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Abstract This paper is devoted to understanding the stability of perturbations around the

hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmo-

spheric and oceanographic phenomena. The Boussinesq system focused on here is anisotropic,

and involves only horizontal dissipation and thermal damping. In the 2D case R2, due to

the lack of vertical dissipation, the stability and large-time behavior problems have remained

open in a Sobolev setting. For the spatial domain T × R, this paper solves the stability

problem and gives the precise large-time behavior of the perturbation. By decomposing the

velocity u and temperature θ into the horizontal average (ū, θ̄) and the corresponding oscilla-

tion (ũ, θ̃), we can derive the global stability in H2 and the exponential decay of (ũ, θ̃) to zero

in H1. Moreover, we also obtain that (ū2, θ̄) decays exponentially to zero in H1, and that ū1

decays exponentially to ū1(∞) in H1 as well; this reflects a strongly stratified phenomenon

of buoyancy-driven fluids. In addition, we establish the global stability in H3 for the 3D case

R3.
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1 Introduction

The main purpose of this paper is to study the stability and large-time behavior of the

following two-dimensional Boussinesq equations:
ut + u · ∇u+∇p = µ∂11u+ θe2,

θt + u · ∇θ + u2 + ηθ = 0,

divu = 0, (u, θ)|t=0 = (u0, θ0).

(1.1)
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Here u(x, t), p(x, t), θ(x, t) denote the velocity field, pressure, scalar temperature, respectively.

The constant µ represents the viscosity, η stands for the thermal damping coefficient, and

e2 = (0, 1)T. System (1.1) comes from the 2D Boussinesq equations without thermal diffusion,
vt + v · ∇v +∇P = µ∂11v +Θe2,

Θt + v · ∇Θ = 0,

divu = 0,

(u,Θ)|t=0 = (u0, Θ0).

(1.2)

The perturbation around the hydrostatic equilibrium of (1.2) is

u = v − vhe, θ = Θ −Θhe, p = P − Phe,

where

vhe = (0, 0)T , Θhe = x2, Phe =
1

2
x2

2. (1.3)

Furthermore, the perturbed temperature equation adds a damping term ηθ.

The Boussinesq system models buoyancy-driven fluids such as atmospheric and oceano-

graphic flows, where rotation and stratification play an important role. Enormous effort has

been made in this area by many researchers, and they have observed that the 2D Boussinesq

equations share an analogous feature with the 3D incompressible Euler or Navier-Stokes equa-

tions for axisymmetric swirling flow, and that they have a similar vortex stretching effect to

that in three dimensions (see [32, 33, 36], for instance).

There has been substantial progress made on fundamental mathematical issues such as the

global existence and regularity of various 2D Boussinesq systems, particularly those with only

partial dissipation or fractional dissipation, or indeed no dissipation at all (see for example

[2–5, 8–14, 20, 22–28, 31, 35, 41–43]). Due to the physical applications, for instance, in atmo-

spherics and astrophysics, recent investigations on the Boussinesq equations have focused on

the stability problem of perturbations around several physically relevant steady states, such as

the hydrostatic equilibrium (1.3) and shear flow. The work of Doering et al [16] initiated the

rigorous study of the stability near the hydrostatic equilibrium of the 2D Boussinesq equations

with only velocity dissipation. Later, Tao et al [38] established the large-time behavior and

the eventual temperature profile. Dong et al [19] studied the stability and large time behavior

of the 2D Boussinesq system without thermal diffusion under a different boundary condition.

In addition, Castro et al [7] proved the stability and large-time behavior with only velocity

damping instead of dissipation in 2D, and Wan considered the same case with velocity damping

in [40]. Other results on perturbations near the shear flow can be found in [15, 37, 44].

Here we list some results on the stability problem very relevant to the Boussinesq equations

(1.1). Lai et al [29] studied the stability and large-time behavior of the Boussinesq equations

with only vertical velocity dissipation and thermal damping in R2. Later, a followup work by

Lai et al [30] gave the optimal decay of the stability problem. Ben Said et al investigated the

stability and decay of the 2D Boussinesq equation with only vertical dissipation and horizontal

thermal diffusion [6] in R2, and with horizontal dissipation and vertical thermal diffusion [1]

in T × R. The work of Dong et al [18] established the stability and exponential decay with

horizontal dissipation in T × R. Here T = R/Z = [0, 1] denotes a 1D periodic box. Motivated
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by these works, we consider the 2D Boussinesq equations with only horizontal dissipation and

thermal damping in T× R. Now, we will state our main ideas regarding this problem.

If the temperature is not a concern, then the Boussinesq equations (1.1) can be reduced to

anisotropic Navier-Stokes equations as follows:ut + u · ∇u+∇p = µ∂11u,

divu = 0.
(1.4)

Taking the differential operator ∇× on (1.4) and denoting that ω = ∇×u, we have the following

vorticity equation:

ωt + u · ∇ω = µ∂11ω. (1.5)

The L2-estimation on ∇ω gives that

1

2

d

dt
‖∇ω‖2L2 + µ‖∂1∇ω‖2L2 = −

∫
∇u · ∇ω · ∇ω

= −
∫
∂1u1∂1ω∂1ω −

∫
∂1u2∂2ω∂1ω

−
∫
∂2u1∂1ω∂2ω −

∫
∂2u2∂2ω∂2ω. (1.6)

It is easy to observe that the last two terms are difficult to control, due to the lack of vertical

dissipation. Therefore, the global well-posedness of anisotropic Navier-Stokes equations above

still remains open in the Sobolev setting in R2. To our knowledge, the difficulty in R2 can be

overcome when the spatial domain is replaced by T×R, just as in [17]. The key point of [17] is

very simple; it introduces the horizontal average f̄ and the corresponding oscillation f̃ of f as

f̄ =

∫
T
f(x)dx1, f̃ = f − f̄ . (1.7)

Then we have that∫
∂2u1∂1ω∂2ω =

∫
∂2(ũ1 + ū1)∂1ω̃∂2(ω̃ + ω̄)

=

∫
∂2ũ1∂1ω̃∂2ω̃ +

∫
∂2ũ1∂1ω̃∂2ω̄ +

∫
∂2ū1∂1ω̃∂2ω̃, (1.8)

where we have used the orthogonality
∫
f̃ f̄ = 0 and ∂1ω̄ = 0 to eliminate the bad term∫

∂2ū1∂1ω̃∂2ω̄.

By applying the anisotropic inequality and Poincaré’s inequality,

‖f̃‖Hs . ‖∂1f̃‖Hs , (1.9)

the third term of (1.6) can be controlled by the horizontal dissipation. The last term is the

same.

When considering the temperature, we note that u2 in (1.1)2 can offer us a damping term,

very analogous to θ. However, ∇u2 = (∂1u2,−∂1u1) means that the damping of u2 cannot

provide more information on the dissipation than in the case of horizontal dissipation; this

makes the situation very different to [29]. This indicates that in R2, the global well-posedness

of (1.1) is also open. All of these things impel us to consider the Boussinesq equations (1.1) in

T× R.
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Changing (1.1) into the first-order derivative formulation
ωt + u · ∇ω = µ∂11ω + ∂1θ,

∂t(∇θ) +∇(u · ∇θ) +∇u2 + η∇θ = 0,

divu = 0,

(1.10)

the L2-inner product gives that

1

2

d

dt
‖(ω,∇θ)‖2L2 + µ‖∂1ω‖2L2 + η‖∇θ‖2L2 = −

∫
∇u · ∇θ · ∇θ. (1.11)

Since θ has no higher-order dissipation, the right hand side of (1.11) can be only bounded by∫
∇u · ∇θ · ∇θ ≤ ‖∇u‖L∞‖∇θ‖2L2 . (1.12)

If the domain is R2, the anisotropic inequality

‖f‖L∞ . ‖f‖
1
4

L2‖∂1f‖
1
4

L2‖∂2f‖
1
4

L2‖∂1∂2f‖
1
4

L2 (1.13)

gives that ∫
∇u · ∇θ · ∇θ . ‖∇u‖

1
2

H1‖∂1∇u‖
1
2

H1‖∇θ‖2L2 . ‖u‖
1
2

H2‖∂1u‖
1
2

H2‖∇θ‖2L2 , (1.14)

which means that the H2 Sobolev setting is sufficient to provide the dissipation ‖(∂1u, θ)‖2H2 .

