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Abstract This paper is devoted to understanding the stability of perturbations around the
hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmo-
spheric and oceanographic phenomena. The Boussinesq system focused on here is anisotropic,
and involves only horizontal dissipation and thermal damping. In the 2D case R?, due to
the lack of vertical dissipation, the stability and large-time behavior problems have remained
open in a Sobolev setting. For the spatial domain T x R, this paper solves the stability
problem and gives the precise large-time behavior of the perturbation. By decomposing the
velocity u and temperature 6 into the horizontal average (%, ) and the corresponding oscilla-
tion (i, #), we can derive the global stability in H? and the exponential decay of (i, ) to zero
in H'. Moreover, we also obtain that (ti2,0) decays exponentially to zero in H', and that
decays exponentially to @1 (o0) in H?' as well; this reflects a strongly stratified phenomenon
of buoyancy-driven fluids. In addition, we establish the global stability in H?® for the 3D case
R®.
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1 Introduction

The main purpose of this paper is to study the stability and large-time behavior of the
following two-dimensional Boussinesq equations:
ug +u - Vu+ Vp = poiiu + ey,
O +u-VO0+us +nl=0, (1.1)
divu = 0, (u, 0)|t=0 = (ug, bp).
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Here u(x,t), p(z,t), 0(x,t) denote the velocity field, pressure, scalar temperature, respectively.
The constant p represents the viscosity, n stands for the thermal damping coefficient, and
ez = (0,1)T. System (1.1) comes from the 2D Boussinesq equations without thermal diffusion,

v +v-Vu+ VP = udv+ Oes,

Qt +v-VO = O,
(1.2)
divu = 0,
(1, O)t=0 = (u0, Op).
The perturbation around the hydrostatic equilibrium of (1.2) is
U =V — Vhe, 9:@_@}157 p:P_Phea
where
1
Vhe = (O,O)T, One = T2, Phe = §x% (1.3)

Furthermore, the perturbed temperature equation adds a damping term né.

The Boussinesq system models buoyancy-driven fluids such as atmospheric and oceano-
graphic flows, where rotation and stratification play an important role. Enormous effort has
been made in this area by many researchers, and they have observed that the 2D Boussinesq
equations share an analogous feature with the 3D incompressible Euler or Navier-Stokes equa-
tions for axisymmetric swirling flow, and that they have a similar vortex stretching effect to
that in three dimensions (see [32, 33, 36], for instance).

There has been substantial progress made on fundamental mathematical issues such as the
global existence and regularity of various 2D Boussinesq systems, particularly those with only
partial dissipation or fractional dissipation, or indeed no dissipation at all (see for example
[2-5, 8-14, 20, 22-28, 31, 35, 41-43]). Due to the physical applications, for instance, in atmo-
spherics and astrophysics, recent investigations on the Boussinesq equations have focused on
the stability problem of perturbations around several physically relevant steady states, such as
the hydrostatic equilibrium (1.3) and shear flow. The work of Doering et al [16] initiated the
rigorous study of the stability near the hydrostatic equilibrium of the 2D Boussinesq equations
with only velocity dissipation. Later, Tao et al [38] established the large-time behavior and
the eventual temperature profile. Dong et al [19] studied the stability and large time behavior
of the 2D Boussinesq system without thermal diffusion under a different boundary condition.
In addition, Castro et al [7] proved the stability and large-time behavior with only velocity
damping instead of dissipation in 2D, and Wan considered the same case with velocity damping
in [40]. Other results on perturbations near the shear flow can be found in [15, 37, 44].

Here we list some results on the stability problem very relevant to the Boussinesq equations
(1.1). Lai et al [29] studied the stability and large-time behavior of the Boussinesq equations
with only vertical velocity dissipation and thermal damping in R2. Later, a followup work by
Lai et al [30] gave the optimal decay of the stability problem. Ben Said et al investigated the
stability and decay of the 2D Boussinesq equation with only vertical dissipation and horizontal
thermal diffusion [6] in R?, and with horizontal dissipation and vertical thermal diffusion [1]
in T x R. The work of Dong et al [18] established the stability and exponential decay with
horizontal dissipation in T x R. Here T = R/Z = [0, 1] denotes a 1D periodic box. Motivated
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by these works, we consider the 2D Boussinesq equations with only horizontal dissipation and
thermal damping in T x R. Now, we will state our main ideas regarding this problem.
If the temperature is not a concern, then the Boussinesq equations (1.1) can be reduced to

anisotropic Navier-Stokes equations as follows:

ug +u - Vu+ Vp = poiu,

(1.4)
divu = 0.

Taking the differential operator VX on (1.4) and denoting that w = V xu, we have the following
vorticity equation:

wt +u - Vw = uoiw. (1.5)

The L2-estimation on Vw gives that

1d

33 1Vl + alor il = - [ Vu- -

= —/81u181w81w—/81uQ82w81w

—/82u181w82w—/82u282w82w. (16)

It is easy to observe that the last two terms are difficult to control, due to the lack of vertical
dissipation. Therefore, the global well-posedness of anisotropic Navier-Stokes equations above
still remains open in the Sobolev setting in R2. To our knowledge, the difficulty in R? can be
overcome when the spatial domain is replaced by T x R, just as in [17]. The key point of [17] is

very simple; it introduces the horizontal average f and the corresponding oscillation f of f as
f= [ e, F=f-7 (17)
T
Then we have that

/82u181w82w = /(92(121 + ﬂl)alb‘aag(@ + (ZJ)

= /(92?1181(1)82(:)4—/8211181&)62U_J+/82ﬁ181@(92(:}, (18)
where we have used the orthogonality f f f = 0 and 61@ = 0 to eliminate the bad term
fazﬂlala)aga).

