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Abstract In this paper, we investigate sufficient and necessary conditions such that gen-

eralized Forelli-Rudin type operators Tλ,τ,k, Sλ,τ,k, Qλ,τ,k and Rλ,τ,k are bounded between

Lebesgue type spaces. In order to prove the main results, we first give some bidirectional

estimates for several typical integrals.
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1 Introduction

In this paper, we write “E & G” (or “E . G”) if there exists a constant c > 0 such that

E ≥ cG (or E ≤ cG). We say that E and G are equivalent if “E & G” and “E . G”, written as

“E � G”. All logarithmic and power functions take the main branch, that is, log 1 = 0, 1k = 1

for real k.

Let Bn be the unit ball in Cn (we write as D when n = 1). The class of holomorphic

functions on Bn is denoted by H(Bn). Suppose that dv denotes the Lebesgue measure on Bn

such that v(Bn)=1, and dσ denotes the measure on the boundary Sn of Bn such that σ(Sn)=1.

For z = (z1, · · · , zn) and w = (w1, · · · , wn) in Cn, the inner product of z and w is defined by

〈z, w〉 = z1w1 + z2w2 + · · ·+ znwn.

Received January 4, 2023; revised October 14, 2023. Zhang’s work was supported by the Natural Science

Foundation of Hunan Province of China (2022JJ30369) and the Education Department Important Foundation

of Hunan Province in China (23A0095).
∗Corresponding author



1302 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

For α ≥ 0, the growth space Gα(Bn) is the set of all functions f on Bn such that

||f ||α = sup
z∈Bn

(1− |z|2)α|f(z)| <∞.

For any a ∈ Bn, the Möbius transform of Bn is defined by

ϕa(z) =
a− 〈z,a〉a|a|2 −

√
1− |a|2

(
z − 〈z,a〉a|a|2

)
1− 〈z, a〉

(a 6= 0),

and ϕ0(z) = −z. It is clear that ϕa has the following properties: ϕa(0) = a, ϕa(a) = 0 and

ϕa = ϕ−1
a . It follows from Lemma 1.3 in [1] that

1− 〈ϕa(z), ϕa(w)〉 =
(1− |a|2)(1− 〈z, w〉)

(1− 〈z, a〉)(1− 〈a,w〉)
(z, w ∈ Bn). (1.1)

In particular, if w = z or w = 0, then we have that

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− 〈z, a〉|2
, 1− 〈ϕa(z), a〉 =

1− |a|2

1− 〈z, a〉
. (1.2)

For p > 0, s ≥ 0, q + n ≥ 0, q + s ≥ 0, if f is a Lebesgue measurable function on Bn and

||f ||p,q,s = sup
0≤r<1

Mp,q,s(r, f) <∞, then we say that f ∈ Lp,q,s(Bn), where

Mp
p,q,s(r, f) = sup

a∈Bn
(1− r2)q

∫
Sn

|f(rξ)|p (1− |ϕa(rξ)|2)sdσ(ξ).

The space Lp,q,s(Bn) is a Banach space under the norm ||.||p,q,s when p ≥ 1. If 0 < p < 1,

then Lp,q,s(Bn) is a complete metric space under the distance

ρ(f, g) = ||f − g||pp,q,s.

In particular, Hp,q,s(Bn) = Lp,q,s(Bn)
⋂
H(Bn) is called the general Hardy type space. In fact,

the space Hp,q,s(Bn) comes from some practical applications. For example, in 2010, Stević and

Ueki [2] proved that the multiplier operator Mu is bounded from Apα(Bn) to Hq
β(Bn) if and

only if u ∈ H(Bn) and

sup
0≤r<1

sup
a∈Bn

(1− r2)β−
q(α+n+1)

p

∫
Sn

|u(rξ)|q(1− |ϕa(rξ)|2)
q(α+n+1)

p dσ(ξ) <∞.

There are also some similar applications in [3, 4]. Recently, we considered several basic problems

of Hp,q,s(Bn) in [5–7]. If q = s = 0, then Hp,q,s(Bn) is just the Hardy space Hp(Bn). Therefore,

Hp,q,s(Bn) is a generalization of the Hardy space. Furthermore, Hp,q,s(Bn) contains several

classical function spaces (see [5]).

Given r > 0, the Bergman ball with a as the center and r as the radius is the set

D(a, r) = {z ∈ Bn : β(z, a) < r}, where β(z, a) =
1

2
log

1 + |ϕa(z)|
1− |ϕa(z)|

.

For p > 0, s ≥ 0, q + n ≥ 0, q + s ≥ 0 and a real number k, we define that Lp,q,s,k(Bn) =

{f : ||f ||p,q,s,k <∞}, where

||f ||pp,q,s,k = sup
0≤r<1

sup
a∈Bn

(1− r2)q
∫
Sn

∣∣∣∣f(rξ) logk
e

1− |rξ|2

∣∣∣∣p (1− |ϕa(rξ)|2)sdσ(ξ).

For f ∈ Lp,q,s,k(Bn) and t > 0, the function |f |t is usually not subharmonic on Bn. In

order to discuss the operator problem from Lp,q,s,k(Bn) to Lp,q,s(Bn) for 0 < p < 1, we need
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to add a condition. For any t > 0, if f ∈ Lp,q,s,k(Bn) and

|f(z)|t . 1

(1− |z|2)n+1

∫
D(z,r)

|f(w)|tdv(w) for all z ∈ Bn, (1.3)

then we say that f ∈ Hp,q,s,k(Bn) (we say that f ∈ Hp,q,s(Bn) when k = 0), and the con-

trol constant in (1.3) relies only on n, t and r. Similarly, if f ∈ Gα(Bn) and (1.3) is satis-

fied, then we say that f ∈ H∞α (Bn). For a real number k, let H∞α,k(Bn) = {f : ||f ||α,k <

∞ and let f satisfy (1.3)}, where

||f ||α,k = sup
z∈Bn

(1− |z|2)α|f(z)| logk
e

1− |z|2
.

For p > 0 and a real number t, let

Lp(Bn,dvt) =

{
f : ||f ||p,t =

(∫
Bn

|f(z)|pdvt(z)
) 1
p

<∞

}
,

where dvt(z) = ct(1− |z|2)tdv(z), or ct = Γ(n+t+1)
n!Γ(t+1) when t > −1, or ct = 1 when t ≤ −1. Then

L∞(Bn) =

{
f : ||f ||∞ = ess sup

z∈Bn
|f(z)| <∞

}
.

For p > 0 and real numbers t and k, let

Lplog,k(Bn,dvt) =

{
f : ||f ||p,t,log,k =

(∫
Bn

∣∣∣∣f(z) logk
e

1− |z|2

∣∣∣∣p dvt(z)

) 1
p

<∞

}
,

L∞log,k(Bn) =

{
f : ||f ||∞,log,k = ess sup

z∈Bn
|f(z)| logk

e

1− |z|2
<∞

}
,

when t > −1, L∞(Bn,dvt) = L∞(Bn) and L∞log,k(Bn,dvt) = L∞log,k(Bn).

In 1974, Forelli and Rudin [8] introduced the following projection operator:

Pτf(z) =

∫
Bn

f(w)

(1− 〈z, w〉)n+1+τ
dvτ (w) (τ > −1).

They proved that Pτ is a bounded operator from the Lebesgue space Lp(Bn) to the Bergman

space Ap(Bn) if and only if p(1 + τ) > 1 for 1 ≤ p < ∞. In 1979, Kolaski [9] considered Pτ

from the weighted Lebesgue space L2(Bn,dvα) to the weighted Bergman space A2
α(Bn), and

proved that Pτ is a bounded orthogonal projection if and only if τ = α for α > −1. In 1991,

Zhu [10] studied more general Forelli-Rudin type operators Tλ,τ and Sλ,τ as

Tλ,τf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τf(w)

(1− 〈z, w〉)n+1+λ+τ
dv(w)

and

Sλ,τf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τf(w)

|1− 〈z, w〉|n+1+λ+τ
dv(w) (z ∈ Bn),

where λ and τ are two real numbers. In 2006, Kures and Zhu [11] generalized the above two

operators as

Tλ,τ,cf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τf(w)

(1− 〈z, w〉)c
dv(w)

and

Sλ,τ,cf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τf(w)

|1− 〈z, w〉|c
dv(w) (z ∈ Bn),
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where λ, τ and c are three real numbers. Since Forelli-Rudin type operators are closely related

to a large number of basic problems of function space theory and operator theory, many math-

ematicians are very interested in the boundedness of these operators between various function

spaces. There is a lot of literature discussing the boundedness (see [8–27]). In [1] and [19], Zhu

and Rudin gave the characterizations of the boundedness of Pτ from Lp(Bn,dvα) to Apα(Bn) for

p ≥ 1 and α > −1. In [21] and [22], Zhao et al gave very beautiful results for the boundedness of

Tλ,τ,c and Sλ,τ,c from Lp(Bn,dvα) to Lq(Bn,dvβ) for 1 ≤ p, q ≤ ∞ and α, β > −1. The general

Hardy space Hp,q,s(Bn) is a generalization of the Hardy space Hp(Bn). Recently, we discussed

the boundedness of Tλ,τ and Sλ,τ on its extension space Lp,q,s(Bn) (see [27]). We know that

Tλ,τ,c and Sλ,τ,c is the generalizations of Tλ,τ and Sλ,τ . This mainly extends n + 1 + λ + τ

to c, independently of λ and τ . Can n + 1 + λ + τ be generalized to another form? Or can

the measure (1− |w|2)τdv(w) be generalized to another form? In this paper, we generalize the

Forelli-Rudin type operators as follows:

Tλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τf(w)

(1− 〈z, w〉)n+1+λ+τ
logk

e

1− 〈z, w〉
dv(w),

Sλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τf(w)

|1− 〈z, w〉|n+1+λ+τ
logk

e

|1− 〈z, w〉|
dv(w),

Qλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τf(w)

(1− 〈z, w〉)n+1+λ+τ
logk

e

1− |w|2
dv(w),

Rλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τf(w)

|1− 〈z, w〉|n+1+λ+τ
logk

e

1− |w|2
dv(w) (z ∈ Bn),

there λ, τ and k are three real numbers. These generalized operators are often encountered in

practical applications. In this paper, we first discuss the boundedness of Tλ,τ,k, Sλ,τ,k, Qλ,τ,k

and Rλ,τ,k on L1(Bn,dvt) or from Lplog,k(Bn,dvt) to Lp(Bn,dvt). Furthermore, we investigate

these conditions such that Tλ,τ,k, Sλ,τ,k, Qλ,τ,k and Rλ,τ,k are bounded from Lp,q,s,k(Bn) to

Lp,q,s(Bn) or from Hp,q,s,k(Bn) to Lp,q,s(Bn) in some cases. Our main results are the following:

Theorem 1.1 For p ≥ 1, the following conditions are equivalent:

(1) Sλ,τ,k is bounded from Lplog,k(Bn,dvt) to Lp(Bn,dvt);

(2) Qλ,τ,k is bounded from Lplog,k(Bn,dvt) to Lp(Bn,dvt);

(3) Rλ,τ,k is bounded from Lplog,k(Bn,dvt) to Lp(Bn,dvt);

(4) −pλ < t+ 1 < p(τ + 1) (t > −1 when p = 1).