However, in T× R, the anisotropic inequality

‖f‖L∞ . ‖f‖
1
4

L2(‖f‖L2 + ‖∂1f‖L2)
1
4 ‖∂2f‖

1
4

L2(‖∂2f‖L2 + ‖∂1∂2f‖L2)
1
4 (1.15)

is very different, and the horizontal dissipation ‖∂1∇u‖L2 cannot be separated from ‖∇u‖L∞ .

We note that the thermal damping may provide a good dissipation for θ, which makes the

separation of horizontal velocity dissipation unnecessary. This means that we can directly by

(1.15), get that

‖∇u‖L∞ . ‖u‖H2 + ‖∂1u‖H2 . (1.16)

Thus the Sobolev setting H2 suffices to close the energy estimates.

When the spatial domain is

Ω = T× R, (1.17)

with T = R/Z = [0, 1] being a 1D periodic box, the desired stability problem on (1.1) is solvable.

For simplicity, we set that µ = η = 1. Then we have the following result:

Theorem 1.1 Let Ω = T×R. Assume that (u0, θ0) ∈ H2(Ω) and divu0 = 0. Then there

exists a sufficiently small ε > 0 such that, if

‖(u0, θ0)‖H2 ≤ ε, (1.18)

then (1.1) has a unique small global solution satisfying that

‖(u, θ)(t)‖2H2 +

∫ t

0

(‖u2(τ)‖2L2 + ‖(∂1u, θ)(τ)‖2H2)dτ ≤ Cε2 (1.19)

for some generic constant C > 0 and all t > 0.

The key point in this paper is that Ω allows us to separate the horizontal average from

the corresponding oscillation. These two elements have different physical behaviors, as can be
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seen in the numerical results of [16]. In fact, we obtain that the oscillation part (ũ, θ̃) in (1.1)

could decay exponentially. By analyzing the structure of the horizontal average in (1.1) and

combining the exponential decay of the oscillation part, we also get that the horizontal average

part (ū2, θ̄) has analogous exponential decay, and that ū1 decays exponentially to ū1(∞).

Theorem 1.2 Let (u0, θ0) ∈ H2(Ω) and divu0 = 0. Assume that ‖(u0, θ0)‖H2 ≤ ε for

sufficiently small ε > 0. Let (u, θ) be the corresponding solution to (1.1). Then there exist

constants C2 < C1 such that

‖(ũ, θ̃)(t)‖H1 ≤ ‖(u0, θ0)‖H1e−C1t, (1.20)

and

‖(ū1 − ū1(∞), ū2)(t)‖H1 . ‖(u0, θ0)‖H1e−C1t, ‖θ̄(t)‖H1 . ‖(u0, θ0)‖H1e−C2t, (1.21)

where ū1(∞) = lim
t→∞

ū1(t). In fact, here we have that ū2 = 0.

To prove the exponential decay, we need to decompose the Boussinesq equations (1.1) into

the oscillation part (ũ, θ̃),∂tũ+ ũ · ∇ũ+ u2∂2ū− ∂11ũ+∇p̃ = θ̃e2,

∂tθ̃ + ũ · ∇θ̃ + u2∂2θ̄ + θ̃ + ũ2 = 0,
(1.22)

and the average part (ū, θ̄), ∂tū+ u · ∇ũ+ (0, ∂2p̄)
T = θ̄e2,

∂tθ̄ + u · ∇θ̃ + θ̄ + ū2 = 0.
(1.23)

By taking energy estimates on (1.22) for ‖(ũ, θ̃)‖2L2 , ‖(∇ũ,∇θ̃)‖2L2 , and carefully evaluating the

nonlinear terms with Poincaré’s inequality and other anisotropic inequalities, we can establish

the inequality
d

dt
‖(ũ, θ̃)‖2H1 + (2− C‖(u, θ)‖H2)‖(∂1ũ, θ̃)‖2H1 ≤ 0. (1.24)

When the initial data (u0, θ0) is sufficiently small, i.e.,

‖(u0, θ0)‖H2 ≤ ε (1.25)

with ε > 0 being sufficiently small, then ‖(u, θ)‖H2 ≤ Cε and

2− C‖(u, θ)‖H2 ≥ 1. (1.26)

An application of Poincaré’s inequality gives the desired exponential decay.

Similarly, it is easy to observe that (ū2, θ̄) satisfies that∂tū2 + u · ∇ũ2 + ∂2p̄ = θ̄,

∂tθ̄ + u · ∇θ̃ + θ̄ + ū2 = 0,
(1.27)

and that (ū2, θ̄) has the damping dissipation in (1.27)2. This provides the possibility of expo-

nential decay for (ū2, θ̄) as long as the nonlinear terms in (1.27) are controlled by the exponential

decay estimates on (ũ, θ̃) and the structure of pressure p. In fact, by noting that ū2 = 0, we

only need to give the exponential decay of θ̄.

The estimate on ū1 is very simple. Note that ū1 satisfies the equation

∂tū1 + u · ∇ũ1 = 0. (1.28)
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This means that, by the exponential decay of (ũ, θ̃), ū1(t) has the limit ū1(∞), and decays

exponentially to ū1(∞) in H1.

Next we also show the stability of the 3D case in R3. Consider the 3D Boussinesq system

with partial dissipation 
ut + u · ∇u+∇p = ∆hu+ θe3,

θt + u · ∇θ + θ + u3 = 0,

divu = 0,

(u, θ)|t=0 = (u0, θ0).

(1.29)

Here ∆h denotes the horizontal Laplacian operator.

The reason for choosing the domain R3 instead of T2×R is that the anisotropic inequality∫
R3

fghdx . ‖f‖
1
2

L2‖∂1f‖
1
2

L2‖g‖
1
2

L2‖∂2g‖
1
2

L2‖h‖
1
2

L2‖∂3f‖
1
2

L2 (1.30)

suffices to recover the desired horizontal dissipation. Now we give the following stability result:

Theorem 1.3 Let Ω = R3. Assume that (u0, θ0) ∈ H3(Ω) and divu0 = 0. Then there

exists a sufficiently small ε > 0 such that, when

‖(u0, θ0)‖H3 ≤ ε, (1.31)

(1.29) has a unique small global solution so that

‖(u, θ)(t)‖2H3 +

∫ t

0

(‖u3(τ)‖2L2 + ‖(∇hu, θ)(τ)‖2H3)dτ ≤ Cε2 (1.32)

for some generic constant C > 0 and all t > 0.

The rest of this paper is divided into four sections. Section 2 presents several anisotropic

inequalities and some properties on the orthogonal decomposition. Sections 3 and 4 prove

Theorem 1.1 and Theorem 1.2, respectively while Section 5 is devoted to establishing Theorem

1.3.

Notation a . b denotes that a ≤ Cb for some generic constant. For simplicity,
∫
f :=∫

Ω
fdx and

∫ t
0
f =

∫ t
0
f(τ)dτ . Hk(Ω) denotes the classical Sobolev spaces, and Lp(Ω) stands

for the classical Lebesgue space with the Lp norm.

2 Preliminaries

This section states several anisotropic inequalities to be used extensively in the proof of

Theorems 1.1 and 1.2. Moreover, some key properties of the horizontal average and the corre-

sponding oscillation are also listed here.