By applying the anisotropic inequality and Poincaré’s inequality,

£l S 1101 f L5, (1.9)

the third term of (1.6) can be controlled by the horizontal dissipation. The last term is the
same.

When considering the temperature, we note that us in (1.1), can offer us a damping term,
very analogous to 6. However, Vus = (01u2, —01u1) means that the damping of us cannot
provide more information on the dissipation than in the case of horizontal dissipation; this
makes the situation very different to [29]. This indicates that in R?, the global well-posedness
of (1.1) is also open. All of these things impel us to consider the Boussinesq equations (1.1) in
T x R.
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Changing (1.1) into the first-order derivative formulation

wy +u - Vw = pdjiw + 016,
(VO)+ V(u-VO)+ Vus +nVE =0, (1.10)

divu = 0,

the L2-inner product gives that

331 VO + ot + nlVo): =~ [ Tu-v0-vo. (111)
Since 6 has no higher-order dissipation, the right hand side of (1.11) can be only bounded by
/w-va VO < ||Vul = V|32 (1.12)
If the domain is R?, the anisotropic inequality
1l S 1A 10010 | 010 117 (1.13)
gives that
[ vu- V090 S IVul iVl V81 S ullfa ol Full D6, (119

which means that the H? Sobolev setting is sufficient to provide the dissipation ||(01u,8)]|%-.
However, in T x R, the anisotropic inequality

1l SUFICF 2 + 100 22) T 10 f 1122 (102 f |2 + 1912 ]| 12) % (1.15)

is very different, and the horizontal dissipation ||0;Vu|| 2 cannot be separated from ||Vu| ze.
We note that the thermal damping may provide a good dissipation for 6, which makes the
separation of horizontal velocity dissipation unnecessary. This means that we can directly by
(1.15), get that

IVullz= S lullie + Ovull . (1.16)

Thus the Sobolev setting H? suffices to close the energy estimates.
When the spatial domain is
Q=T xR, (1.17)

with T =R/Z = [0, 1] being a 1D periodic box, the desired stability problem on (1.1) is solvable.
For simplicity, we set that ¢ =n = 1. Then we have the following result:

Theorem 1.1 Let Q = T x R. Assume that (ug,0y) € H*(Q2) and divug = 0. Then there

exists a sufficiently small € > 0 such that, if
[[ (w0, 00)|| = < e, (1.18)

then (1.1) has a unique small global solution satisfying that

1Cu, ) ()12 +/O (lu2 (P72 + (91w, O)(7)l[32)d7 < Ce? (1.19)

for some generic constant C' > 0 and all ¢t > 0.

The key point in this paper is that € allows us to separate the horizontal average from

the corresponding oscillation. These two elements have different physical behaviors, as can be
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seen in the numerical results of [16]. In fact, we obtain that the oscillation part (i,8) in (1.1)
could decay exponentially. By analyzing the structure of the horizontal average in (1.1) and
combining the exponential decay of the oscillation part, we also get that the horizontal average
part (&g, f) has analogous exponential decay, and that %; decays exponentially to @ (00).
Theorem 1.2 Let (ug,0y) € H(Q2) and divug = 0. Assume that ||(ug,8o)||2 < € for
sufficiently small € > 0. Let (u,f) be the corresponding solution to (1.1). Then there exist

constants Cy < Cy such that
(@, 6) ()11 < [ (uo, 60) e, (1.20)
and
(a1 — 1 (00), w2) ()1 < ||, Bo)llzrre™ ", 1) 71 < [l (uo, o) || rrre™ ", (1.21)
where 1 (00) = tlggo @1(t). In fact, here we have that a3 = 0.

To prove the exponential decay, we need to decompose the Boussinesq equations (1.1) into

the oscillation part (i, ),

Oy + u - Vi + ugdat — 0111 + Vp = 562,
(1.22)

00 + u - VO + usdaf + 0 + 1y = 0,
and the average part (1, ),
o+ u-Vu+ (0, 8213)T = §62,

_ . (1.23)
0 +u-VO+0+iy=0.

By taking energy estimates on (1.22) for ||(@, 0)||2., ||(Va, V8)||2., and carefully evaluating the
nonlinear terms with Poincaré’s inequality and other anisotropic inequalities, we can establish

the inequality
d o~ o
it )7 + (2= Cli(w,0)]|52) (013, 0) |71 < 0. (1.24)

When the initial data (ug, 0y) is sufficiently small, i.e.,
(w0, 60)|[ 2 < € (1.25)
with € > 0 being sufficiently small, then ||(u, 0)||gz < Ce and
2= Cll(uw,0) s 2 1. (1.26)

An application of Poincaré’s inequality gives the desired exponential decay.

Similarly, it is easy to observe that (ug, ) satisfies that

Optiz + u - Viig + Oop = 0,

_ o (1.27)
00 +u-VO+0+uy=0,

and that (@2, 0) has the damping dissipation in (1.27),. This provides the possibility of expo-
nential decay for (#z, 0) as long as the nonlinear terms in (1.27) are controlled by the exponential
decay estimates on (i, 9~) and the structure of pressure p. In fact, by noting that us = 0, we
only need to give the exponential decay of 6.

