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Abstract In this paper, we investigate sufficient and necessary conditions such that gen-
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Lebesgue type spaces. In order to prove the main results, we first give some bidirectional
estimates for several typical integrals.
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1 Introduction

In this paper, we write “E 2 G” (or “E < G”) if there exists a constant ¢ > 0 such that
E > cG (or E < ¢G). We say that F and G are equivalent if “F 2 G” and “E < G”, written as
“F = G”. All logarithmic and power functions take the main branch, that is, log1 =0, 1¥ =1
for real k.

Let B, be the unit ball in C™ (we write as D when n = 1). The class of holomorphic
functions on B,, is denoted by H(B,). Suppose that dv denotes the Lebesgue measure on B,
such that v(B,)=1, and do denotes the measure on the boundary S,, of B,, such that ¢(S,)=1.

For z = (21, - ,2,) and w = (wy,- -+ ,wy) in C", the inner product of z and w is defined by

(z,w) = 21W1 + 29W3 + + -+ + 2, Wn-
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For a > 0, the growth space G,(B,) is the set of all functions f on B,, such that

[ f]la = sup (1 — [2[*)*|f(2)| < occ.

z€B,

For any a € B,,, the Mébius transform of B,, is defined by

“— <T;|zga — VIl (Z _ <Z|{,1¢‘l2>a
1- <Zv a>

and ¢o(z) = —z. It is clear that ¢, has the following properties: ¢,(0) = a, @q(a) = 0 and

) (a #0),

Pa(2) =

0o = ¢, . It follows from Lemma 1.3 in [1] that

T ¢ o L ) R —
1 <90a( )790(1( )> - (1 _ (z,a))(l _ <a,w>) ( ) € Bn) (11)
In particular, if w = z or w = 0, then we have that
_ (A —la)(@ =) _ 1—|af
1- ‘@a(z)ﬁ = 11— (z,a)2 » 1={pa(2),a) = m- (1.2)

Forp>0,s>0,q+n>0,q+s>0,if fis a Lebesgue measurable function on B,, and
N fllp.gs = sup M, 4 s(r, f) < oo, then we say that f € LP%*(B,,), where
0<r<1

A@wﬁjﬁzwpﬂ*ﬂﬂﬂIﬂ%WWbﬂwwaﬁﬂdQ

a€B,

The space L”%°(B,,) is a Banach space under the norm ||.||,4s when p > 1. If 0 < p < 1,

then LP?°(B,,) is a complete metric space under the distance

p(f,9) = I1f =gl
In particular, H?%*(B,,) = L"%°(B,,) (| H(B,,) is called the general Hardy type space. In fact,

the space HP*%*(B,,) comes from some practical applications. For example, in 2010, Stevié¢ and
Ueki [2] proved that the multiplier operator M, is bounded from A% (B,) to H§(B,) if and
only if u € H(B,,) and

p
p,q,s”

_ g(atn+1) g(at+n+1)
sup sup (1—r?)P~ "% /\wwwu—waawrﬁ*wda<m.
0<r<1 a€B, Sn

There are also some similar applications in [3, 4]. Recently, we considered several basic problems
of HP%*(By,) in [5-7]. If ¢ = s = 0, then HP*%*(B,,) is just the Hardy space H?(B,,). Therefore,
HP%5(B,,) is a generalization of the Hardy space. Furthermore, H?'%*(B,,) contains several
classical function spaces (see [5]).
Given r > 0, the Bergman ball with a as the center and r as the radius is the set
1. 1+ |pa(2)|
D(a,r)={z€ B, : f(z,a) <r}, where §(z,a) = -log ————.
2 1 — |pa(2)]
Forp>0,5>0,¢g+n>0,q+s>0and a real number k, we define that LP%5F(B,,) =
{f I fllp.g,s,6 < 00}, where
171 o= s sup (1 =)0
STI,

0<r<1a€B,

p

Je)log" T (1= lealr©)?)*do(e).

For f € L»%%k(B,) and t > 0, the function |f|* is usually not subharmonic on B,,. In
order to discuss the operator problem from LP4**(B,) to LP%*(B,) for 0 < p < 1, we need
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to add a condition. For any t > 0, if f € LP»**(B,) and

FEI < W /DW) |F(w)['dv(w) for all 2 € By, (1.3)
then we say that f € HP%%*(B,) (we say that f € HP%*(B,) when k = 0), and the con-
trol constant in (1.3) relies only on n, ¢ and r. Similarly, if f € G,(B,) and (1.3) is satis-
fied, then we say that f € Ho(B,). For a real number k, let H3 (Bn) = {f : [|fllax <
oo and let f satisfy (1.3)}, where

= sup (1— |z|*)® log" .
1o feuBn( |217)*[f (2)1og pE

For p > 0 and a real number ¢, let

= n If(Z)I”dvt(Z)); < oo} |

where dv;(2) = ¢ (1 — |2]?)!dv(2), or ¢; = % when ¢ > —1, or ¢, =1 when ¢t < —1. Then

LP (B, dv;) = {f IS

D) = {511l = ess sup [£(:)] < o0}
zeEby
For p > 0 and real numbers ¢t and k, let

. Dy _ P v
Llog,k(BTL?dvt) f . ||f‘|p,t,log,k d’Ut(Z) <00 o,

(§
5 () = {151l = e sup 1) 108" = < oo}

2€By,

k¢

n

when ¢ > —1, L*(By, dvy) = L>(B,) and Li;,  (By, dv) = Li, 1 (Bn).
In 1974, Forelli and Rudin [8] introduced the following projection operator:

f(w)
P, = dv, —1).
)= o ) (> -1
They proved that P is a bounded operator from the Lebesgue space LP(B,,) to the Bergman
space AP(B,,) if and only if p(1+7) > 1 for 1 < p < co. In 1979, Kolaski [9] considered P,
from the weighted Lebesgue space L?(B,,,dv,) to the weighted Bergman space A2(B,,), and

proved that P, is a bounded orthogonal projection if and only if 7 = « for a > —1. In 1991,
Zhu [10] studied more general Forelli-Rudin type operators T , and S, as

— |w 2\ 1 w
T8 = (1 ) [ (1= [w]?)" f(w)

B, (1= (zw))n+irtr

dv(w)

and

Sarf(2)=(1— |z\2)>‘/B U= [wl)F W) Gw) (= € By,

. |]_ _ <Z7w>‘n+1+)\+‘r

where A and 7 are two real numbers. In 2006, Kures and Zhu [11] generalized the above two
operators as
(1= [w[*)"f(w)
Ty ef(z)=(01- 2|2 ”\/ — 2 “dv(w
()= =P [ S )
and

S)\,‘r,cf(z) = (1 - |z|2)k/ de(w) (Z e Bn)7

n
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where A, 7 and c are three real numbers. Since Forelli-Rudin type operators are closely related
to a large number of basic problems of function space theory and operator theory, many math-
ematicians are very interested in the boundedness of these operators between various function
spaces. There is a lot of literature discussing the boundedness (see [8-27]). In [1] and [19], Zhu
and Rudin gave the characterizations of the boundedness of P, from LP(B,,dv,) to AL (B,,) for
p > 1and o > —1. In [21] and [22], Zhao et al gave very beautiful results for the boundedness of
Ty 7 and Sy ;. from LP(B,,,dv,) to LY(B,,,dvg) for 1 < p,q < oo and «, 8 > —1. The general
Hardy space HP?*(B,,) is a generalization of the Hardy space HP(B,,). Recently, we discussed
the boundedness of Ty, and Sy, on its extension space LP'?*(B,,) (see [27]). We know that
T\, and Sy ;. is the generalizations of T ; and Sy . This mainly extends n +1+ A+ 7
to ¢, independently of A and 7. Can n + 1 4+ A + 7 be generalized to another form? Or can
the measure (1 — |w|?)"dv(w) be generalized to another form? In this paper, we generalize the
Forelli-Rudin type operators as follows:

Tyraf) = (- PP [ O gt —du(w),

— |w|>)™ f(w e
Sarnf (2) = (1— 22 /B ol Ll i L C R du(w),

1- <Zaw>|n+1+>\+7— |1 - <va>|
_ 2\1T
@)= (=P [ U I ot (),

Rarpef () = (1= |2 / (L |wlP) f(w) | x e

O
B, [L— (2, )T+ %8 T2

dv(w) (z € By),

there A\, 7 and k are three real numbers. These generalized operators are often encountered in
practical applications. In this paper, we first discuss the boundedness of T r x, Sx .k, @rr.k
and Ry .k on L'(B,,dv;) or from LY, x(Bn,dvy) to LP(By, dvy). Furthermore, we investigate
these conditions such that T - %, Sxrk, @rrk and Ry ;i are bounded from Lp’q’s’k(Bn) to

LP%5(B,,) or from HP4*k(B,) to LP9"*(B,,) in some cases. Our main results are the following:

Theorem 1.1 For p > 1, the following conditions are equivalent:
(1) Sxrk is bounded from LngJC(Bn,dvt) to LP (B, dv);

(2) Qx .k is bounded from Lfog,k(Bn’ dvy) to LP(By,, dv);

(3) R is bounded from Ly, ;(By,dvt) to LP(By, dvy);

(4) —pA<t+1<p(r+1) (t>—1whenp=1).