Since the domain is Ω = T× R, we define the horizontal average of f = f(x1, x2) as

f̄(x2) =

∫
T
f(x1, x2)dx1. (2.1)

Then we decompose f into f̄ and the corresponding oscillation part f̃ :

f = f̄ + f̃ . (2.2)

The next lemma presents a few properties of (f̄ , f̃).
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Lemma 2.1 Let Ω = T× R. Then

(a) (f̄ , f̃) obeys the properties

∂1f = ∂1f̄ = 0, ∂2f = ∂2f̄ ,
¯̃
f = 0, ∂̃2f = ∂2f̃ , ∂̃1f = ∂1f = ∂1f̃ ; (2.3)

(b) if f is divergence-free, namely, divf = 0, then f̄ and f̃ are both divergence-free, i.e.,

divf̄ = divf̃ = 0. (2.4)

(c) f̄ and f̃ are orthogonal in L2, namely,

(f̄ , f̃) :=

∫
Ω

f̄ f̃dx = 0, ‖f‖2L2 = ‖f̄‖2L2 + ‖f̃‖2L2 . (2.5)

In addition, ‖f̄‖L2 ≤ ‖f‖L2 and ‖f̃‖L2 ≤ ‖f‖L2 .

Proof It is easy to verify (a). If divf = 0, then

divf̄ = divf = 0, divf̃ = d̃ivf = 0. (2.6)

For (c), by the definitions of f̄ and f̃ ,

(f̄ , f̃) =

∫
Ω

f̄ f̃dx =

∫
R
f̄(

∫
T
f̃(x1, x2)dx1)dx2 = 0. (2.7)

This completes the proof of Lemma 2.1. �

Next we introduce some important lemmas related to the anisotropic inequalities.

Lemma 2.2 For any 1D function f(x),

(1) supposing that f(x) ∈ H1(R), then

‖f‖L∞(R) ≤
√

2‖f‖
1
2

L2(R)‖∂xf‖
1
2

L2(R); (2.8)

(2) supposing that f(x) ∈ H1(T), then

‖f‖L∞(T) ≤
√

2‖f‖
1
2

L2(T)‖∂xf‖
1
2

L2(T) + ‖f‖L2(T). (2.9)

In particular,

‖f̃‖L∞(T) ≤
√

2‖f̃‖
1
2

L2(T)‖∂xf̃‖
1
2

L2(T). (2.10)

Proof This Lemma is actually a special case of the Gagliardo-Nirenberg inequality [34].

For (1), since

|f(x)|2 =

∫ x

∞
2f(y)∂xf(y)dy, for any x ∈ R, (2.11)

we have that

‖f‖2L∞(R) ≤
∫
R

2|f(y)∂xf(y)|dy ≤ 2‖f‖L2(R)‖∂xf‖L2(R). (2.12)

Similarly, for (2), by the mean-value theorem, there exists a s ∈ T such that

|f(x)|2 − |f̄ |2 = |f(x)|2 − |f(s)|2 =

∫ x

s

2f(y)∂xf(y)dy, for any x ∈ T, (2.13)

which gives that

‖f‖2L∞(T) ≤
∫
T

2|f(y)∂xf(y)|dy + |f̄ |2 ≤ 2‖f‖L2(T)‖∂xf‖L2(T) + ‖f‖2L2(T). (2.14)

Thus,

‖f‖L∞(T) ≤ (2‖f‖L2(T)‖∂xf‖L2(T) + ‖f‖2L2(T))
1
2 ≤
√

2‖f‖
1
2

L2(T)‖∂xf‖
1
2

L2(T) + ‖f‖L2(T). (2.15)
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This completes the proof of Lemma 2.2. �

Lemma 2.2 can be immediately applied to the 2D case, just like Poincaré’s inequality and

the anisotropic inequalities.

Lemma 2.3 Let Ω = T× R. Then, for any integer k ≥ 0,

‖f̃‖Hk . ‖∂1f̃‖Hk . ‖∂1f‖Hk . (2.16)

In addition,

‖f̃‖L∞(Ω) . ‖∂1f̃‖H1(Ω) . ‖∂1f‖H1(Ω). (2.17)

Proof Since, by the mean-value theorem, there exists s ∈ T such that f̃(s, x2) = 0, we

immediately, get by Hölder’s inequality, that

|∂αf̃(x1, x2)| =
∣∣∣∣ ∫ x1

s

∂α∂1f̃(y1, x2)dy1

∣∣∣∣ ≤ (∫
T
|∂α∂1f̃(y1, x2)|2dy1

) 1
2

, (2.18)

with a multi-index α satisfying that |α| ≤ k. This implies that

‖∂αf̃‖L2 ≤ ‖∂1∂
αf̃‖L2 , (2.19)

and hence,

‖f̃‖Hk . ‖∂1f̃‖Hk . (2.20)

By Lemma 2.2 and (2.16), we have that

‖f̃‖L∞(Ω) . ‖f̃‖
1
2

L∞
x2
L2

x1

‖∂1f̃‖
1
2

L∞
x2
L2

x1

.
∥∥∥‖f̃‖L∞

x2

∥∥∥ 1
2

L2
x1

∥∥∥‖∂1f̃‖L∞
x2

∥∥∥ 1
2

L2
x1

.
∥∥∥‖f̃‖ 1

2

L2
x2

‖∂2f̃‖
1
2

L2
x2

∥∥∥ 1
2

L2
x1

∥∥∥‖∂1f̃‖
1
2

L2
x2

‖∂1∂2f̃‖
1
2

L2
x2

∥∥∥ 1
2

L2
x1

. ‖f̃‖
1
4

L2‖∂1f̃‖
1
4

L2‖∂2f̃‖
1
4

L2‖∂1∂2f̃‖
1
4

L2 . ‖∂1f̃‖H1 . (2.21)

�

Lemma 2.4 Let Ω = T × R. Then, for any f, g, h ∈ L2(Ω) with ∂1f ∈ L2(Ω) and

∂2g ∈ L2(Ω), it holds that∣∣∣∣ ∫
Ω

fghdx

∣∣∣∣ . ‖f‖ 1
2

L2(‖f‖L2 + ‖∂1f‖L2)
1
2 ‖g‖

1
2

L2‖∂2g‖
1
2

L2‖h‖L2 . (2.22)

In particular, ∣∣∣∣ ∫
Ω

f̃ghdx

∣∣∣∣ . ‖f̃‖ 1
2

L2‖∂1f̃‖
1
2

L2‖g‖
1
2

L2‖∂2g‖
1
2

L2‖h‖L2 . (2.23)

For any f ∈ H2(Ω),

‖f‖L∞(Ω) . ‖f‖
1
4

L2(‖f‖L2 + ‖∂1f‖L2)
1
4 ‖∂2f‖

1
4

L2(‖∂2f‖L2 + ‖∂1∂2f‖L2)
1
4 (2.24)

and

‖f̃‖L∞(Ω) . ‖f̃‖
1
4

L2‖∂1f̃‖
1
4

L2‖∂2f̃‖
1
4

L2‖∂1∂2f̃‖
1
4

L2 . (2.25)

Proof Directly, by Hölder’s inequality and Lemma 2.2, we have that∣∣∣∣ ∫
Ω

fghdx

∣∣∣∣ ≤ ‖f‖L∞
x1
L2

x2
‖g‖L2

x1
L∞

x2
‖h‖L2

.
∥∥∥‖f‖ 1

2

L2
x1

(‖f‖L2
x1

+ ‖∂1f‖L2
x1

)
1
2

∥∥∥
L2

x2

∥∥∥‖g‖ 1
2

L2
x2

‖∂2g‖
1
2

L2
x2

∥∥∥
L2

x1

‖h‖L2
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. ‖f‖
1
2

L2(‖f‖L2 + ‖∂1f‖L2)
1
2 ‖g‖

1
2

L2‖∂2g‖
1
2

L2‖h‖L2 . (2.26)