The estimate on @, is very simple. Note that @, satisfies the equation



No.4 S.G. Xu & Z. Tan: STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION 1471

This means that, by the exponential decay of (@,6), @1 (t) has the limit @;(c0), and decays
exponentially to (o) in H?.
Next we also show the stability of the 3D case in R3. Consider the 3D Boussinesq system

with partial dissipation

u +u-Vu+ Vp = Apu + e,

0 +u-VO0+0+u3=0,

divu = 0,

(u,0)|t=0 = (ug, o).

Here A}, denotes the horizontal Laplacian operator.

(1.29)

The reason for choosing the domain R? instead of T2 x R is that the anisotropic inequality

1 1 1 1 1 1
/RS fahda SFIZ= 100 F 11 229l 22 10291 22 12l 721105 £ 11 (1.30)

suffices to recover the desired horizontal dissipation. Now we give the following stability result:
Theorem 1.3 Let Q = R3. Assume that (ug,6p) € H3(Q2) and divug = 0. Then there
exists a sufficiently small € > 0 such that, when

| (o, 00)l| s <&, (1.31)

(1.29) has a unique small global solution so that

1Cu, 0) ()5 +/O (lua(7)ll72 + 1(Vhu, )(7)|[3)dr < Ce (1.32)

for some generic constant C' > 0 and all ¢t > 0.

The rest of this paper is divided into four sections. Section 2 presents several anisotropic
inequalities and some properties on the orthogonal decomposition. Sections 3 and 4 prove
Theorem 1.1 and Theorem 1.2, respectively while Section 5 is devoted to establishing Theorem
1.3.

Notation a < b denotes that a < Cb for some generic constant. For simplicity, [ f :=
Jo fdz and fot f= fot f(r)dr. HY(Q) denotes the classical Sobolev spaces, and LP(2) stands

for the classical Lebesgue space with the LP norm.

2 Preliminaries

This section states several anisotropic inequalities to be used extensively in the proof of
Theorems 1.1 and 1.2. Moreover, some key properties of the horizontal average and the corre-
sponding oscillation are also listed here.

Since the domain is Q@ = T x R, we define the horizontal average of f = f(z1,x2) as
flzs) = /f(3?1,$2)d331- (2.1)
T
Then we decompose f into f and the corresponding oscillation part f:

f=r+17 (2.2)

The next lemma presents a few properties of (f, f)
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Lemma 2.1 Let Q =T x R. Then
(a) (f, f) obeys the properties

Af=of=0, uf=0f [=0, &f=0f of=0f=0f (2.3)
(b) if f is divergence-free, namely, divf = 0, then f and f are both divergence-free, i.e.,

divf = divf = 0. (2.4)

(c) f and f are orthogonal in L2, namely,
(F.Fyi= [ Fde =0, IR =171 + 1712 (25)
Q

In addition, [|f||z> < |[f]z2 and || flz2 < [|f]|zz-
Proof It is easy to verify (a). If divf = 0, then

divf =divf =0, divf=divf=0. (2.6)

For (c), by the definitions of f and f,
(J?vf):/fodl”:/RJ?(/TJE(Ihxz)dml)dxz:0- (2.7)
This completes the proof of Lemma 2.1. d

Next we introduce some important lemmas related to the anisotropic inequalities.

Lemma 2.2 For any 1D function f(x),
(1) supposing that f(z) € H*(R), then

A lloey < VI a0 o (2.8)
(2) supposing that f(z) € H*(T), then
1 1
1l cry < VR En 100 £ 2y + 1 L2y (2.9
In particular,
. L1 L1
1Lty < VEIF s 100 Fll - (2.10)

Proof This Lemma is actually a special case of the Gagliardo-Nirenberg inequality [34].

For (1), since

@) = / 2f(1)9ef (y)dy, for any z € R, (2.11)
we have that
1712 < / 21£ (1)0: )]y < 2] Fllz2qey |19l 22e)- (2.12)

Similarly, for (2), by the mean-value theorem, there exists a s € T such that

[f(@) = |FI? = (@) = £(s)]* = /w 2f(y)0:f(y)dy, for any z €T, (2.13)

S

which gives that
1117 (ry < /ﬁ\f(y)@zf(y)ldw [F1? < 20 fllz2emllOe fll 2y + 11122 (xy- (2.14)
Thus,

1 1 1
1wy < @I 19z + 1F122m)? < VI a9 ey + Il 2qry. (215)



No.4 S.G. Xu & Z. Tan: STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION 1473

This completes the proof of Lemma 2.2. O
Lemma 2.2 can be immediately applied to the 2D case, just like Poincaré’s inequality and

the anisotropic inequalities.