Theorem 1.2 For t > —1, the following conditions are equivalent:

(1) Tr is bounded on L'(B,,dv;);

(2) Si.rk is bounded on L(B,,, dv;);

(3) we have that either (i) —A<t+1<7+4+1landk<0,or (ii) - A<t+1l=7+1
and k < —1.

Theorem 1.3 For ¢t > —1, the following conditions are equivalent:

(1) Qa.rx is bounded on L(B,,dv;);

(2) R+ is bounded on L' (B, duv);

(3) we have that either (i) “A<t+1l<7+4+landk<0,or (ii) - A<t+1l=7+1
and £ < —1.
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Theorem 1.4 (1) If p > 1 and 0 < 2s < n, then Sy . and Ry . are bounded from
Lr@sk(B,) to LP9%(B,,) if and only if —pA < ¢+ s < p(r +1).

(2) If p>1and s > n, then Sy ., and Ry, are bounded from H?%**(B,) to LP%*(B,,)
if and only if —pA < g¢+n <p(r+1).

(3) If 0 < p <1ands >mn, then Sy, and Ry, i are bounded from HPT5F(B) to
Gatn (By) if and only if —pA < g+ n < p(7 + 1).

’ (4) Ifp >0 and s > n, then Q. is a bounded operator from HP%**(B,,) to HP%*(B,,)

if and only if —pA < g¢+n <p(r+1).

In order to prove the above results, we need some key integral estimates. For a point in
B,,, W. Rudin gave the following proposition in [19]:

Proposition A Let ¢t > —1 and c be real. Then the integrals

do(§) / (1 — Jw]?)'dv(w)
)= | —2% _ J(z) =
A= [ G 197 [, T g
have the following asymptotic properties:
(1) I(z) < J(z) <1 when ¢ < 0;
(2) I(z) < J(2) < log 1=f;z when ¢ = 0;
(3) I(2) = J(2) = g=fzpye When ¢ > 0.

In terms of practical applications, these integrals are often encountered (for example, Zhou

and Chen needed the case k = 2 in [28]). We also need some bidirectional estimates of these

integrals in this paper:

1 e k
mw‘éermmmcml—@w do (&),
(1 - |2
Hw) = /B = <Z’w>"|“n+1+5+c log* - 7e|z|2dv(2)

and
k

dv(z) (w € By).

(1 —[2?)° e

P0) = [ e [ T
Here § > —1, and ¢ and k are real numbers.

There is here a natural problem. Do G(w), H(w) and F(w) have bidirectional estimates?
In this paper, we first discuss this problem, and give these bidirectional estimates for all of the
cases in Proposition 3.1. Since k is an abstract real number, the original method of proof used
method in Proposition A makes very difficult to estimate F(w), H(w) and G(w). Therefore,
we need to deal with the three integrals in a completely different way. For two points in B,,,
we also need to estimate the integral

k

! do(€) (w,n € By).

Mw:Aﬁf@wWI—@mT

We give some bidirectional estimates in Proposition 3.2.

] e
o8 1- <€a77>

2 Some Lemmas

In order to prove our main results, we first give several lemmas.
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Lemma 2.1 Let §, ¢, k and k' be real numbers. Then integrals

1 é
(1-r) ke(l—pr)
1 = 1
1(e) /0 (1 —rp)otite o8 L=p @

and

1 5
(1-r) k_© K _©
I = 1 1 d < 1
2(p) /0 (= pr)irore 08 7= loe 74 (0<p<1)

have the following bidirectional estimates:

(1)
logk — 0>-1, ¢<0,
1

o) 0> 1, C>0,

(1-p)

Ii(p) =< { loght! I ,0>—1,¢=0, k>-1

o2

log log ,0>—-1,¢=0, k=-1,
I—p

1, 0>-1,¢=0, k< -1.

(2) Iz(p) < 1 if one of the following conditions is satisfied: (i) ¢ > —1, ¢ < 0; (ii)
6>—17c:0,k+k’<—1; (iii)y 6=-1,¢<0, kK <-1; (iv) 6=-1,¢=0,k+k < —
k< —

(3) 2(p) = = p)c loght* =, when ¢>0and 6 > —1.

(4) IL(p) < = p)r logh+H +1 75, when ¢> 0,6 = -1 and &' < —

(5) I2(p) < log kbk'+1 15, if one of the followmg conditions is satisfied: (i) 6 > —1,¢=0,
E+E >-1; (i) 6——1 c—O E+k >-1,F <

(i) 0 >—-1,¢=0,

—1;
(6) Ix(p) = loglog 1=
kE+k =-1; (ii) 6=-1,¢c=0,k+K =-1,k <—
Proof If there exists a constant 0 < py < 1 such that 0 < p < pg, then these equivalents
are obvious. Therefore, we may let p be sufficiently close to 1.
By changes of variables © = (1 — r)p/(1 — p) and y = 1 + =, we have that

1 1=p LU6 k
Il(P) = (1_p)0p6+1 A (1+x)6+1+c IOg e(l—l—x)dx

! ' / L
= —_— z°dx + ——log” eydy ;.
g [ e [ o

By a change of variables « = (1 —r)p/(1 —rp), we have that

§(1 _ \e—1 ke(l—z)
I(p) = 1 /p S =0 qz
(]. — p)Cp(s+1 0 logfk’ 89;30((11:5))
k e
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If p — 17, then we have the following results:

2(1 P)

v log"t* eydy < 1 when ¢ < 0;

/2(1 ” Yt 1ogk+k’ eydy =< L log]“k/ .

1 (1-p)© 1-p

2(1 ) ’ ’
/ ’ y ' oghth eydy = loghtF 1 ﬁ when k+ k' > —
s _

when ¢ > 0;

2(1 y 2
/ ’ y tog™! eydy = loglog T ¢
) _

2(1 ) ’
/ "y og" ™ eydy =< 1 when k+ k' < —
1

[

1
1og eydy = (1 — p)©log" —°  When ¢< 0;
yt I—p
1
=i | X
/ —7 log” eydy <1 when ¢ > 0;
2 )
1-p
2 ’
/ o log" Sdy = (1 p)* 1 log® —°  When §> —1;
0 Yy L—p
1—p

2 ’ /
/ y~Llog Sdy = log"™* —%— when K < —1.
0 Y L=p

Other cases are implied in the previous results. According to the different cases of §, k&

and k', we can get these corresponding results. This proof is complete. O

Lemma 2.2 ([7]) Forr >0and ¢t >0, let

B do(©) -
I““a‘/sn TGl l-Gay (€5

Then

(1) I,,q <log T—{way] When t 47 =n;

(2) Iye = W when ¢ + 7 > n > max{r,n}.
These results come from Proposition 3.1 in [7].

Lemma 2.3 ([1]) The measures v and o are related by

/Bn f(2)dv(z) = 271/017"2”1d7’ /S f(ré)do(€).

This result comes from [1, Lemma 1.8].