Similarly, by Lemma 2.2,

‖f‖L∞(Ω) .
∥∥∥‖f‖ 1

2

L2
x2

‖∂2f‖
1
2

L2
x2

∥∥∥
L∞

x1

.
∥∥∥‖f‖L∞

x1

∥∥∥ 1
2

L2
x2

∥∥∥‖∂2f‖L∞
x1

∥∥∥ 1
2

L2
x2

.
∥∥∥‖f‖ 1

2

L2
x1

(‖f‖L2
x1

+ ‖∂1f‖L2
x1

)
1
2

∥∥∥ 1
2

L2
x2

∥∥∥‖∂2f‖
1
2

L2
x1

(‖∂2f‖L2
x1

+ ‖∂1∂2f‖L2
x1

)
1
2

∥∥∥ 1
2

L2
x2

. ‖f‖
1
4

L2(‖f‖L2 + ‖∂1f‖L2)
1
4 ‖∂2f‖

1
4

L2(‖∂2f‖L2 + ‖∂1∂2f‖L2)
1
4 . (2.27)

The rest of Lemma 2.4 can be obtained by applying Poincaré’s inequality (2.16). �

3 Proof of Theorem 1.1

Since the local well-posedness can be shown by a standard method in [32], here we focus

on the global a priori estimates on the solution in H2(Ω). If we define the energy functional as

E(t) := sup
0≤τ≤t

‖(u, θ)(τ)‖2H2 +

∫ t

0

‖(∂1u, θ)(τ)‖2H2dτ, (3.1)

then our main efforts can be devoted to establishing the energy inequality

E(t) ≤ CE(0) + CE(t)
3
2 (3.2)

for some generic constant C and all t > 0. Once (3.2) holds, a standard bootstrapping argument

from [39] can reveal the global bounded energy. If we make the ansatz

E(t) ≤ 2CE(0) ≤ 2Cε2, (3.3)

then (3.2) will indicate a smaller bound for E(t) when ε > 0 is sufficiently small. In fact, if

(3.3) holds, then

E(t) ≤ 1

1−
√

2CCε
CE(0) ≤ 3

4
× 2CE(0), (3.4)

with a small ε satisfying that

1

1−
√

2CCε
≤ 3

2
, i.e., ε ≤ 1

3
√

2
C−

3
2 . (3.5)

Therefore, the bootstrapping argument asserts that E(t) is bounded uniformly for all t > 0,

namely, that

E(t) ≤ Cε2. (3.6)

Now we show that (3.2) holds. Since the equivalence of the Sobolev norms holds, namely,

‖f‖2H2 ∼ ‖f‖2L2 + ‖f‖2
Ḣ2 , (3.7)

we only need to give the L2 estimates of (u, θ) and (∇ω,∆θ). Here, ω = ∇× u and ‖f‖2
Ḣ2 :=

2∑
i=1

‖∂2
i f‖2L2 . A L2-estimate on (1.1) yields that

d

dt
‖(u, θ)‖2L2 + 2‖(∂1u, θ)‖2L2 = 0. (3.8)
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To give the L2 estimate of (∇ω,∆θ), we make use of the second-order derivative equation of

(1.1) as follows: ∂t∇ω +∇(u · ∇ω) = ∂11∇ω +∇∂1θ,

∂t(∆θ) + ∆(u · ∇θ) + ∆u2 + ∆θ = 0.
(3.9)

By taking L2-inner product with (∇ω,∆θ), we have that

1

2

d

dt
‖(∇ω,∆θ)‖2L2 + ‖(∂1∇ω,∆θ)‖2L2

= (∇∂1θ,∇ω)− (∆u2,∆θ)− (∇(u · ∇ω),∇ω)− (∆(u · ∇θ),∆θ)

= A1 +A2 +A3. (3.10)

Here it is easy to verify that

A1 = (∇∂1θ,∇ω)− (∆u2,∆θ) = (∆θ, ∂1ω)− (∆u2,∆θ) = 0, (3.11)

where we have used the fact that ∂1ω = ∆u2, by the free-divergence of velocity.

Also, by divu = 0,

A2 = −
∫
∇u · ∇ω · ∇ω

= −
∫
∂1u1∂1ω∂1ω −

∫
∂1u2∂2ω∂1ω −

∫
∂2u1∂1ω∂2ω −

∫
∂2u2∂2ω∂2ω

= A21 +A22 +A23 +A24. (3.12)

Obviously, by Sobolev imbedding inequality,

|A21|+ |A22| . ‖∂1u1‖L∞‖∂1ω‖2L2 + ‖∂1u2‖L∞‖∂2ω‖L2‖∂1ω‖L2

. ‖∂1u‖H2‖∇ω‖L2‖∂1ω‖L2 . ‖u‖H2‖∂1u‖2H2 . (3.13)

For A23, by Lemmas 2.1, 2.3, 2.4 and the Sobolev imbedding inequality, we have that

A23 = −
∫

(∂2ū1 + ∂2ũ1)∂1ω̃(∂2ω̃ + ∂2ω̄)

= −
∫
∂2ū1∂1ω̃∂2ω̃ −

∫
∂2ũ1∂1ω̃∂2ω̃ −

∫
∂2ũ1∂1ω̃∂2ω̄

. ‖∂2ū1‖
1
2

L2‖∂2
2 ū1‖

1
2

L2‖∂1ω̃‖
1
2

L2‖∂2
1 ω̃‖

1
2

L2‖∂2ω̃‖L2 + ‖∂2ũ1‖L4‖∂1ω̃‖L4‖∂2ω̃‖L2

+ ‖∂2ũ1‖L4‖∂1ω̃‖L4‖∂2ω̄‖L2

. ‖u‖H2‖∂1ω̃‖H1‖∂2ω̃‖L2 + ‖∂2ũ1‖H1‖∂1ω̃‖H1‖∂2ω‖L2

. ‖u‖H2‖∂1ω̃‖H1 + ‖∂1ũ1‖H2‖∂1ω̃‖H1‖∂2ω‖L2

. ‖u‖H2‖∂1u‖H2 . (3.14)

Here,
∫
∂2ū1∂1ω̃∂2ω̄ vanishes, due to the orthogonality in Lemma 2.1.

Similar to A23,

A24 =

∫
∂1ũ1∂2(ω̃ + ω̄)∂2(ω̄ + ω̃) =

∫
∂1ũ1∂2ω̃∂2ω̃ +

∫
∂1ũ1∂2ω̃∂2ω̄ +

∫
∂1ũ1∂2ω̄∂2ω̃

. ‖∂1ũ1‖
1
2

L2‖∂1∂2ũ1‖
1
2

L2‖∂2ω̃‖
1
2

L2‖∂1∂2ω̃‖
1
2

L2(‖∂2ω̃‖L2 + ‖∂2ω̄‖L2)

. ‖u‖H2‖∂1u‖2H2 . (3.15)
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For A3, we directly have, by divu = 0 and the anisotropic inequalities in Lemma 2.4, that

A3 = −
∫

∆u · ∇θ∆θ − 2

∫
∇u · ∇2θ∆θ

. ‖∆u‖
1
2

L2(‖∆u‖L2 + ‖∂1∆u‖L2)
1
2 ‖∇θ‖

1
2

L2‖∂2∇θ‖
1
2

L2‖∆θ‖L2

+ ‖∇u‖
1
4

L2(‖∇u‖L2 +‖∂1∇u‖L2)
1
4 ‖∂2∇u‖

1
4

L2(‖∂2∇u‖L2 +‖∂1∂2∇u‖L2)
1
4 ‖∇2θ‖L2‖∆θ‖L2

. (‖u‖H2 + ‖∂1u‖H2)‖θ‖2H2 . (3.16)

Summarizing the estimates of A1, A2 and A3, and combining (3.8) and (3.10) and then inte-

grating over the time, we have that

‖(u, θ)(t)‖2H2 + 2

∫ t

0

‖(∂1u, θ)‖2H2 ≤ ‖(u0, θ0)‖2H2 + C

∫ t

0

‖(u, θ)‖H2‖(∂1u, θ)‖2H2

≤ ‖(u0, θ0)‖2H2 + CE(t)
3
2 , (3.17)

which implies that (3.2) holds. Hence,

‖(u, θ)(t)‖2H2 +

∫ t

0

‖(∂1u, θ)(τ)‖2H2dτ ≤ Cε2. (3.18)