Lemma 2.3 Let 2 =T x R. Then, for any integer k > 0,

11l SN0 llare S 100 f - (2.16)

In addition,
[ fllzee ) S N01fllmr @) S N0 flla (@) (2.17)

Proof Since, by the mean-value theorem, there exists s € T such that f(s,xg) =0, we

immediately, get by Holder’s inequality, that

< (Aaaalf(yl,$2)|2dy1> ; (2.18)

with a multi-index « satisfying that |o| < k. This implies that

10° F(ay, )] = ] [ oo

10%fll L2 < 1010%F || 2, (2.19)
and hence,
1 lere S 0L f |l pre- (2.20)
By Lemma 2.2 and (2.16), we have that
r < || f 3 i < r H r 3
9oy S 17N 2, 100 0z, S (17 |, (1017 7,
<712, 1a. 715 |IF 1t TR
S 170, Nz, |, [[1enFiEy lonenfiy, |,
~ 1 ~ 1 ~ 1 ~ 1 ~
SN0 FIE 102112 18102 117> S N0 fllare- (2.21)

O

Lemma 2.4 Let Q = T x R. Then, for any f,g,h € L*(Q) with d;f € L*(Q) and
Dag € L?(€), it holds that

’ /Q fghdx

1 10 o0h 1
SN fllze + 1101 fll2) 2 gl 22110291 1Rl 22 (2.22)

In particular,

‘/Qfghdx SIFIZ= 1007172191172 10291122 121l 2. (2.23)
For any f € H?(),
1f 1@y S WA (IF ]2 + 100 Fll2) E10F 1 2 (102 fll 2 + (10105 £l 2) (2.24)
and
11l ) S AN 2101 f L2 102 f 11 210102 f 112 (2.25)

Proof Directly, by Holder’s inequality and Lemma 2.2, we have that

/Q fghdx

< fllzee 2 gllzz pe 1Rl 2

x1 xg x1 Txg

3 1
S 1705 ez, + 10171122 )

1 1
2 2
ol heagllz |, 1elze

2 ‘
L2,
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1 1 1 1
S ANz e + 101 fllL2) 2 (gl 721029112 1P| 2 (2.26)

Similarly, by Lemma 2.2,

19271122

1 1
1l S {112, 10211152,

< [istez
e [

1 1
2 ‘ 2

2 2
L2, L2,

1
2

1 1
S 105 rlee, + Nouflss )

102715, 0z, + 1010211152, )

L L2,
1 1 1 1
S WAz lez + 191 fll2) 02 f N 72 (102 f [ 2 + (10102 [ =) 7. (2.27)
The rest of Lemma 2.4 can be obtained by applying Poincaré’s inequality (2.16). O

3 Proof of Theorem 1.1

Since the local well-posedness can be shown by a standard method in [32], here we focus

on the global a priori estimates on the solution in H?(2). If we define the energy functional as

E(t) :== sup ||(u79)(7)||§{2+/0 191, 0)() | 2dT, (3.1)

0<r<t

then our main efforts can be devoted to establishing the energy inequality
E(t) < CE(0) + CE(t)? (3.2)

for some generic constant C and all ¢ > 0. Once (3.2) holds, a standard bootstrapping argument
from [39] can reveal the global bounded energy. If we make the ansatz

E(t) < 2CE(0) < 2C¢?, (3.3)

then (3.2) will indicate a smaller bound for E(¢) when £ > 0 is sufficiently small. In fact, if
(3.3) holds, then

1 3
E(t) < —————CEFE(0) < - x 2CE(0), 34
(1) < T CE(D) < x 2CE() (3.4
with a small € satisfying that
1 3 1 3
—— < -, ie, e<—=C"2. 3.5
1—+v2CCe ~ 2 3V2 (3:5)

Therefore, the bootstrapping argument asserts that E(t) is bounded uniformly for all ¢ > 0,

namely, that
E(t) < Ce2 (3.6)

Now we show that (3.2) holds. Since the equivalence of the Sobolev norms holds, namely,
1112 ~ FI1E + 1111 (3.7)

we only need to give the L? estimates of (u,0) and (Vw, Ad). Here, w = V x u and | f||3,, :=

2
> [|02 f[|2,. A L?-estimate on (1.1) yields that

i=1

d
71w OlIZz + 201D, 0) 72 = 0. (3.8)
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To give the L? estimate of (Vw, Af), we make use of the second-order derivative equation of

(1.1) as follows:
OVw + V(u-Vw) = 911 Vw + V1 6,
O (A) + A(u-VO) + Aug + AO = 0.

By taking L2-inner product with (Vw, Af), we have that

1d

LT, A0 + (01 T, A2
= (V010,Vw) — (Aug, Af) — (V(u - Vw), Vw) — (A(u - VO), Ab)
=A; + Ay + A3.

Here it is easy to verify that
A1 = (V810, V(JJ) - (AUQ, Ag) = (Aﬁ,é)lw) - (AUQ, AQ) = 0,

where we have used the fact that 0;w = Aus, by the free-divergence of velocity.
Also, by divu = 0,

AQZ—/VU'VUJ'VW

= — /81u181w81w — /81’11262(4181(4) — /621“81608260 — /6211@820)820)
= Aoy + Agp + Aoz + Ags.
Obviously, by Sobolev imbedding inequality,

|Ao1| 4 |Agz| S [|01us]| e [|01w]|F2 + [|01us]| e [|Oaw]| 12 [|01w]| 2

< 0vull 2| Vel 2101wl 2 S [lull 2| Ovel 7o
For Ass, by Lemmas 2.1, 2.3, 2.4 and the Sobolev imbedding inequality, we have that

Mgy — — / (Dty + Daiin )01 Doi0 + Do)

= *\/32@131@32@*/82’&181@82@7/8271181(:)82@

A

< 19132 1081172 10121172 10331 £ 19 | 2 + 2t |40 492l
+ (021 || 4 |01 ©]| 4[| 0200 2

S lullg2 101@]| 1020 22 + (10281 |1 |010]| 1 (| Oow ]| 2

S llullaz)|01@] gy + (|01t || 2| 010 1 || ow]| 2

S llull a2 (| Ovul| g2
Here, f 0211 0100w vanishes, due to the orthogonality in Lemma 2.1.