Lemma 2.4 If f € HP%5*(B,,), then

£ 11p.qus. Jog ™ =5
If(2) S ks i 2 for all z € B,.

atn
(L—[z?)7

In particular, HP%5F(B,,) = H., o (Bn) and || f[p,q,s,6 =< HfHﬁTnk when s > n.
T,

Proof For any f € HP%%*(B,) and z € B,, it follows from the proof of Lemma 2.1 in
[29] that D(z,log/2) C HTIZIBTL. By (1.3), Lemma 2.20 in [1], Lemma 2.3, we have that

f(2)log" —= "5 1 /
T—1z2] ~ (1= 22" bz og v3)

p

log® _°
) 0og 1— ‘w|2 dU(w)
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. . / [ Fw)tog" =t | (1= [ip=(w) .
O E e Py e T BT T
1+\z\ _ k
(1—r?)"?log" = .
<[ e L - era - e Ger st far
g [ dr 1/ 11p.q,5.

~

TPyt Sy A-2)2T (1-
This means that HP45F(B,) C "Hﬁn o(Bn) and [[f|laxn 4 S| f[lp,g,s.%-
Moreover, if s > n and f € HqM .(Bn), it follows from Proposition A that

2)q+n .

p

f(ré)log (1= lga(re)[*)*do(€)

sup sup (1 — r2)q/ %
0<r<1a€Bn 5. — |rg]
- (1 —la[*)*do(§) _
< in . SUD Sup 171"25”/ —_ < .
Wil 22, 2 =) o T rgee > Ml
This shows that ’HH,L L (Bn) © HP2k(B) and || f|p.g.sk S ]| atn 4
This proof is complete. O

Lemma 2.5 ([1]) There is a positive integer N such that, for any 0 < » < 1, one can find
a sequence {a*} C B, with B,, = |J D(a*,7), and for each point, z € B,, belongs to at most
k=1

N of the sets D(a¥,4r).

This result comes from Theorem 2.23 in [1].

3 Main Results

We first prove two Propositions.

Proposition 3.1 Let ¢ and k be real numbers, § > —1. Then the integrals

1 e k
G(w):/& Ty |6 T wy| 7
Q- . e

H = 1 d
(w) /B" 11— (2, w)[ntitote 0g 1|22 v(2)

and
k

dv(z) (w € Byp)

log

1—|2[?)°
P = [, T

have the following bidirectional estimates:

1—(z,w)

(1) G(w) < H(w) < F(w) <1 when c<0,0orc=0and k < —1;
(2) G(w) =< H(w) < F(w) < = ﬁU'Q)C log® Tz When ¢ > 0;

(3) G(w) =< H(w) < F(w) < logk+1 —forz When ¢ =0 and k> —1;
(4) G(w) =< H(w) < F(w) < loglogﬁ when ¢ =0 and k = —1.

Proof If there exists a constant 0 < pp < 1 such that 1 — |w|? > pp, then these bidirec-
tional estimates are obvious. Therefore, we let 1 —|w|? be sufficiently close to 0. It follows from
(3.1) in [30] that we may get that

1
G(w)“/snu< o o T ©)
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1 k e < 1
el 198 T=(ewll S T @)+

for all £ € S,, and w € B,,. It follows from the increasing property of the integral mean of the

When ¢ < 0, we may take ¢ < ¢’ < 0 such that

holomorphic function and Proposition A that

do(6)
L= /s 1 (Ewypre -

By a change of variables £ = ¢,,(n), (4.7) in [1], and (1.1)—(1.2), we have that

S L el I
& )“<1—|w|2>c/gn T (w8 1 wp W= T wpe

Next, we consider J(w) for ¢ > 0.

When n = 1, it follows from the rotation invariance of the integral that

T 1 e ell — |wle?] do
J = - 1 —
o= | e T o
_/7T 1 o e €2(1+ |w|? — 2|w| cos §) e
0 (14 |wf? - 2w|cos )= (1= [wf?)? 2k
B O N € e SO o € el L e P8
261 J_1 (14 |w)? — 2Jw|z)*=* (1= |w[?*)?
1
= log" e i /1 (1—z)"2 gt e?(1+ |w|? —222|w\m)d
1= |w| o (1+|w]?—2wlz)=" (1= |wl?)

Without losing generality, we let |w| > 1/2. By a change of variables, p = %,

and we have that

k e
log 2wl

1
e - Pl
J(w) = log* — 4 (1~ Jul)* / : g,
= o (- ale) ™
log" —$or

1
— k € c 1t |w|?
=log" g + (1= ful) 1+/1 T Salp 155 P
2 (1 B 1+|w\2)

k e
1 2|w|p
(§ 1- 2
= log" ——— + (1 — |w|)0/ S ST
1— |w|? 2lwlp \I+5
|w| o (1- 1+‘w|2) 2

It follows from Lemma 2.1 (case I3 for k¥’ = 0) that we can get the estimates of J(w) by
different cases.
When n > 1, it follows from (1.13) in [1] that

o (L—[z)"72,  kell = |w]e]
J(w) = (n 1)/D T wlep— log 1= w2 dA(z).

If ¢ > 0 and k > 0, then it follows from Proposition A that

e[ (-l .o
J(w) < log" dA(2) =< logh —— .
(w) S log 1—|w2/Dl—w|z|n-c () =log” T

If ¢ > 0 and k£ < 0, then we take that 0 < € < ¢. It is easy to obtain that

E_ &% 2\e E__© k €
sup zflog" ——— = max{(l — |w|*)%, log } Slog” ———.
1—|w|<z<l+|w| 1- "LU|2 1- |w| 1- "U}|2
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Therefore, it follows from Proposition A that

- |Z\ k €
J <1 dA = I _
(w) S log 1 — ‘w|2 / TR (z) < log e

On the other hand, we have that

A= 272 et = ule) .
J > 1 dA =1 _—
(“’)N/ 3 T Julafe 98 T 04 =g T

This means that J(w) < log" 7=z When ¢ > 0. Therefore,

]. k e
I
(1= wP)e % T—[w]?

For any 1/2 < p < 1 and any real number k, let z = %. Similar to the previous
calculation, we can obtain that

G(w) =<

when ¢ > 0.

/ﬁ ! o o1~ plule®?| d6
T (9] _
e % T I wr 2n
x10g’“e+/1 ! log" [62(1+PQ|W|2—2pwlr)} dr
Tl " Jo U+ 2l — 2plwl)® (1 [wP)? Vior
zolul_ ook [C0—plwl)® (g 4y

log" —— + 1 /(1_M)2 o8 | WA
=10 — x.

& 1wl T (1= pluf)r Ata)

It is clear that

8

P e2(1 — plu])? o1 — plu)
nlok{ 14 2)| dz = logt &=~
/0 Far0E % |0 qepr T R p—

When k£ > 0, we have that

Therefore,

2p|w|
/<1—p\w\>2 1 log" e?(1 — plwl)? (1+2)| de
A s e E

<1 e — plwl)
< k k
N/; pEE {log T Jup +log"(z+1) pdx
1-— 1-—
gl e )
1— |wl 1— |wl

When k < 0, we have that

2(1 _ plu)? } ¢ e2(1 — plu])?
log" { 14+2)| <log" ————2—.
1 Twpz ) 0= TwP)?
Therefore,

2p|w]|

—plwh? 1 % [62(1 — plw])?
— 1o 14+ x)|dx
/§ x%(l+1’)§ g (1_|w‘2)2 ( )

9

ped—plw) =~ 1 - el —plw)
< log w2 /s —rdz < log" ——F———.
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This means that

g 1 pell = plwle®|do e 1 x e(1 = plwl)
- ! — =<1 I .
/ R P P B oy B 1 | e e v

If ¢ = 0, then it follows from the polar coordinate and the above result that

e ' - P-p e(1 — plw|)

)n—2
1—plw) % 1= [u]

By Lemma 2.1 (case I7), we can get the estimates of J(w) for all of the cases.
Finally, we consider H(w) and F(w).
First, according to the increasing property of the integral mean of the holomorphic function,
it can be obtained that
e
1—r2

1
H(w) > Qn/ e log” dr <1,
0

1
F(w) > 2n/ (1 —r?)odr < 1.
0

When ¢ < 0, and let ¢ < ¢/ < 0 and 0 < ¢ < min{—¢, 0 +1}. By (3.1) in [30] and
Proposition A, we have that

(L—[z)°* _
1< H(w) §/}3 = <z,w)|"+1+5+cdv(2) =1

and
A=P¥ . e
1< F(w) < 1 d
S F(w) /Bn 1 — (2, w)[nH1i+ote og 1= (z,w)] v(2)
(1— 2%
< d = 1.
N /Bn 11— (z, w)|rHi+ote v(2)
When ¢ > 0, by (3.1) in [30], Lemma 2.3 and the estimate of G(w), we have that

1 5
(1-p) E_©
H(w x/ log dp
W= J, T e T

and

1 )
(1-p) k €
Fw) < / log dp.
W= Jy T e 8 T
It follows from Lemma 2.1 (case Iy for k = 0 or k' = 0) that we can get the estimates of

H(w) and F(w) in different cases.
The proof is complete. O

Proposition 3.2 For real number r, ¢, k, let

1
Lyn=
" /Sn |1_<€7w>‘t ‘1_<£7n>‘r

Then we have the following estimates:

k

= | do(&) (w,me B,

log

1 1 k (§]
’ = T—n 0g
N I e T I | B VT
1 & e e

(2) Ly, = log log
T = (w1 = (w,m)] T L= (w, pw ()]
1 k (§

+ log when r >n =1t
(L= =1 = (w,m[* = 1= In|?