Theorem 1.2 For t > −1, the following conditions are equivalent:

(1) Tλ,τ,k is bounded on L1(Bn,dvt);

(2) Sλ,τ,k is bounded on L1(Bn,dvt);

(3) we have that either (i) −λ < t + 1 < τ + 1 and k ≤ 0, or (ii) −λ < t + 1 = τ + 1

and k < −1.

Theorem 1.3 For t > −1, the following conditions are equivalent:

(1) Qλ,τ,k is bounded on L1(Bn,dvt);

(2) Rλ,τ,k is bounded on L1(Bn,dvt);

(3) we have that either (i) −λ < t + 1 < τ + 1 and k ≤ 0, or (ii) −λ < t + 1 = τ + 1

and k ≤ −1.
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Theorem 1.4 (1) If p ≥ 1 and 0 ≤ 2s < n, then Sλ,τ,k and Rλ,τ,k are bounded from

Lp,q,s,k(Bn) to Lp,q,s(Bn) if and only if −pλ < q + s < p(τ + 1).

(2) If p ≥ 1 and s ≥ n, then Sλ,τ,k and Rλ,τ,k are bounded from Hp,q,s,k(Bn) to Lp,q,s(Bn)

if and only if −pλ < q + n < p(τ + 1).

(3) If 0 < p < 1 and s ≥ n, then Sλ,τ,k and Rλ,τ,k are bounded from Hp,q,s,k(Bn) to

G q+n
p

(Bn) if and only if −pλ < q + n < p(τ + 1).

(4) If p > 0 and s ≥ n, then Qλ,τ,k is a bounded operator from Hp,q,s,k(Bn) to Hp,q,s(Bn)

if and only if −pλ < q + n < p(τ + 1).

In order to prove the above results, we need some key integral estimates. For a point in

Bn, W. Rudin gave the following proposition in [19]:

Proposition A Let t > −1 and c be real. Then the integrals

I(z) =

∫
Sn

dσ(ξ)

|1− 〈ξ, z〉|n+c
, J(z) =

∫
Bn

(1− |w|2)tdv(w)

|1− 〈z, w〉|n+1+t+c

have the following asymptotic properties:

(1) I(z) � J(z) � 1 when c < 0;

(2) I(z) � J(z) � log e
1−|z|2 when c = 0;

(3) I(z) � J(z) � 1
(1−|z|2)c when c > 0.

In terms of practical applications, these integrals are often encountered (for example, Zhou

and Chen needed the case k = 2 in [28]). We also need some bidirectional estimates of these

integrals in this paper:

G(w) =

∫
Sn

1

|1− 〈ξ, w〉|n+c

∣∣∣∣log
e

1− 〈ξ, w〉

∣∣∣∣kdσ(ξ),

H(w) =

∫
Bn

(1− |z|2)δ

|1− 〈z, w〉|n+1+δ+c
logk

e

1− |z|2
dv(z)

and

F (w) =

∫
Bn

(1− |z|2)δ

|1− 〈z, w〉|n+1+δ+c

∣∣∣∣log
e

1− 〈z, w〉

∣∣∣∣kdv(z) (w ∈ Bn).

Here δ > −1, and c and k are real numbers.

There is here a natural problem. Do G(w), H(w) and F (w) have bidirectional estimates?

In this paper, we first discuss this problem, and give these bidirectional estimates for all of the

cases in Proposition 3.1. Since k is an abstract real number, the original method of proof used

method in Proposition A makes very difficult to estimate F (w), H(w) and G(w). Therefore,

we need to deal with the three integrals in a completely different way. For two points in Bn,

we also need to estimate the integral

Lw,η =

∫
Sn

1

|1− 〈ξ, w〉|t |1− 〈ξ, η〉|r

∣∣∣∣log
e

1− 〈ξ, η〉

∣∣∣∣k dσ(ξ) (w, η ∈ Bn).

We give some bidirectional estimates in Proposition 3.2.

2 Some Lemmas

In order to prove our main results, we first give several lemmas.
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Lemma 2.1 Let δ, c, k and k′ be real numbers. Then integrals

I1(ρ) =

∫ 1

0

(1− r)δ

(1− rρ)δ+1+c
logk

e(1− ρr)
1− ρ

dr

and

I2(ρ) =

∫ 1

0

(1− r)δ

(1− ρr)1+δ+c
logk

e

1− ρr
logk

′ e

1− r
dr (0 ≤ ρ < 1)

have the following bidirectional estimates:

(1)

I1(ρ) �



logk
e

1− ρ
, δ > −1, c < 0,

1

(1− ρ)c
, δ > −1, c > 0,

logk+1 e

1− ρ
, δ > −1, c = 0, k > −1,

log log
e2

1− ρ
, δ > −1, c = 0, k = −1,

1, δ > −1, c = 0, k < −1.

(2) I2(ρ) � 1 if one of the following conditions is satisfied: (i) δ > −1, c < 0; (ii)

δ > −1, c = 0, k + k′ < −1; (iii) δ = −1, c < 0, k′ < −1; (iv) δ = −1, c = 0, k + k′ < −1,

k′ < −1.

(3) I2(ρ) � 1
(1−ρ)c logk+k′ e

1−ρ when c > 0 and δ > −1.

(4) I2(ρ) � 1
(1−ρ)c logk+k′+1 e

1−ρ when c > 0, δ = −1 and k′ < −1.

(5) I2(ρ) � logk+k′+1 e
1−ρ if one of the following conditions is satisfied: (i) δ > −1, c = 0,

k + k′ > −1; (ii) δ = −1, c = 0, k + k′ > −1, k′ < −1.

(6) I2(ρ) � log log e2

1−ρ if one of the following conditions is satisfied: (i) δ > −1, c = 0,

k + k′ = −1; (ii) δ = −1, c = 0, k + k′ = −1, k′ < −1.

Proof If there exists a constant 0 < ρ0 < 1 such that 0 ≤ ρ ≤ ρ0, then these equivalents

are obvious. Therefore, we may let ρ be sufficiently close to 1.

By changes of variables x = (1− r)ρ/(1− ρ) and y = 1 + x, we have that

I1(ρ) =
1

(1− ρ)cρδ+1

∫ ρ
1−ρ

0

xδ

(1 + x)δ+1+c
logk e(1 + x)dx

� 1

(1− ρ)c

{∫ 1

0

xδdx+

∫ 1
1−ρ

2

1

y1+c
logk eydy

}
.

By a change of variables x = (1− r)ρ/(1− rρ), we have that

I2(ρ) =
1

(1− ρ)cρδ+1

∫ ρ

0

xδ(1− x)c−1 logk e(1−x)
1−ρ

log−k
′ eρ(1−x)
x(1−ρ)

dx

� 1

(1− ρ)c

∫ 1
2

0

xδ logk e
1−ρ

log−k
′ e
x(1−ρ)

dx+

∫ ρ

1
2

(1− x)c−1

(1− ρ)c
logk+k′ e(1− x)

1− ρ
dx

=
logk e

1−ρ

(1− ρ)δ+1+c

∫ 1−ρ
2

0

yδ logk
′ e

y
dy +

∫ 1
2(1−ρ)

1

yc−1 logk+k′ eydy.
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If ρ→ 1−, then we have the following results:∫ 1
2(1−ρ)

1

yc−1 logk+k′ eydy � 1 when c < 0;∫ 1
2(1−ρ)

1

yc−1 logk+k′ eydy � 1

(1− ρ)c
logk+k′ e

1− ρ
when c > 0;∫ 1

2(1−ρ)

1

y−1 logk+k′ eydy � logk+k′+1 e

1− ρ
when k + k′ > −1;∫ 1

2(1−ρ)

1

y−1 log−1 eydy � log log
e2

1− ρ
;∫ 1

2(1−ρ)

1

y−1 logk+k′ eydy � 1 when k + k′ < −1;∫ 1
1−ρ

2

1

y1+c
logk eydy � (1− ρ)c logk

e

1− ρ
when c < 0;∫ 1

1−ρ

2

1

y1+c
logk eydy � 1 when c > 0;∫ 1−ρ

2

0

yδ logk
′ e

y
dy � (1− ρ)δ+1 logk

′ e

1− ρ
when δ > −1;∫ 1−ρ

2

0

y−1 logk
′ e

y
dy � log1+k′ e

1− ρ
when k′ < −1.

Other cases are implied in the previous results. According to the different cases of δ, k

and k′, we can get these corresponding results. This proof is complete. �

Lemma 2.2 ([7]) For r > 0 and t > 0, let

Iw,a =

∫
Sn

dσ(ξ)

|1− 〈ξ, w〉|t |1− 〈ξ, a〉|r
(w, a ∈ Bn).

Then

(1) Iw,a � log e
|1−〈w,a〉| when t+ r = n;

(2) Iw,a � 1
|1−〈w,a〉|t+r−n when t+ r > n > max{r, n}.

These results come from Proposition 3.1 in [7].

Lemma 2.3 ([1]) The measures v and σ are related by∫
Bn

f(z)dv(z) = 2n

∫ 1

0

r2n−1dr

∫
Sn

f(rξ)dσ(ξ).

This result comes from [1, Lemma 1.8].

Lemma 2.4 If f ∈ Hp,q,s,k(Bn), then

|f(z)| .
||f ||p,q,s,k log−k e

1−|z|2

(1− |z|2)
q+n
p

for all z ∈ Bn.

In particular, Hp,q,s,k(Bn) = H∞q+n
p ,k

(Bn) and ||f ||p,q,s,k � ||f || q+n
p ,k when s ≥ n.

Proof For any f ∈ Hp,q,s,k(Bn) and z ∈ Bn, it follows from the proof of Lemma 2.1 in

[29] that D(z, log
√

2) ⊂ 1+|z|
2 Bn. By (1.3), Lemma 2.20 in [1], Lemma 2.3, we have that∣∣∣∣f(z) logk

e

1− |z|2

∣∣∣∣p . 1

(1− |z|2)n+1

∫
D(z,log

√
2)

∣∣∣∣f(w) logk
e

1− |w|2

∣∣∣∣p dv(w)
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� 1

(1− |z|2)q+n−1

∫
D(z,log

√
2)

∣∣∣f(w) logk e
1−|w|2

∣∣∣p (1− |ϕz(w)|2)s

(1− |w|2)−q(1− |w|2)2
dv(w)

.
∫ 1+|z|

2

0

(1− r2)−2 logpk e
1−r2

(1− |z|2)q+n−1

{∫
Sn

(1− r2)q|f(rξ)|p(1− |ϕz(rξ)|2)sdσ(ξ)

}
dr

≤
||f ||pp,q,s,k

(1− |z|2)q+n−1

∫ 1+|z|
2

0

dr

(1− r2)2
�
||f ||pp,q,s,k

(1− |z|2)q+n
.

This means that Hp,q,s,k(Bn) ⊆ H∞q+n
p ,k

(Bn) and ||f || q+n
p ,k . ||f ||p,q,s,k.

Moreover, if s ≥ n and f ∈ H∞q+n
p ,k

(Bn), it follows from Proposition A that

sup
0≤r<1

sup
a∈Bn

(1− r2)q
∫
Sn

∣∣∣∣f(rξ) logk
e

1− |rξ|2

∣∣∣∣p (1− |ϕa(rξ)|2)sdσ(ξ)

≤ ||f ||pq+n
p ,k

sup
0≤r<1

sup
a∈Bn

(1− r2)s−n
∫
Sn

(1− |a|2)sdσ(ξ)

|1− 〈a, rξ〉|2s
. ||f ||pq+n

p ,k
.