Similar to Ass,

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Aoy = /81ﬂ182(@+@)82(@+&)) = /81@182&)82&)4—/8111182&)82@4-/8111162@62@

1L 1 1 1
S 101 | £2 (10102t || 2 (| 02601 £2 1010260 £ (1| 020 2 + (1026 2)

< llullzr2|9vul Fpo.

(3.15)
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For As, we directly have, by divu = 0 and the anisotropic inequalities in Lemma 2.4, that
A3:—/AU~V9A0—2/VU-V20A9

S 1 Aul 2 (1A g2 + 1101 Aull £2) 2 (V6] 32 02V 2.1 A0 2
+IVull i (IVull 2 + 101 Val| £2) 1102 Vul 12 (192 Vul 12 +11010: V]| £2) 3 [ V20 2] A6 2
< (lull gz + [0vul =) 11012 (3.16)

Summarizing the estimates of A;, A; and Asz, and combining (3.8) and (3.10) and then inte-

grating over the time, we have that

t t
() ()2 +2/0 1@, )72 < [I(uo, 00) |72 +C/O 1Cut, 0) ] 22211 (D, 0) |2

< |I(uo, o)l 7> + CE(t), (3.17)

which implies that (3.2) holds. Hence,
t
1w, 0) ()17 +/ 101w, 0)(7)||32dr < Ce2. (3.18)
0
Next we will estimate the dissipation fot lus||3 2. We recall that (uq,6) satisfies that

3tuz+u-Vu2+82p:811uQ+9,
00 +u-VO+0+u =0.

(3.19)

Taking the L2-inner product with (6, uz), we immediately get that
%(UQ,@) + Jug|3: = —(u- Vug,0) — (u- V0, uz) — (O11u2,0) — (J2p, ) + |0l 22 — (0, u2)
= —(O11u2,0) — (92p, 0) + [|0][ 2 — (0, u2)
< %Hqusz + 2101122 + %H@um”%z — (0ap, 0). (3.20)
We need to estimate (0ap, ). Note that p satisfies that
Ap = —2(01uz05u1 + (Dauz)?) + 020 = —2(d1lindouy + DolinOauz) + Dol

= —2[81 (ﬁgagul) — ﬂg@g@lul + (92(122(921@) — ﬁg@Q@QUQ] + 629
= —281 (17,2821141) — 282(’[142811141) + 820, (321)

where we have used that
Ooug = —01u1 = —01U1 = Oatia, (3.22)

by dive = 0 and Lemma 2.1.
Then we deduce, by Lemma 2.4 and Lemma 2.3, that
—(02p, 0) = 2(9200 A H(Ti202u1), 0) + 2(05 A (11201u1),0) — (034716, 0)
= 2(U0xuy, DoOy A7) + 2(T201uy, OIAT) — (02A716,0)
< Clial| 2 |9h 2| 2102t | 1202001 | 121020 A1) 1.
+ Cllaa| g |01ua || 2 [05AT10) 2 + |05 A710]| 1210 2
< Cllull= 101wl L2101 2 + 10|72 (3.23)
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Here we have used the Calderén-Zygmund singular integral theory (see [21]). In particular,
|03A710|| 2 < ||0]|L2, by Parseval’s theorem.
Returning to (3.20), we obtain that

d 1 1
3 (12, 0) + 5llu272 < 36117 + *IlﬁanIIQLQ + Cllull = [[0vul| = [10]] 2
< 3)16lI7- + 5 ||811U2||L2 + Cllul | (91w, 0) |72
< C||(31u,9)HH2, (3.24)

where we have used (3.18). Integrating over the time, we have that

(us,6 / sl < (us,60)(0) + C / (B 0) %2
0

t
< (0, 00) %2 + C / 1By, 0)] 2. (3.25)

Combining this with (3.18) and (uz,6) < £|(u, 6)[|., we can get

1Cu, ) (®)]| 72 +/0 (lua (P17 + (91w, O)(7)l[32)dT < Ce. (3.26)

Finally, we will show the uniqueness. Let (u!,6!) and (u?,6?) be the solution to (1.1) in
Theorem 1.1. Denote that (u°,0° p°) = (u! —u?,0' — 6%, p! — p?). Then we get the equations
of (u?,60° p®) as

Ol + ul - Vul + 10 - Vu2 + Vp° = 9111 + 0%,
00° +ut - VO +u Vo2 + 600 +uf =

divu® = 0,

(u®, 6% ],=0 = (0,0).

The L-inner product with (u®,6°) gives that

(3.27)

P, 00V + @1, 0%) 30 = ~(u - V%) — (u” - 6%, 6°)

S 122 ([l 2 + 0100 2) |V | 22 82V 22 |0 2
[l 22 (10 =+ 100 12) 2 [ V6222102761 2. 16°)) 2

< 10l + O, )3 (3.25)

Here we have used Lemma 2.4 and the bound of ||(u?, 6?)|| 2. Then Gronwall’s inequality yields
that

1(u®, 0") N7 < [I(u®,0°)(0) |2, (3.29)

which means that (u®,6°)(t) = 0 for any ¢ > 0, due to the zero initial data.

