−1( ṗ

p

∫
M

φrup log updvt −
ṗ

p

(∫
M

upφrdvt

)
log

(∫
M

upφrdvt

))
+

1

p

(∫
M

upφrdvt

) 1
p−1((

ε− p− 1

p

)∫
M

|∇up|2

up
φrdvt + ε−1

∫
M

up
{
|∇φr|2 + �φr

}
dvt

)
.

(4.70)

We integrate (4.70) from −τ2 to −τ1, let r → ∞ and then let ε → 0. By Theorem 4.16,

(4.66), (2.12) and (2.15), we obtain(∫
M

updvt

) 1
p

∣∣∣∣∣
−τ1

−τ2

≤
∫ −τ1
−τ2

1

p

(∫
M

updvt

) 1
p−1( ṗ

p

∫
M

up log updvt −
ṗ

p

(∫
M

updvt

)
log

(∫
M

updvt

))
dt

+

∫ −τ1
−τ2

1

p

(∫
M

updvt

) 1
p−1(

−p− 1

p

∫
M

|∇up|2

up
dvt

)
dt. (4.71)

Note that the log-Sobolev inequality [29, Theorem 13] implies that

ṗ

p

∫
M

up log updvt −
ṗ

p

(∫
M

updvt

)
log

(∫
M

updvt

)
≤ ṗ
p
|t|
∫
M

|∇up|2

up
dvt =

p− 1

p

∫
M

|∇up|2

up
dvt.

Therefore, it follows from (4.71) that(∫
M

up0dv−τ1

) 1
p0

≤
(∫

M

up(−τ1)dv−τ1

) 1
p(−τ1)

≤
(∫

M

uq0dv−τ2

) 1
q0

,



1672 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

and the proof is complete. �

Remark 4.21 If u ∈ C2(M × [t0 − τ2, t0 − τ1]) and satisfies �u = 0 and (4.66), then(∫
M

|u|p0dvt0−τ1

)1/p0

≤
(∫

M

|u|q0dvt0−τ2

)1/q0

.

Indeed, one can apply (4.67) to
√
u2 + ε, since �

√
u2 + ε ≤ 0, and let ε→ 0.

5 Parabolic Neighborhoods and ε-regularity Theorem

In this section, we assume that (Mn, g(t))t<1 is the Ricci flow associated with a Ricci

shrinker in M(A).

Given (x0, t0) ∈M × (−∞, 1), we first recall the conventional parabolic neighborhoods are

defined by

P (x0, t0;S,−T−, T+) :=Bt0(x0, S)×
(
[t0 − T−, t0 + T+] ∩ (−∞, 1)

)
(5.1)

Q(x0, t0;S,−T−, T+) :=
{
dt(x, x0) ≤ S, t ∈ [t0 − T−, t0 + T+] ∩ (−∞, 1)

}
(5.2)

for any S, T± ≥ 0. Based on the monotonicity of W1-distance in Proposition 3.7, we follow [2]

to define the following new parabolic neighborhoods.

Definition 5.1 (P ∗-parabolic neighborhoods) Suppose that (x0, t0) ∈M × (−∞, 1) and

S, T± ≥ 0. The P ∗-parabolic neighborhood P ∗(x0, t0;S,−T−, T+) ⊂ M × (−∞, 1) is defined

as the set of points (x, t) ∈M × (−∞, 1) with t ∈ [t0 − T−, t0 + T+] and

dt0−T
−

W1
(vx0,t0;t0−T− , vx,t;t0−T−) < S.

For any r > 0, we also define

P ∗(x0, t0; r) := P ∗(x0, t0; r,−r2, r2)

P ∗+(x0, t0; r) := P ∗(x0, t0; r, 0, r2)

P ∗−(x0, t0; r) := P ∗(x0, t0; r,−r2, 0).

Similar definitions are also made for P±.

Some basic properties of P ∗-parabolic neighborhoods can be found in [2, Proposition 9.4,

Corollary 9.6]. We state the following containment result from [2, Proposition 9.4 (d)].

Lemma 5.2 If A1, A2, T
±
1 , T

±
2 ≥ 0 and (x1, t1) ∈ P ∗(x2, t2;A2,−T−2 , T

+
2 ), then

P ∗(x1, t1;A1,−T−1 , T
+
1 ) ⊂ P ∗(x2, t2;A1 +A2,−(T−1 + T−2 ), T+

1 + T+
2 ).

We immediately have the following result from the distance comparison Lemma 4.8.

Lemma 5.3 Given δ ∈ (0, 1), t0 ∈ (−∞, 1), T± ≥ 0 and S ≥ 0, there exists a constant

C = C(n,A, δ) > 1 such that

P (p, t0;S,−T−, T+) ⊂Q(p, t0;C(S + 1),−T−, T+)

Q(p, t0;S,−T−, T+) ⊂P (p, t0;C(S + 1),−T−, T+)

provided that −δ−1 ≤ t0 − T− ≤ t0 + T+ ≤ 1− δ.
In order to investigate the relation between P ∗-parabolic neighborhoods and conventional

ones, we first prove



No.5 Y. Li & B. Wang: HEAT KERNEL ON RICCI SHRINKERS (II) 1673

Proposition 5.4 Given (x0, t0) ∈ M × (−∞, 1) and r > 0, suppose R(x0, t) ≤ r−2 for

any t ∈ [t0 − r2, t0]. Then

dt0−r
2

W1
(vx0,t0;t0−r2 , δx0) ≤ C(n,A)r. (5.3)

Proof It follows from [29, Theorem 16] that

H(x0, t0, x0, t0 − r2) ≥ 1

(4πr2)
n
2

exp
(
−l(x0,t0)(x0, t0 − r

2)
)
, (5.4)

where l(x0,t0)(x0, t0 − r2) denotes the reduced distance (see [29, (187)]). From the definition we

have

l(x0,t0)(x0, t0 − r
2) ≤ 1

2r

∫ t0

t0−r2

√
t0 − sR(x0, s)ds ≤

1

3
. (5.5)

Combining (4.53) for ε = 1, (5.4) and (5.5), it is clear that

d2t0−r2(x0, z) ≤ C1r
2

for some constant C1 = C1(n,A), where (z, t0 − r2) is an Hn-center of (x0, t0). Therefore,

dt0−r
2

W1
(vx0,t0;t0−r2 , δx0) ≤ dt0−r

2

W1
(vx0,t0;t0−r2 , δz) + dt0−r2(x0, z) ≤ C2r,

where we have used (3.29) and C2 :=
√
Hn +

√
C1. �

Remark 5.5 From the proof, we conclude that (5.3) also holds for a constant C =

C(n,A, α) if we assume

R(x0, t) ≤
α

r2(t0 − t)
for some α > 0 and any t ∈ [t0 − r2, t0].

Corollary 5.6 For any s0 < t0 < 1, we have

ds0W1
(vp,t0;s0 , δp) ≤ C(n,A)

√
t0 − s0. (5.6)

Proof From the self-similarity of the flow, we know that

R(p, t) =
R(p, 0)

1− t
≤ n

2(1− t)
≤ n

2(t0 − t)
for any t < t0. Therefore, the conclusion follows from Proposition 5.4 and Remark 5.5. �

Proposition 5.7 Given δ ∈ (0, 1), t0 ∈ (−∞, 1), T± ≥ 0 and S ≥ 0, there exists a

constant C = C(n,A, δ) > 1 such that

Q(p, t0;S,−T−, T+) ⊂ P ∗(p, t0;S + C,−T−, T+)

provided that t0 − T− ≥ −δ−1.

Proof For any (x, t) ∈ Q(p, t0;S,−T−, T+), we have

dt0−T
−

W1
(vp,t0;t0−T− , vx,t;t0−T−)

≤dt0−T
−

W1
(vp,t;t0−T− , vx,t;t0−T−) + dt0−T

−

W1
(vp,t0;t0−T− , vp,t;t0−T−)

≤dt(x, p) + dt0−T
−

W1
(vp,t0;t0−T− , vp,t;t0−T−) ≤ S + dt0−T

−

W1
(vp,t0;t0−T− , vp,t;t0−T−), (5.7)

where we have used Proposition 3.7. In addition, it follows from Corollary 5.6 that

dt0−T
−

W1
(vp,t0;t0−T− , vp,t;t0−T−) ≤ dt0−T

−

W1
(vp,t0;t0−T− , δp) + dt0−T

−

W1
(vp,t;t0−T− , δp) ≤ C(n,A, δ).

(5.8)
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Therefore, the conclusion follows from (5.7) and (5.8). �

Next, we recall the following version of the local distance distortion estimate, which can be

proven almost exactly as [29, Theorem 18]; see also [16, Section 4.3], [17, Theorem 3.1] and [6,

Theorem 1.1].

Lemma 5.8 Given (x0, t0) ∈ M × (−∞, 1) and r > 0, suppose R ≤ r−2 on P−(x0, t0; r)

(resp. P (x0, t0; r)). Then

ρ1dt(x, x0) ≤ dt0(x, x0) ≤ ρ−11 dt(x, x0)

if dt0(x, x0) ≤ ρ1r and t ∈ [t0 − (ρ1r)
2, t0) (resp. t ∈ [t0 − (ρ1r)

2, t0 + (ρ1r)
2]∩ (−∞, 1)), where

ρ1 = ρ1(n,A) ∈ (0, 1). In particular,

P−(x0, t0; ρ21r) ⊂ Q−(x0, t0; ρ1r) ⊂ P−(x0, t0; r) (5.9)(
resp. P (x0, t0; ρ21r) ⊂ Q(x0, t0; ρ1r) ⊂ P (x0, t0; r)

)
. (5.10)

Thanks to Proposition 5.4 and Lemma 5.8, we have the following result.