This shows that H∞q+n
p ,k

(Bn) ⊆ Hp,q,s,k(Bn) and ||f ||p,q,s,k . ||f || q+n
p ,k.

This proof is complete. �

Lemma 2.5 ([1]) There is a positive integer N such that, for any 0 < r ≤ 1, one can find

a sequence {ak} ⊂ Bn with Bn =
∞⋃
k=1

D(ak, r), and for each point, z ∈ Bn belongs to at most

N of the sets D(ak, 4r).

This result comes from Theorem 2.23 in [1].

3 Main Results

We first prove two Propositions.

Proposition 3.1 Let c and k be real numbers, δ > −1. Then the integrals

G(w) =

∫
Sn

1

|1− 〈ξ, w〉|n+c

∣∣∣∣log
e

1− 〈ξ, w〉

∣∣∣∣kdσ(ξ),

H(w) =

∫
Bn

(1− |z|2)δ

|1− 〈z, w〉|n+1+δ+c
logk

e

1− |z|2
dv(z)

and

F (w) =

∫
Bn

(1− |z|2)δ

|1− 〈z, w〉|n+1+δ+c

∣∣∣∣log
e

1− 〈z, w〉

∣∣∣∣kdv(z) (w ∈ Bn)

have the following bidirectional estimates:

(1) G(w) � H(w) � F (w) � 1 when c < 0, or c = 0 and k < −1;

(2) G(w) � H(w) � F (w) � 1
(1−|w|2)c logk e

1−|w|2 when c > 0;

(3) G(w) � H(w) � F (w) � logk+1 e
1−|w|2 when c = 0 and k > −1;

(4) G(w) � H(w) � F (w) � log log e2

1−|w|2 when c = 0 and k = −1.

Proof If there exists a constant 0 < ρ0 < 1 such that 1 − |w|2 ≥ ρ0, then these bidirec-

tional estimates are obvious. Therefore, we let 1−|w|2 be sufficiently close to 0. It follows from

(3.1) in [30] that we may get that

G(w) �
∫
Sn

1

|1− 〈ξ, w〉|n+c
logk

e

|1− 〈ξ, w〉|
dσ(ξ).
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When c < 0, we may take c < c′ < 0 such that 1
|1−〈ξ,w〉|n+c logk e

|1−〈ξ,w〉| .
1

|1−〈ξ,w〉|n+c′

for all ξ ∈ Sn and w ∈ Bn. It follows from the increasing property of the integral mean of the

holomorphic function and Proposition A that

1 ≤ G(w) .
∫
Sn

dσ(ξ)

|1− 〈ξ, w〉|n+c′
� 1.

By a change of variables ξ = ϕw(η), (4.7) in [1], and (1.1)–(1.2), we have that

G(w) � 1

(1− |w|2)c

∫
Sn

1

|1− 〈η, w〉|n−c
logk

e|1− 〈η, w〉|
1− |w|2

dσ(η) =
J(w)

(1− |w|2)c
.

Next, we consider J(w) for c ≥ 0.

When n = 1, it follows from the rotation invariance of the integral that

J(w) =

∫ π

−π

1

|1− |w|eiθ|1−c
logk

e|1− |w|eiθ|
1− |w|2

dθ

2π

=

∫ π

0

1

(1 + |w|2 − 2|w| cos θ)
1−c
2

logk
e2(1 + |w|2 − 2|w| cos θ)

(1− |w|2)2

dθ

2kπ

=
1

2kπ

∫ 1

−1

(1− x2)−
1
2

(1 + |w|2 − 2|w|x)
1−c
2

logk
e2(1 + |w|2 − 2|w|x)

(1− |w|2)2
dx

� logk
e

1− |w|2
+

∫ 1

0

(1− x)−
1
2

(1 + |w|2 − 2|w|x)
1−c
2

logk
e2(1 + |w|2 − 2|w|x)

(1− |w|2)2
dx.

Without losing generality, we let |w| > 1/2. By a change of variables, ρ = (1+|w|2)(1−x)
1+|w|2−2|w|x ,

and we have that

J(w) � logk
e

1− |w|2
+ (1− |w|)c

∫ 1

0

logk e

1− 2|w|ρ
1+|w|2

ρ
1
2

(
1− 2|w|ρ

1+|w|2
)1+ c

2
dρ

� logk
e

1− |w|2
+ (1− |w|)c

1 +

∫ 1

1
2

logk e

1− 2|w|ρ
1+|w|2(

1− 2|w|ρ
1+|w|2

)1+ c
2

dρ


� logk

e

1− |w|2
+ (1− |w|)c

∫ 1

0

logk e

1− 2|w|ρ
1+|w|2(

1− 2|w|ρ
1+|w|2

)1+ c
2

dρ.

It follows from Lemma 2.1 (case I2 for k′ = 0) that we can get the estimates of J(w) by

different cases.

When n > 1, it follows from (1.13) in [1] that

J(w) = (n− 1)

∫
D

(1− |z|2)n−2

|1− |w|z|n−c
logk

e|1− |w|z|
1− |w|2

dA(z).

If c > 0 and k ≥ 0, then it follows from Proposition A that

J(w) . logk
e

1− |w|2

∫
D

(1− |z|2)n−2

|1− |w|z|n−c
dA(z) � logk

e

1− |w|2
.

If c > 0 and k < 0, then we take that 0 < ε < c. It is easy to obtain that

sup
1−|w|≤x≤1+|w|

xε logk
ex

1− |w|2
� max

{
(1− |w|2)ε, logk

e

1− |w|

}
. logk

e

1− |w|2
.
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Therefore, it follows from Proposition A that

J(w) . logk
e

1− |w|2

∫
D

(1− |z|2)n−2

|1− |w|z|n−c+ε
dA(z) � logk

e

1− |w|2
.

On the other hand, we have that

J(w) &
∫
|z|≤ 1

2

(1− |z|2)n−2

|1− |w|z|n−c
logk

e|1− |w|z|
1− |w|2

dA(z) � logk
e

1− |w|2
.

This means that J(w) � logk e
1−|w|2 when c > 0. Therefore,

G(w) � 1

(1− |w|2)c
logk

e

1− |w|2
when c > 0.

For any 1/2 < ρ < 1 and any real number k, let x = 2ρ|w|(1−r)
(1−ρ|w|)2 . Similar to the previous

calculation, we can obtain that∫ π

−π

1

|1− ρ|w|eiθ|n
logk

e|1− ρ|w|eiθ|
1− |w|2

dθ

2π

� logk
e

1− |w|2
+

∫ 1

0

1

(1 + ρ2|w|2 − 2ρ|w|r)n2
logk

[
e2(1 + ρ2|w|2 − 2ρ|w|r)

(1− |w|2)2

]
dr√
1− r

� logk
e

1− |w|2
+

1

(1− ρ|w|)n−1

∫ 2ρ|w|
(1−ρ|w|)2

0

logk
[

e2(1−ρ|w|)2
(1−|w|2)2 (1 + x)

]
x

1
2 (1 + x)

n
2

dx.

It is clear that∫ 8
9

0

1

x
1
2 (1 + x)

n
2

logk
[

e2(1− ρ|w|)2

(1− |w|2)2
(1 + x)

]
dx � logk

e(1− ρ|w|)
1− |w|

.

When k ≥ 0, we have that

logk
[

e2(1− ρ|w|)2

(1− |w|2)2
(1 + x)

]
� logk

e2(1− ρ|w|)2

(1− |w|2)2
+ logk(1 + x).

Therefore, ∫ 2ρ|w|
(1−ρ|w|)2

8
9

1

x
1
2 (1 + x)

n
2

logk
[

e2(1− ρ|w|)2

(1− |w|2)2
(1 + x)

]
dx

.
∫ ∞

8
9

1

x
n+1
2

{
logk

e(1− ρ|w|)
1− |w|2

+ logk(x+ 1)

}
dx

� logk
e(1− ρ|w|)

1− |w|
+ 1 � logk

e(1− ρ|w|)
1− |w|

.

When k < 0, we have that

logk
[

e2(1− ρ|w|)2

(1− |w|2)2
(1 + x)

]
≤ logk

e2(1− ρ|w|)2

(1− |w|2)2
.

Therefore, ∫ 2ρ|w|
(1−ρ|w|)2

8
9

1

x
1
2 (1 + x)

n
2

logk
[

e2(1− ρ|w|)2

(1− |w|2)2
(1 + x)

]
dx

. logk
e(1− ρ|w|)

1− |w|2

∫ ∞
8
9

1

x
n+1
2

dx � logk
e(1− ρ|w|)

1− |w|
.
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This means that∫ π

−π

1

|1− ρ|w|eiθ|n
logk

e|1− ρ|w|eiθ|
1− |w|

dθ

2π
� logk

e

1− |w|2
+

1

(1− ρ|w|)n−1
logk

e(1− ρ|w|)
1− |w|

.

If c = 0, then it follows from the polar coordinate and the above result that

J(w) � logk
e

1− |w|2

∫ 1

0

(1− ρ)n−2dρ+

∫ 1

0

(1− ρ)n−2

(1− ρ|w|)n−1
logk

e(1− ρ|w|)
1− |w|

dρ.

By Lemma 2.1 (case I1), we can get the estimates of J(w) for all of the cases.

Finally, we consider H(w) and F (w).

First, according to the increasing property of the integral mean of the holomorphic function,

it can be obtained that

H(w) ≥ 2n

∫ 1

0

r2n−1(1− r2)δ logk
e

1− r2
dr � 1,

F (w) ≥ 2n

∫ 1

0

r2n−1(1− r2)δdr � 1.

When c < 0, and let c < c′ < 0 and 0 < ε < min{−c, δ + 1}. By (3.1) in [30] and

Proposition A, we have that

1 . H(w) .
∫
Bn

(1− |z|2)δ−ε

|1− 〈z, w〉|n+1+δ+c
dv(z) � 1

and

1 . F (w) �
∫
Bn

(1− |z|2)δ

|1− 〈z, w〉|n+1+δ+c
logk

e

|1− 〈z, w〉|
dv(z)

.
∫
Bn

(1− |z|2)δ

|1− 〈z, w〉|n+1+δ+c′
dv(z) � 1.

When c ≥ 0, by (3.1) in [30], Lemma 2.3 and the estimate of G(w), we have that

H(w) �
∫ 1

0

(1− ρ)δ

(1− ρ|w|)δ+1+c
logk

e

1− ρ
dρ

and

F (w) �
∫ 1

0

(1− ρ)δ

(1− ρ|w|)δ+1+c
logk

e

1− ρ|w|
dρ.

It follows from Lemma 2.1 (case I2 for k = 0 or k′ = 0) that we can get the estimates of

H(w) and F (w) in different cases.

The proof is complete. �

Proposition 3.2 For real number r, t, k, let

Lw,η =

∫
Sn

1

|1− 〈ξ, w〉|t |1− 〈ξ, η〉|r

∣∣∣∣log
e

1− 〈ξ, η〉

∣∣∣∣k dσ(ξ) (w, η ∈ Bn).