(1) L when r>n>t>0;
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1 logk €
(1= [w)* =1 = (w, n)|" 11— (w,m)
1 k €
+ log
(L= )=l = (w,m[t = 1—nf?

Proof Without losing generality, let 1 — |w|?> and |1 — (w,n)| be sufficiently close to 0

(3) Luwny=

when r > n and ¢ > n.

such that they meet the needs of all of the relevant proof processes.

It follows from (3.1) in [30] that

1 & e
L= [, e e e

If ¢t = 0, then it follows from Proposition 3.1 that the result of (1) is true.

In that follows, we let ¢t > 0 and let d(z,u) = [{z — u, 2)| + [{(u — z,u)| (z,u € By,). By [31],
there exists a constant cq > 0 such that d(z,u) < cg{d(z,a) +d(a,u)} (z,u,a € B,).

For w,n € B,,, we consider a partition of S,, and get that

{5esn:d(£,w)§d(;”c’d")}; QQ{EGSn:d(f,n)Sd(w’n)};

2¢cq

—{ees: e < < e
cd

o = {ee s, 0 <ateon) < atew)).
Cd
Then S, = Q1 UQe U Q3 Uy, where Q; and Qi (j # k) are mutually disjoint. By Lemma 3.3
in [31], we have that |1 — (¢, n)| 2 |1 — (w,n)| when £ € Q3 UQg, and |1 — (§,w)| 2 |1 — (w,n)]
when £ € Q5 U Qy.
If r > n, then it follows from Proposition 3.1 that

1 k e
L= 1 d
! / T Ewf =G T=mo®
4o (©)

&)
1 1 b e
S Tl /s TGl % T &
1

k (§]

= . log . 3.1

TP L= (w.l % TP ()

If ¢ > n, then it follows from Proposition A that
1 k €
L, :/ log do (&)
a0, 11— (G w)|* 1= (&l |1 = (& m)
1 e 1

< log* / do(€)

11— (w,n)|" L= (w,m| Js, 1= wl

1
L (3.2)

log .
(1= w21 = (w,m)[" = [1 = (w,n)]
We take r —n < e < r such that 0 < r — e < n. By a change of variables £ = ¢,,((), (4.7)
n [1], (1.1)—(1.2), Lemma 2.2, if ¢ = n, then we have that

Ly < log d
2~ 1 — (w,n)| 1<w,7y|/n w) |1 = (€, )| < a(§)
= L g ¢ / do(¢)
1= (o m) ™ = fw,m] s, 11— (G w1 = {C wp] =9
1 T o (3.3)

log I

1= (w,m]" —(w,m| - <w,<ﬂw(77)>\'
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When t < n < r, we take that r —n < e <t +r —n. It follows from Lemma 2.2 that

1 d
L2 g logk e / to'(g) -
1= (w,ml 7 1= (wn)| Js, 1= (&)1 = (&n)|~*
1 k e
= log .
1= (w,m[Fr=r = 1= (w, )]
By (3.1)—(3.4), these “ <7 parts are true. However, we need to notice that
1 k (§] 1 k (§
log < Iy .
1= (w,m|t+r=m = L= (w,m)| ™ (1= n?)"=" |1 = (w,n) 1—nf?
It follows form Lemma 2.2 in [30] that “ = ” parts of (1) and (3) are true. It remains to

(3.4)

‘tlo

prove the “ 27 part of (2).

Let |w| > 1/2 and |, (n)| > 1/2. By the unitary invariance of integral on S,, we may let
ow(®) = (lew(n)],0,0,--+,0) and w = (A1, A2, 0, -+ ,0), where Ay > 0 and |A\{|> + A3 = |w|?
(a similar treatment can be found in [32]). Let Q = {u € B, : 2|1 — {Jow(n)|u, \1e1)| >

11— (o (M) |, 0 () [}-
When u € Q2 and k£ > 0, we have that

( 1 = (lpw (m)|u, Arer)| )T_"lo k e[t = (lpw(m)|u, Adre)|
1= {lpw (m)|u; oo ()] 1= {w, M1 = (ew()u, puw(n))|

1 k € k €
> log < log" ——F. (3.5)
2r=n 7 21 = (w, )| 1= (w,n)
When v € Q and k <0, let M = sup o log % We have that
0<z<2
< 11— (pw(n)|u, Arer)| >T_nlo K e[l — (low(n)lu, Arer)|
1= (lpw (M) |1, oo (1)) 1= (w, M1 = (lew(m)u, w(n))|
k
11— <<pw(n)u,sow(n)>|) - e
> log —F—— + M
{( 11— ([ow(m)]u, Adre1)] 2[1 = (w, )|
2
r—n e k e
><¢2-F log m———— + M} = log" ——. (3.6)

For any 0 < p < 1, we consider the function
{1 = (Apz + Aoy/1 — p2ei?)}r 2 log" e{l — (A\1pz + Aay/1 — p2e¥)}
(1= lew(n)lpz)" (1= (w,m)(A = lew(n)lp2)

Then f is an analytical function on D. It follows from the increasing of integral mean of analytic

f(2)

function that

[ 1o > [ iGeumienias.

—T —T

By the polar coordinate formula, we may get that

/ {1 = (G + X1 —[¢[2e?)} 2 log" e{l — (MG + Ao/1 = [¢1[2e)} d
D (1= lew(mIC)" (1= (w,m) (1 = lpw(n)|C1)
2,

{1 — (Milow(®)[C1 + Aay/1T —[C1[2e?)} 72
X log

(1= lew(m[*¢G)"

ke{l — (Alow ()¢ + Aay/1T — [ [26)}
(1= {w,m) (1 = |pw(n)|*C1)

dv(¢y). (3.7)
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(i) Whenn =1,let w =\ = |wle!® and T = {0 € [-7, 7] : e’ € Q}. After calculation,
we have that Q = {z € D : |z — 29| > R}, where

Alwlel® — |pw ()] _ 2y = 2[w[[pw(n)] cos a + [pu(n)[?
(4lw]? = w1 lpw ()]’ (4lw]* = low (M) *) lpw ()]

For any 0 < x < 1, we may obtain that

zZo0 =

A1 = Jpu (mlwle™z[* — (1 = |pu(n)P2)®
> (3 = 2lwllpw(lr — lw ) P2){(Jw] = lpwm))? + 1 = [wz} > 0.