Proposition 5.9 There exists a constant ρ2 = ρ2(n,A) ∈ (0, 1) satisfying the fol-

lowing property. Given (x0, t0) ∈ M × (−∞, 1) and r > 0, suppose that R ≤ r−2 on

P (x0, t0; r,−(ρ2r)
2, 0) (resp. P (x0, t0; r,−(ρ2r)

2, (ρ2r)
2)). Then

P−(x0, t0; ρ2r) ⊂ P ∗(x0, t0; r,−(ρ2r)
2, 0) (5.11)(

resp. P (x0, t0; ρ2r) ⊂ P ∗(x0, t0; r,−(ρ2r)
2, (ρ2r)

2)
)
. (5.12)

Proof In the proof, all constants Ci > 1 depend on n and A, and ρ1 is from Lemma 5.8.

We only prove (5.11), and the proof of (5.12) is similar. Moreover, we set 0 < τ � 1 to be

determined later.

For any (y, s) ∈ P−(x0, t0; τr), it follows from Lemma 5.8 that

dt(y, x0) ≤ C1τr (5.13)

for any t ∈ [t0 − (τr)2, s]. In particular, R(y, t) ≤ r−2 for any t ∈ [t0 − (τr)2, s]. Therefore, it

follows from Proposition 5.4 that

d
t0−(τr)2
W1

(vy,s;t0−(τr)2 , δy) ≤ C2τr. (5.14)

It follows from (5.13) and (5.14) that

d
t0−(τr)2
W1

(vy,s;t0−(τr)2 , vx0,t0;t0−(τr)2)

≤dt0−(τr)
2

W1
(vx0,t0;t0−(τr)2 , δx0) + d

t0−(τr)2
W1

(vy,s;t0−(τr)2 , δy) + dt0−(τr)2(y, x0) ≤ C3τr < r,

if τ is sufficiently small. From this, it is immediate that (5.11) holds for small ρ2. �

Now, we prove

Proposition 5.10 Given δ ∈ (0, 1), t0 ∈ (−∞, 1), T± ≥ 0 and S ≥ 0, there exists a

constant C = C(n,A, δ) > 1 such that

P ∗(p, t0;S,−T−, T+) ⊂ Q(p, t0;
√

2S + C,−T−, T+) (5.15)

provided that t0−T− ≥ −δ−1. In particular, it implies that P ∗(p, t0;S,−T−, T+) is precompact

in M × (−∞, 1) if t0 + T+ < 1.
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Proof In the proof, all constants Ci > 1 depend on n,A and δ. It follows from (5.6) that

dt0−T
−

W1
(δp, vp,t0;t0−T−) ≤ C1. (5.16)

For any (x1, t1) ∈ P ∗(p, t0;S,−T−, T+), we assume (z, t0 − T−) to be an Hn-center of (x1, t1).

By (5.16) and the definition of P ∗ neighborhood, we have

dt0−T−(p, z) ≤dt0−T
−

W1
(δp, vp,t0;t0−T−) + dt0−T

−

W1
(vp,t0;t0−T− , δz)

≤dt0−T
−

W1
(δz, vx1,t1;t0−T−) + dt0−T

−

W1
(vp,t0;t0−T− , vx1,t1;t0−T−) + C1

≤S + C2. (5.17)

Set vt = vx1,t1;t and compute

∂t

∫
M

φrdvt =

∫
M

�φrdvt.

By (2.15), we have

φr(x1, t1) ≥
∫
M

φrdvt0−T− − C(n)r−1(t1 − t0 + T−) ≥
∫
F≤r

1dvt0−T− − C3r
−1.

Note that φr = 1 if F ≤ r and r is large. In light of (5.17) and Lemma 2.3, the set {F ≤ r}
contains a large geodesic ball centered at z. Thus by Proposition 3.13, the above inequality

implies that

φr(x1, t1) ≥
∫
F≤r

1dvt0−T− − C3r
−1 ≥ 1

2
(5.18)

if 2
√
r = S + C4. Since φr is supported on F ≤ 2r, we conclude from (5.18) that

F (x1, t1) ≤ 2r =
(S + C4)2

2
.

From Lemma 2.3, we immediately conclude that

dt1(p, x1) ≤
√

2S + C5.

Now, the last conclusion follows from (5.15) and Lemma 5.3. �

Corollary 5.11 Given (x0, t0) ∈ M × (−∞, 1) and S, T± ≥ 0, P ∗(x0, t0;S,−T−, T+) is

precompact in M × (−∞, 1) if t0 + T+ < 1.

Proof It is clear that (x0, t0) ∈ P ∗(p, t0;S′,−1, 0) for some large S′ > 0. Therefore, it

follows from Lemma 5.2

P ∗(x0, t0;S,−T−, T+) ⊂ P ∗(p, t0;S + S′,−(1 + T−), T+).

Therefore, the conclusion follows from Proposition 5.10. �

Next, we recall the following existence of the local cutoff function from [6, Theorem 1.3].

Proposition 5.12 Given (x0, t0) ∈ M × (−∞, 1) and r > 0, there exists a constant

ρ3 = ρ3(n,A) ∈ (0, 1) satisfying the following property.

Suppose R ≤ r−2 on P (x0, t0; r,−τ, 0) with 0 < τ ≤ (ρ3r)
2. Then there exists a function

ϕ ∈ C∞(M × [t0 − τ, t0]) with the following properties:

(a) 0 ≤ ϕ < 1 on M × [t0 − τ, t0].

(b) ϕ > ρ3 on P (x0, t0; ρ3r,−τ, 0).

(c) ϕ = 0 outside P (x0, t0; r,−τ, 0).
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(d) |∇ϕ| ≤ r−1 and |∂tϕ|+ |∆ϕ| ≤ r−2.

(e) �ϕ ≤ 0 on M × [t0 − τ, t0].

Proof We sketch the proof for the readers’ convenience. In [6, Theorem 1.3], ϕ is con-

structed as the smoothing of ψ2, where

ψ(x, t) := c1 max{K(x, t)− c, 0}

for some constants c, c1 > 0 on U × [t0−τ, t0] for some open set U ⊂ Bt0(x0, r), where ψ = 0 on

∂U× [t0−τ, t0] and can be extended to be 0 outside U× [t0−τ, t0]. Here, K(x, t) = H(x, t, y, s)

for some appropriate (y, s) such that K(x0, t0) ≥ (4π(t0− s))−
n
2 e−n/2, and t0− s is sufficiently

small.

The estimates of (a)–(d) follow from [29, Lemma 20]. From the definitions of ψ and ϕ, it

is clear that (e) also holds. �

Next, we prove

Proposition 5.13 There exists a constant ρ4 = ρ4(n,A) ∈ (0, 1) satisfying the fol-

lowing property. Given (x0, t0) ∈ M × (−∞, 1) and r > 0, suppose that R ≤ r−2 on

P (x0, t0; r,−(ρ4r)
2, 0) (resp. P (x0, t0; r,−(ρ4r)

2, (ρ4r)
2)). Then

P ∗−(x0, t0; ρ4r) ⊂ P (x0, t0; r,−(ρ4r)
2, 0) (5.19)

(
resp. P ∗(x0, t0; ρ4r) ⊂ P (x0, t0; r,−(ρ4r)

2, (ρ4r)
2)
)
. (5.20)

Proof In the proof, all positive constants Ci > 1 depend only on n and A. Moreover, we

set 0 < τ � 1 to be determined later.

For any (y, s) ∈ P ∗−(x0, t0; τr), we assume (z, t0 − (τr)2) to be its Hn-center. From

Proposition 5.4, we have

dt0−(τr)2(z, x0) ≤ dt0−(τr)
2

W1
(δx0 , vx0,s;t0−(τr)2) + d

t0−(τr)2
W1

(vy,s;t0−(τr)2 , vx0,s;t0−(τr)2)

+ d
t0−(τr)2
W1

(δz, vy,s;t0−(τr)2)

≤ C1τr. (5.21)

We assume τ < ρ3 and consider the cutoff function ϕ constructed in Proposition 5.12. If

we set vt = vy,s;t, then by direct computation,

∂t

∫
M

ϕdvt =

∫
M

�ϕdvt ≥ −r−2,

where we have used Proposition 5.12(d). By integration, we have

ϕ(y, s) ≥
∫
M

ϕdvt0−(τr)2 − τ. (5.22)

Notice that ϕ > ρ3 on P (x0, t0; ρ3r, 0, (τr)
2). Combining this fact with (5.21) and Proposition

3.13, we conclude that if τ is sufficiently small,

ϕ(y, s) ≥
∫
M

ϕdvt0−(τr)2 − τ ≥
ρ3
2
> 0.

On the other hand, since ϕ = 0 outside P (x0, t0; r,−(τr)2), we conclude that

dt0(x0, y) ≤ r,
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and hence (5.19) holds. �

Next, we recall the definition of the curvature radius.