Then we have the following estimates:

(1) Lw,η �
1

(1− |η|2)r−n|1− 〈w, η〉|t
logk

e

1− |η|2
when r > n > t ≥ 0;

(2) Lw,η �
1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|
log

e

|1− 〈w,ϕw(η)〉|

+
1

(1− |η|2)r−n|1− 〈w, η〉|n
logk

e

1− |η|2
when r > n = t;
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(3) Lw,η �
1

(1− |w|2)t−n|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

+
1

(1− |η|2)r−n|1− 〈w, η〉|t
logk

e

1− |η|2
when r > n and t > n.

Proof Without losing generality, let 1 − |w|2 and |1 − 〈w, η〉| be sufficiently close to 0

such that they meet the needs of all of the relevant proof processes.

It follows from (3.1) in [30] that

Lw,η �
∫
Sn

1

|1− 〈ξ, w〉|t |1− 〈ξ, η〉|r
logk

e

|1− 〈ξ, η〉|
dσ(ξ).

If t = 0, then it follows from Proposition 3.1 that the result of (1) is true.

In that follows, we let t > 0 and let d(z, u) = |〈z − u, z〉|+ |〈u− z, u〉| (z, u ∈ Bn). By [31],

there exists a constant cd > 0 such that d(z, u) ≤ cd{d(z, a) + d(a, u)} (z, u, a ∈ Bn).

For w, η ∈ Bn, we consider a partition of Sn and get that

Ω1 =

{
ξ ∈ Sn : d(ξ, w) ≤ d(w, η)

2cd

}
; Ω2 =

{
ξ ∈ Sn : d(ξ, η) ≤ d(w, η)

2cd

}
;

Ω3 =

{
ξ ∈ Sn :

d(w, η)

2cd
< d(ξ, w) ≤ d(ξ, η)

}
;

Ω4 =

{
ξ ∈ Sn :

d(w, η)

2cd
< d(ξ, η) ≤ d(ξ, w)

}
.

Then Sn = Ω1 ∪Ω2 ∪Ω3 ∪Ω4, where Ωj and Ωk (j 6= k) are mutually disjoint. By Lemma 3.3

in [31], we have that |1− 〈ξ, η〉| & |1− 〈w, η〉| when ξ ∈ Ω1 ∪Ω3, and |1− 〈ξ, w〉| & |1− 〈w, η〉|
when ξ ∈ Ω2 ∪ Ω4.

If r > n, then it follows from Proposition 3.1 that

L1 =

∫
Ω2∪Ω4

1

|1− 〈ξ, w〉|t |1− 〈ξ, η〉|r
logk

e

|1− 〈ξ, η〉|
dσ(ξ)

.
1

|1− 〈w, η〉|t

∫
Sn

1

|1− 〈ξ, η〉|r
logk

e

|1− 〈ξ, η〉|
dσ(ξ)

� 1

(1− |η|2)r−n|1− 〈w, η〉|t
logk

e

1− |η|2
. (3.1)

If t > n, then it follows from Proposition A that

L2 =

∫
Ω1∪Ω3

1

|1− 〈ξ, w〉|t |1− 〈ξ, η〉|r
logk

e

|1− 〈ξ, η〉|
dσ(ξ)

.
1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

∫
Sn

1

|1− 〈ξ, w〉|t
dσ(ξ)

� 1

(1− |w|2)t−n|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|
. (3.2)

We take r − n < ε < r such that 0 < r − ε < n. By a change of variables ξ = ϕw(ζ), (4.7)

in [1], (1.1)–(1.2), Lemma 2.2, if t = n, then we have that

L2 .
1

|1− 〈w, η〉|ε
logk

e

|1− 〈w, η〉|

∫
Sn

1

|1− 〈ξ, w〉|n|1− 〈ξ, η〉|r−ε
dσ(ξ)

=
1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

∫
Sn

dσ(ζ)

|1− 〈ζ, ϕw(η)〉|r−ε|1− 〈ζ, w〉|n−(r−ε)

� 1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|
log

e

|1− 〈w,ϕw(η)〉|
. (3.3)
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When t < n < r, we take that r − n < ε < t+ r − n. It follows from Lemma 2.2 that

L2 .
1

|1− 〈w, η〉|ε
logk

e

|1− 〈w, η〉|

∫
Sn

dσ(ξ)

|1− 〈ξ, w〉|t|1− 〈ξ, η〉|r−ε

� 1

|1− 〈w, η〉|t+r−n
logk

e

|1− 〈w, η〉|
. (3.4)

By (3.1)–(3.4), these “ . ” parts are true. However, we need to notice that

1

|1− 〈w, η〉|t+r−n
logk

e

|1− 〈w, η〉|
.

1

(1− |η|2)r−n|1− 〈w, η〉|t
logk

e

1− |η|2
.

It follows form Lemma 2.2 in [30] that “ & ” parts of (1) and (3) are true. It remains to

prove the “ & ” part of (2).

Let |w| > 1/2 and |ϕw(η)| > 1/2. By the unitary invariance of integral on Sn, we may let

ϕw(η) = (|ϕw(η)|, 0, 0, · · · , 0) and w = (λ1, λ2, 0, · · · , 0), where λ2 ≥ 0 and |λ1|2 + λ2
2 = |w|2

(a similar treatment can be found in [32]). Let Ω = {u ∈ Bn : 2|1 − 〈|ϕw(η)|u, λ1e1〉| ≥
|1− 〈|ϕw(η)|u, ϕw(η)〉|}.

When u ∈ Ω and k ≥ 0, we have that(
|1− 〈|ϕw(η)|u, λ1e1〉|
|1− 〈|ϕw(η)|u, ϕw(η)〉|

)r−n
logk

e|1− 〈|ϕw(η)|u, λ1e1〉|
|1− 〈w, η〉||1− 〈|ϕw(η)|u, ϕw(η)〉|

≥ 1

2r−n
logk

e

2|1− 〈w, η〉|
� logk

e

|1− 〈w, η〉|
. (3.5)

When u ∈ Ω and k < 0, let M = sup
0<x≤2

x
r−n
−k log 2

x . We have that

(
|1− 〈|ϕw(η)|u, λ1e1〉|
|1− 〈|ϕw(η)|u, ϕw(η)〉|

)r−n
logk

e|1− 〈|ϕw(η)|u, λ1e1〉|
|1− 〈w, η〉||1− 〈|ϕw(η)|u, ϕw(η)〉|

≥

{(
|1− 〈|ϕw(η)|u, ϕw(η)〉|
|1− 〈|ϕw(η)|u, λ1e1〉|

) r−n
−k

log
e

2|1− 〈w, η〉|
+M

}k

≥
{

2
r−n
−k log

e

2|1− 〈w, η〉|
+M

}k
� logk

e

|1− 〈w, η〉|
. (3.6)

For any 0 ≤ ρ < 1, we consider the function

f(z) =
{1− (λ1ρz + λ2

√
1− ρ2eiθ)}r−2

(1− |ϕw(η)|ρz)r
logk

e{1− (λ1ρz + λ2

√
1− ρ2eiθ)}

(1− 〈w, η〉)(1− |ϕw(η)|ρz)
.

Then f is an analytical function on D. It follows from the increasing of integral mean of analytic

function that ∫ π

−π
|f(eiϕ)|dϕ ≥

∫ π

−π
|f(|ϕw(η)|eiϕ)|dϕ.

By the polar coordinate formula, we may get that∫
D

∣∣∣∣∣{1− (λ1ζ1 + λ2

√
1− |ζ1|2eiθ)}r−2

(1− |ϕw(η)|ζ1)r
logk

e{1− (λ1ζ1 + λ2

√
1− |ζ1|2eiθ)}

(1− 〈w, η〉)(1− |ϕw(η)|ζ1)

∣∣∣∣∣dv(ζ1)

≥
∫
D

∣∣∣∣∣{1− (λ1|ϕw(η)|ζ1 + λ2

√
1− |ζ1|2eiθ)}r−2

(1− |ϕw(η)|2ζ1)r

× logk
e{1− (λ1|ϕw(η)|ζ1 + λ2

√
1− |ζ1|2eiθ)}

(1− 〈w, η〉)(1− |ϕw(η)|2ζ1)

∣∣∣∣∣dv(ζ1). (3.7)
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(i) When n = 1, let w = λ1 = |w|eiα and T = {θ ∈ [−π, π] : eiθ ∈ Ω}. After calculation,

we have that Ω = {z ∈ D : |z − z0| ≥ R}, where

z0 =
4|w|eiα − |ϕw(η)|

(4|w|2 − |ϕw(η)|2)|ϕw(η)|
, R =

2
√
|w|2 − 2|w||ϕw(η)| cosα+ |ϕw(η)|2

(4|w|2 − |ϕw(η)|2)|ϕw(η)|
.

For any 0 ≤ x ≤ 1, we may obtain that

4|1− |ϕw(η)||w|e−iαx|2 − (1− |ϕw(η)|2x)2

≥ (3− 2|w||ϕw(η)|x− |ϕw(η)|2x){(|w| − |ϕw(η)|)2x+ 1− |w|2x} > 0.

This means that the interval on the real axis is [0, 1] ⊂ Ω. Therefore, we have at least one of

the sets {z : z ∈ D and 0 ≤ arg z ≤ π/2} or {z : z ∈ D and − π/2 ≤ arg z ≤ 0}, included in Ω.

We may let {z : z ∈ D and 0 ≤ arg z ≤ π/2} ⊂ Ω. This shows that [0, π2 ] ⊂ T . By a change

of variables ξ = ϕw(ζ), (4.7) in [1], (1.1)–(1.2), increasing the integral mean of the analytic

function, and (3.5)–(3.6), we have that

Lw,η =
1

|1− 〈w, η〉|r

∫
S1

∣∣∣∣∣∣ (1− 〈ζ, w〉)
r−1 logk e(1−〈ζ,w〉)

(1−〈w,η〉)(1−〈ζ,ϕw(η)〉)

(1− 〈ζ, ϕw(η)〉)r

∣∣∣∣∣∣ dσ(ζ)

≥ 1

|1− 〈w, η〉|r

∫
S1

∣∣∣∣∣∣ (1− 〈|ϕw(η)|ζ, w〉)r−1 logk e(1−〈|ϕw(η)|ζ,w〉)
(1−〈w,η〉)(1−〈|ϕw(η)|ζ,ϕw(η)〉)

(1− 〈|ϕw(η)|ζ, ϕw(η)〉)r

∣∣∣∣∣∣dσ(ζ)

&
1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

∫
T

dθ

|1− |ϕw(η)|2eiθ|

≥ 1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

∫ π
2

0

dθ

|1− |ϕw(η)|2eiθ|

� 1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|
log

e

1− |ϕw(η)|2

&
1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|
log

e

|1− 〈w,ϕw(η)〉|
.