Next we will estimate the dissipation
∫ t

0
‖u2‖2L2 . We recall that (u2, θ) satisfies that∂tu2 + u · ∇u2 + ∂2p = ∂11u2 + θ,

∂tθ + u · ∇θ + θ + u2 = 0.
(3.19)

Taking the L2-inner product with (θ, u2), we immediately get that

d

dt
(u2, θ) + ‖u2‖2L2 = −(u · ∇u2, θ)− (u · ∇θ, u2)− (∂11u2, θ)− (∂2p, θ) + ‖θ‖L2 − (θ, u2)

= −(∂11u2, θ)− (∂2p, θ) + ‖θ‖L2 − (θ, u2)

≤ 1

2
‖u2‖2L2 + 2‖θ‖2L2 +

1

2
‖∂11u2‖2L2 − (∂2p, θ). (3.20)

We need to estimate (∂2p, θ). Note that p satisfies that

∆p = −2(∂1u2∂2u1 + (∂2u2)2) + ∂2θ = −2(∂1ũ2∂2u1 + ∂2ũ2∂2u2) + ∂2θ

= −2[∂1(ũ2∂2u1)− ũ2∂2∂1u1 + ∂2(ũ2∂2u2)− ũ2∂2∂2u2] + ∂2θ

= −2∂1(ũ2∂2u1)− 2∂2(ũ2∂1u1) + ∂2θ, (3.21)

where we have used that

∂2u2 = −∂1u1 = −∂1ũ1 = ∂2ũ2, (3.22)

by divu = 0 and Lemma 2.1.

Then we deduce, by Lemma 2.4 and Lemma 2.3, that

−(∂2p, θ) = 2(∂2∂1∆−1(ũ2∂2u1), θ) + 2(∂2
2∆−1(ũ2∂1u1), θ)− (∂2

2∆−1θ, θ)

= 2(ũ2∂2u1, ∂2∂1∆−1θ) + 2(ũ2∂1u1, ∂
2
2∆−1θ)− (∂2

2∆−1θ, θ)

≤ C‖ũ2‖
1
2

L2‖∂1ũ2‖
1
2

L2‖∂2u1‖
1
2

L2‖∂2∂2u1‖
1
2

L2‖∂2∂1∆−1θ‖L2

+ C‖ũ2‖L∞‖∂1u1‖L2‖∂2
2∆−1θ‖L2 + ‖∂2

2∆−1θ‖L2‖θ‖L2

≤ C‖u‖H2‖∂1u‖L2‖θ‖L2 + ‖θ‖2L2 . (3.23)
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Here we have used the Calderón-Zygmund singular integral theory (see [21]). In particular,

‖∂2
2∆−1θ‖L2 ≤ ‖θ‖L2 , by Parseval’s theorem.

Returning to (3.20), we obtain that

d

dt
(u2, θ) +

1

2
‖u2‖2L2 ≤ 3‖θ‖2L2 +

1

2
‖∂11u2‖2L2 + C‖u‖H2‖∂1u‖L2‖θ‖L2

≤ 3‖θ‖2L2 +
1

2
‖∂11u2‖2L2 + C‖u‖H2‖(∂1u, θ)‖2L2

≤ C‖(∂1u, θ)‖2H2 , (3.24)

where we have used (3.18). Integrating over the time, we have that

(u2, θ) +
1

2

∫ t

0

‖u2‖2L2 ≤ (u2, θ)(0) + C

∫ t

0

‖(∂1u, θ)‖2H2

≤ ‖(u0, θ0)‖2H2 + C

∫ t

0

‖(∂1u, θ)‖2H2 . (3.25)

Combining this with (3.18) and (u2, θ) ≤ 1
2‖(u, θ)‖

2
L2 , we can get

‖(u, θ)(t)‖2H2 +

∫ t

0

(‖u2(τ)‖2L2 + ‖(∂1u, θ)(τ)‖2H2)dτ ≤ Cε2. (3.26)

Finally, we will show the uniqueness. Let (u1, θ1) and (u2, θ2) be the solution to (1.1) in

Theorem 1.1. Denote that (u0, θ0, p0) = (u1 − u2, θ1 − θ2, p1 − p2). Then we get the equations

of (u0, θ0, p0) as 
∂tu

0 + u1 · ∇u0 + u0 · ∇u2 +∇p0 = ∂11u
0 + θ0e2,

∂tθ
0 + u1 · ∇θ0 + u0 · ∇θ2 + θ0 + u0

2 = 0,

divu0 = 0,

(u0, θ0)|t=0 = (0, 0).

(3.27)

The L2-inner product with (u0, θ0) gives that

1

2

d

dt
‖(u0, θ0)‖2L2 + ‖(∂1u

0, θ0)‖2L2 = −(u0 · ∇u2, u0)− (u0 · ∇θ2, θ0)

. ‖u0‖
1
2

L2(‖u0‖L2 + ‖∂1u
0‖L2)

1
2 ‖∇u2‖

1
2

L2‖∂2∇u2‖
1
2

L2‖u0‖L2

+ ‖u0‖
1
2

L2(‖u0‖L2 +‖∂1u
0‖L2)

1
2 ‖∇θ2‖

1
2

L2‖∂2∇θ2‖
1
2

L2‖θ0‖L2

≤ 1

2
‖∂1u

0‖2L2 + C‖(u0, θ0)‖2L2 . (3.28)

Here we have used Lemma 2.4 and the bound of ‖(u2, θ2)‖H2 . Then Grönwall’s inequality yields

that

‖(u0, θ0)(t)‖2L2 ≤ ‖(u0, θ0)(0)‖2L2eCt, (3.29)

which means that (u0, θ0)(t) = 0 for any t > 0, due to the zero initial data.

4 Proof of Theorem 1.2

This section proves Theorem 1.2. We deal with the equations for (ũ, θ̃) and (ū, θ̄) and make

use of the properties of the orthogonal decomposition and anisotropic inequalities.
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By Lemma 2.1, we have that ∂1ū = 0 and

u · ∇ū = u1∂1ū+ u2∂2ū = ū2∂2ū. (4.1)

Since divu = 0, we can introduce a stream function ψ such that

u = ∇⊥ψ = (−∂2ψ, ∂1ψ). (4.2)

Then

ū2 = ∂1ψ = 0, u2 = ũ2, (4.3)

and

u · ∇ū = 0. (4.4)

Thus we can decompose the equations of (1.1) into a system of (ū, θ̄),∂tū+ u · ∇ũ+ (0, ∂2p̄)
T = θ̄e2,

∂tθ̄ + u · ∇θ̃ + θ̄ = 0,
(4.5)

and a system of (ũ, θ̃), ∂tũ+ ũ · ∇ũ+ u2∂2ū− ∂11ũ+∇p̃ = θ̃e2,

∂tθ̃ + ũ · ∇θ̃ + u2∂2θ̄ + θ̃ + ũ2 = 0.
(4.6)

Proof of (1.20) First we show the decay of (ũ, θ̃) in H1. The L2-estimate on (4.6) yields

that

1

2

d

dt
‖(ũ, θ̃)‖2L2 + ‖(∂1ũ, θ̃)‖2L2 = −

∫
ũ · ∇ũ · ũ−

∫
u2∂2ū · ũ−

∫
ũ · ∇θ̃ · θ̃ −

∫
u2∂2θ̄ · θ̃

= B1 +B2 +B3 +B4. (4.7)

By the orthogonality in Lemma 2.1 and divu = 0,

B1 = −
∫
ũ · ∇ũ · ũ = −

∫
u · ∇ũ · ũ = 0. (4.8)

Similarly,

B3 = −
∫
ũ · ∇θ̃ · θ̃ = −

∫
u · ∇θ̃ · θ̃ = 0. (4.9)