Definition 5.14 (Curvature radius) For any (x, t) ∈M × (−∞, 1), the curvature radii at

(x, t) are defined as

rRm(x, t) := sup
{
r > 0 | |Rm| ≤ r−2 on P (x, t; r)

}
,

r−Rm(x, t) := sup
{
r > 0 | |Rm| ≤ r−2 on P−(x, t; r)

}
,

rsRm(x, t) := sup
{
r > 0 | |Rm| ≤ r−2 on Bt(x, r)

}
.

It is clear from the definition that rRm(x, t) ≤ r−Rm(x, t) ≤ rsRm(x, t). In addition, it follows

from Theorem 4.1 and the pseudolocality theorem [29, Theorem 24] on Ricci shrinkers that

there exists a constant C = C(n,A) > 1 such that

r−Rm(x, t) ≤ CrRm(x, t). (5.23)

We are in a position to obtain the following ε-regularity theorem; see [2, Theorem 10.2].

Theorem 5.15 (ε-regularity) There exists a small constant ε = ε(n) > 0 satisfying the

following property. Given (x, t) ∈M × (−∞, 1) and r > 0, suppose that N(x,t)(r
2) ≥ −ε, then

rRm(x, t) ≥ εr.

Proof We only sketch the proof as the details can be found in [2, Theorem 10.2]. The key

step is a point-picking argument in the spacetime with respect to the curvature radius rRm. More

precisely, one needs to show that for any A > 0 with 10ArRm(x, t) ≤ 1/2, there exists a point

(x′, t′) ∈ P ∗−(x′, t′; 10ArRm(x, t)) such that rRm(x′, t′) ≤ rRm(x, t) and rRm ≥ rRm(x′, t′)/10

on P ∗−(x′, t′;ArRm(x′, t′)). Otherwise, one can iteratively pick a sequence of spacetime points

(xi, ti) in a compact set of M × (−∞, 1) satisfying rRm(xi, ti)→ 0. In light of Lemma 5.2, all

(xi, ti) fall into a given P ∗−-parabolic neighborhood, which is precompact by Corollary 5.11.

Note that the curvature radius of (xi, ti) shrinks by a definite portion in each step, and the

bounded geometry of a compact set implies that the process must terminate in finite steps, say

(xk, tk) = (x′, t′). Such a choice of (x′, t′) guarantees that it has an almost maximal curvature

radius in the spacetime neighborhood. Notice that similar point-picking arguments can be

found in [35, Theorem 10.1] and [16, Proposition 3.43].

If the ε-regularity theorem fails, we could obtain a sequence of pointed Ricci flows such that

rRm = 1 at the base points after the point-picking and appropriate rescalings. Since nearby

points have curvature radii uniformly bounded from below, the sequence converges smoothly

to a limit Ricci flow which is the Euclidean spacetime by the assumption of the Nash entropy.

Therefore, rRm = 1 must be violated and we obtain a contradiction. �

Using the ε-regularity theorem, one immediately has the following gap property, following

the same proof of [29, Theorem 3].

Corollary 5.16 Suppose (Mn, g, f, p) is a non-flat Ricci shrinker. Then

N(p,0)(ε
−2) < −ε,

where ε is the same constant in Theorem 5.15.

Proof Suppose N(p,0)(ε
−2) ≥ −ε and (M, g) is a non-flat Ricci shrinker. Then it follows

from Theorem 5.15 that rRm(p, 0) ≥ 1. In particular, it implies that |Rm(p, t)| ≤ 1 for any
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t ∈ [0, 1). By the self-similarity of the flow, we have |Rm|(p, 0) = |Rm|(p, t)(1 − t), and hence

|Rm|(p, 0) = 0, which contradicts the fact that R > 0 for non-flat Ricci shrinkers. �

We conclude this section by stating the following two results, whose proofs are more or less

standard; see [2, Theorem 10.3, Theorem 10.4].

Theorem 5.17 For any ε > 0, there is a δ = δ(ε) > 0 such that the following holds.

Given (x, t) ∈M × (−∞, 1) and r > 0, if N(x,t)(r
2) ≥ −δ, then

|Rm| ≤ εr−2 on P (x, t; ε−1r,−(1− ε)r2, ε−1r2).

Moreover, we have N ∗t−r2 ≥ −ε on P (x, t; ε−1r,−(1− ε)r2).

Theorem 5.18 For any ε > 0 and Y < ∞ there is a δ = δ(ε, Y ) > 0 such that the

following holds. Given (x, t) ∈M × (−∞, 1) and r > 0, suppose that |Rm| ≤ r−2 on P−(x, t; r)

and N(x,t)(r
2) ≥ −Y . Then N(x,t)(δr

2) ≥ −ε.

6 Metric Flows and F-convergence

In previous sections, we have generalized (or slightly improved) the theorems and tools in [2].

Notice that these results also hold for Ricci flows induced by Ricci shrinkers (cf. Definition 2.2),

since most of them are scaling-invariant. In a few cases, one needs to modify the assumptions

correspondingly. For instance, the conditions in Theorem 4.9 and Theorem 4.16 need to be

changed to −δ−1λ ≤ t < s ≤ (1− δ)λ and dt(x, p) ≤ Kλ1/2, if the Ricci flow associated with a

Ricci shrinker is parabolically rescaled by λ > 0.

Based on these results and techniques, one can generalize the theory of F-convergence in

[3] and [4] from compact Ricci flows to the setting of Ricci flows induced by Ricci shrinkers.

Notice that the results in [3] and [4] are already generalized by Bamler to Ricci flows

with complete time-slices and bounded curvature on compact time-intervals (cf. [5]). In [5,

Appendix A], some issues in the non-compact case are addressed and can be resolved similarly

in the setting of Ricci shrinkers by the results and techniques developed in previous sections. For

instance, by Theorem 4.9 and Theorem 4.16, it is known that the conjugate heat kernel decays

exponentially and the function b induced by the conjugate heat kernel increases quadratically

(cf. Remark 4.17). Therefore, the weak splitting maps (cf. [4, Definition 5.6]) constructed in

[4, Section 10] have at most quadratic spatial growth. Moreover, it follows from [4, Proposition

12.1, Remark 12.3] that one can construct a bounded strong splitting map with the bounded

gradient from a given weak splitting map.

At various places in [4], one also needs to consider the integral
∫
uφr instead of

∫
u, and

take the limit for r → ∞ after all the estimates (e.g., u = �|ωl| in [4, Lemma 17.37]). This

technique has already appeared multiple times in previous sections. As a showcase, we generalize

the integral estimates in [4, Section 6] to Ricci flows associated with Ricci shrinkers in Appendix

6. These estimates are frequently used in [4] and are of independent interest.

Now, we recall the following definition of the metric flow from [3, Definition 3.2].

Definition 6.1 (Metric flow) Let I ⊂ R be a subset. A metric flow over I is a tuple of

the form

(X , t, (dt)t∈I , (vx;s)x∈X ,s∈I,s≤t(x))

with the following properties:
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(1) X is a set consisting of points.

(2) t : X → I is a map called time-function. Its level sets Xt := t−1(t) are called time-slices

and the preimages XI′ := t−1(I ′), I ′ ⊂ I, are called time-slabs.

(3) (Xt, dt) is a complete and separable metric space for all t ∈ I.

(4) vx;s is a probability measure on Xs for all x ∈ X , s ∈ I, s ≤ t(x). For any x ∈ X the

family (vx;s)s∈I,s≤t(x) is called the conjugate heat kernel at x.

(5) vx;t(x) = δx for all x ∈ X .

(6) For all s, t ∈ I, s < t, T ≥ 0 and any measurable function us : Xs → [0, 1] with the

property that if T > 0, then us = Φ ◦ fs for some T−1/2-Lipschitz function fs : Xs → R (if

T = 0, then there is no additional assumption on us), the following is true. The function

ut : Xt −→ R, x 7−→
∫
Xs
usdvx;s

is either constant or of the form ut = Φ ◦ ft, where ft : Xt → R is (t − s + T )−1/2-Lipschitz.

Here, Φ is given by (3.31).

(7) For any t1, t2, t3 ∈ I, t1 ≤ t2 ≤ t3, x ∈ Xt3 we have the reproduction formula

vx;t1 =

∫
Xt2

v·;t1dvx;t2 ,

meaning that for any Borel set S ⊂ Xt1

vx;t1(S) =

∫
Xt2

vy;t1(S)dvx;t2(y).

Given a metric flow X over I, we recall the following definitions from [3, Definition 3.20,

3.30].

Definition 6.2 (Conjugate heat flow) A family of probability measures (µt ∈ P(Xt))t∈I′
over I ′ ⊂ I is called a conjugate heat flow if for all s, t ∈ I ′, s ≤ t we have

µs =

∫
Xt
vx;s dµt(x).

Definition 6.3 (H-Concentration) Given a constant H > 0, a metric flow X is called

H-concentrated if for any s ≤ t, s, t ∈ I, x1, x2 ∈ Xt

Var(vx1;s, vx2;s) ≤ d2t (x1, x2) +H(t− s).

Next, we recall the definition of the metric flow pair from [3, Definition 5.1, 5.2]. Roughly

speaking, two metric flow pairs are equivalent if they are the same in the metric measure sense

almost everywhere.