(ii) When n = 2, by increasing the integral mean of the analytic function, Lemma 1.10 in

[1], (3.5)–(3.7), we have that

Lw,η =
1

|1− 〈w, η〉|r

∫
S2

∣∣∣∣∣∣ (1− 〈ζ, w〉)
r−2 logk e(1−〈ζ,w〉)

(1−〈w,η〉)(1−〈ζ,ϕw(η)〉)

(1− 〈ζ, ϕw(η)〉)r

∣∣∣∣∣∣dσ(ζ)

=
1

|1− 〈w, η〉|r

∫
D

1

2π

∫ π

−π
|
{1− (λ1ζ1 + λ2

√
1− |ζ1|2eiθ)}r−2

(1− |ϕw(η)|ζ1)r

× logk
e{1− (λ1ζ1 + λ2

√
1− |ζ1|2eiθ)}

(1− 〈w, η〉)(1− |ϕw(η)|ζ1)
|dθdv(ζ1)

≥ 1

|1− 〈w, η〉|r

∫
D

1

2π

∫ π

−π
|
{1− (λ1|ϕw(η)|ζ1 + λ2

√
1− |ζ1|2eiθ)}r−2

(1− |ϕw(η)|2ζ1)r

× logk
e{1− (λ1|ϕw(η)|ζ1 + λ2

√
1− |ζ1|2eiθ)}

(1− 〈w, η〉)(1− |ϕw(η)|2ζ1)
|dθdv(ζ1)

≥
∫
D

|1− |ϕw(η)|λ1ζ1|r−2
∣∣∣logk e(1−|ϕw(η)|λ1ζ1)

(1−〈w,η〉)(1−|ϕw(η)|2ζ1)

∣∣∣
|1− 〈w, η〉|r|1− |ϕw(η)|2ζ1|r

dv(ζ1)
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�
∫ 1

0

∫ π

−π

|1− |ϕw(η)|λ1ρeiθ|r−2 logk e|1−|ϕw(η)|λ1ρe
iθ|

|1−〈w,η〉||1−|ϕw(η)|2ρeiθ|

|1− 〈w, η〉|r|1− |ϕw(η)|2ρeiθ|r
dθdρ

&
1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

∫ 1

0

∫
T

1

|1− |ϕw(η)|2ρeiθ|2
dθdρ

&
1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

∫ 1

0

dρ

1− |ϕw(η)|2ρ

� 1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|
log

e

1− |ϕw(η)|2
.

(iii) When n > 2, by Lemmas 1.8–1.9 in [1], increasing the integral mean of the analytic

function, (3.5)–(3.6), Lemma 2.1 (case I2 for k = k′ = 0), we have that

Lw,η =
1

|1− 〈w, η〉|r

∫
Sn

∣∣∣∣∣∣ (1− 〈ζ, w〉)
r−n logk e(1−〈ζ,w〉)

(1−〈w,η〉)(1−〈ζ,ϕw(η)〉)

(1− 〈ζ, ϕw(η)〉)r

∣∣∣∣∣∣ dσ(ζ)

=
(n− 1)(n− 2)

2

∫
|u1|2+|u2|2<1

(1− |u1|2 − |u2|2)n−3

|1− 〈w, η〉|r

×
∣∣∣∣ (1− λ1u1 − λ2u2)r−n

(1− |ϕw(η)|u1)r
logk

e(1− λ1u1 − λ2u2)

(1− 〈w, η〉)(1− |ϕw(η)|u1)

∣∣∣∣ dv(u1, u2)

=
(n− 1)(n− 2)

2

∫
D

∫ √1−|u1|2

0

ρ(1− |u1|2 − ρ2)n−3

|1− 〈w, η〉|r

×

 1

π

∫ π

−π

∣∣∣∣∣∣ (1− λ1u1 − λ2ρeiθ)r−n logk e(1−λ1u1−λ2ρe
iθ)

(1−〈w,η〉)(1−|ϕw(η)|u1)

(1− |ϕw(η)|u1)r

∣∣∣∣∣∣ dθ
dρdv(u1)

≥ (n− 1)(n− 2)

∫
D

∫ √1−|u1|2

0

ρ(1− |u1|2 − ρ2)n−3

|1− 〈w, η〉|r

×

∣∣∣∣∣∣ (1− λ1u1)r−n logk e(1−λ1u1)
(1−〈w,η〉)(1−|ϕw(η)|u1)

(1− |ϕw(η)|u1)r

∣∣∣∣∣∣dρdv(u1)

�
∫
D

(1− |u1|2)n−2|1− λ1u1|r−n

|1− 〈w, η〉|r|1− |ϕw(η)|u1|r
logk

e|1− λ1u1|
|1− 〈w, η〉||1− |ϕw(η)|u1|

dv(u1)

&
∫ 1

0

(1− ρ)n−2

|1− 〈w, η〉|r

∫ π

−π

|1− λ1ρ|ϕw(η)|eiθ|r−n logk e|1−λ1ρ|ϕw(η)|eiθ|
|1−〈w,η〉||1−|ϕw(η)|2ρeiθ|

|1− |ϕw(η)|2ρeiθ|r
dθdρ

&
1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

∫ 1

0

∫
T

(1− ρ)n−2

|1− |ϕw(η)|2ρeiθ|n
dθdρ

� 1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|

∫ 1

0

(1− ρ)n−2

(1− |ϕw(η)|2ρ)n−1
dρ

� 1

|1− 〈w, η〉|r
logk

e

|1− 〈w, η〉|
log

e

1− |ϕw(η)|2
.

Therefore, the “ ≥ ” part of (2) is true. The proof is complete. �

Next, we consider the boundedness of the generalized Forelli-Rudin type operators from

Lplog,k(Bn,dvt) to Lp(Bn,dvt).

The proof of Theorem 1.1 (1)⇒ (4)

We choose α such that pα+ t > −1, τ + α > −1 and α > λ.



1316 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

Take that f(z) = (1− |z|2)α (z ∈ Bn). Then

‖f‖pp,t,log,k =

∫
Bn

∣∣∣∣f(z) logk
e

1− |z|2

∣∣∣∣p dvt(z) = ct

∫
Bn

(1− |z|2)pα+t logpk
e

1− |z|2
dv(z) � 1.

This means that f ∈ Lplog,k(Bn,dvt). It follows from Proposition 3.1 that

Sλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τ+α

|1− 〈z, w〉|n+1+λ+τ
logk

e

|1− 〈z, w〉|
dv(w)

� (1− |z|2)λ (z ∈ Bn).

The boundedness of Sλ,τ,k from Lplog,k(Bn,dvt) to Lp(Bn,dvt) means that the function

(1− |z|2)λ belongs to Lp(Bn,dvt). Therefore, we get that pλ+ t > −1.

Furthermore, it follows from Sλ,τ,k : Lplog,k(Bn,dvt)→ Lp(Bn,dvt) that

S∗λ,τ,k : (Lp(Bn,dvt))
∗ = Lp

′
(Bn,dvt)→ (Lplog,k(Bn,dvt))

∗ = Lp
′

log,−k(Bn,dvt),

where 1/p+ 1/p′ = 1. By 〈f, Sλ,τ,kg〉 = 〈S∗λ,τ,kf, g〉 (f ∈ Lp′(Bn,dvt), g ∈ Lplog,k(Bn,dvt)), we

may get the conjugate operator

S∗λ,τ,kf(w) = (1− |w|2)τ−t
∫
Bn

(1− |z|2)λ+tf(z)

|1− 〈w, z〉|n+1+λ+τ
logk

e

|1− 〈w, z〉|
dv(z) (w ∈ Bn).

When p > 1, if we choose β > max{−(1+ t)/p′, −1−λ− t, τ− t}, then g(z) = (1−|z|2)β ∈
Lp
′
(Bn,dvt). It follows from Proposition 3.1 that

S∗λ,τ,kg(z) = (1− |z|2)τ−t
∫
Bn

(1− |w|2)λ+β+t

|1− 〈z, w〉|n+1+λ+τ
logk

e

|1− 〈z, w〉|
dv(w)

� (1− |z|2)τ−t (z ∈ Bn).

The boundedness of S∗λ,τ,k from Lp
′
(Bn,dvt) to Lp

′

log,−k(Bn,dvt) means that the function

(1−|z|2)τ−t belongs to Lp
′

log,−k(Bn,dvt) . This implies that t+ 1 < p(τ + 1), or t+ 1 = p(τ + 1)

and k > 1/p′.

If t+ 1 = p(τ + 1) and k > 1/p′, then we take that

h(z) = (1− |z|2)
− 1+t

p′ log
−1− 1

p′
e

1− |z|2
(z ∈ Bn).

Then h ∈ Lp′(Bn,dvt). This means that S∗λ,τ,kh ∈ L
p′

log,−k(Bn,dvt). On the other hand, the

conditions −pλ < t + 1 = p(τ + 1) mean that λ + τ + 1 > 0 and λ + t − (1 + t)/p′ > −1. By

Proposition 3.1, k > 1/p′ and Lemma 2.1 (case I2 for k′ = −1− 1/p′), we get that

S∗λ,τ,kh(z) = (1− |z|2)
− 1+t

p′

∫
Bn

(1− |w|2)
λ+t− 1+t

p′

|1− 〈z, w〉|n+1+λ+τ

logk e
|1−〈z,w〉|

log
1+ 1

p′ e
1−|w|2

dvy(w)

� (1− |z|2)
− 1+t

p′

∫ 1

0

(1− ρ)
λ+t− 1+t

p′

(1− ρ|z|)1+λ+τ
logk

e

1− ρ|z|
log
−1− 1

p′
e

1− ρ
dρ

� (1− |z|2)
− 1+t

p′ log
k− 1

p′
e

1− |z|2
.

This shows that∫
Bn

∣∣∣∣S∗λ,τ,kh(z) log−k
e

1− |z|2

∣∣∣∣p′ dvt(z) � ∫
Bn

1

1− |z|2
log−1 e

1− |z|2
dv(z) =∞.
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This contradiction means that the cases t+ 1 = p(τ + 1) and k > 1/p′ are impossible.

When p = 1, it follows from Proposition 3.1 that

S∗λ,τ,k1 = (1− |z|2)τ−t
∫
Bn

(1− |w|2)λ+t

|1− 〈z, w〉|n+1+λ+τ
logk

e

|1− 〈z, w〉|
dv(w)

�



logk
e

1− |z|2
, τ > t,

logk+1 e

1− |z|2
, τ = t and k > −1,

log log
e2

1− |z|2
, τ = t and k = −1,

1, τ = t and k < −1,

(1− |z|2)τ−t, τ < t.

It is clear that there must be τ > t when S∗λ,τ,k1 ∈ L∞log,−k(Bn).

Therefore, we obtain that −pλ < t+ 1 < p(τ + 1) for all p ≥ 1.

(2) ⇒ (4)

This proof is easier than the proof of (1)⇒ (4). Notice that

Q∗λ,τ,kf(w) =
(1− |w|2)τ−t

log−k e
1−|w|2

∫
Bn

(1− |z|2)λ+tf(z)

(1− 〈w, z〉)n+1+λ+τ
dv(z) (w ∈ Bn).

We omit the proof process.

(4) ⇒ (1)

When p = 1, the conditions −λ < t + 1 < τ + 1 mean that λ + t > −1 and τ − t > 0. By

Fubini’s Theorem and Proposition 3.1, we have that

||Sλ,τ,kf ||1,t ≤
∫
Bn

Sλ,τ,k|f |(z)dvt(z)

= ct

∫
Bn

|f(w)|(1− |w|2)τ

{∫
Bn

(1− |z|2)λ+t logk e
|1−〈z,w〉|

|1− 〈z, w〉|n+1+λ+τ
dv(z)

}
dv(w)

�
∫
Bn

|f(w)| logk
e

1− |w|2
dvt(w) = ||f ||1,t,log,k.