4 Proof of Theorem 1.2

This section proves Theorem 1.2. We deal with the equations for (i, ) and (i, §) and make

use of the properties of the orthogonal decomposition and anisotropic inequalities.
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By Lemma 2.1, we have that ;a2 = 0 and

u-Vu = ulalﬂ + Ugagﬂ = 1_1,2821_1,. (41)

Since divu = 0, we can introduce a stream function v such that

u= V"' = (=0, 011)). (4.2)
Then
Uy =01 =0, wug= 1o, (4.3)
and
u- Vi =0. (4.4)

Thus we can decompose the equations of (1.1) into a system of (@, 6),

8tﬂ+U' Vu + (O,agﬁ)T = 9_627

(4.5)

and a system of (a, 5)7

o + m + ugOot — 0110 + Vp = éeg, (4 6)
010 4+ 1 - VO 4 12050 + 0 + Gy = 0. '

Proof of (1.20) First we show the decay of (i, 0) in H'. The L2-estimate on (4.6) yields
that

1d,,_ o~ o — o - o
§&||(u,6‘)||L2 + (011, 0)|72=— [ w-Vau-u— [ ugdet-tu— [ u-VO-0— [ ux020-0

= B1 + By + B3 + By. (4.7)

By the orthogonality in Lemma 2.1 and divu = 0,

Blz—/u~Vﬁ-ﬂ:—/u-Vﬂ~

—_~

=g}
Il
o
—
=
o0
=z

Similarly,

By =— u~v9-é:—/u-vé.

™

= 0. (4.9)

Directly from the orthogonality in Lemma 2.1, Lemma 2.4 and Lemma 2.3, we have that

32:7/7,@82@"&:7/&282@"&

1 L1 et
S 1100l g lliall 22 itz | 22 11 22 91 2

1 1
< Mull s 19yl 22 9yl 22 91t .2
< Jlull g l0ra] 2. (4.10)

Analogously to Ao,

B4=—/U282é-§:—/ﬂ282§~é

1 1 .1 — 1 ~
S [la2ll 22 10va2]| 2 102011 22 1020201 £-116]] 2

S0 12|01t | 2116 2
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S 100 1211 (01, 6)]|7 - (4.11)
Collecting all of the estimates for B; — By, we obtain that
d
S
From (3.18), ||(u,0)| g2 < Ce, and then

<3}

L0172 + (2= Cll(w, 0) | 2) 1181, )] 72 < 0. (4.12)

2 — O\ (u, )| g2 > 1, (4.13)

with € > 0 being sufficiently small. Poincaré’s inequality in Lemma 2.3 leads to the desired

exponential decay of || (@, 0)||2:
(@ O)llze < (o, B0)ll2e=C. (4.14)

In fact, the constant here C; satisfies that Cy > 1.
e Next, we turn to the exponential decay of ||(V, Vo) llL2. Applying V to (4.6) and taking
the L2-inner product with (Vi, V), we have that

1d, = o
Q&H(Vu,w)\lia + [0V, V)|

= —/V(u~Vd)-Vﬂ—/V(uQaga)-Vﬂ—/V(u-V@) -Vé—/V(uQaQé) Vo

= D1+ Ds+ D3+ Dy. (4.15)

By Lemma 2.1, we get that

D1:—/V(m)~Vﬂ=—/V(u-Vﬂ)~Vﬂ=—/VU~VfL~Vﬂ

= — / 611146111 . 8171 — /61U262ﬁ . 81ﬁ — /agulalﬂ . 32’11 — /ag’ll,gazﬂ . 3212
= D11 + D12 + D13 + D1a. (4.16)

By Lemma 2.4 and Lemma 2.3, we have that
D11 = —/81u181ﬁ . 8111

1 1 1 1
S 0vur |2 |01 72 ||0101]| 72 |0vd| 7 2 | 0201 7 -
3 S
S 01us ][22 (101001 72 [|0201 4| 7
< Nullg 101 Va7 (4.17)

Similarly, we also get
D12l |Dis| S llullm 101 V] 2. (4.18)

By divu = 0, and in a manner similar to D11, we have that
Dy = /81@6132@ - 0ot = /81ﬂ182ﬂ - Ol
- o I et 1
S 1020 2 |01 [| 72 (| 0201 Tn || 2 (| 02| 2 [| 01020 | 7 2
< s 91Vl 2. (4.19)

Thus, D is bounded by
1D1] S llull |0y Va2 (4.20)
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For D3, we obtain from Lemmas 2.1-2.4 that

—/V(u-vé)véz—/V(u-vé)-véz
—/va-vévé—/w-vé.vé
SV 2.1101 Vi 2.1V 0| 2. 102V 0| 2. | VO 2 + |V e [ VO]]7-
S, 0l g2l (91 VE, VO[3 2 + V| g VO[3
S I, )] 2] (91 Vi, VO)|[3».

(4.21)
For Dy, by Lemma 2.1, (4.3) and divu = 0, we have that

—/V(Ugagﬂ) -V

/al’lLQaQ’l_L 01U — /Ugagalﬁ - 010 — /6211@621_1, - Ot — /UQagagﬂ Ot

— / 01020 - 010 + /81’[14821_1, - Ot — /62828211 - Ool
= D21 + Dag + Do3.