Definition 6.4 (Metric flow pair) A pair (X , (µt)t∈I′) is called a metric flow pair over

I ⊂ R if

1. I ′ ⊂ I with |I \ I ′| = 0.

2. X is a metric flow over I ′.

3. (µt)t∈I′ is a conjugate heat flow on X with suppµt = Xt for all t ∈ I ′.
If J ⊂ I ′, then we say that (X , (µt)t∈I) is fully defined over J . We denote by FJI the set of

equivalence classes of metric flow pairs over I that are fully defined over J . Here, two metric

flow pairs (X i, (µit)t∈I′,i), i = 1, 2, that are fully defined over J are equivalent if there exists an
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isometry φ : X 1
I′ → X 2

I′ (cf. [3, Definition 3.13]) such that |I ′,1\I ′| = |I ′,2\I ′| = 0, (φt)∗µ
1
t = µ2

t

for all t ∈ I ′ and J ⊂ I ′.
We will only consider I := (−∞, 0], for simplicity. Then, for any pointed Ricci flow

(Mn, g(t), x0)t∈I induced by a Ricci shrinker, one can define (X , (µt)t∈I) as follows.(
X := M × (I \ {0}) t x0 × {0}, t := projI , (dt)t∈I , (vx,t;s)(x,t)∈M×I,s∈I,s≤t, µt := vx0,0;t

)
.

(6.1)

Then we have

Proposition 6.5 The pair (X , (µt)t∈I) defined in (6.1) is an Hn-concentrated metric flow

pair that is fully defined over I.

Proof The conditions (1)–(5) in the definition of the metric flow can be easily checked.

Condition (6) follows from Theorem 3.15 and (7) from the semigroup property (3.1). The metric

flow is Hn-concentrated by Proposition 3.10. �

Next, we recall the definition of a correspondence between metric flows; see [3, Definition

5.4].

Definition 6.6 (Correspondence) Let (X i, (µit)t∈I′,i) be metric flows over I, indexed by

some i ∈ I. A correspondence between these metric flows over I ′′ is a pair of the form

C :=
(
(Zt, d

Z
t )t∈I′′ , (ϕ

i
t)t∈I′′,i,i∈I

)
,

where

1. (Zt, d
Z
t ) is a metric space for any t ∈ I ′′.

2. I ′′,i ⊂ I ′′ ∩ I ′,i for any i ∈ I.

3. ϕit : (X it , dit)→ (Zt, d
Z
t ) is an isometric embedding for any i ∈ I and t ∈ I ′′,i.

If J ⊂ I ′′,i for all i ∈ I, we say that C is fully defined over J .

Given a correspondence, one can define the F-distance; see [3, Definition 5.6, 5.8].

Definition 6.7 (F-distance within correspondence) We define the F-distance between two

metric flow pairs within C (uniform over J),

dC,J
F
(
(X 1, (µ1

t )t∈I′,1), (X 2, (µ2
t )t∈I′,2)

)
,

to be the infimum over all r > 0 with the property that there is a measurable subset E ⊂ I ′′

with

J ⊂ I ′′ \ E ⊂ I ′′,1 ∩ I ′′,2

and a family of couplings (qt)t∈I′′\E between µ1
t , µ

2
t such that

(1) |E| ≤ r2.

(2) For all s, t ∈ I ′′ \ E, s ≤ t, we have∫
X 1
t ×X 2

t

dZsW1
((ϕ1

s)∗ν
1
x1;s, (ϕ

2
s)∗ν

2
x2;s)dqt(x

1, x2) ≤ r.

Notice that (2) above implies that for any t ∈ I ′′ \ E,

dGW1

(
(X 1

t , d
1
t , µ

1
t ), (X 2

t , d
2
t , µ

2
t )
)
≤ dZtW1

((ϕ1
t )∗µ

1
t , (ϕ

2
t )∗µ

2
t ) ≤ r. (6.2)

Here, dGW1
denotes the Gromov-W1-Wasserstein distance; see [3, Definition 2.11] for the precise

definition.
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Definition 6.8 (F-distance) The F-distance between two metric flow pairs (uniform over

J),

dJF
(
(X 1, (µ1

t )t∈I′,1), (X 2, (µ2
t )t∈I′,2)

)
,

is defined as the infimum of

dC,J
F
(
(X 1, (µ1

t )t∈I′,1), (X 2, (µ2
t )t∈I′,2)

)
,

over all correspondences C between X 1,X 2 over I ′′ that are fully defined over J .

With all those definitions, it can be proven (cf. [3, Theorem 5.13, 5.26]) that (FJI , dJF ) is a

complete metric space, with possible infinite distances.

In addition, F-convergence implies F-convergence within a correspondence; see [3, Theorem

6.12]. More precisely,

Theorem 6.9 Let (X i, (µit)t∈I′,i), i ∈ N ∪ {∞} be metric flow pairs over I that are fully

defined over some J ⊂ I. Suppose that for any compact subinterval I0 ⊂ I

dJ∩I0F
(
(X i, (µit)t∈I0∩I′,i), (X

∞, (µ∞t )t∈I0∩I′,∞)
)
→ 0.

Then there is a correspondence C between the metric flows X i, i ∈ N ∪ {∞} over I such that

(X i, (µit)t∈I′,i)
F,C,J−−−−−−−→
i→∞

(X∞, (µ∞t )t∈I′,∞)

on compact time intervals, in the sense that

dC,J∩I0
F

(
(X i, (µit)t∈I0∩I′,i), (X

∞, (µ∞t )t∈I0∩I′,∞)
)
→ 0

for any compact subinterval I0 ⊂ I.

For a sequence of Ricci flows (Mn
i , gi(t)), xi)t∈I induced by Ricci shrinkers, one can use

the F-compactness theorem for metric flow pairs [3, Corollary 7.5, Theorem 7.6] to obtain the

following result.

Theorem 6.10 (F-compactness) Let (Mn
i , gi(t), xi)t∈I be a sequence of pointed Ricci

flows induced by Ricci shrinkers with the corresponding metric flow pairs (X i, (µit)t∈I) as de-

scribed in (6.1).

After passing to a subsequence, there exists an Hn-concentrated metric flow pair (X∞,
(µ∞t )t∈I) for which X∞ is future continuous in the sense of [3, Definition 4.25] such that the

following holds. There is a correspondence C between the metric flows X i, i ∈ N∪ {∞}, over I

such that on compact time-intervals

(X i, (µit)t∈I)
F,C−−−−−−→
i→∞

(X∞, (µ∞t )t∈I). (6.3)

Moreover, the convergence (6.3) is uniform over any compact J ⊂ I that only contains times

at which X∞ is continuous; see [3, Definition 4.25]. Notice that X∞ is continuous everywhere

except possibly at a countable set of times, by [3, Corollary 4.35].

We sketch the main ideas and steps of Theorem 6.10 modulo all technical details.

1. One needs a characterization of the compactness for a subset in (M, dGW1), the isometry

classes of all metric measure space (X, d, µ), where µ ∈ P(X) with suppµ = X and dGW1

denotes the Gromov-W1-Wasserstein distance (cf. [3, Definition 2.11]). Let Mr(V, b) ⊂ M be

the subset consisting of (X, d, µ) satisfying

Var(µ) ≤ V r2 and µ ({x ∈ X | µ(D(x, εr)) < b(ε)}) ≤ ε, ∀ε ∈ (0, 1]. (6.4)
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Here, V, r are two positive constants and b : (0, 1] → (0, 1] is a function. Moreover, D(x, εr)

denotes a closed ball with center x and radius εr. It is proven by [3, Theorem 2.27] that Mr(V, b)

is compact.

2. For any metric flow pair (X , (µt)t∈I) defined in (6.1). It is clear by Hn-concentration

that Var(µt) ≤ Hn|t|. It can be proven (cf. [3, Proposition 4.1] with τ = ε3

8Hn
) that for any

t < 0,

(Xt, dt, µt) ∈Mr(V, b), (6.5)

where V = 1/8, r =
√

8Hn|t|, b(ε) = Φ(ε−2
√

8Hn)/2 and Φ is given by (3.31). The proof

of (6.5) uses Definition 6.1(6)(7) in an essential way. Therefore, for any t ≤ 0, (X i, dit, µit)
subconverges in GW1 to a limit metric measure space.

3. To compare different time-slices of (X , (µt)t∈I), one considers the function

D(t) :=

∫
Xt

∫
Xt
dt dµtdµt (6.6)

for t ∈ I. It is not hard to prove (cf. [3, Lemma 4.7]) that for any s ≤ t ∈ I,

−
√
Hn(t− s) ≤ D(t)−D(s) ≤

√
Var(µt)−Var(µs) +Hn(t− s) + 2

√
Hn(t− s). (6.7)

It follows immediately from (6.7) that D(t) is continuous on a complement of a countable subset

of I. In addition, it is proven (cf. [3, Theorem 4.31]) that for any t0 ≤ 0, D(t) is continuous

at t0 is equivalent to the statement that (Xt, dt, µt) is continuous at t0 in the GW1 sense. In

this case, one can construct an isometric embedding of (Xt, dt) and (Xt0 , dt0) into a metric

space (Zt, d
Z
t ) with an explicit coupling qt between µt and µt0 for t close to t0. Therefore, one

concludes that the metric flow (Xt, µt) is continuous on I except at a countable set of times.

4. For the sequence (X i, (µit)t∈I) in (6.3), we consider the limit

D∞(t) := lim
i→∞

Di(t), (6.8)

which exists for any t ∈ I by taking a subsequence. Indeed, by (6.7), we may assume that

D∞(t) exists for t ∈ I ∩Q and D∞(t)−D∞(s) ≥ −
√
Hn(t− s) for any s, t ∈ I ∩Q with s ≤ t,

after taking a subsequence if necessary. Therefore, there exists a countable set S ⊂ I such that

D∞ is continuous on I \ S, by extending the definition of D∞. Moreover, (6.8) holds for any

t ∈ I \ S. Now, (6.8) also holds for t ∈ S, by further taking a subsequence.