Directly from the orthogonality in Lemma 2.1, Lemma 2.4 and Lemma 2.3, we have that

B2 = −
∫
u2∂2ū · ũ = −

∫
ũ2∂2ū · ũ

. ‖∂2ū‖L2‖ũ2‖
1
2

L2‖∂2ũ2‖
1
2

L2‖ũ‖
1
2

L2‖∂1ũ‖
1
2

L2

. ‖u‖H1‖∂1ũ2‖
1
2

L2‖∂1ũ1‖
1
2

L2‖∂1ũ‖L2

. ‖u‖H1‖∂1ũ‖2L2 . (4.10)

Analogously to A2,

B4 = −
∫
u2∂2θ̄ · θ̃ = −

∫
ũ2∂2θ̄ · θ̃

. ‖ũ2‖
1
2

L2‖∂1ũ2‖
1
2

L2‖∂2θ̄‖
1
2

L2‖∂2∂2θ̄‖
1
2

L2‖θ̃‖L2

. ‖θ‖H2‖∂1ũ2‖L2‖θ̃‖L2
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. ‖θ‖H2‖(∂1ũ, θ̃)‖2L2 . (4.11)

Collecting all of the estimates for B1 −B4, we obtain that

d

dt
‖(ũ, θ̃)‖2L2 + (2− C‖(u, θ)‖H2)‖(∂1ũ, θ̃)‖2L2 ≤ 0. (4.12)

From (3.18), ‖(u, θ)‖H2 ≤ Cε, and then

2− C‖(u, θ)‖H2 ≥ 1, (4.13)

with ε > 0 being sufficiently small. Poincaré’s inequality in Lemma 2.3 leads to the desired

exponential decay of ‖(ũ, θ̃)‖L2 :

‖(ũ, θ̃)‖L2 ≤ ‖(u0, θ0)‖L2e−C1t. (4.14)

In fact, the constant here C1 satisfies that C1 > 1.

• Next, we turn to the exponential decay of ‖(∇ũ,∇θ̃)‖L2 . Applying ∇ to (4.6) and taking

the L2-inner product with (∇ũ,∇θ̃), we have that

1

2

d

dt
‖(∇ũ,∇θ̃)‖2L2 + ‖(∂1∇ũ,∇θ̃)‖2L2

= −
∫
∇(ũ · ∇ũ) · ∇ũ−

∫
∇(u2∂2ū) · ∇ũ−

∫
∇(ũ · ∇θ̃) · ∇θ̃ −

∫
∇(u2∂2θ̄) · ∇θ̃

= D1 +D2 +D3 +D4. (4.15)

By Lemma 2.1, we get that

D1 = −
∫
∇(ũ · ∇ũ) · ∇ũ = −

∫
∇(u · ∇ũ) · ∇ũ = −

∫
∇u · ∇ũ · ∇ũ

= −
∫
∂1u1∂1ũ · ∂1ũ−

∫
∂1u2∂2ũ · ∂1ũ−

∫
∂2u1∂1ũ · ∂2ũ−

∫
∂2u2∂2ũ · ∂2ũ

= D11 +D12 +D13 +D14. (4.16)

By Lemma 2.4 and Lemma 2.3, we have that

D11 = −
∫
∂1u1∂1ũ · ∂1ũ

. ‖∂1u1‖L2‖∂1ũ‖
1
2

L2‖∂1∂1ũ‖
1
2

L2‖∂1ũ‖
1
2

L2‖∂2∂1ũ‖
1
2

L2

. ‖∂1u1‖L2‖∂1∂1ũ‖
3
2

L2‖∂2∂1ũ‖
1
2

L2

. ‖u‖H1‖∂1∇ũ‖2L2 . (4.17)

Similarly, we also get

|D12|, |D13| . ‖u‖H1‖∂1∇ũ‖2L2 . (4.18)

By divu = 0, and in a manner similar to D11, we have that

D14 =

∫
∂1u1∂2ũ · ∂2ũ =

∫
∂1ũ1∂2ũ · ∂2ũ

. ‖∂2ũ‖L2‖∂1ũ1‖
1
2

L2‖∂2∂1ũ1‖
1
2

L2‖∂2ũ‖
1
2

L2‖∂1∂2ũ‖
1
2

L2

. ‖u‖H1‖∂1∇ũ‖2L2 . (4.19)

Thus, D1 is bounded by

|D1| . ‖u‖H1‖∂1∇ũ‖2L2 . (4.20)
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For D3, we obtain from Lemmas 2.1–2.4 that

D3 = −
∫
∇(ũ · ∇θ̃) · ∇θ̃ = −

∫
∇(u · ∇θ̃) · ∇θ̃ = −

∫
∇u · ∇θ̃ · ∇θ̃

= −
∫
∇ũ · ∇θ̃ · ∇θ̃ −

∫
∇ū · ∇θ̃ · ∇θ̃

. ‖∇ũ‖
1
2

L2‖∂1∇ũ‖
1
2

L2‖∇θ̃‖
1
2

L2‖∂2∇θ̃‖
1
2

L2‖∇θ̃‖L2 + ‖∇ū‖L∞
x2
‖∇θ̃‖2L2

. ‖(u, θ)‖H2‖(∂1∇ũ,∇θ̃)‖2L2 + ‖∇ū‖H1
x2
‖∇θ̃‖2L2

. ‖(u, θ)‖H2‖(∂1∇ũ,∇θ̃)‖2L2 . (4.21)

For D2, by Lemma 2.1, (4.3) and divu = 0, we have that

D2 = −
∫
∇(u2∂2ū) · ∇ũ

= −
∫
∂1u2∂2ū · ∂1ũ−

∫
u2∂2∂1ū · ∂1ũ−

∫
∂2u2∂2ū · ∂2ũ−

∫
u2∂2∂2ū · ∂2ũ

= −
∫
∂1ũ2∂2ū · ∂1ũ+

∫
∂1ũ1∂2ū · ∂2ũ−

∫
ũ2∂2∂2ū · ∂2ũ

= D21 +D22 +D23. (4.22)

Then by Lemma 2.3 and Lemma 2.4, we have that

D21 = −
∫
∂1ũ2∂2ū · ∂1ũ

. ‖∂2ū‖L2‖∂1ũ2‖
1
2

L2‖∂2∂1ũ2‖
1
2

L2‖∂1ũ‖
1
2

L2‖∂1∂1ũ‖
1
2

L2

. ‖u‖H1‖∂1∇ũ‖2L2 . (4.23)

Similarly to D21, we then have that

|D22| . ‖u‖H1‖∂1∇ũ‖2L2 , ‖D23‖ . ‖u‖H2‖∂1∇ũ‖2L2 . (4.24)

Thus,

|D2| . ‖u‖H2‖∂1∇ũ‖2L2 . (4.25)

For D4, by (4.3), Lemma 2.4, Lemma 2.2 and Lemma 2.3, we have that

D4 = −
∫
∇(ũ2∂2θ̄) · ∇θ̃ = −

∫
ũ2∇∂2θ̄ · ∇θ̃ −

∫
∇ũ2∂2θ̄ · ∇θ̃

. ‖ũ2‖L2
x1
L∞

x2
‖∇∂2θ̄‖L2

x2
‖∇θ̃‖L2 + ‖∇θ̃‖L2‖∇ũ2‖

1
2

L2‖∂1∇ũ2‖
1
2

L2‖∂2θ̄‖
1
2

L2‖∂2∂2θ̄‖
1
2

L2

. ‖ũ2‖
1
2

L2‖∂2ũ2‖
1
2

L2‖θ‖H2‖∇θ̃‖L2 + ‖θ‖H2‖(∂1∇ũ2,∇θ̃)‖2L2

. ‖θ‖H2‖(∂1∇ũ,∇θ̃)‖2L2 . (4.26)

Collecting all of the estimates from D1 to D4, we have the following energy inequality:

d

dt
‖(∇ũ,∇θ̃)‖2L2 + (2− C‖(u, θ)‖H2)‖(∂1∇ũ,∇θ̃)‖2L2 ≤ 0. (4.27)

Since ‖(u, θ)‖H2 ≤ Cε, Poincaré’s inequality in Lemma 2.3 yields that if we have sufficiently

small ε > 0, then

‖(∇ũ,∇θ̃)‖L2 ≤ ‖(∇u0,∇θ0)‖L2e−C1t. (4.28)

Combined with the decay estimate (4.14), this completes the proof of (1.20) in Theorem 1.2.
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Proof of (1.21) Now we aim to show the exponential decay of the average part (ū, θ̄).