This means that the interval on the real axis is [0,1] C Q. Therefore, we have at least one of
thesets {z:z2€ Dand 0 <argz < 7/2} or {z:2 € D and —7/2 < argz < 0}, included in Q.
We may let {z: 2z € D and 0 < argz < m/2} C Q. This shows that [0, 3] C 7. By a change
of variables £ = ¢,,((), (4.7) in [1], (1.1)-(1.2), increasing the integral mean of the analytic
function, and (3.5)—(3.6), we have that

L

1 (1= (¢ w))" " log" i = tebatan)
w,n — Ll do
"= T . oty ©

1 (1= (w6 )" log" iy satan)
v | 45
> T . - <|saw< TCpum)) ©

> 1 log e /
[T = (w,m|" |1—<w777| |1—|90w |26‘9\
—{

1 log e
T = (w,m| w,n)| Jo |1—|<pw )[2ei?|
1 k (§]
= log log
|1 — (w,n)|" 11— (w,n)| 1—|90w(77)|2
1 e e
P log" log .
11— (w,m)|" 1= (w,m)| 71— (w, puw(n))|

(i) When n = 2, by increasing the integral mean of the analytic function, Lemma 1.10 in
[1], (3.5)—(3.7), we have that

1 (1= (¢ w)" " log" o tesay
v | 4
1wl / T Copa)) o(©)

/ {1 — (NG + Ao /1 =[G Pel?) )2
|1_ w 77 2 1_|<Pw(77)|<1)r

pe{l — (G + )\Qmele)}

O T - Tewie)
> ;/ 1/ ‘{1 — Mlew )G+ Aa/1 = [(1]2e?) )2
T 1= (w,m)|" Jp 27 1 — w2
kel = Qulew(IG + Aoy T - G2} o0

(= (T Tpu 0P [d0dv(¢)

+— (1= pw ()3TC1)
>/ 1= lpuMINGI™ ) (T (MPC)
~Jp

1= {w,m["[L = lpwm)PC]"

Ly =

x log

dv(¢r)
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9\1—|50w(71)|)\1ﬂe |

P _ i6 2
/ / |1 = lipw(m)[Arpe |2 log" bt = 464,
\1—<w ML — [pw(n )|20919|T

log // dodp
|1*<’w ml |1*<w777| |1*\<Pw )[2pei®|?

> 1 log e /
1= (w,m)|" |1—<wﬂ7 | 1—|90w )2
k

1
= log log
1= (w,m]" |1—<w777>| 1—|<Pw(?7)|2
(iii) When n > 2, by Lemmas 1.8-1.9 in [1], increasing the integral mean of the analytic
function, (3.5)-(3.6), Lemma 2.1 (case I3 for k = k' = 0), we have that

1—(¢w))

1 (1= (G w) " log" it
Lo, = ’ 2wl | g
= T s T Cpnlm)" ol

_ (n—l)(n—Q)/ (1= Jua | = Jug*)" 3
[ur[2+]uz|2<1

2 1= (w,n)|"
(1 — )\71’&1 )\2'&2)7‘7” o k e(l — )\71’&1 — )\2’&2)
1= Tpumlu)™ % A= (w, )1~ [pu(m)ur)

_ (D=2 VISIE (1 — P — )
B I T {w )

e(l1— —Aui— )\gpe')

17 |1 = Xuy — Aapel?) " logh 50 u
y 7/ 1U1 2 ( < 77))(1 |‘Pw(77)| 1) de dpdv(ul)
- (= Tpullua)

>(n-1) n*2// Vi p(1 = [ur|* = p*)" 73
- [T — (w,m)|"

(17)\1u1)“”10g — e(1-Xu1) —
( < n))(l |W11r(n)| 1) dpd/U( )

(1 = [epw(m)fur)”

_ n 2 1=\ r—mn 1_)\7
/ \u1| 1= Ayu " Jog" e| 1u1| dv(uy)
11— (w,m["1 = |pw(n)|ui] 11— (w,m[|1 = |¢wn)|u]

dv(uy,us)

X

X

. 1N i0)r—n 105k _ el1=Xiplow(n)|e”]
>/ (1—p)2 / 1 — Aaplpw ()€ log =G I e (0P g0
o 11— (w,nl" 11— [w(n)]?pe|"

~

> 1 log e / / ]__ n 2 dedp
~ = (w, )| |1_<w,n | ‘1_‘<pw(n)‘2pei9|n

_ 1 log e / Pt dp
1= Cw,m)” wyn| Jo (1= Iww mEp)rt
= ! log® °
= (ol = ()] 1*|<Pw(77)|2
Therefore, the “ > 7 part of (2) is true. The proof is complete. O

Next, we consider the boundedness of the generalized Forelli-Rudin type operators from
Lfog w(Bn,dvy) to LP(By,, dvy).

The proof of Theorem 1.1 (1) = (4)

We choose « such that pa+t> -1, 7+ a > —1 and a > A
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Take that f(z) = (1 — |2]?)* (2 € By). Then

p
P — d — 1— 2pa+tl pk €
91 v = we) = e [ (= Py =

This means that f € L

f(z)log"

_°
1— 22

log,kx (Bn,dvt). It follows from Proposition 3.1 that

(1 11232 (1*\w|2)7+a k €
Surif(2) = (=2 [ e bt et

=(1-12)* (z€B,).

The boundedness of Sy ;j from Llog i (Bn,dvy) to LP(By,dv;) means that the function
(1 —|2|*)* belongs to LP(B,,,dv,). Therefore, we get that pA +t > —1.
Furthermore, it follows from Sy - : Llog w(Bn,dvy) = LP(B,,,dv;) that

(Bp,dv))* = L

log, —k(Bn’ dvt)’

S5kt (L(Baydvy))* = LV (B, dvy) — (LD,

where 1/p+ 1/p/ =1 By <f7 S/\,T,kg> = <S;<\,7—7k;f7 g> (f € Lp/(BTHdUt) g€ Llog k(Bn7dvt))a we
may get the conjugate operator

— 2| (2 e
Siadt) = (1= oy [ AT o do(z) (e By).

1—(w, z) [P AT 11— (w,2)|

When p > 1, if we choose 8 > max{—(1+t)/p’, =1 —\—t, 7—t}, then g(z) = (1—|z|?)? €
L (B,,,dv,). Tt follows from Proposition 3.1 that

n

B 1 — |w[2) B+t o
q* =(1— 2\T t/ ( 1 k d
Arkd(2) = (1= [2[7) . TT— (2, w)| oI 0g 7= (2, w)] v(w)

=1~z (2 € By).

The boundedness of SA -k from L? (B, dv;) to L10g _;(Bn,dv;) means that the function
(1—12]?)""* belongs to Llog _(Bp,dv;) . This implies that t +1 < p(7+1), or t+1 =p(7+1)
and k> 1/p’.

Ift+1=p(r+1)and k> 1/p’, then we take that

14t S P e
h(z) = (1—|2)" 7 log~ "% P (2 € By).

Then h € LPI(Bn,dvt) This means that S5 h € Llog _1(Bn,dvg). On the other hand, the
conditions —pA < t+1 =p(7 + 1) mean that A+74+1>0and A+t — (1+¢)/p' > —1. By
Proposition 3.1, k> 1/p’ and Lemma 2.1 (case Iy for k' = —1 — 1/p’), we get that

k

14t e
ke (1 — w5 log” =y

S5 ph(z) = (1 |22 % / 0y ()
v B 11— <z,w>|n+1+)‘+7 1og1+ﬁ 71_“’1”'2

1+t
(L-p) k__© -1-% €
log log ¥ ——dp
/ (L= plz)tH2+7 72 1 —plz| 1—p
1 e
1—|z[*

=< (1= 21)”

= (1= |2%) " log"~

This shows that

J.

p/
1
S - xh(2) log~* duvy(z) < /B log™! T _e|z|2dv(z) = o0.

1=

(§]
1—[z[?
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This contradiction means that the cases t +1 = p(7 4+ 1) and k > 1/p’ are impossible.

When p = 1, it follows from Proposition 3.1 that

(1 — [w[)**

Sy opl=(1— |z T—t/ logh ———d
Akl =1 —12%) . L (7 wy [ iATr og 1= (z,w)] v(w)
logh ——— t
log’“rl ¢ T=tand k> —1,

1—[z[*’
62
loglog 1—7lz|2’ T=tand k = 71,

X

L,
(1—1]z)™t 1<t

T=tand k< —1,

It is clear that there must be 7 >t when S5 ;1 € Ly, ;. (Bn).
Therefore, we obtain that —p\ <t+1 < p(r+1) for all p > 1.
2) = (¢4
This proof is easier than the proof of (1) = (4). Notice that
. linTft 1_Z2A+t P
Q3 7 f(w) = ( [wl’) /B ( ( 127" (2) dv(z) (w € By).

logfkt e 1 _ <w7 Z>)n+l+>\+7

1—=|w[?