—/Vu-vé.vé

(4.22)
Then by Lemma 2.3 and Lemma 2.4, we have that
Doy = —/8112282@ -0t

1 1 1 1
S 10212 [|0vti2|| 72 | 0201 G2 || 7 2 |01 ]| |01 Ov ]|
S ull g |01V a3

(4.23)
Similarly to D21, we then have that

| Dao| < Jlull |01 Va7,

D23l < llull g2 |01 V]| 72
Thus,

(4.24)
1Da] S lull 2 101 V2. (4.25)
For Dy, by (4.3), Lemma 2.4, Lemma 2.2 and Lemma 2.3, we have that

/V ’LLQ(?Q —/ﬂgvagé- Vé— /V’agagé Vé

. < 1 o1 _1 _ 1
S llzllzz oo HV(929||L§2 [VO||Lz + ([VO| L2 (| Viaa| }. |01 V| 72 [|020]] £ 2 [|02020]| 7 -
1 1 - o
S Nzl 72102tz 22 101 2 (VO] L2 + |0]] 2 || (01 Vg, VO)||7
S0/ 2 (01 Vi, VO)||2..

(4.26)
Collecting all of the estimates from D; to Dy, we have the following energy inequality

(Vi VOIL: + (2 = Cll(w,0)l|m2) [ (01 V3, V) [ <0 (4.27)

Since ||(u, 0)|| gz < Ce, Poincaré’s inequality in Lemma 2.3 yields that if we have sufficiently
small € > 0, then

1(Via, VO)| L2 < ||(Vuo, Vo)l z2e” .

(4.28)
Combined with the decay estimate (4.14), this completes the proof of (1.20) in Theorem 1.2
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Proof of (1.21) Now we aim to show the exponential decay of the average part (u, ).
We recall that 2y = 0 from (4.3), and that @ satisfies the equation

0 +u-VO+6=0. (4.29)
Then the inner product of (4.29) in H}, yields that
1d
2dt
By Lemma 2.1, integrating by parts and using Sobolev’s imbedding inequality,

1813, + 1003, = —(u- V0, 0)m;, (4:30)

~(u-V0,0)y, = —(0- V0,00, =—(V - (@0),0)m:, = (20, 0:0) 1,

< lashl s, 10282, S aa0llzez, 1920111,

<1080 1, (11l iz, + 620, [l )
< 11020 13, 1813, izl
< 162 1. 6) 3 (4.31)

Combining this with (4.30), (1.20) and the bound for ||0]| gz, we can choose a constant Cy <
min{1, C;} such that

d - = _
@IH\I?{;Q + 202|017, < Cell(uo, O)l[Fe 7>, (4.32)
Then Gronwall’s inequality yields that

t
16185, < 160l 2% + Celtun, b0}l [ €20 2dr S | (un, ) ne 2>
) ) 0

(4.33)
This means that
1011+ < Nl (w0, B0) | e 2" (4.34)
e We recall the 1D equation for #:

The L°-estimate gives that, for any ¢ < to,

to ta
Jaa(t) = w(tllem < [TV e < [ To Vol mer
ty

t1

ta
S / la(T)l| g VUL (7)|| Lgg d7

t1

t2 1 ~ 1 ~ 1 ~ 1
< 1Al I, 193 (I 10V ()], dr
ty

ta 1 1
< / il s ||V ]| 22 192 Vi | o

ty
t2 t2

S [l allndr S [ ell o, b0) e dr
tl tl

S EH(anGO)”HleiClt% (436)

where we have applied Sobolev’s imbedding inequality, (1.20) and the bound for |lu||g2. Since

[@1]|Le S lTallmz < ||ullgz < Ce, we obtain that there exists a limit denoted by 1 (c0) such
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that

t—o0

Then an H'-estimate on (4.35) similar to the L>-estimate and Lemma 2.1 yield that

oo

o0
a1(®) = w0y, < [ [Vl lie < [ 17 T, jir
t t

o0 o0
< [ ToValmrs [ T, Nal, dr
t t

oo o0
< / a2 i 1 dr < / el|(uo o) e~ Ctdr
t t

< Ml (uo, 00) | e, (4.38)

which implies that
121(8) — @ (o)l S Il (o, 00) [ rrre™ . (4.39)
Thus we have completed all of the decay estimates for Theorem 1.2. O

5 Proof of Theorem 1.3

The aim of this section is to show the proof of Theorem 1.3. For this purpose, we first

introduce two anisotropic inequalities.

Lemma 5.1 Let Q = R3. Then the following estimates hold:
1 1 1 1 1 1
/Q\fgh|dff S IANZN01F 11 22 gl 22 (|29 22 1Al 22 193kl 72 (5.1)

1 1 1 1 1 1
/Q\fghldeS IFIZ2 10 I 1021 22110102 f1I £z gl 22 | O3 gl L2 1] 2 (5:2)

Proof The proof is very trivial, and is attained directly from Lemma 2.2. By Holder’s

inequality and Lemma 2.2, we have that

/|f9h\d$§||f|\L°°L2 lglizz Loz, lIRllzz, , Lo
Q

x] Hxg,x3 x) Hxo x,x9 w3

S 17152 Navsiz,.