We recall that ū2 = 0 from (4.3), and that θ̄ satisfies the equation

∂tθ̄ + u · ∇θ̃ + θ̄ = 0. (4.29)

Then the inner product of (4.29) in H1
x2

yields that

1

2

d

dt
‖θ̄‖2H1

x2
+ ‖θ̄‖2H1

x2
= −(u · ∇θ̃, θ̄)H1

x2
. (4.30)

By Lemma 2.1, integrating by parts and using Sobolev’s imbedding inequality,

−(u · ∇θ̃, θ̄)H1
x2

= −(ũ · ∇θ̃, θ̄)H1
x2

= −(∇ · (ũθ̃), θ̄)H1
x2

= (ũ2θ̃, ∂2θ̄)H1
x2

≤ ‖ũ2θ̃‖H1
x2
‖∂2θ̄‖H1

x2
. ‖ũ2θ̃‖H1

x2
‖∂2θ̄‖H1

x2

. ‖∂2θ̄‖H1
x2

(‖θ̃‖L∞
x2
‖ũ2‖H1

x2
+ ‖θ̃‖H1

x2
‖ũ2‖L∞

x2
)

. ‖∂2θ̄‖H1
x2
‖θ̃‖H1

x2
‖ũ2‖H1

x2

. ‖θ‖H2‖(ũ, θ̃)‖2H1 . (4.31)

Combining this with (4.30), (1.20) and the bound for ‖θ‖H2 , we can choose a constant C2 <

min{1, C1} such that

d

dt
‖θ̄‖2H1

x2
+ 2C2‖θ̄‖2H1

x2
≤ Cε‖(u0, θ0)‖2H1e−2C1t. (4.32)

Then Grönwall’s inequality yields that

‖θ̄‖2H1
x2
≤ ‖θ̄0‖2H1

x2
e−2C2t + Cε‖(u0, θ0)‖2H1

∫ t

0

e−2C2(t−τ)e−2C1τdτ . ‖(u0, θ0)‖2H1e−2C2t.

(4.33)

This means that

‖θ̄‖H1 . ‖(u0, θ0)‖H1e−C2t. (4.34)

• We recall the 1D equation for ū1:

∂tū1 + u · ∇ũ1 = 0. (4.35)

The L∞-estimate gives that, for any t1 ≤ t2,

‖ū1(t1)− ū1(t2)‖L∞(R) ≤
∫ t2

t1

‖ũ · ∇ũ1(τ)‖L∞(R)dτ ≤
∫ t2

t1

‖ũ · ∇ũ1(τ)‖L∞
x2

(R)dτ

.
∫ t2

t1

‖ũ(τ)‖L∞
x2
‖∇ũ1(τ)‖L∞

x2
dτ

.
∫ t2

t1

‖ũ(τ)‖
1
2

L2
x2

‖∂2ũ(τ)‖
1
2

L2
x2

‖∇ũ1(τ)‖
1
2

L2
x2

‖∂2∇ũ1(τ)‖
1
2

L2
x2

dτ

.
∫ t2

t1

‖ũ‖H1‖∇ũ1‖
1
2

L2‖∂2∇ũ1‖
1
2

L2dτ

.
∫ t2

t1

‖u‖H2‖ũ‖H1dτ .
∫ t2

t1

ε‖(u0, θ0)‖H1e−C1τdτ

. ε‖(u0, θ0)‖H1e−C1t1 , (4.36)

where we have applied Sobolev’s imbedding inequality, (1.20) and the bound for ‖u‖H2 . Since

‖ū1‖L∞ . ‖ū1‖H2 ≤ ‖u‖H2 ≤ Cε, we obtain that there exists a limit denoted by ū1(∞) such
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that

lim
t→∞

ū1(t) = ū1(∞). (4.37)

Then an H1-estimate on (4.35) similar to the L∞-estimate and Lemma 2.1 yield that

‖ū1(t)− ū1(∞)‖H1
x2
≤
∫ ∞
t

‖u · ∇ũ1‖H1
x2
|dt ≤

∫ ∞
t

‖ũ · ∇ũ1‖H1
x2
|dτ

≤
∫ ∞
t

‖ũ · ∇ũ1‖H1
x2

dτ .
∫ ∞
t

‖ũ‖H1
x2
‖∇ũ1‖H1

x2
dτ

.
∫ ∞
t

‖u‖H2‖ũ‖H1dτ .
∫ ∞
t

ε‖(u0, θ0)‖H1e−C1tdτ

. ‖(u0, θ0)‖H1e−C1t, (4.38)

which implies that

‖ū1(t)− ū1(∞)‖H1 . ‖(u0, θ0)‖H1e−C1t. (4.39)

Thus we have completed all of the decay estimates for Theorem 1.2. �

5 Proof of Theorem 1.3

The aim of this section is to show the proof of Theorem 1.3. For this purpose, we first

introduce two anisotropic inequalities.

Lemma 5.1 Let Ω = R3. Then the following estimates hold:∫
Ω

|fgh|dx . ‖f‖
1
2

L2‖∂1f‖
1
2

L2‖g‖
1
2

L2‖∂2g‖
1
2

L2‖h‖
1
2

L2‖∂3h‖
1
2

L2 , (5.1)∫
Ω

|fgh|dx . ‖f‖
1
4

L2‖∂1f‖
1
4

L2‖∂2f‖
1
4

L2‖∂1∂2f‖
1
4

L2‖g‖
1
2

L2‖∂3g‖
1
2

L2‖h‖L2 . (5.2)

Proof The proof is very trivial, and is attained directly from Lemma 2.2. By Hölder’s

inequality and Lemma 2.2, we have that∫
Ω

|fgh|dx ≤ ‖f‖L∞
x1
L2

x2,x3
‖g‖L2

x1
L∞

x2
L2

x3
‖h‖L2

x1,x2
L∞

x3

.
∥∥∥‖f‖ 1

2

L2
x1

‖∂1f‖
1
2

L2
x1

∥∥∥
L2

x2,x3

∥∥∥‖g‖ 1
2

L2
x2

‖∂2g‖
1
2

L2
x2

∥∥∥
L2

x1,x3

∥∥∥‖h‖ 1
2

L2
x3

‖∂3f‖
1
2

L2
x3

∥∥∥
L2

x1,x2

. ‖f‖
1
2

L2‖∂1f‖
1
2

L2‖g‖
1
2

L2‖∂2g‖
1
2

L2‖h‖
1
2

L2‖∂3h‖
1
2

L2 , (5.3)

and that∫
Ω

|fgh|dx ≤ ‖f‖L∞
x1,x2

L2
x3
‖g‖L2

x1,x2
L∞

x3
‖h‖L2

.
∥∥∥‖f‖ 1

2

L2
x1

‖∂1f‖
1
2

L2
x1

∥∥∥
L∞

x2
L2

x3

∥∥∥‖g‖ 1
2

L2
x3

‖∂3g‖
1
2

L2
x3

∥∥∥
L2

x1,x2

‖h‖L2

.
∥∥∥‖f‖L∞

x2

∥∥∥ 1
2

L2
x1,x3

∥∥∥‖∂1f‖L∞
x2

∥∥∥ 1
2

L2
x1,x3

‖g‖
1
2

L2‖∂3g‖
1
2

L2‖h‖L2

.
∥∥∥‖f‖ 1

2

L2
x2

‖∂2f‖
1
2

L2
x2

∥∥∥ 1
2

L2
x1,x3

∥∥∥‖∂1f‖
1
2

L2
x2

‖∂1∂2f‖
1
2

L2
x2

∥∥∥ 1
2

L2
x1,x3

‖g‖
1
2

L2‖∂3g‖
1
2

L2‖h‖L2

. ‖f‖
1
4

L2‖∂1f‖
1
4

L2‖∂2f‖
1
4

L2‖∂1∂2f‖
1
4

L2‖g‖
1
2

L2‖∂3g‖
1
2

L2‖h‖L2 . (5.4)