We omit the proof process.
4) = (1)

When p = 1, the conditions -\ <t+1 < 7+ 1 mean that A+t > —1 and 7 —t > 0. By

Fubini’s Theorem and Proposition 3.1, we have that

[[SxrnfllLe < / Sxr il fl(z)dv(2)

n

1 — |2t logh e
— /B [F)](1 — w])” { /B ; ( 1|_| <)Z,w>|il'i;iiw>' dv(z)} dv(w)

n

€
< [ 1 w)ltog" ) = 1l s

When p > 1, let 1/p+1/p’ = 1. If —pA < t+ 1 < p(r + 1), then we may choose

A+ 7—pA <7 <p(r+1)—1such that
(T—Tl)p’>—1, (n+1+/\+7)—<7—ﬁ)p'—n—1>0.
p p

For any f € Lﬁ)g, (Bn,duv), Hélder’s inequality and Proposition A show that

w3 »
{Sxrrl 1)} < (1 =[P {/B |1(1_ <l,w>)n+1+)\+‘r d“(w)}
P — o)™ e
«f log dv(w)

o 1= (z )t aAET 1= (z,w)|

| F()[P(1 = [w]?)™ log"* r—Erdv(w)

=@ -fppee f
B

1= (2, w)[rH1HAT

n

(3.8)
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If —pA <t+ 1< p(r+1), then we may also choose t < 71 <t+ A+ 7+ 1. By (3.8) and
Proposition 3.1(2), we have that

1S5rafllf < [ (SnralfI()Pdus)
By
(1 _ |Z|2)/\+7771+t logpk — ez _
S { fo, dv<z>} dv(w)

(§
< [ 1P log™ Tsdun(w) = 171 g

n

This shows that Sy, is bounded from Lﬁ)&k(Bn7 dvy) to LP (B, dv;) for all p > 1.
Similarly, we may prove that (4) = (3).

(3) = )

Let Ry, be a bounded operator from LY  (B,,dv;) to LP(B,,dv;). For any f €

log,k
(Bn,dv), we have that |[Rx 7k f[lp,t < |[Rx7kll-|[f]]p.t10g,k- Therefore,
Qx5 flpt < |[Bxrxl f1]

This means that @ - is a bounded operator from Lfog,k(BTH dv;) to LP(B,,, dv;).

This proof is complete. O

The proof of Theorem 1.2 (1) = (3)

When o+t > —1 and 7+ o > —1, we have that f(z) = (1 — |2]?)* € LY(B,,dv;). The
symmetry of B,, shows that

p
Llog,k

pt < Bkl p, 1086 = ([ Bkl ||| Fllp,t 1085

— |w 2\ T+«
Tarsf(e) = (0 =1 /Bn (1 —(1<z,1|u>|)”)+1“” log’ 1- (ez,w> o)
U D A
Cr4a

The boundedness of Ty, on L'(B,,dv;) means that the function (1 — |z|?>)* belongs to
LY(B,,dv;). Thus, we get that A +¢ > —1. It is easy to calculate that the conjugate op-
erator of Ty ;. on L' (B, dv;) is

— |w]2) M f(w e
Tioad() = (= Py [ B ot do(w) (=€ B,).

1—(z,w)
It follows from T ;1= L (12?7t € L>(B,,) that 7 > t.

Cx+t

For any z € B,,, we take that

(w) _ (1 — <Zaw>)n+1+>\+7
T = G

k e —k e
] -
= (w) % 1= (zw)

Then g, € L>(By) and [|g||cc < 1. This means that ||T}  ;9:llcc S [|ITX ;x| It follows from
Proposition 3.1 that

log (w € By).

NTx -l 2 sup |TX ;- rg-(w)| = [T5 ; 92(2)]
weDB,

L[ OO e ot ey
‘1 _ <Z71U>|an14-A-PT

for all z € B, if and only if 7 >t and k <0,or 7=1¢ and k< —1.
B) = (2
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When —A <t+1, we have that A+t > —1. Let 7 >tand kK <0,or7=1%¢ and k < —1.
For any f € L'(B,,dv,), it follows from Proposition 3.1 that

Samiefllie < / Sar il £1(2)(1 — [2?)do(2)

n

i QPP e
/Bna wf?)7 | ( >|{/B e oo |1_<z,w>d<>}d<>

n

< /B L)) = 171

2) = 1)

This proof is the same as that of Theorem 1.1. O
The proof of Theorem 1.3 (1) = (3)

This proof of A +¢ > —1 is the same as that of Theorem 1.2. It is easy to calculate that

the conjugate operator of Qy .x on L*(B,,dv;) is

e — |w|H)M f(w
Qi f(2) = (1~ 2Py log* /B (“ W) gy (2 € By).

1—|2]? 1 — (z,w))nH1+A+7
For any z € B,,, we take that

(1 = (2, w))"HiIFA+T

g:(w) = 11— (2, w)[Pritrsr (w € By).

Then g, € L°(B,,) and [|g;||cc = 1. It follows from Proposition A that

(1 )M~ [22)7 dog =

1= (o, wy e ()

Q5 il 2 1@ 00 (2)] = /

forall z€ B, ifand only if 7 >tand £<0,or 7=t and k < —1.

3) = (2

When —\ < t+ 1, we have that A\+¢ > —1. Let 7 >tand k<0,or 7=1¢ and k< —1.
For any f € L'(B,,dv,), it follows from Proposition A that

n

1Bsraflle S [ Racal G~ o) do(e)

n

e _p[2)M
= [ a-wrrisnes " { [ g e e

BTI,

< / | (w)[dvy(w) = || ]l

n

2) = (1)

This proof is the same as that of Theorem 1.1. This proof is complete. O

Finally, we consider the boundedness of the generalized Forelli-Rudin type operators from
LP%5F(B,) to LP%%(B,,).

Proposition 3.3 (1) Whenp >1and 0 <2s <n, if —pA < g+s <p(r+1), then T) r 1
(Qx.rx) and Sy, x (Rx,x) are bounded from LP%%%(B,) to LP%*(B,,).

(2) Whenp>landn <2s<2n,if -pA<qg+s<qg+n<p(r+1)and A\+7+1>
(n—s)sgn{max(p—1,0)}, then Ty 1 (Qx+x) and S 7 (R k) are bounded from HP45*(B,,)
to LP?%(B,,), where sgn is the symbol function.
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(3) WhenO0<p<land0<s<n,if -pA<g+s<qg+n<p(r+1+n)—n,then Ty,
(Qx.rx) and Sy - (Rx-x) are bounded from HP%5*(B,,) to LP%*(B,,).

(4) When p > 0and s > n, if —pA < ¢+ n < p(t+ 1), then Th r  (Qr k) and Sx rx
(Rx.rx) are bounded from HP%%*(B,) to Q%(Bn).

Proof For any f € LP%*k(B,) or f € HP*k(B,), we only need to discuss the bound-
edness of Sy ;x| f|.

(1) Casep=1.
For any 0 < p <1 and a € B,,, it follows from Lemma 2.3 that
(1 — Jul®)7|f (u)] ke
1 d
= AR B T

Pl -y e |f (t)[do(€)
2n/0 2t2 T 08 T {/S 1— p2(a, t€)? } @

n

1 2n— 1 2\T s
t —t ) g k e _k e
=2 1 1
n/o 1_ 2t2 1+,\+r(1 _ 4|a| E SGA T TE R R )

X {(1 — ) f(#€) log" —1 e |- |sapza<t§>|2>5da<§>} dt
1 —g—
||f||1, ,s,k(l_t)T i k€ -k ©
S ) e e i o o T (39)

The conditions —A < ¢+ s < 7+ 1 show that r—¢—s > -1, A\ +7+1+4+n > n and
g+ s+ A > 0. For any a € B,,, by Fubini’s theorem, Proposition 3.2(1), (3.9) and Lemma 2.1
(case I for k' = —k), we have that

(PE)(1 — [ (p€) 2)*do (€)
B I (u)] (1= P2 (1 = |af*)* log" r=eyrdo(€)
- /B (1= Jul?)~ {/s = (e P — gz [ <

1— 2\q+s+A 1— 2\s 1— 2\T
o i (S e T S
B, 11— (pa, pu)*(1 = p?|uf?)1+A+7 1—p?fuf?