1 1
2 2
[ nossiz, |

lglz: lowgll,

L?}z,mS L32C1vm3 1-72
1 1 1 1 1 1
S AR A PR P AT (5.3)
and that
[ 1fotde <l oz Dol o el
1 1 1 1
S [ ||alf||z§ Hnguzgsuasguzgs i Il
1 1
S [ies |7 Hualfnw S, lgllz9sgllze 1] o
11 x3 xq],T3
3 B } } 3 g ok
S stz Noarls |, oasiis Woroesiy, [, lslialoaglisales
1 1 1 1 1 1
S IFIE N0 P12 102 113 19102 1 g £ 9sgl 5o 1) 2 (5.4)

O
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Proof of Theorem 1.3 Since the local well-posedness and the global well-posedness from
a priori estimates and a standard bootstrapping argument are similar to the arguments used
in Theorem 1.1, here we only give some a priori estimates. Define the energy functional M (t)
by

¢
M(t) = sup ||(u,0)(7)]|%s +/ (Y, 0)(7)l[35dr. (5.5)
0<r<t 0
Our efforts show that
M(t) < CM(0) + CM(t)%. (5.6)
For the norm equivalence
3
1N Frs ~ 1172 + D 107 f11 7, (5.7)
i=1
3
it suffices to bound ||(u, 0)|| L2 and ||(u, 9)”23 = > |[(83u, 830)||2,. First, the L?-inner product
i=1
of (1.29) yields that
¢
I(u, )12 +?/0 1(Vhu, ) p2dr = [[(uo, 0o)lI7. (5.8)
Applying 93 to (1.29) and taking the L2-inner product with (93u, 936), we have that
1d 3 3
51O+ I(Th0) 5 == > [ 3w Va3 =3 [ 33 ve) oo
i=1 i=1

We can decompose H; into

2 2
Hy = —Z/@f’(u -Vu) - 9Pu — Z/ag(ukﬁku) - Osu — /85’(1138311) - O3u
i=1 k=1
= Hyy + Hip + Hyz. (5.10)
Due to divu = 0 and Sobolev’s imbedding inequality,

2 3
Hy = —ZZCé/afu-affqu-Bf’u

i=1 =1
S IVl (IViull 2 [Vl + [IViull e [VaVull s + [ Vaull L= | V7Vl £2)
< Nl | Vil 3. (5.11)
For Hi5, by divu = 0 and Lemma 5.1, we have that

2 3
Hip=->» Y C} / A3 Opu - O3u

k=11=1

2 3
< Dhunl| 22 1010 un | 22 105 Dyeul| 2. 10503~ Dy 2, 103ul | 2. 0203 ul
S DD I0kunllf 10:05unl 721105 Bl 2110505~ Ol £ |03 2 9205 ul -

k=11=1
S Ml sl Vaull7s. (5.12)
Since divu = 0, d3uz = —Vy, - up, by Lemma 5.1 we obtain that

3
Hyz=— Zc@/agugag'*lagu - D3

=1



1484 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

3
=> ¢4 / oI - up 03 Osu - D3u
=1

< ’ 1—1 1 1—1 1 14321 1 3—1 3 193,13 3,13
SO N0 VA2 10505 Va1 221103 Osul 22110105 sul 2. |05 ul 2. (| 0205l 2.
=1

< llullzz2 | Val3gs.- (5.13)

Therefore,
Hy <l gs | Vil s (5.14)

Also, by divu = 0 and Sobolev’s imbedding inequality, we have that

3 3
H, :—ZZCg/af.u-aﬁflve-afe

i=1 =1
SIV20ll2(IVPull 121Vl oo + [ V2ull 14 [V VO s + [[Vull L [ V*VO] 2)
< Nl s 161175 - (5.15)

Inserting the estimates of H; and Hj into (5.9) and combining with (5.8), then we get that

t t
(s B)]12s + 2 / 1(Tnt, 0) 2507 < [[(ut0, B0) |25 + C / a0} (Vs 6) 2l
< M(0) + CM(t)?. (5.16)

This means that (5.6) holds and that M(t) < CM(0). Next, we estimate the dissipation
fg |us||32d7. We recall that (ug,) satisfies the equations

Oruz + u - Vug + 03p = Apus + Oes,
00 +u-VO0+60+uz=0.

(5.17)

Taking the L2-inner product with (6, u3), we obtain that
%(usae) +lluslze = —(u- Vuz,0) = (u- VO, uz) — (95p,0) — (Apus, 0) + 0] 22 — (0, us)
= —(95p,0) — (Anus, 0) + [|0]72 — (6, us)
< Slusl + 200135 + 2 | Avusl32 — (B, 0). (5.18)
Since the pressure p satisfies that
Ap = —div(u - Vu) + 930, (5.19)
we get, by Lemma 5.1, that
—(03p, 0) = (O3A 1 div(u - Vu),0) — (02A716,0)
= (u-Vu,3A71V0) — (03A710,6)
< Cllull 2|91l IVl 2|02Vl 121952 V61 2 | 950581 V6 .
+ (103271012 16]] 2
< Ollull |01l [|Vnullarr + (161172
< COllull g [|(Vnu, 0) |7 + [16]72- (5.20)



No.4 S.G. Xu & Z. Tan: STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION 1485

Plugging this into (5.18), using the bound for M (¢) and integrating over the time, we obtain
that

1 t t
(5,0) + / lusZadr < [[(uo, 80) |22 + C / (T, )22l (5.21)

Coupled with M (t) < CM(0) and using the fact that |(us,0)| < 3||(u,0)||%., we have that

t
/ lus||3-dr < CM(0). (5.22)
0

The uniqueness is similar to the 2D case, so we omit it. Thus we have completed the proof of
Theorem 1.3. O
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