�
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Proof of Theorem 1.3 Since the local well-posedness and the global well-posedness from

a priori estimates and a standard bootstrapping argument are similar to the arguments used

in Theorem 1.1, here we only give some a priori estimates. Define the energy functional M(t)

by

M(t) = sup
0≤τ≤t

‖(u, θ)(τ)‖2H3 +

∫ t

0

‖(∇hu, θ)(τ)‖2H3dτ. (5.5)

Our efforts show that

M(t) ≤ CM(0) + CM(t)
3
2 . (5.6)

For the norm equivalence

‖f‖2H3 ∼ ‖f‖2L2 +
3∑
i=1

‖∂3
i f‖2L2 , (5.7)

it suffices to bound ‖(u, θ)‖L2 and ‖(u, θ)‖2
Ḣ3 :=

3∑
i=1

‖(∂3
i u, ∂

3
i θ)‖2L2 . First, the L2-inner product

of (1.29) yields that

‖(u, θ)‖2L2 + 2

∫ t

0

‖(∇hu, θ)‖L2dτ = ‖(u0, θ0)‖2L2 . (5.8)

Applying ∂3
i to (1.29) and taking the L2-inner product with (∂3

i u, ∂
3
i θ), we have that

1

2

d

dt
‖(u, θ)‖2

Ḣ3 + ‖(∇hu, θ)‖2Ḣ3 = −
3∑
i=1

∫
∂3
i (u · ∇u) · ∂3

i u−
3∑
i=1

∫
∂3
i (u · ∇θ) · ∂3

i θ

= H1 +H2. (5.9)

We can decompose H1 into

H1 = −
2∑
i=1

∫
∂3
i (u · ∇u) · ∂3

i u−
2∑
k=1

∫
∂3

3(uk∂ku) · ∂3
3u−

∫
∂3

3(u3∂3u) · ∂3
3u

= H11 +H12 +H13. (5.10)

Due to divu = 0 and Sobolev’s imbedding inequality,

H11 = −
2∑
i=1

3∑
l=1

Cl3

∫
∂liu · ∂3−l

i ∇u · ∂3
i u

. ‖∇3
hu‖L2(‖∇3

hu‖L2‖∇u‖L∞ + ‖∇2
hu‖L4‖∇h∇u‖L4 + ‖∇hu‖L∞‖∇2

h∇u‖L2)

. ‖u‖H3‖∇hu‖2H3 . (5.11)

For H12, by divu = 0 and Lemma 5.1, we have that

H12 = −
2∑
k=1

3∑
l=1

Cl3

∫
∂l3uk∂

3−l
3 ∂ku · ∂3

3u

.
2∑
k=1

3∑
l=1

‖∂l3uk‖
1
2

L2‖∂1∂
l
3uk‖

1
2

L2‖∂3−l
3 ∂ku‖

1
2

L2‖∂3∂
3−l
3 ∂ku‖

1
2

L2‖∂3
3u‖

1
2

L2‖∂2∂
3
3u‖

1
2

L2

. ‖u‖H3‖∇hu‖2H3 . (5.12)

Since divu = 0, ∂3u3 = −∇h · uh, by Lemma 5.1 we obtain that

H13 = −
3∑
l=1

Cl3

∫
∂l3u3∂

3−l
3 ∂3u · ∂3

3u
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=
3∑
l=1

Cl3

∫
∂l−1

3 ∇h · uh∂3−l
3 ∂3u · ∂3

3u

.
3∑
l=1

‖∂l−1
3 ∇h‖

1
2

L2‖∂3∂
l−1
3 ∇h‖

1
2

L2‖∂3−l
3 ∂3u‖

1
2

L2‖∂1∂
3−l
3 ∂3u‖

1
2

L2‖∂3
3u‖

1
2

L2‖∂2∂
3
3u‖

1
2

L2

. ‖u‖H3‖∇hu‖2H3 . (5.13)

Therefore,

H1 . ‖u‖H3‖∇hu‖2H3 . (5.14)

Also, by divu = 0 and Sobolev’s imbedding inequality, we have that

H2 = −
3∑
i=1

3∑
l=1

Cl3

∫
∂liu · ∂3−l

i ∇θ · ∂3
i θ

. ‖∇3θ‖L2(‖∇3u‖L2‖∇θ‖L∞ + ‖∇2u‖L4‖∇∇θ‖L4 + ‖∇u‖L∞‖∇2∇θ‖L2)

. ‖u‖H3‖θ‖2H3 . (5.15)

Inserting the estimates of H1 and H2 into (5.9) and combining with (5.8), then we get that

‖(u, θ)‖2H3 + 2

∫ t

0

‖(∇hu, θ)‖2H3dτ ≤ ‖(u0, θ0)‖2H3 + C

∫ t

0

‖u‖H3‖(∇hu, θ)‖2H3dτ

≤M(0) + CM(t)
3
2 . (5.16)

This means that (5.6) holds and that M(t) ≤ CM(0). Next, we estimate the dissipation∫ t
0
‖u3‖2L2dτ . We recall that (u3, θ) satisfies the equations∂tu3 + u · ∇u3 + ∂3p = ∆hu3 + θe3,

∂tθ + u · ∇θ + θ + u3 = 0.
(5.17)

Taking the L2-inner product with (θ, u3), we obtain that

d

dt
(u3, θ) + ‖u3‖2L2 = −(u · ∇u3, θ)− (u · ∇θ, u3)− (∂3p, θ)− (∆hu3, θ) + ‖θ‖2L2 − (θ, u3)

= −(∂3p, θ)− (∆hu3, θ) + ‖θ‖2L2 − (θ, u3)

≤ 1

2
‖u3‖2L2 + 2‖θ‖2L2 +

1

2
‖∆hu3‖2L2 − (∂3p, θ). (5.18)

Since the pressure p satisfies that

∆p = −div(u · ∇u) + ∂3θ, (5.19)

we get, by Lemma 5.1, that

−(∂3p, θ) = (∂3∆−1div(u · ∇u), θ)− (∂2
3∆−1θ, θ)

= (u · ∇u, ∂3∆−1∇θ)− (∂2
3∆−1θ, θ)

≤ C‖u‖
1
2

L2‖∂1u‖
1
2

L2‖∇u‖
1
2

L2‖∂2∇u‖
1
2

L2‖∂3∆−1∇θ‖
1
2

L2‖∂3∂3∆−1∇θ‖
1
2

L2

+ ‖∂2
3∆−1θ‖L2‖θ‖L2

≤ C‖u‖H1‖θ‖H1‖∇hu‖H1 + ‖θ‖2L2

≤ C‖u‖H1‖(∇hu, θ)‖2H1 + ‖θ‖2L2 . (5.20)
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Plugging this into (5.18), using the bound for M(t) and integrating over the time, we obtain

that

(u3, θ) +
1

2

∫ t

0

‖u3‖2L2dτ ≤ ‖(u0, θ0)‖2L2 + C

∫ t

0

‖(∇hu, θ)‖2H2dτ. (5.21)

Coupled with M(t) ≤ CM(0) and using the fact that |(u3, θ)| ≤ 1
2‖(u, θ)‖

2
L2 , we have that∫ t

0

‖u3‖2L2dτ ≤ CM(0). (5.22)

The uniqueness is similar to the 2D case, so we omit it. Thus we have completed the proof of

Theorem 1.3. �
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