The F-convergence of (X i, (µit)t∈I) can be constructed as follows. We assume that D∞(t) is

continuous at I\S for a countable set S. For a large k > 0, we take a compact set I1 ⊂ [−k, 0]\S
so that |[−k, 0] \ I1| is small. Then I1 is finitely covered by compact intervals Iti centered at

ti ∈ I1 such that |Iti | and the oscillation of all Di and D∞ on each Iti are sufficiently small. By

steps 1 and 2 above, one can construct a correspondence C0 that is fully defined on the finite

set I0 := {ti} between X i, so that

dC0,I0
F

(
(X i, (µit)t∈I0), (X j , (µjt )t∈I0)

)
< ε (6.9)

for any ε > 0, if i, j are sufficiently large. Then, by using the small oscillation of Di on Iti , one

can extend the correspondence C0 to C1 over I1 so that (X i, (µit)t∈I1) forms a Cauchy sequence

over I1 in the sense of (6.9) with respect to dC1,I1
F (cf. [3, Lemma 7.24]). By letting k →∞ and

taking a diagonal sequence, we obtain from the completeness of (FI , dF) a limit metric flow pair

(X∞, (µ∞t )t∈I\S), which has an extended definition for all t ∈ I by the future completion (cf.
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[3, Section 4.4]) so that (X∞, (µ∞t )t∈I) is right continuous for t ∈ I. Notice that Definitions

6.1(1)–(7) for (X∞, (µ∞t )t∈I) are inherited from (X i, (µit)t∈I). In addition, one can construct a

correspondence C so that

(X i, (µit)t∈I)
F,C−−−−−−→
i→∞

(X∞, (µ∞t )t∈I)

on compact time intervals and the convergence is uniform over the set on which (X∞, (µ∞t )t∈I)

is continuous. Moreover, (X∞t′ , d∞t′ , µ∞t′ ) ⊂Mr(V, b) as (6.5) and Var(µ∞t ) ≤ Hn|t| for any t ∈ I.

Notice that X∞0 consists of a single point from which µ∞t is the conjugate heat measure.

Remark 6.11 In [3, Theorem 7.4], a general compactness for a subset FJI (H,V, b, r) ⊂ FJI
is proven by the same method as described above.

It follows from [3, Theorem 8.2, 8.4] that the limit metric flow pair (X∞, (µ∞t )t∈I) obtained

in (6.3) is a length space for any t ∈ I. In general, further geometric information contained in

(X∞, (µ∞t )t∈I) is scarce. However, if (Mn
i , gi(t)) are induced by Ricci shrinkers inM(A), then,

in particular, their Nash entropies are uniformly bounded by Corollary 3.22. In this case, one

obtains a much more concrete structure theorem regarding the limit metric flow obtained in

(6.3); see [4, Theorem 2.3, 2.4, 2.5, 2.6, 2.46] and [3, Theorem 9.31].

Theorem 6.12 Let (Mn
i , gi(t), xi)t∈I be a sequence of pointed Ricci flows induced by

Ricci shrinkers in M(A) and (X∞, (µ∞t )t∈I) the limit metric flow pair obtained in Theorem

6.10. Then the following properties hold.

(1) There exists a decomposition

X∞0 = {x∞}, X∞t<0 = Rt S, (6.10)

such that R is given by an n-dimensional Ricci flow spacetime (R, t, ∂∞t , g∞), in the sense of

[3, Definition 9.1] and dimM∗(S) ≤ n− 2, where dimM∗ denotes the ∗-Minkowski dimension in

[3, Definition 3.42]. Moreover, µ∞t (St) = 0 for any t < 0.

(2) Every tangent flow (X ′, (vx′∞;t)t≤0) at every point x ∈ X∞ is a metric soliton in the

sense of [3, Definition 3.57]. Moreover, X ′ is the Gaussian soliton iff x ∈ R. If x ∈ S, the

singular set of (X ′, (vx′∞;t)t≤0) on each t < 0 has Minkowski dimension at most n − 4. In

particular, if n = 3, the metric soliton is a smooth Ricci flow associated with a 3-dimensional

Ricci shrinker. If n = 4, each slice of the metric soliton is a smooth Ricci shrinker orbifold with

isolated singularities.

(3) Rt = R∩X∞t is open such that the restriction of dt on Rt agrees with the length metric

of gt.

(4) The convergence (6.3) is smooth on R, in the following sense. There exists an increasing

sequence U1 ⊂ U2 ⊂ · · · ⊂ R of open subsets with
⋃∞
i=1 Ui = R, open subsets Vi ⊂ Mi × I,

time-preserving diffeomorphisms φi : Ui → Vi and a sequence εi → 0 such that the following

holds:

(a) We have

‖φ∗i gi − g∞‖C[ε
−1
i

](Ui)
≤ εi,

‖φ∗i ∂it − ∂∞t ‖C[ε
−1
i

](Ui)
≤ εi,

‖wi ◦ φi − w∞‖
C[ε
−1
i

](Ui)
≤ εi,
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where gi is the spacetime metric induced by gi(t), and wi is the conjugate heat kernel defined

by dµi = widgi, i ∈ N ∪ {∞}.
(b) Let y∞ ∈ R and yi ∈Mi×(−∞, 0). Then yi converges to y∞ within C (cf. [3, Definition

6.18]) if and only if yi ∈ Vi for large i and φ−1i (yi)→ y∞ in R.

(c) If the convergence (6.3) is uniform at some time t ∈ I, then for any compact subset

K ⊂ Rt and for the same subsequence we have

sup
x∈K∩Ui

dZt (ϕit(φi(x)), ϕ∞t (x)) −→ 0.

Theorem 6.12 is a flow version of the Cheeger-Colding theory (cf. [11–13]). Its proof shares

a similar strategy as its elliptic counterparts. Many concepts also have counterparts. For

example, the tangent flow corresponds to the tangent cone, and the metric soliton corresponds

to the metric cone. We recall their definitions; see [3, Definition 6.55, 3.57].

Definition 6.13 (Tangent flow) Let X be a metric flow over I and x0 ∈ Xt0 a point. We

say that a metric flow pair (X ′, (v′xmax;t)t∈I) is a tangent flow of X at x0 if there is a sequence

of scales λk > 0 with λk →∞ such that for any T > 0 the parabolic rescalings(
X−t0,λk[−T,0] , (v

−t0,λk
x0;t )λ−2

k t+t0∈I′,t∈[−T,0]
)

F-converge to (X ′[−T,0], (v
′
xmax;t)t∈[−T,0]).

Definition 6.14 (Metric soliton) A metric flow pair (X , (µt)t∈I) is called a metric soliton

if there is a tuple (
X, d, µ, (v′x;t)x∈X;t≤0

)
and a map φ : X → X such that the following holds:

1. For any t ∈ I, the map φt : (Xt, dt, µt) → (X,
√
td, µ) is an isometry between metric

measure spaces.

2. For any x ∈ Xt, s ∈ I with s ≤ t, we have (φs)∗vx;s = v′φt(x);log(s/t).

Roughly speaking, a metric soliton is a metric flow pair induced by a metric measure space

in a shrinking way. In general, a tangent flow of a metric flow may not be a metric soliton.

In the setting of Theorem 6.12, every tangent flow of (X∞, (µ∞t )t∈I) is also an F-limit of a

sequence of Ricci flows induced by Ricci shrinkers in M(A) (cf. [3, Theorem 6.58]).

Notice that the limit metric flow (X∞, (µ∞t )t∈I) in (6.3) always admits a regular-singular

decomposition

X∞t<0 = Rt S,

so that R is given by a Ricci flow spacetime (cf. [3, Definition 9.1]). The key point is to

control the size of the singular part in the appropriate sense. To avoid the distance distortion

at different time-slices, one can redefine the Hausdorff and Minkowski dimensions (denoted by

H∗ andM∗, respectively) by using the P ∗-parabolic balls instead of the conventional ones; see

[3, Definition 3.41, 3.42].

One can control the size of S quantitatively. Let (Mn, g(t))t∈I be the Ricci flow induced

by a Ricci shrinker in M(A). We fix a point (x0, t0) ∈ M × I and define τ = t0 − t and

H(x0, t0, ·, ·) = (4πτ)−
n
2 e−b. We next recall the some definitions from [4, Definition 5.1, 5.5,

5.6, 5.7], which indicate the extent to which the local geometry around (x0, t0) is a Ricci

shrinker, Ricci flat space or splitting off an Rk.
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Definition 6.15 (Almost self-similarity) Let (Mn, g(t))t∈I be the Ricci flow induced by

a Ricci shrinker. The point (x0, t0) ∈M × I is called (ε, r)-selfsimilar if the following holds:∫ t0−εr2

t0−ε−1r2

∫
M

τ
∣∣∣Rc +∇2b− 1

2τ
g
∣∣∣2dvx0,t0;tdt ≤ ε,∫

M

∣∣τ(24b− |∇b|2 +R) + b− n−Nx0,t0(r2)
∣∣dvx0,t0;t ≤ ε, ∀t ∈ [t0 − ε−1r2, t0 − εr2].