When p > 1, let 1/p + 1/p′ = 1. If −pλ < t + 1 < p(τ + 1), then we may choose

λ+ τ − pλ < τ1 < p(τ + 1)− 1 such that(
τ − τ1

p

)
p′ > −1, (n+ 1 + λ+ τ)−

(
τ − τ1

p

)
p′ − n− 1 > 0.

For any f ∈ Lplog,k(Bn,dvt), Hölder’s inequality and Proposition A show that

{Sλ,τ,k|f |(z)}p ≤ (1− |z|2)pλ

{∫
Bn

(1− |w|2)(τ− τ1p )p′

|1− 〈z, w〉|n+1+λ+τ
dv(w)

} p
p′

×
∫
Bn

|f(w)|p(1− |w|2)τ1

|1− 〈z, w〉|n+1+λ+τ
logpk

e

|1− 〈z, w〉|
dv(w)

� (1− |z|2)λ+τ−τ1
∫
Bn

|f(w)|p(1− |w|2)τ1 logpk e
|1−〈z,w〉|dv(w)

|1− 〈z, w〉|n+1+λ+τ
. (3.8)
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If −pλ < t + 1 < p(τ + 1), then we may also choose t < τ1 < t + λ + τ + 1. By (3.8) and

Proposition 3.1(2), we have that

||Sλ,τ,kf ||pp,t ≤
∫
Bn

{Sλ,τ,k|f |(z)}pdvt(z)

.
∫
Bn

|f(w)|p(1− |w|2)τ1

{∫
Bn

(1− |z|2)λ+τ−τ1+t logpk e
|1−〈z,w〉|

|1− 〈z, w〉|n+1+λ+τ
dv(z)

}
dv(w)

�
∫
Bn

|f(w)|p logpk
e

1− |w|2
dvt(w) = ||f ||pp,t,log,k.

This shows that Sλ,τ,k is bounded from Lplog,k(Bn,dvt) to Lp(Bn,dvt) for all p ≥ 1.

Similarly, we may prove that (4) ⇒ (3).

(3) ⇒ (2)

Let Rλ,τ,k be a bounded operator from Lplog,k(Bn,dvt) to Lp(Bn,dvt). For any f ∈
Lplog,k(Bn,dvt), we have that ||Rλ,τ,kf ||p,t ≤ ||Rλ,τ,k||.||f ||p,t,log,k. Therefore,

||Qλ,τ,kf ||p,t ≤ ||Rλ,τ,k|f |||p,t ≤ ||Rλ,τ,k||.|||f |||p,t,log,k = ||Rλ,τ,k||.||f ||p,t,log,k.

This means that Qλ,τ,k is a bounded operator from Lplog,k(Bn,dvt) to Lp(Bn,dvt).

This proof is complete. �

The proof of Theorem 1.2 (1)⇒ (3)

When α + t > −1 and τ + α > −1, we have that f(z) = (1 − |z|2)α ∈ L1(Bn,dvt). The

symmetry of Bn shows that

Tλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τ+α

(1− 〈z, w〉)n+1+λ+τ
logk

e

1− 〈z, w〉
dv(w)

=
(1− |z|2)λ

cτ+α
(z ∈ Bn).

The boundedness of Tλ,τ,k on L1(Bn,dvt) means that the function (1 − |z|2)λ belongs to

L1(Bn,dvt). Thus, we get that λ + t > −1. It is easy to calculate that the conjugate op-

erator of Tλ,τ,k on L1(Bn,dvt) is

T ∗λ,τ,kf(z) = (1− |z|2)τ−t
∫
Bn

(1− |w|2)λ+tf(w)

(1− 〈z, w〉)n+1+λ+τ
logk

e

1− 〈z, w〉
dv(w) (z ∈ Bn).

It follows from T ∗λ,τ,k1 = 1
cλ+t

(1− |z|2)τ−t ∈ L∞(Bn) that τ ≥ t.
For any z ∈ Bn, we take that

gz(w) =
(1− 〈z, w〉)n+1+λ+τ

|1− 〈z, w〉|n+1+λ+τ
logk

e

|1− 〈z, w〉|
log−k

e

1− 〈z, w〉
(w ∈ Bn).

Then gz ∈ L∞(Bn) and ||gz||∞ � 1. This means that ||T ∗λ,τ,kgz||∞ . ||T ∗λ,τ,k||. It follows from

Proposition 3.1 that

||T ∗λ,τ,k|| & sup
w∈Bn

|T ∗λ,τ,kgz(w)| ≥ |T ∗λ,τ,kgz(z)|

=

∫
Bn

(1− |z|2)τ−t(1− |w|2)λ+t logk e
|1−〈z,w〉|

|1− 〈z, w〉|n+1+λ+τ
dv(w)

for all z ∈ Bn if and only if τ > t and k ≤ 0, or τ = t and k < −1.

(3) ⇒ (2)
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When −λ < t+ 1, we have that λ+ t > −1. Let τ > t and k ≤ 0, or τ = t and k < −1.

For any f ∈ L1(Bn,dvt), it follows from Proposition 3.1 that

||Sλ,τ,kf ||1,t .
∫
Bn

Sλ,τ,k|f |(z)(1− |z|2)tdv(z)

=

∫
Bn

(1− |w|2)τ |f(w)|
{∫

Bn

(1− |z|2)λ+t

|1− 〈z, w〉|n+1+λ+τ
logk

e

|1− 〈z, w〉|
dv(z)

}
dv(w)

.
∫
Bn

|f(w)|dvt(w) = ||f ||1,t.

(2) ⇒ (1)

This proof is the same as that of Theorem 1.1. �

The proof of Theorem 1.3 (1)⇒ (3)

This proof of λ + t > −1 is the same as that of Theorem 1.2. It is easy to calculate that

the conjugate operator of Qλ,τ,k on L1(Bn,dvt) is

Q∗λ,τ,kf(z) = (1− |z|2)τ−t logk
e

1− |z|2

∫
Bn

(1− |w|2)λ+tf(w)

(1− 〈z, w〉)n+1+λ+τ
dv(w) (z ∈ Bn).

For any z ∈ Bn, we take that

gz(w) =
(1− 〈z, w〉)n+1+λ+τ

|1− 〈z, w〉|n+1+λ+τ
(w ∈ Bn).

Then gz ∈ L∞(Bn) and ||gz||∞ = 1. It follows from Proposition A that

||Q∗λ,τ,k|| & |Q∗λ,τ,kgz(z)| =
∫
Bn

(1− |w|2)λ+t(1− |z|2)τ−t logk e
1−|z|2

|1− 〈z, w〉|n+1+λ+τ
dv(w)

for all z ∈ Bn if and only if τ > t and k ≤ 0, or τ = t and k ≤ −1.

(3) ⇒ (2)

When −λ < t+ 1, we have that λ+ t > −1. Let τ > t and k ≤ 0, or τ = t and k ≤ −1.

For any f ∈ L1(Bn,dvt), it follows from Proposition A that

||Rλ,τ,kf ||1,t .
∫
Bn

Rλ,τ,k|f |(z)(1− |z|2)tdv(z)

=

∫
Bn

(1− |w|2)τ |f(w)| logk
e

1− |w|2

{∫
Bn

(1− |z|2)λ+t

|1− 〈z, w〉|n+1+λ+τ
dv(z)

}
dv(w)

.
∫
Bn

|f(w)|dvt(w) = ||f ||1,t.

(2) ⇒ (1)

This proof is the same as that of Theorem 1.1. This proof is complete. �

Finally, we consider the boundedness of the generalized Forelli-Rudin type operators from

Lp,q,s,k(Bn) to Lp,q,s(Bn).

Proposition 3.3 (1) When p ≥ 1 and 0 ≤ 2s < n, if −pλ < q+ s < p(τ + 1), then Tλ,τ,k

(Qλ,τ,k) and Sλ,τ,k (Rλ,τ,k) are bounded from Lp,q,s,k(Bn) to Lp,q,s(Bn).

(2) When p ≥ 1 and n ≤ 2s < 2n, if −pλ < q + s < q + n < p(τ + 1) and λ + τ + 1 >

(n−s)sgn{max(p−1, 0)}, then Tλ,τ,k (Qλ,τ,k) and Sλ,τ,k (Rλ,τ,k) are bounded from Hp,q,s,k(Bn)

to Lp,q,s(Bn), where sgn is the symbol function.
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(3) When 0 < p < 1 and 0 ≤ s < n, if −pλ < q+ s < q+ n < p(τ + 1 + n)− n, then Tλ,τ,k

(Qλ,τ,k) and Sλ,τ,k (Rλ,τ,k) are bounded from Hp,q,s,k(Bn) to Lp,q,s(Bn).

(4) When p > 0 and s ≥ n, if −pλ < q + n < p(τ + 1), then Tλ,τ,k (Qλ,τ,k) and Sλ,τ,k

(Rλ,τ,k) are bounded from Hp,q,s,k(Bn) to G q+n
p

(Bn).

Proof For any f ∈ Lp,q,s,k(Bn) or f ∈ Hp,q,s,k(Bn), we only need to discuss the bound-

edness of Sλ,τ,k|f |.
(1) Case p = 1.

For any 0 ≤ ρ < 1 and a ∈ Bn, it follows from Lemma 2.3 that∫
Bn

(1− |u|2)τ |f(u)|
|1− 〈ρa, ρu〉|2s(1− ρ2|u|2)1+λ+τ

logk
e

1− ρ2|u|2
dv(u)

= 2n

∫ 1

0

t2n−1(1− t2)τ

(1− ρ2t2)1+λ+τ
logk

e

1− ρ2t2

{∫
Sn

|f(tξ)|dσ(ξ)

|1− ρ2〈a, tξ〉|2s

}
dt

= 2n

∫ 1

0

t2n−1(1− t2)τ−q−s

(1− ρ2t2)1+λ+τ (1− ρ4|a|2)s
logk

e

1− ρ2t2
log−k

e

1− t2

×
{

(1− t2)q
∫
Sn

∣∣∣∣f(tξ) logk
e

1− |tξ|2

∣∣∣∣ (1− |ϕρ2a(tξ)|2)sdσ(ξ)

}
dt

.
∫ 1

0

||f ||1,q,s,k(1− t)τ−q−s

(1− ρt)1+λ+τ (1− ρ4|a|2)s
logk

e

1− ρt
log−k

e

1− t
dt. (3.9)

The conditions −λ < q + s < τ + 1 show that τ − q − s > −1, λ + τ + 1 + n > n and

q + s+ λ > 0. For any a ∈ Bn, by Fubini’s theorem, Proposition 3.2(1), (3.9) and Lemma 2.1

(case I2 for k′ = −k), we have that

(1− ρ2)q
∫
Sn

Sλ,τ,k|f |(ρξ)(1− |ϕa(ρξ)|2)sdσ(ξ)

=

∫
Bn

|f(u)|
(1− |u|2)−τ

{∫
Sn

(1− ρ2)q+s+λ(1− |a|2)s logk e
|1−〈ρξ,u〉|dσ(ξ)

|1− 〈ρξ, u〉|n+1+λ+τ |1− 〈ρξ, a〉|2s

}
dv(u)

�
∫
Bn

(1− ρ2)q+s+λ(1− |a|2)s(1− |u|2)τ |f(u)|
|1− 〈ρa, ρu〉|2s(1− ρ2|u|2)1+λ+τ

logk
e

1− ρ2|u|2
dv(u)

.
(1− ρ)q+s+λ(1− |a|2)s

(1− ρ4|a|2)s
||f ||1,q,s,k

∫ 1

0

(1− t)τ−q−s

(1− ρt)1+λ+τ
logk

e

1− ρt
log−k

e

1− t
dt

. ||f ||1,q,s,k.