1 — p)rtstA(1 — |a]?)® La—t)r—as e e
< ( p()l _p4|(a2)s| ‘ ) Hf“l,q,sk/ ((1 —pt))1+>\+7' logk T IOg_k : _tdt
S A1 1g,s,k-
Case p > 1.

It follows from —pA < g+ s < p(7 + 1) that we may choose max{A+ 7 —p\, ¢+s—1} <
7 <min{p(r+1)—1, A+7+qg+s}tsuchthat \+7—pA<n <p(r+1)—1,14+X+7>0,
m—gq—s>—-land (1+AX+7)— (11 —¢—s)—1>0. By (3.8), Proposition 3.2(1), Lemma
2.3 and Lemma 2.1 (the case I for k¥’ = —pk), we have that

(1 p)e /S (Sx il 10O (1 = lpa(pE)2)*do (€)

n

(1= )T (1 [af2)* log™ [ do(€)
— |w|?)™ P [1—(&,pw)]
S /Bn(l [w])™ [ f (w)] (/ [T — (&, pw)|P T[T — (€, pa)|?* > dv(w)

n

/ (1 — p2)atstAT=71(1 — |a|2)5(1 — |w[>)™ | f(w)|? logP* e
. (= Pl T = fu, el

lol” do(w)

~
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; — ; —q— k
=PI g (2= p?)TE2 77 (1 — [a]?)® /1 (1 — )" =95 logPk e
~ 0

1—pt
dt
(1 —p*lal?)® (1 — pt)tH+23+7 logPk T

S qsne

This means that T  and Sy - are bounded from LP9%k(B,) to LP9*(B,,).

Similarly, we may prove that Q , and Ry . x are two bounded operators from LP4:%*(B,))
to LP?5(By,).

(2) When 2s =n and p = 1, it follows from —A < ¢+ s < ¢+ n < 7+ 1 that we choose
0 <e<min{l,s,14+ X+ 7,A+ ¢+ n}. By Proposition 3.2(2), Lemma 2.3,

e esfl
sup logf = ,
0<z<1 €
Lemma 2.3, Proposition 3.1 and Lemma 2.1 (case I for k¥’ = —k), we have that

j (PE)(1 = [@a(p)?)do (€)

L[ =T ) - eI )] e

o B e i e e R e
/ (1 [al?)" (L~ ful?)7 LS ) V8" [y e
e (L= ) ML {pu, pa) [T T (pa, g (pu))]

(1- \a|2)s—8|f( (1 — |u\2)Tlog m
(1_p ) q—s— )\|1_<pu pa>|n+1+)\+€— Z_ d’U( )

do(u)

Sl + [
Hf”l,q,s k(1_|a‘ ) (1 _|U| )T nlog ﬁ
<1l / IS TR

(1= )= L= (u p2a) 7= log

n 1— |u\2

ol g

R L L o (e v =
= Lg.s.k (1 — p2)=1=5=A(1 — tp?|a]) A+ log" &

(1 JaP) = (1= )7l g
<M+ = e S Wl

When 2s > n and p = 1, it follows from - A <g+s<g+n<7+1that 1 —qg—s> —1,
g+s+A>0,7T—qg—n>—1and ¢+n+ A > 0 hold. By Fubini’s theorem, Proposition 3.2(3),
Lemmas 2.3-2.4, Proposition 3.1 and Lemma 2.1 (case I for k¥’ = —k), we get that

1=y [ (01— ealp€))* do(€)

Sn
[ WA e (- )] e
B e v (e e S T

+/ (L= — fa?)* (A = [u®)T[f ()], & e
B

log du(u)
1= (pa, pu) "7 (1 — plaf?)2e 7 11— (u, p?a)|

S T—q—n k? €
S g0k / 111,56 (1 = p2)TF 43 (1 = [uf2) 97" log" r—parrdu(u)
(1= al?)=*[1 = (pa, pu) "+ -7 (1 — p2[a]?)2 " logh 5

n

Wi+ [ 1 11— )TN (1 — )70 logh gt
= 1,q,s,k s—n s T k _e
(1= p?[af?)?7 (1 — [af?)75(1 = p*t|a])F 7 log” 155

1/ 1l1gs. (1= )2 (1 — Jal?)®

-~ Hf||11qa'5~,k + (1 — )25 n( —p |a|) gtntAr ~ Hf“l,qsk
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This means that T ;. and S . are bounded from HY%*(B,,) to LY%*(B,,).

Case p > 1.

The conditions —pA < g+ s < g+n < p(r+1)and A+ 7+ 1 > n — s show that we
may choose max{A +7 —pA, ¢+n—1} <7 <min{p(tr +1) =1, A+ 7+ g+ s} such that
Ad+7-pA<7m <plr+1l)—land - A+7—-—7) <qg+s<qg+n <7 +1 By (3.8)
and the previous proof process for p = 1, we can get that T ; ; and S ;; are bounded from
HP@5F(B) to LP9*(B,). We omit the details of the process.

Similarly, we may prove that Q5 - x and Ry ;i are two bounded operators from HP 3R (B,,)
to LP?35(By,).

(3) Let p(tr+n+1)—n—1=7"and 0 < r < 1. By (1.3), Lemma 2.20 and (2.20) in [1],
and Lemma 2.5, we have that

p
1*|w| )Tf w)|log < >|dv( w)
[SrmilfI(2)}F < /
Z D) SRR e
‘aj‘ )T+n+1 log e p
<lu- [—(zah)]
S L ; T, e 1fw)
> ( |aj| )P p(rtntl) IOng%
< (1 — |z|2)P> [1—(z,a7)]| p
SU-EOP Y o e e ()

j=1
(11— o) log"™

< (1 - |2y R O
j; |1 _ <Z,aj>|n+l+p)\+‘r ) (w,r)

weD(al,r)

%) (1 _ |aj|2)7" 1ngk - e .
< (1 — [2]2)PA 4 [1—(z,a7)] / Pq
<O BR[| )

j=1
[e%s) 2\7’
Sa-lpey [ (L T A0 8" et g,
~ = JD(ai an) 1 — (z,u)|nHitpAtr’
L ) ()P e
< . 2\pA ( prk . .
<NO=BPP [ G e o e (60

The conditions —pA < ¢g+s < ¢+n < p(7+1+n)—n mean that —p\ < ¢+s < g+n < 7/+1.
By (3.10) and the previous proof process for p = 1, we can get that T, and Sy r j are bounded
from HP-4%k(B,,) to LP%*(B,,).

Similarly, we may prove that Q) - x and Ry ; i are two bounded operators from HP 5k (B,,)
to LP?35(By,).

(4) If s > n, then it follows from Lemma 2.4 that HP%*(B,) = ?,L’k(Bn). When
—pA < ¢+ n < p(r + 1), by Lemma 2.4, Proposition 3.1 and Lemma 2.1p(the case Iy for
k' = —k), we have that

S5l flllaze = sup (1 = [£1) 5 Sl 11(2)

z€B,
(1 Juf?) 5" log* =t ()

[1— (z,w)|rtitAr+r log"

A

q+n
1l sp (1= <) +A/

= Hf”‘”T",k = T)\,fr,kfv S)\,T,kf € gq*T"(Bn)

n 1— |w‘2
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Similarly, we may prove that Qx - f, Rarrf € gﬁTn (By). The proof is complete. O

Next, we consider the necessary conditions.

Proposition 3.4 (1) If Sy ;4 (R &) is a bounded operator from L%k (B, ) to LP»%*(B,,),
then —pA < ¢+ min(s,n) < p(t + 1).

(2) If Ty, x is a bounded operator from LP:%5*(B,,) to LP%*(B,,), then (i) —pA < q+s <
p(t+1),or =pA<qg+s=p(r+1)and ¥k >1when 0 <s<mn; (ii) —pA<qg+n<p(r+1),
or —pA < g+n=p(r+1)and k > 1 when s > n.

(3) If Qx.r.k is a bounded operator from LP%**(B,) to LP%*(B,,), then (i) —p\ < q+s <
p(t+1) when 0 <s<n; (ii) —pA<qg+n<p(r+1) when s >n.