Definition 6.16 (Almost static) The point (x0, t0) is called (ε, r)-static if the following

holds:

r2
∫ t0−εr2

t0−ε−1r2

∫
M

|Rc|2dvx0,t0;tdt ≤ ε,

r2
∫
M

Rdvx0,t0;t ≤ ε, ∀t ∈ [t0 − ε−1r2, t0 − εr2].

Definition 6.17 (Weak splitting) (x0, t0) is called weakly (k, ε, r)-split if there exists a

vector-valued function ~y = (y1, · · · , yk) : M × [t0 − ε−1r2, t0 − εr2] → Rk with the following

properties for all i, j = 1, · · · , k:

(1) We have

r−1
∫ t0−εr2

t0−ε−1r2

∫
M

|�yi|dvx0,t0;tdt ≤ ε.

(2) We have

r−2
∫ t0−εr2

t0−ε−1r2

∫
M

|∇yi · ∇yj − δij |dvx0,t0;tdt ≤ ε.

Definition 6.18 (Strong splitting) (x0, t0) is called strongly (k, ε, r)-split if there exists

a vector-valued function ~y = (y1, · · · , yk) : M × [t0 − ε−1r2, t0 − εr2] → Rk with the following

properties for all i, j = 1, · · · , k:

(1) yi solves the heat equation �yi = 0 on M × [t0 − ε−1r2, t0 − εr2].

(2) We have

r−2
∫ t0−εr2

t0−ε−1r2

∫
M

|∇yi · ∇yj − δij |dvx0,t0;tdt ≤ ε.

(3) For all t ∈ [t0 − ε−1r2, t0 − εr2], we have∫
M

yidvx0t0;t = 0.

It can be proven (cf. [4, Proposition 12.1]) that if (x0, t0) is weakly (k, ε, r)-split, then it

is strongly (k, δ(ε), r)-split. With these definitions, one can consider the following quantitative

stratification.

Definition 6.19 For ε > 0 and 0 < r1 < r2 ≤ ∞, the effective strata

S̃ε,0r1,r2 ⊂ S̃
ε,1
r1,r2 ⊂ S̃

ε,2
r1,r2 ⊂ · · · ⊂ S̃

ε,n+2
r1,r2 ⊂M × I

are defined as (x′, t′) ∈ S̃ε,kr1,r2 if and only if for all r′ ∈ (r1, r2), neither of the following two

properties holds:

1. (x′, t′) is (ε, r′)-selfsimilar and weakly (k + 1, ε, r′)-split.

2. (x′, t′) is (ε, r′)-selfsimilar, (ε, r′)-static and weakly (k − 1, ε, r′)-split.
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By a delicate choice of the covering by P ∗-parabolic balls, it can be proven, see [4, Proposi-

tion 11.2], that for any 0 < σ < ε, there are points (x1, t1), · · · , (xN , tN ) ∈ S̃ε,kσr,εr ∩P ∗(x0, t0; r)

with N ≤ C(A, ε)σ−k−ε and

S̃ε,kσr,εr ∩ P ∗(x0, t0; r) ⊂
N⋃
i=1

P ∗(xi, ti;σr). (6.11)

Notice that (6.11) can be regarded as a parabolic version of the covering in [12] by Cheeger and

Naber.

On the complement of S̃ε,n−2σr,εr , the following ε-regularity theorem is proven (cf. [4, Propo-

sition 17.1]), which can be viewed as a parabolic analog of Cheeger-Naber’s codimension 4

theorem in [13]. Roughly speaking, one needs to rule out the tangent flows which are Ricci-flat

and split off an Rn−3.

Proposition 6.20 There exists a constant ε = ε(n,A) > 0 such that the following holds.

Let (Mn, g(t))t∈I be the Ricci flow induced by a Ricci shrinker inM(A). Suppose that (x0, t0)

is strongly (n−1, ε, r)-split or strongly (n−3, ε, r)-split and (ε, r)-static. Then rRm(x0, t0) ≥ εr.
There are many implications of Proposition 6.20. Notice that one has the following decom-

position:

X∞t<0 = R∗ t S∗,

where R∗ ⊂ R is the set of points where the convergence (6.3) is smooth as defined in [3,

Section 9.4]. Since S ⊂ S∗, one can obtain the estimate of ∗-Minkowski dimension of S by that

of S∗ from (6.11) and Proposition 6.20 (cf. [4, Theorem 15.28 (a)]). Moreover, it can be proven

that S∗ ∩ X∞t has measure 0 for any t < 0 (cf. [4, Theorem 15.28 (b)]). Therefore, Theorem

6.12 (1) is obtained.

Since S has measure 0 on each time-slice, one can extend the definition of the Nash entropy

on X∞. Therefore, the Nash entropy at the base point x′ of any tangent flow (X ′, (vx′;t)t∈I)
of (X∞, (µ∞t )t∈I) is a constant. By the relation between the Nash entropy and the almost self-

similarity (cf. [4, Proposition 7.1]), one concludes that (X ′, (vx′;t)t∈I) is a metric soliton since

its regular part admits an incomplete Ricci shrinker and the tangent flow itself is determined by

its regular part due to the high codimension of the singular part (cf. [4, Theorem 15.60, 15.69]).

Moreover, the singular set on each time-slice of (X ′, (vx′;t)t∈I) has Minkowski dimension ≤ n−4

(cf. [4, Theorem 2.16]). Furthermore, the fact that x ∈ R iff X ′ is the Gaussian soliton follows

from the ε-regularity theorem 5.15 and the convergence of the Nash entropies under (6.3) (cf. [4,

Theorem 2.11, 2.14]). Notice that if n = 4, each time-slice of (X ′, (vx′;t)t∈I) is a smooth orbifold

with isolated singularities, since each tangent flow at any singular point of (X ′, (vx′;t)t∈I) is a

flat cone (cf. [4, Theorem 2.46]). Therefore, we obtain Theorem 6.12 (2).

For Theorem 6.12 (3), the inequality dt ≤ dgt is clear. The opposite inequality is proven

by showing that any u ∈ C0(Rt) that is 1-Lipschitz with respect to dgt is also 1-Lipschitz with

respect to dt (cf. [4, Theorem 15.28 (c)]). The argument uses the high codimension of S, the

fact that X∞ is future continuous at t, and the fact that R = R∗, which can be proven by using

the ε-regularity theorem and the convergence of the Nash entropies (cf. [4, Corollary 15.47]).

Once we know R = R∗, the diffeomorphisms in Theorem 6.12 (4) can be obtained by

patching all local conventional Ricci flows into a Ricci flow spacetime by a center of mass

construction (cf. [3, Theorem 9.31]). Notice that similar constructions are well-known for the
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Cheeger-Gromov convergence (cf. Remark 7.7 of [25] and references therein). All assertions in

Theorem 6.12 (4) are proven by smooth convergence. Therefore, Theorem 6.12 (4) is obtained.

As an application of the theory of F-convergence, we have the following backward pseu-

dolocality theorem; see [4, Theorem 2.47]. Earlier backward pseudolocality can be found in [35,

Corollary 11.6(b)] [15, Lemma 4.2] [16, Theorem 4.7] [6, Theorem 1.5].

Theorem 6.21 (Backward pseudolocality theorem) For any n ∈ N and α > 0 there is an

ε(n, α) > 0 such that the following holds.

Let (Mn, g(t))t∈I be a Ricci flow induced by a Ricci shrinker. Given (x0, t0) ∈M × I and

r > 0, if

|Bt0(x0, r)| ≥ αrn, |Rm| ≤ (αr)−2 on Bt0(x0, r),

then

|Rm| ≤ (εr)−2 on P (x0, t0; (1− α)r,−(εr)2, 0).

Note that with the combination of the above theorem with the forward pseudolocality (cf.

Theorem 24 of [29]), we arrive at the two-sided pseudolocality. Thus Theorem 1.6 is proven.

Combining Theorem 6.21 and (5.23), we have

Corollary 6.22 (Comparison of the curvature radii) There exists a constant C(n,A) > 1

such that the following holds.

Let (Mn, g(t))t∈I′ be a Ricci flow induced by a Ricci shrinker in M(A). Then, for any

(x, t) ∈M × I ′,
rRm(x, t) ≤ r−Rm(x, t) ≤ rsRm(x, t) ≤ CrRm(x, t).

Another application is the following integral estimate using the quantitative stratification;

see [4, Theorem 2.28].

Theorem 6.23 Let (Mn, g(t))t<1 be a Ricci flow associated with a Ricci shrinker in

M(A). Then, for any (x0, t0) ∈M × (−∞, 1), r > 0 and ε > 0,∫
[t0−r2,t0+r2]∩(−∞,1)

∫
P∗(x0,t0;r)∩M×{t}

|Rm|2−ε dVtdt

≤
∫
[t0−r2,t0+r2]∩(−∞,1)

∫
P∗(x0,t0;r)∩M×{t}

r−4+2ε
Rm dVtdt ≤ C(n,A, ε)rn−2+2ε. (6.12)

As a corollary, we prove

Corollary 6.24 Let (Mn, g, f, p) be a Ricci shrinker in M(A). Then∫
d(p,·)≤r

|Rm|2−ε dV ≤
∫
d(p,·)≤r

r−4+2ε
Rm dV ≤ Crn+2ε−2, (6.13)∫

d(p,·)≥1

|Rm|2−ε

dn+2ε−2(p, ·)
dV ≤

∫
d(p,·)≥1

r−4+2ε
Rm

dn+2ε−2(p, ·)
dV ≤ C (6.14)

for any ε > 0 and r ≥ 1, where rRm(·) = rRm(·, 0) and C = C(n,A, ε).