Case p > 1.

It follows from −pλ < q + s < p(τ + 1) that we may choose max{λ+ τ − pλ, q + s− 1} <
τ1 < min{p(τ + 1)− 1, λ+ τ + q + s} such that λ+ τ − pλ < τ1 < p(τ + 1)− 1, 1 + λ+ τ > 0,

τ1 − q − s > −1 and (1 + λ + τ) − (τ1 − q − s) − 1 > 0. By (3.8), Proposition 3.2(1), Lemma

2.3 and Lemma 2.1 (the case I2 for k′ = −pk), we have that

(1− ρ2)q
∫
Sn

{Sλ,τ,k|f |(ρξ)}p(1− |ϕa(ρξ)|2)sdσ(ξ)

.
∫
Bn

(1− |w|2)τ1 |f(w)|p
(∫

Sn

(1− ρ2)q+s+λ+τ−τ1(1− |a|2)s logpk e
|1−〈ξ,ρw〉|dσ(ξ)

|1− 〈ξ, ρw〉|n+1+λ+τ |1− 〈ξ, ρa〉|2s

)
dv(w)

�
∫
Bn

(1− ρ2)q+s+λ+τ−τ1(1− |a|2)s(1− |w|2)τ1 |f(w)|p logpk e
1−ρ2|w|2

(1− ρ2|w|2)1+λ+τ |1− 〈w, ρ2a〉|2s
dv(w)



No.4 X.J. Zhang et al: GENERALIZED FORELLI-RUDIN TYPE OPERATORS 1321

.
||f ||pp,q,s,k(1− ρ2)q+s+λ+τ−τ1(1− |a|2)s

(1− ρ4|a|2)s

∫ 1

0

(1− t)τ1−q−s logpk e
1−ρt

(1− ρt)1+λ+τ logpk e
1−t

dt

. ||f ||pp,q,s,k.

This means that Tλ,τ,k and Sλ,τ,k are bounded from Lp,q,s,k(Bn) to Lp,q,s(Bn).

Similarly, we may prove that Qλ,τ,k and Rλ,τ,k are two bounded operators from Lp,q,s,k(Bn)

to Lp,q,s(Bn).

(2) When 2s = n and p = 1, it follows from −λ < q + s < q + n < τ + 1 that we choose

0 < ε < min{1, s, 1 + λ+ τ, λ+ q + n}. By Proposition 3.2(2), Lemma 2.3,

sup
0<x≤1

xε log
e

x
=

eε−1

ε
,

Lemma 2.3, Proposition 3.1 and Lemma 2.1 (case I2 for k′ = −k), we have that

(1− ρ2)q
∫
Sn

Sλ,τ,k|f |(ρξ)(1− |ϕa(ρξ)|2)sdσ(ξ)

�
∫
Bn

(1− ρ2)q+s+λ(1− |a|2)s(1− |u|2)τ |f(u)|
|1− 〈ρa, ρu〉|2s(1− ρ2|u|2)1+λ+τ

logk
e

1− ρ2|u|2
dv(u)

+

∫
Bn

(1− |a|2)s(1− |u|2)τ |f(u)| logk e
|1−〈ρu,ρa〉|

(1− ρ2)−q−s−λ|1− 〈ρu, ρa〉|n+1+λ+τ
log

e

|1− 〈ρa, ϕρa(ρu)〉|
dv(u)

. ||f ||1,q,s,k +

∫
Bn

(1− |a|2)s−ε|f(u)|(1− |u|2)τ logk e
|1−〈ρu,ρa〉|

(1− ρ2)−q−s−λ|1− 〈ρu, ρa〉|n+1+λ+τ−ε dv(u)

. ||f ||1,q,s,k +

∫
Bn

||f ||1,q,s,k(1− |a|2)s−ε(1− |u|2)τ−q−n logk e
|1−〈u,ρ2a〉|

(1− ρ2)−q−s−λ|1− 〈u, ρ2a〉|n+1+λ+τ−ε logk e
1−|u|2

dv(u)

� ||f ||1,q,s,k +

∫ 1

0

||f ||1,q,s,k(1− |a|2)s−ε(1− t)τ−q−n logk e
1−tρ2|a|

(1− ρ2)−q−s−λ(1− tρ2|a|)1+λ+τ−ε logk e
1−t

dt

� ||f ||1,q,s,k +
(1− |a|2)s−ε(1− ρ2)q+s+λ||f ||1,q,s,k

(1− ρ2|a|)λ+q+n−ε . ||f ||1,q,s,k.

When 2s > n and p = 1, it follows from −λ < q + s < q + n < τ + 1 that τ − q − s > −1,

q+ s+λ > 0, τ − q−n > −1 and q+n+λ > 0 hold. By Fubini’s theorem, Proposition 3.2(3),

Lemmas 2.3–2.4, Proposition 3.1 and Lemma 2.1 (case I2 for k′ = −k), we get that

(1− ρ2)q
∫
Sn

Sλ,τ,k|f |(ρξ)(1− |ϕa(ρξ)|2)s dσ(ξ)

�
∫
Bn

(1− ρ2)q+s+λ(1− |a|2)s(1− |u|2)τ |f(u)|
|1− 〈ρa, ρu〉|2s(1− ρ2|u|2)1+λ+τ

logk
e

1− ρ2|u|2
dv(u)

+

∫
Bn

(1− ρ2)q+s+λ(1− |a|2)s(1− |u|2)τ |f(u)|
|1− 〈ρa, ρu〉|n+1+λ+τ (1− ρ2|a|2)2s−n logk

e

|1− 〈u, ρ2a〉|
dv(u)

. ||f ||1,q,s,k +

∫
Bn

||f ||1,q,s,k(1− ρ2)q+s+λ(1− |u|2)τ−q−n logk e
|1−〈u,ρ2a〉|dv(u)

(1− |a|2)−s|1− 〈ρa, ρu〉|n+1+λ+τ (1− ρ2|a|2)2s−n logk e
1−|u|2

� ||f ||1,q,s,k +

∫ 1

0

||f ||1,q,s,k(1− ρ2)q+s+λ(1− t)τ−q−n logk e
1−ρ2|a|tdt

(1− ρ2|a|2)2s−n(1− |a|2)−s(1− ρ2t|a|)1+λ+τ logk e
1−t

� ||f ||1,q,s,k +
||f ||1,q,s,k(1− ρ2)q+s+λ(1− |a|2)s

(1− ρ2|a|2)2s−n(1− ρ2|a|)q+n+λ
. ||f ||1,q,s,k.
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This means that Tλ,τ,k and Sλ,τ,k are bounded from H1,q,s,k(Bn) to L1,q,s(Bn).

Case p > 1.

The conditions −pλ < q + s < q + n < p(τ + 1) and λ + τ + 1 > n − s show that we

may choose max{λ + τ − pλ, q + n − 1} < τ1 < min{p(τ + 1) − 1, λ + τ + q + s} such that

λ + τ − pλ < τ1 < p(τ + 1) − 1 and −(λ + τ − τ1) < q + s < q + n < τ1 + 1. By (3.8)

and the previous proof process for p = 1, we can get that Tλ,τ,k and Sλ,τ,k are bounded from

Hp,q,s,k(Bn) to Lp,q,s(Bn). We omit the details of the process.

Similarly, we may prove that Qλ,τ,k and Rλ,τ,k are two bounded operators fromHp,q,s,k(Bn)

to Lp,q,s(Bn).

(3) Let p(τ + n+ 1)− n− 1 = τ ′ and 0 < r ≤ 1. By (1.3), Lemma 2.20 and (2.20) in [1],

and Lemma 2.5, we have that

{Sλ,τ,k|f |(z)}p ≤


∞∑
j=1

∫
D(aj ,r)

(1− |w|2)τ |f(w)| logk e
|1−〈z,w〉|dv(w)

(1− |z|2)−λ|1− 〈z, w〉|n+1+λ+τ


p

.

(1− |z|2)λ
∞∑
j=1

(1− |aj |2)τ+n+1 logk e
|1−〈z,aj〉|

|1− 〈z, aj〉|n+1+λ+τ
sup

w∈D(aj ,r)

|f(w)|


p

≤ (1− |z|2)pλ
∞∑
j=1

(1− |aj |2)p(τ+n+1) logpk e
|1−〈z,aj〉|

|1− 〈z, aj〉|p(n+1+λ+τ)
sup

w∈D(aj ,r)

|f(w)|p

. (1− |z|2)pλ
∞∑
j=1

(1− |aj |2)τ
′
logpk e

|1−〈z,aj〉|

|1− 〈z, aj〉|n+1+pλ+τ ′
sup

w∈D(aj ,r)

∫
D(w,r)

|f(u)|pdv(u)

≤ (1− |z|2)pλ
∞∑
j=1

(1− |aj |2)τ
′
logpk e

|1−〈z,aj〉|

|1− 〈z, aj〉|n+1+pλ+τ ′

∫
D(aj ,2r)

|f(u)|pdv(u)

. (1− |z|2)pλ
∞∑
j=1

∫
D(aj ,4r)

(1− |u|2)τ
′ |f(u)|p logpk e

|1−〈z,u〉|

|1− 〈z, u〉|n+1+pλ+τ ′
dv(u)

≤ N(1− |z|2)pλ
∫
Bn

(1− |u|2)τ
′ |f(u)|p

|1− 〈z, u〉|n+1+pλ+τ ′
logpk

e

|1− 〈z, u〉|
dv(u). (3.10)

The conditions −pλ < q+s < q+n < p(τ+1+n)−n mean that −pλ < q+s < q+n < τ ′+1.

By (3.10) and the previous proof process for p = 1, we can get that Tλ,τ,k and Sλ,τ,k are bounded

from Hp,q,s,k(Bn) to Lp,q,s(Bn).

Similarly, we may prove that Qλ,τ,k and Rλ,τ,k are two bounded operators fromHp,q,s,k(Bn)

to Lp,q,s(Bn).

(4) If s ≥ n, then it follows from Lemma 2.4 that Hp,q,s,k(Bn) = H∞q+n
p ,k

(Bn). When

−pλ < q + n < p(τ + 1), by Lemma 2.4, Proposition 3.1 and Lemma 2.1 (the case I2 for

k′ = −k), we have that∥∥Sλ,τ,k|f |∥∥ q+n
p

= sup
z∈Bn

(1− |z|2)
q+n
p |Sλ,τ,k|f |(z)|

. ||f || q+n
p ,k sup

z∈Bn
(1− |z|2)

q+n
p +λ

∫
Bn

(1− |w|2)τ−
q+n
p logk e

|1−〈z,w〉|dv(w)

|1− 〈z, w〉|n+1+λ+τ logk e
1−|w|2

� ||f || q+n
p ,k ⇒ Tλ,τ,kf, Sλ,τ,kf ∈ G q+n

p
(Bn).