Proof (1) Let f(z) = (1 —|2]?)*log™* 7=z 1t follows from Proposition A that

(1= p)r 41— [af2)
fI[2, « = sup sup/ do(§) < oo
Moaer = 20 20 o R—twogrr

if and only if ¢ + min(s,n) + pa > 0. In particular,

_ g+min(s,n) —k e

fz) =1 —12%) r log -2 € LM (By,).

If Sy, is bounded from LP*%*k(B,) to LP9*(B,,), then we may take that 2o € {z € C" :
|z| < 1/2} such that
_ g+min(s,n) _k e

- 2\T—+—F——7+——
0> 1S o)l < [ (1= iy gt s

n

dv(w).

This means that 7 — %’T(S’”) >—1,or7— %ﬁ‘(s’") =—1land k> 1.

On the other hand, it is clear that Sy, rf(2) = (1 — |z[)*. Tt follows from Sy, .f €
LP%%(B,,) that we have that ¢ + min(s,n) + pA > 0. This shows that —pA < ¢ + min(s,n) <
p(r+ 1), or —pA < g+ min(s,n) =p(r +1) and k > 1.

Let z € B,,. When 1+ A+ 7 > 0, by Lemma 2.3, Proposition 3.1 and Lemma 2.1 (case I»
for k' = —k), we have that

g+min(s,n) k
1 Juf2) 5 log
S . —(1— 2 )\/ (

A, ,kf(Z) ( ‘Z| ) B, |1 - (z,w)\"““‘*f

e
[1—(z,w)

l do(w)

loglC

(S
1—Jw]?
+min(s,n)
R
=(1- \z|2)’\/ - 1=plz] dp =< g(z), where
o (I—plz)+ 7 log" =

(1- ‘Z|2)_q+mi;(svn) 7 a4 + min(s, n)
p

B 9\ atmin(s.n) e g + min(s,n)

(1- ‘z|2)7<1+mi;l(s,n) log 1 e| 7 a4 + min(s, n)
— |z

<T+1,

=74+ 1and k> 1,

<T+1.

If Sy 7 & is a bounded operator from LP95k(B,) to LP9*(B,,), then we have that Sxrif €
Lr%35(B,) & g € LP?°(B,). By calculation, g belongs to L??°(B,,) if and only if —pA <
g +min(s,n) < p(r +1).
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If 14+ X+ 7 =0, then there must be —pA = ¢ + min(s,n) = p(r + 1) and k¥ > 1. By
Proposition 3.1 and Lemma 2.1 (case Is for &’ = —k and § = —1), we have that

1— w1 1og o
Sxarrf(z)=(1- |z|2)’\/B |(1 — <|z |w)>|n - T=Gw)l < |d (w)

1 —
= (1— 122 (1—P)1lok+1 e
E o 2
0 -

d
log 1 —plz| g
e
= (1 — |Z|2))\ 10g2 m = h(Z)

It is easy to prove that h does not belong to LP9%(B,,).
Similarly, it is easier to prove that —pA < ¢+ min(s,n) < p(r+1) when Ry, is bounded
from LP%5*(B,) to LP%%(B, )

q+m|n(5‘ n) —k

(2) We have proven that f(z) = (1—|z]?)” log™" =z € LM+ *(Bp). I Ty 7 i is
bounded from LP:%**(B,) to LP ?5(B,,), then we have that T,\mkf( ) < oo. This shows that
T— 7q+m1;(s’n) >—1,0r 17— 7q+m1;(8 ) — _1and k> 1.

This symmetry of B,, shows that there exists a constant ¢ such that

[wl) =G ()
<Z, w>)n+1+)\+‘r logk ﬁ

g+min(s,n) k
- log

Thrif(z)=(1- \Z|2)A/ ((11_

n

gtmin(s,n) —1,0r 7 — 7‘”’“?(5’") =—land k> 1.

=¢(1 —|z/*)* when 7 —

If Ty - is a bounded operator from LP%5%(B,) to LP%*(B,,), then Trrrf € LP9%(B,,).

This means that —pA < ¢+ min(s,n) < p(r + 1), or —pA < ¢+ min(s,n) =p(r+1) and k > 1.
For any z € B,, and A with ¢ + min(s,n) + pA > 0, we take that

(1= [w)M1 = (z,w))" AT log 15— |*
F,(w) = - - twe) log ™" % (w € By).

11— (w, z)[PH14A+7 log kfm 1 —|wl

By |F.(w)] = (1 — |w|[*)*log™" T—fpz> We have that F, € Lrsk(B,) and ||Fy|pgsk =< 1.

If Txrr is bounded from LP%5F(B,) to LP%*(B,), then Tyril, € HP?5(B,). In fact,

Trr i Fo(w) = (1 — |w*)*g.(w) (w € By,), where g, € H(B,). By the boundedness of T\ . x

from LP%5*(B,,) to LP%*(B,) and Lemma 2.3, we have that

q+n

T3kl 2 D0 ol e pyg,sde 2 1T ri Fellpigs 2 (1= 12%) 7 [(Ta 7 ) (2)]

pon (1= [wl) ™ og" =&y
= (1— |22 5 =LAl dy(w).
(w, z)[rH1+A+T Togh

_|w|2
This implies that A+7 > —1, or A\+7 = —1 and k£ > 1. When A+ 7 > —1, it follows from
Proposition 3.1 and Lemma 2.1 (case I> for &' = —k) that

(1=

for all z € B,,. Therefore, there must be ¢ +n + pA > 0.
When A+ 7 = —1 and k > 1, it follows from Proposition 3.1 and Lemma 2.1 (the case I»
for ¥ = —k and 6 = —1) that

q+n

e
+A log W STl

k+1

(1 [w*)~ log" =ty llog—l\zlp “log? &
dv(w) < dp log? 5 -
B, 1= (w,z)|"log" Tl o (1-p) L=l

n
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This shows that

atn 5 2 e
(1= =) " log S S Tx kel

for all z € B,,. Therefore, there must be g +n + pA > 0.
(3) For f(z) = (1— |Z|2)_q+m‘;(s’n) log™* T € LP%5F(B,), we take that zg € {z € C™ :
|z| < 1/2} such that

_ a+min(s.n)
00 > [Qrrf(20)] = / (1 — Jf?)™ =25 4 (),

This means that ¢ + min(s,n) < p(r + 1).
At the same time, we have that

+min(s,n)

1— w27 (12
; =(1—|2? */ ( dv(w) = :

QA, ,kf(z) ( |Z| ) B, (1 _ <z,w>)”+1+/\+7 v(w) c.,._ qtmin(a,m)

It follows from Qx ,f € LP9°(B,,) that ¢ + min(s,n) + pA > 0.
For any z € B,, and A with ¢ + min(s,n) + pA > 0, we take that
1— 2\ A\ 1— n+14+A+7
Gz(w) _ ( |w‘ ) ( <va>) log—k L (’UJ c Bn)

1= (w, z)[rri+Aer 1= Jwf?

Then G, € LP%*k(B,) and ||G.||p.g.s.6 S 1. By Qrr1G:(0) < oo, we have that A +7 > —1.

Therefore, it follows from Proposition A that

(1 —fwf?)™

_ 2\A - 2\ A €
QnrnCa(e) = (1= = [ E e dut) = (1~ 41 og
Since Qi - kG, € HP?*(B,,), it follows from Lemma 2.4 (case k = 0) that
1@xkll ZNQx 7kl Gzllp.g 0 2 (@0 Gallazn Z (1~ 121) 7 QG2 (2)
q+n [§]
= (1-—
(1= )5 g ="

This means that g +n + pA > 0. The proof is complete. 0

q+n

A log for all z € B,,.

Note When s > n, it follows from the test function in the proof of Proposition 3.4 that
—pA < qg+n<p(t+1)if Sy -k (Rark) is bounded from "Hﬁn (Bn) to Qm(Bn), or Qxrk
is bounded from H%., , (Bn) to Hﬁn( n)- * '

The proof of Tileorem 14 By Propositions 3.3-3.4 and the above note, (1), (2),

(3) and (4) are true. In (3) and (4), we need to notice that HP%5*(B,,) = q+n . (Bn) and
HP%(By,) = HSS. (By) when s > n. In addition, Qx rxf € HP*?*(B,,) when f € ’H” k().
The proof is com;)lete. O
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