Proof We consider the Ricci flow (M, g(t))t<1 associated with the given Ricci shrinker.

It follows from Proposition 5.7 that

Q(p, 0; 1, 0, 1) ⊂ P ∗(p, 0;C1, 0, 1) ⊂ P ∗(p, 0;C1)
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for some constant C1 = C1(n,A) > 1. Therefore, it follows from Theorem 6.23 that with

(x0, t0) = (p, 0) and r = C1∫ 1

0

∫
dt(p,·)<1

|Rm|2−ε dVtdt ≤ C(n,A, ε). (6.15)

Since g(t) = (1 − t)(ψt)∗g and ψt is defined by (2.3), we have dt(x, p) =
√

1− td(xt, p) and

|Rm|(x, t) = |Rm|(xt)/(1− t), where xt = ψt(x). Therefore, we have∫
dt(p,x)<1

|Rm|2−ε(x, t) dVt(x) = (1− t)n2−2+ε
∫
d(x,p)< 1√

1−t

|Rm|2−ε(x) dV (x). (6.16)

By a change of variable with t = 1− r−2, it follows from (6.15) and (6.16) that∫ ∞
1

r1−2ε−nm(r)dr ≤ C(n,A, ε), (6.17)

where

m(r) :=

∫
d(·,p)<r

|Rm|2−ε dV.

We claim that there exists a sequence ri →∞ such that

lim
i→∞

m(ri)

rn+2ε−2
i

= 0. (6.18)

Otherwise, there exists a constant δ > 0 such that m(r) ≥ δrn+2ε−2 for sufficiently large r.

However, this contradicts (6.17).

We apply integration by parts to (6.17) from 1 to ri and obtain∫
1≤d(p,·)≤ri

|Rm|2−ε

dn+2ε−2(p, ·)
dV ≤ C(n,A, ε) +m(ri)r

2−2ε+n
i .

By letting i→∞, we have from (6.18) that∫
d(p,·)≥1

|Rm|2−ε

dn+2ε−2(p, ·)
dV ≤ C(n,A, ε). (6.19)

In addition, we have for any r ≥ 1,

r2−2ε−n
∫
1≤d(p,·)≤r

|Rm|2−ε dV ≤
∫
1≤d(p,·)≤r

|Rm|2−ε

dn+2ε−2(p, ·)
dV ≤ C(n,A, ε).

Therefore, for any r ≥ 1, ∫
d(p,·)≤r

|Rm|2−ε dV ≤ C(n,A, ε)rn+2ε−2, (6.20)

since m(1) is bounded by (6.17). In sum, the inequalities involving |Rm| in (6.13) and (6.14)

are proven.

Notice that for any (x0, t0) ∈M × (−∞, 1), it follows from the definition of ψt (2.3) that

ψθ(t) ◦ ψt0 = ψt,

where θ(t) := t−t0
1−t0 . Therefore, for any t < 1,

g(t) = (1− t)(ψt)∗g = (1− t0)(1− θ(t))(ψt0)∗(ψθ(t))∗g = (1− t0)(ψt0)∗g(θ(t)).
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Therefore,

rRm(x0, t0) =
√

1− t0rRm(xt00 , 0).

Now, the conclusion regarding rRm can be proven similarly. �

We end this section by proving a gap property for the volume ratio at infinity.

Corollary 6.25 Let (Mn, g, f, p) be a Ricci shrinker in M(A). Suppose

lim inf
r→∞

|B(p, r)|
rn

= 0. (6.21)

Then

|B(p, r)| ≤ Crn−2+ε (6.22)

for any r ≥ 1 and some C = C(n,A, ε).

Proof We claim that rRm(x) < 2 for any x. Indeed, if rRm(x) ≥ 2, we have

|Rm|(y, t) < 1

for any y ∈ B(x, 1) and t < 1. By the same argument as in [29, Corollary 9], we obtain that

ψt (B(x, 1)) ⊂ B
(
p,

c1√
1− t

)
\B

(
p,

c2√
1− t

)
(6.23)

for c1 > c2 > 0, if t is sufficiently close to 1. From the standard distance distortion and Theorem

4.1, we obtain that

|ψt (B(x, 1)) | ≥ c3(1− t)−n2 . (6.24)

However, (6.23) and (6.24) contradict (6.21). Thus, the desired inequality (6.22) follows imme-

diately from (6.13). �
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Appendix Integral Estimates for the Conjugate Heat Kernel

In this appendix, we generalize some integral estimates regarding the conjugate heat kernel

from [4, Section 6] to Ricci flows associated with Ricci shrinkers. These estimates also hold for

Ricci flows induced by Ricci shrinkers since they are scaling-invariant.

Throughout this appendix, let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci

shrinker in M(A). We fix a spacetime point (x0, t0) ∈ M × (−∞, 1) and set dvt = dvx0,t0;t

and τ = t0 − t. Moreover, we define w = w(x, t) and b = b(x, t) by w = H(x0, t0, x, t) =

(4π(t0 − t))−
n
2 e−b.

Lemma A.1 There exists a constant C = C(n,A) > 1 such that for any 0 < τ0 < τ1,∫ t0−τ0

t0−τ1

∫
M

{
|Rc|2 + |∇2b|2

}
dvtdt ≤ Cτ−10

(
1 + log

τ1
τ0

)
. (A.1)
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Proof Without loss of generality, we assume t0 = 0.

From Corollary 3.20, we have for any τ > 0 that∫
M

|∇b|2 +Rdv−τ ≤
n

2τ
. (A.2)

Direct calculation shows that

∂t

∫
M

Rwφr dVt =

∫
M

{(�R)wφr −R�∗(wφr)}dVt

=

∫
M

2|Rc|2wφr +R {w(∆φr + φrt ) + 2〈∇w,∇φr〉} dVt

=

∫
M

{
2|Rc|2φr +R(∆φr + φrt )− 2R〈∇b,∇φr〉

}
dvt.

Integrating the above equation from −τ1 to −τ0, we obtain∫ −τ0
−τ1

∫
M

2|Rc|2φrdvtdt

≤
∫
M

Rφrdv−τ0 +

∫ −τ0
−τ1

∫
M

{
R(|∆φr|+ |φrt |) +R2|∇φr|+ |∇b|2|∇φr|

}
dvtdt. (A.3)

From (2.8) and Lemma 2.3, R increases at most quadratically. Combining (2.12), (2.13),

(2.14) and (A.2), it follows that the last integral in (A.3) tends to 0 as r → ∞. Therefore, we

obtain ∫ −τ0
−τ1

∫
M

|Rc|2dvtdt ≤
1

2

∫
M

Rdv−τ0 ≤
n

4τ0
. (A.4)

On the other hand, it follows from (3.40) and Corollary 3.22 that∫ −τ0
−τ1

2τ

∫
M

∣∣∣Rc +∇2b− g

2τ

∣∣∣2 dvtdt ≤ −W(x0,t0)(τ1) ≤ A. (A.5)

By virtue of the elementary identity (x− y)2 ≥ x2/2− y2, it follows from (A.5) that

τ0

∫ −τ0
−τ1

∫
M

|Rc +∇2b|2dvtdt ≤
∫ −τ0
−τ1

τ

∫
M

|Rc +∇2b|2dvtdt ≤ A+
n

2
log

τ1
τ0
. (A.6)

Combining (A.4) and (A.6), the conclusion follows immediately. �

Lemma A.2 There exists a constant C = C(n,A) > 1 such that the following estimates

hold for any t < t0 and 0 ≤ s ≤ 1/4.∫
M

{
1 + |b|+ τ(|∆b|+ |∇b|2 +R)

}
esbdvt ≤ C. (A.7)

Proof We compute

d

ds

∫
M

esbdvt =

∫
M

besbdvt. (A.8)

Here, the differentiation under the integral sign is allowed by Theorem 4.16 and Remark 4.17.

By the differential Harnack inequality [29, Theorem 21], we calculate∫
M

besbdvt ≤
∫
M

(τ(−2∆b+ |∇b|2 −R) + n)esbdvt

=

∫
M

(τ((2s− 1)|∇b|2 −R) + n)esbdvt ≤ n
∫
M

esbdvt, (A.9)
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where integration by parts in the equality can be justified similarly as to Remark 3.21. Com-

bining (A.8) and (A.9), we obtain ∫
M

esbdvt ≤ ens.

On the other hand, it follows from Theorem 4.4 that b ≥ −A. Therefore, it follows from (A.9)

and the above inequality that∫
M

{
|b|+ τ(|∇b|2 +R)

}
esbdvt ≤ C(n,A). (A.10)

Applying the differential Harnack inequality and integration by parts again, we obtain∫
M

2τ |∆b|esbdvt ≤
∫
M

{
|u|+ τ(|∇b|2 +R) + |b|+ n

}
esbdvt

=

∫
M

{
−u+ τ(|∇b|2 +R) + |b|+ n

}
esbdvt

≤
∫
M

{
2sτ |∇b|2 + 2|b|+ 2n

}
esbdvt ≤ C(n,A),

where u = τ(2∆b− |∇b|2 +R) + b− n ≤ 0. It is clear that (A.7) follows from the combination

of (A.10) and the above inequality. �

Lemma A.3 There exists a constant C = C(n) > 1 such that the following estimates

hold for any t < t0 and 0 ≤ s ≤ 1/4.∫
M

|∇b|4esbdvt ≤ C
∫
M

|∇2b|2esbdvt. (A.11)

Proof In the proof, all constants C > 1 depend only on n, which may be different line

by line.