No.4 X.J. Zhang et al: GENERALIZED FORELLI-RUDIN TYPE OPERATORS 1323

Similarly, we may prove that Qλ,τ,kf , Rλ,τ,kf ∈ G q+n
p

(Bn). The proof is complete. �

Next, we consider the necessary conditions.

Proposition 3.4 (1) If Sλ,τ,k (Rλ,τ,k) is a bounded operator from Lp,q,s,k(Bn) to Lp,q,s(Bn),

then −pλ < q + min(s, n) < p(τ + 1).

(2) If Tλ,τ,k is a bounded operator from Lp,q,s,k(Bn) to Lp,q,s(Bn), then (i) −pλ ≤ q+s <

p(τ + 1), or −pλ ≤ q + s = p(τ + 1) and k > 1 when 0 ≤ s < n; (ii) −pλ < q + n < p(τ + 1),

or −pλ < q + n = p(τ + 1) and k > 1 when s ≥ n.

(3) If Qλ,τ,k is a bounded operator from Lp,q,s,k(Bn) to Lp,q,s(Bn), then (i) −pλ ≤ q+s <

p(τ + 1) when 0 ≤ s < n; (ii) −pλ < q + n < p(τ + 1) when s ≥ n.

Proof (1) Let f(z) = (1− |z|2)α log−k e
1−|z|2 . It follows from Proposition A that

||f ||pp,q,s,k = sup
0≤ρ<1

sup
a∈Bn

∫
Sn

(1− ρ2)q+s+pα(1− |a|2)s

|1− 〈a, ρξ〉|2s
dσ(ξ) <∞

if and only if q + min(s, n) + pα ≥ 0. In particular,

f(z) = (1− |z|2)−
q+min(s,n)

p log−k
e

1− |z|2
∈ Lp,q,s,k(Bn).

If Sλ,τ,k is bounded from Lp,q,s,k(Bn) to Lp,q,s(Bn), then we may take that z0 ∈ {z ∈ Cn :

|z| ≤ 1/2} such that

∞ > |Sλ,τ,kf(z0)| �
∫
Bn

(1− |w|2)τ−
q+min(s,n)

p log−k
e

1− |w|2
dv(w).

This means that τ − q+min(s,n)
p > −1, or τ − q+min(s,n)

p = −1 and k > 1.

On the other hand, it is clear that Sλ,τ,kf(z) & (1 − |z|2)λ. It follows from Sλ,τ,kf ∈
Lp,q,s(Bn) that we have that q + min(s, n) + pλ ≥ 0. This shows that −pλ ≤ q + min(s, n) <

p(τ + 1), or −pλ ≤ q + min(s, n) = p(τ + 1) and k > 1.

Let z ∈ Bn. When 1 + λ+ τ > 0, by Lemma 2.3, Proposition 3.1 and Lemma 2.1 (case I2

for k′ = −k), we have that

Sλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τ−
q+min(s,n)

p

|1− 〈z, w〉|n+1+λ+τ

logk e
|1−〈z,w〉|

logk e
1−|w|2

dv(w)

� (1− |z|2)λ
∫ 1

0

(1− ρ)τ−
q+min(s,n)

p logk e
1−ρ|z|

(1− ρ|z|)1+λ+τ logk e
1−ρ

dρ � g(z), where

g(z) =



(1− |z|2)−
q+min(s,n)

p , −λ < q + min(s, n)

p
< τ + 1,

(1− |z|2)−
q+min(s,n)

p log
e

1− |z|2
, −λ < q + min(s, n)

p
= τ + 1 and k > 1,

(1− |z|2)−
q+min(s,n)

p log
e

1− |z|2
, −λ =

q + min(s, n)

p
< τ + 1.

If Sλ,τ,k is a bounded operator from Lp,q,s,k(Bn) to Lp,q,s(Bn), then we have that Sλ,τ,kf ∈
Lp,q,s(Bn) ⇔ g ∈ Lp,q,s(Bn). By calculation, g belongs to Lp,q,s(Bn) if and only if −pλ <

q + min(s, n) < p(τ + 1).
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If 1 + λ + τ = 0, then there must be −pλ = q + min(s, n) = p(τ + 1) and k > 1. By

Proposition 3.1 and Lemma 2.1 (case I2 for k′ = −k and δ = −1), we have that

Sλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)−1

|1− 〈z, w〉|n
logk e

|1−〈z,w〉|

logk e
1−|w|2

dv(w)

� (1− |z|2)λ
∫ 1

0

(1− ρ)−1

logk e
1−ρ

logk+1 e

1− ρ|z|
dρ

� (1− |z|2)λ log2 e

1− |z|2
= h(z).

It is easy to prove that h does not belong to Lp,q,s(Bn).

Similarly, it is easier to prove that −pλ < q+ min(s, n) < p(τ + 1) when Rλ,τ,k is bounded

from Lp,q,s,k(Bn) to Lp,q,s(Bn).

(2) We have proven that f(z) = (1−|z|2)−
q+min(s,n)

p log−k e
1−|z|2 ∈ L

p,q,s,k(Bn). If Tλ,τ,k is

bounded from Lp,q,s,k(Bn) to Lp,q,s(Bn), then we have that Tλ,τ,kf(0) < ∞. This shows that

τ − q+min(s,n)
p > −1, or τ − q+min(s,n)

p = −1 and k > 1.

This symmetry of Bn shows that there exists a constant c such that

Tλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τ−
q+min(s,n)

p

(1− 〈z, w〉)n+1+λ+τ

logk e
1−〈z,w〉

logk e
1−|w|2

dv(w)

= c(1− |z|2)λ when τ − q+min(s,n)
p > −1, or τ − q+min(s,n)

p = −1 and k > 1.

If Tλ,τ,k is a bounded operator from Lp,q,s,k(Bn) to Lp,q,s(Bn), then Tλ,τ,kf ∈ Lp,q,s(Bn).

This means that −pλ ≤ q+ min(s, n) < p(τ + 1), or −pλ ≤ q+ min(s, n) = p(τ + 1) and k > 1.

For any z ∈ Bn and λ with q + min(s, n) + pλ ≥ 0, we take that

Fz(w) =
(1− |w|2)λ(1− 〈z, w〉)n+1+λ+τ | log e

1−〈w,z〉 |
k

|1− 〈w, z〉|n+1+λ+τ logk e
1−〈w,z〉

log−k
e

1− |w|2
(w ∈ Bn).

By |Fz(w)| = (1 − |w|2)λ log−k e
1−|w|2 , we have that Fz ∈ Lp,q,s,k(Bn) and ||Fz||p,q,s,k � 1.

If Tλ,τ,k is bounded from Lp,q,s,k(Bn) to Lp,q,s(Bn), then Tλ,τ,kFz ∈ Hp,q,s(Bn). In fact,

Tλ,τ,kFz(w) = (1 − |w|2)λgz(w) (w ∈ Bn), where gz ∈ H(Bn). By the boundedness of Tλ,τ,k

from Lp,q,s,k(Bn) to Lp,q,s(Bn) and Lemma 2.3, we have that

||Tλ,τ,k|| & ||Tλ,τ,k||.||Fz||p,q,s,k ≥ ||Tλ,τ,kFz||p,q,s & (1− |z|2)
q+n
p |(Tλ,τ,kFz)(z)|

� (1− |z|2)
q+n
p +λ

∫
Bn

(1− |w|2)τ+λ logk e
|1−〈w,z〉|

|1− 〈w, z〉|n+1+λ+τ logk e
1−|w|2

dv(w).

This implies that λ + τ > −1, or λ + τ = −1 and k > 1. When λ + τ > −1, it follows from

Proposition 3.1 and Lemma 2.1 (case I2 for k′ = −k) that

(1− |z|2)
q+n
p +λ log

e

1− |z|2
. ||Tλ,τ,k||

for all z ∈ Bn. Therefore, there must be q + n+ pλ > 0.

When λ + τ = −1 and k > 1, it follows from Proposition 3.1 and Lemma 2.1 (the case I2

for k′ = −k and δ = −1) that∫
Bn

(1− |w|2)−1 logk e
|1−〈w,z〉|

|1− 〈w, z〉|n logk e
1−|w|2

dv(w) �
∫ 1

0

logk+1 e
1−|z|ρ

(1− ρ) logk e
1−ρ

dρ � log2 e

1− |z|2
.
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This shows that

(1− |z|2)
q+n
p +λ log2 e

1− |z|2
. ||Tλ,τ,k||

for all z ∈ Bn. Therefore, there must be q + n+ pλ > 0.

(3) For f(z) = (1− |z|2)−
q+min(s,n)

p log−k e
1−|z|2 ∈ L

p,q,s,k(Bn), we take that z0 ∈ {z ∈ Cn :

|z| ≤ 1/2} such that

∞ > |Qλ,τ,kf(z0)| �
∫
Bn

(1− |w|2)τ−
q+min(s,n)

p dv(w).

This means that q + min(s, n) < p(τ + 1).

At the same time, we have that

Qλ,τ,kf(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τ−
q+min(s,n)

p

(1− 〈z, w〉)n+1+λ+τ
dv(w) =

(1− |z|2)λ

c
τ− q+min(s,n)

p

.

It follows from Qλ,τ,kf ∈ Lp,q,s(Bn) that q + min(s, n) + pλ ≥ 0.

For any z ∈ Bn and λ with q + min(s, n) + pλ ≥ 0, we take that

Gz(w) =
(1− |w|2)λ(1− 〈z, w〉)n+1+λ+τ

|1− 〈w, z〉|n+1+λ+τ
log−k

e

1− |w|2
(w ∈ Bn).

Then Gz ∈ Lp,q,s,k(Bn) and ||Gz||p,q,s,k . 1. By Qλ,τ,kGz(0) < ∞, we have that λ + τ > −1.

Therefore, it follows from Proposition A that

Qλ,τ,kGz(z) = (1− |z|2)λ
∫
Bn

(1− |w|2)τ+λ

|1− 〈z, w〉|n+1+λ+τ
dv(w) � (1− |z|2)λ log

e

1− |z|2
.

Since Qλ,τ,kGz ∈ Hp,q,s(Bn), it follows from Lemma 2.4 (case k = 0) that

||Qλ,τ,k|| & ||Qλ,τ,k||.||Gz||p,q,s,k ≥ ||Qλ,τ,kGz|| q+n
p
& (1− |z|2)

q+n
p Qλ,τ,kGz(z)

� (1− |z|2)
q+n
p +λ log

e

1− |z|2
for all z ∈ Bn.

This means that q + n+ pλ > 0. The proof is complete. �

Note When s ≥ n, it follows from the test function in the proof of Proposition 3.4 that

−pλ < q + n < p(τ + 1) if Sλ,τ,k (Rλ,τ,k) is bounded from H∞q+n
p ,k

(Bn) to G q+n
p

(Bn), or Qλ,τ,k

is bounded from H∞q+n
p ,k

(Bn) to H∞q+n
p

(Bn).

The proof of Theorem 1.4 By Propositions 3.3–3.4 and the above note, (1), (2),

(3) and (4) are true. In (3) and (4), we need to notice that Hp,q,s,k(Bn) = H∞q+n
p ,k

(Bn) and

Hp,q,s(Bn) = H∞q+n
p

(Bn) when s ≥ n. In addition, Qλ,τ,kf ∈ Hp,q,s(Bn) when f ∈ Hp,q,s,k(Bn).

The proof is complete. �
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