We compute for s ≤ 1/4 that∫
M

|∇b|4φresbdvt =(4πτ)−
n
2

∫
M

|∇b|4φre(s−1)b dVt

=(4πτ)−
n
2 (s− 1)−1

∫
M

|∇b|2〈∇b,∇e(s−1)b〉φr dVt

=(4πτ)−
n
2 (1− s)−1

∫
M

(
2∇2b(∇b,∇b) + |∇b|2∆b

)
φre(s−1)b dVt + Z

≤C(4πτ)−
n
2 (1− s)−1

∫
M

|∇2b||∇b|2φre(s−1)b dVt + Z

≤1

4

∫
M

|∇b|4φresbdvt + C

∫
M

|∇2b|2φresbdvt + Z, (A.12)

where the remainder is

Z : = (1− s)−1
∫
M

|∇b|2〈∇b,∇φr〉esbdvt

≤ 2

∫
M

|∇b|3|∇φr|esbdvt

≤ 1

4

∫
M

|∇b|4φresbdvt + 4

∫
M

|∇b|2|∇φr|2(φr)−1esbdvt. (A.13)

Applying Lemma A.2 and (2.12), we conclude from (A.12) and (A.13) that∫
M

|∇b|4esbφrdvt ≤ C
∫
M

|∇2b|2esbφrdvt + ε(r), (A.14)
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where ε(r)→ 0 as r →∞. Thus we arrive at (A.11) by letting r →∞ in the above inequality.

�

The main result of this section is the following spacetime integral estimate.

Proposition A.4 There exists a constant C = C(n,A) > 1 and s̄ = s̄(n) < 1 such that

the following estimates hold for any r > 0, 0 < θ < 1/2 and s ≤ s̄.∫ t0−θτ0

t0−τ0

∫
M

τ(|Rc|2 + |∇2b|2 + |∇b|4)esbdvtdt ≤ C log θ−1. (A.15)

Proof In the proof, all constants C depend on n, and C ′ depend on n and A. Moreover,

we use ε(r) to denote a function independent of t such that ε(r) → 0 if r → ∞. Those terms

may be different line by line. Without loss of generality, we assume t0 = 0.

We set u = τ(2∆b− |∇b|2 +R) + b− n ≤ 0. Recall that from [35], we have the celebrated

identity

�∗(uw) = −2τ
∣∣∣Rc +∇2b− g

2τ

∣∣∣2 w.
Moreover, we have

�b = −2∆b+ |∇b|2 −R+
n

2τ
= τ−1(b− u− n/2).

Direct computation shows that

∂t

∫
M

uwesbφr dVt

=

∫
M

{
�(esbφr)uw − esbφr�∗(uw)

}
dVt

=

∫
M

{(
(�esb)φr + esb(�φr)− 2〈∇φr,∇esb〉

)
uw + 2τ

∣∣∣Rc +∇2b− g

2τ

∣∣∣2 wesbφr
}

dVt

=

∫
M

{(
(s�b− s2|∇b|2)esbφr + esb(�φr)− 2〈∇φr,∇esb〉

)
u

+ 2τ
∣∣∣Rc +∇2b− g

2τ

∣∣∣2 esbφr
}
wdVt

=

∫
M

{(
(sτ−1(b− u− n/2)− s2|∇b|2)φr + �φr − 2s〈∇φr,∇b〉

)
u

+ 2τ
∣∣∣Rc +∇2b− g

2τ

∣∣∣2 φr}esbdvt.

It follows that

∂t

∫
M

uwesbφr dVt

≥
∫
M

{
(sτ−1(b− u− n/2))uφr + (�φr − 2s〈∇φr,∇b〉)u+ 2τ

∣∣∣Rc +∇2b− g

2τ

∣∣∣2 φr} esbdvt

≥
∫
M

{
−Csτ−1(u2 + b2 + 1)φr + (�φr − 2s〈∇φr,∇b〉)u+ 2τ

∣∣∣Rc +∇2b− g

2τ

∣∣∣2 φr} esbdvt

≥
∫
M

{
−Cs

(
τ((∆b)2 + |∇b|4 +R2) + τ−1(b2 + 1)

)
+ 2τ

∣∣∣Rc +∇2b− g

2τ

∣∣∣2}φresbdvt +Xt,

(A.16)
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where

Xt :=

∫
M

(�φr − 2s〈∇φr,∇b〉)uesbdvt.

Define X ′ :=
∫ −θτ0
−τ0 |Xt|dt. Then it follows from Lemma A.2 and inequalities (2.12) to (2.15)

that for any positive δ we have

|X ′| ≤
∫ −θτ0
−τ0

∫
M

(|�φr|+ 2s|∇φr||∇b|)|u|esbdvtdt

≤ε(r) +

∫ −θτ0
−τ0

∫
M

(
δ−1|∇φr|2(φr)−1τ |∇b|2 + δτ−1u2φr

)
esbdvtdt

≤ε(r) + δ

∫ −θτ0
−τ0

∫
M

τ−1u2φresbdvtdt. (A.17)

It is clear from the definition of u that u2 ≤ C
(
τ2(|∆b|2 + |∇b|2 +R)) + b2 + 1

)
. In addi-

tion, since −A ≤ b ≤ −τ(2∆b− |∇b|2 +R) + n, we have

b2 ≤ C ′
(
τ2(|∆b|2 + |∇b|4 +R2) + 1

)
. (A.18)

Combining these facts with (A.14), we may choose δ in (A.17) sufficiently small such that

|X ′| ≤ ε(r) +
1

10

∫ −θτ0
−τ0

∫
M

τ(|∇2b|2 + |Rc|2)φresbdvtdt+ log θ−1. (A.19)

Similarly, we compute

∂t

∫
M

τResbwφr dVt

=

∫
M

{
�(τResb)φrw − τResb�∗(φrw)

}
dVt

=

∫
M

{(
�(τR)esb + τR�esb − 2τ〈∇R,∇esb〉

)
φrw + τResb ((∆φr + φrt )w + 2〈∇w,∇φr〉)

}
dVt

=

∫
M

{(
�(τR)esb + τR�esb

)
φrw + 2τR

(
∆esb − 〈∇esb,∇b〉

)
φrw

}
dVt + Yt

=

∫
M

{
2τ |Rc|2 −R+ τR

(
s�b+ (s2 − 2s)|∇b|2 + 2s∆b

)}
φresbdvt + Yt

≥
∫
M

{
2τ |Rc|2 −R− Cs

(
τ(R2 + |∇b|4 + (∆b)2) +R

)}
φresbdvt + Yt, (A.20)

where

Yt : =

∫
M

τResb ((∆φr + φrt )w + 2〈∇w,∇φr〉+ 2s〈∇b,∇φr〉) dVt

=

∫
M

τR (∆φr + φrt + (2s− 2)〈∇b,∇φr〉) esbdvt.

We define similarly Y :=
∫ −θτ0
−τ0 |Yt|dt. Then it follows from Lemma A.2 and inequalities (2.12)

to (2.15) that

|Y ′| ≤ε(r) + C

∫ −θτ0
−τ0

∫
M

(
δ−1|∇φr|2(φr)−1τ |∇b|2 + δτR2φr

)
esbdvtdt

≤ε(r) + C

∫ −θτ0
−τ0

∫
M

δτR2φresbdvtdt



No.5 Y. Li & B. Wang: HEAT KERNEL ON RICCI SHRINKERS (II) 1695

≤ε(r) +
1

10

∫ −θτ0
−τ0

∫
M

τ(|∇2b|2 + |Rc|2)φresbdvtdt, (A.21)

for δ sufficiently small.

Combining (A.16) and (A.20), we obtain

∂t

∫
M

(τR+ u)esbφrdvt

≥
∫
M

{
−Cs

(
τ(|∇b|4 + |∇2b|2 +R2) + τ−1 +R

)
+ 2τ

∣∣∣Rc +∇2b− g

2τ

∣∣∣2 + 2τ |Rc|2 −R
}

× φresbdvt +Xt + Yt

≥
∫
M

{
−Cs

(
τ(|∇b|4 + |∇2b|2 +R2)

)
+ τ(|∇2b|2 + |Rc|2)

}
φresbdvt +Xt + Yt − C ′τ−1,

(A.22)

where we have used Lemma A.2.

If s is sufficiently small, it follows from (A.22) and (A.14) that

∂t

∫
M

(τR+ u)esbφrdvt

≥1

2

∫
M

τ(|∇2b|2 + |Rc|2)esbφrdvt +Xt + Yt − C ′τ−1 + ε(r). (A.23)

By integration from −τ0 to −θτ0, we obtain from (A.23), Lemma A.2, (A.19) and (A.21) that∫ −θτ0
−τ0

∫
M

τ(|∇2b|2 + |Rc|2)esbφrdvtdt ≤ C ′ log θ−1 + ε(r).

Letting r →∞, we obtain∫ −θτ0
−τ0

∫
M

τ(|∇2b|2 + |Rc|2)esbdvtdt ≤ C ′ log θ−1. (A.24)

Thus the inequality (A.15) follows from the combination of (A.24) and Lemma A.3. �


