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Abstract This paper deals with the problem of limit cycles for the whirling pendulum

equation ẋ = y, ẏ = sinx(cosx − r) under piecewise smooth perturbations of polynomials

of cosx, sinx and y of degree n with the switching line x = 0. The upper bounds of the

number of limit cycles in both the oscillatory and the rotary regions are obtained using the

Picard-Fuchs equations, which the generating functions of the associated first order Melnikov

functions satisfy. Furthermore, the exact bound of a special case is given using the Chebyshev

system. At the end, some numerical simulations are given to illustrate the existence of limit

cycles.
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1 Introduction and Main Results

The piecewise smooth differential system has attracted the attention of many researchers

interested in studying its limit cycles. One important reason for that is that a sudden behavior

after a slow change is common in both natural and artificial systems, and that is usually

described by the piecewise smooth mathematical model [25, 31]. Another interesting reason is

that this problem can be seen as an extension to the piecewise smooth world of the Hilbert’s

16-th problem, which is provided by Hilbert [6] in 1902. We recall that Hilbert’s 16th problem

asks for the maximum number of limit cycles of planar polynomial vector fields of degree n,

n ∈ N+, and for their relative distributions on the plane. Later, this problem was posed again

by Smale [30] in 1998. Although there are plenty of excellent articles corresponding to that,

see, for instance, [8, 11, 22] and the references therein, the problem is still open.

Consider a piecewise smooth differential system with the form

ẋ = Hy(x, y) + εf(x, y), ẏ = Hx(x, y) + εg(x, y), (1.1)
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where 0 < |ε| � 1 is a small parameter, and

H(x, y) =

⎧⎨
⎩
H+(x, y), x ≥ 0,

H−(x, y), x < 0,

f(x, y) =

⎧⎨
⎩
f+(x, y), x ≥ 0,

f−(x, y), x < 0

and

g(x, y) =

⎧⎨
⎩
g+(x, y), x ≥ 0,

g−(x, y), x < 0

with the functions H±, f±, g± being C∞ smooth.

To establish the first order Melnikov function, one must first make the following assump-

tions, as in [21]:

Assumption (I) There exist an interval Σ and two pointsA1(h) = (0, a1(h)) andA2(h) =

(0, a2(h)) such that, for h ∈ Σ,

H+(A1(h)) = H+(A2(h)) = h, H−(A1(h)) = H−(A2(h)), a1(h) > a2(h).

Assumption (II) The equation H+(x, y) = h, x ≥ 0 defines an orbital arc L+
h starting

from A1(h) and ending at A2(h); the equation H−(x, y) = H−(A2(h)), x ≤ 0 defines an orbital

arc L−h starting from A2(h) and ending at A1(h) such that the system (1.1)|ε=0 has a family of

clockwise oriented periodic orbits Lh = L+
h ∪ L−h , h ∈ Σ.

In order to study the problem of limit cycle bifurcations, the authors of [9, 17, 21] obtained

the first order Melnikov function formula M(h) of system (1.1) and the beautiful relationship

between the limit cycles and the zeros of M(h), as in the smooth case. We review these results

here for the convenience of the reader.

Theorem A Under the assumptions (I) and (II), we have that

(i) the first order Melnikov function of system (1.1) has the following form

M(h) =

∫
L+

h

g+dx− f+dy +

∫
L−h

g−dx− f−dy, h ∈ Σ;

(ii) if M(h) has k zeros in h on the interval Σ, with each having an odd multiplicity, then

system (1.1) has at least k limit cycles bifurcating from the period annulus for |ε| small;

(iii) if the function M(h) has at most k zeros in h on the interval Σ, taking the multiplicities

into account, then there exist at most k limit cycles of system (1.1) bifurcating from the period

annulus up to the first order.

This theorem has many applications to Hopf, homoclinic and heteroclinic bifurcations for

when f±(x, y) and g±(x, y) are polynomials of x and y, see, [7, 18, 33–35, 37, 38], for instance.

However, for when f±(x, y) and g±(x, y) are non-polynomials (e.g., trigonometric functions),

there are, as far as we know, very few papers on this. For the smooth case, the analysis of

pendulum-like equations appears in some of the literature. Examples include the perturbed

whirling pendulum

ẋ = y, ẏ = sinx(cosx− r) + εy(cosx+ α), (1.2)
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where α is a real parameter; that was considered by Lichardová in [19]. Via the Melnikov

method and the Li and Zhang criterion [16], the author proved that, for ε > 0 small enough,

this system has a unique limit cycle in a certain region of a two-dimensional space of parameters.

In [20], Lichardová proved that the period function of system (1.2)|ε=0 is either monotone or

has exactly one critical point, by using the Picard-Fuchs equation. Another related problem is

the study of the periodic solutions of the simple pendulum

ẋ = y, ẏ = − sinx.

The perturbed of this equation was studied by several authors; see [2, 4, 10, 12, 13, 27, 29, 36].

Gasull, Geyer and Mañosas [4] considered the pendulum-like equation

ẋ = y, ẏ = − sinx+ ε

m∑
s=0

Qn,s(x)y
s,

where Qn,s(x) are trigonometric polynomials of a degree of at most n, and ε > 0 is a small

parameter. They gave upper bounds on the number of zeros of the associated first order Mel-

nikov function in both the oscillatory and the rotary regions. These upper bounds are obtained

by expressing the corresponding Abelian integrals in terms of polynomials and the complete

elliptic functions of first and second kind. We refer the reader to the classical monograph [1, 26]

for a complete survey of this problem.

In this paper, motivated by the above references, we will study the number of limit cycles

bifurcating from the period annuli of the whirling pendulum when it is perturbed inside any

polynomials of cosx, sinx and y of degree n with the switching line x = 0. It is well-known

that any polynomial of sinx, cosx and y of degree n can be written as

n∑
i+j=0

ai,jy
j cosi x+

n−1∑
i+j=0

bi,jy
j cosi x sinx,

where ai,j and bi,j are real constants.

Figure 1 Whirling pendulum

The whirling pendulum is shown in Figure 1 above, it consists of a rigid frame that freely

rotates about a vertical axis with constant rotation rate ω to which a planar pendulum with

length l and mass m is attached, the pivot being on the vertical axis. If the angle deviation is

denoted by x, then the centrifugal moment is mw2l2 sinx cosx, the gravity moment is mgl sinx,
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and the moment of inertia is ml2. Therefore, the motion of the whirling pendulum can be

described by the equation (see [15, p272])

ml2ẍ−mω2l2 sinx cosx+mgl sinx = 0, (1.3)

where g is the gravity constant and the dot stands for the derivative with respect to the time

t. Obviously, if there are forces to counteract gravity, then equation (1.3) is reduced to

ml2ẍ−mω2l2 sinx cosx = 0.

Introducing a new variable y = ẋ and then changing the variables y → ωy, t → t/ω converts

(1.3) to an equivalent planar system of first-order equations

ẋ = y, ẏ = sinx(cosx− r), (1.4)

where r = g
lω2 ≥ 0 (when there are forces to counteract gravity, r = 0). This system is

hamiltonian with the energy

H(x, y) =
1

2
y2 +

1

2
cos2 x− r cosx+ r − 1

2
, (1.5)

and its levels H−1(h) = Lh correspond to trajectories of system (1.4), where h ∈ (hm,+∞)

with

hm =

⎧⎨
⎩
−1

2
(1− r)2, 0 ≤ r < 1,

0, r ≥ 1.

Depending on r, one can obtain three qualitatively different dynamics of system (1.4), and for

all r ≥ 0, the points (±π, 0) in the phase plane are saddles (see Figures 2–4).

Case (I) For r ≥ 1 (i.e., for small rotation rate), the dynamics are the same as for that of

a planar pendulum: there is a center (0, 0), two saddles (±π, 0), and two types of periodic orbits.

For h ∈ (0, 2r), the levels L0
h = {(x, y)|H(x, y) = h} are ovals surrounding the origin. This

corresponds to oscillations about the stable equilibrium (0, 0). Meanwhile for h ∈ (2r,+∞),

the corresponding levels have two connected components which are again ovals: one of these

is contained in the region y > 0 denoted by L+
h , corresponding to clockwise rotations of the

pendulum, and the other one is contained in the region y < 0 denoted by L−h corresponding to

counterclockwise rotations; see Figure 2.

Figure 2 Phase portrait of system (1.4) with r ≥ 1

Case (II) For 0 < r < 1, i.e. if ω passes through the critical value
√

g/l, then (0, 0) is

a saddle point with two homoclinic loops (symmetric with respect to the y-axis). Inside each

loop, there is a family of periodic solutions (deviated oscillations) L∗h,+ =
{
(x, y)|H(x, y) =
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h, h ∈ (− 1
2 (1 − r)2, 0), x > 0

}
and L∗h,− =

{
(x, y)|H(x, y) = h, h ∈ (− 1

2 (1 − r)2, 0), x < 0
}
,

which surround centers (arccos r, 0) and (− arccos r, 0), respectively; see Figure 3.

Figure 3 Phase portrait of system (1.4) with 0 < r < 1

Case (III) For r = 0, that is to say, when there are forces to counteract gravity. (0, 0) is

also a saddle point with two heteroclinic loops (symmetric with respect to the y-axis). Inside

each loop, there is a family of periodic solutions L∗h,+ =
{
(x, y)|H(x, y) = h, h ∈ (− 1

2 , 0), x > 0
}

and L∗h,− =
{
(x, y)|H(x, y) = h, h ∈ (− 1

2 , 0), x < 0
}
, which surround centers (π2 , 0) and (−π

2 , 0),

respectively; see Figure 4.

Figure 4 Phase portrait of system (1.4) with r = 0

In the sequel, we will take into consideration only the families L0
h, L

+
h and L∗h,+, since,

due to symmetry, the results for L−h and L∗h,− are analogous. The superscripts 0, + and ∗ will

denote which Lh-family is being used; for instance, M+(h) denotes a function M(h) restricted

to L+
h .

Inspired by the non-smooth perturbation of the whirling pendulum, we will study the

following perturbed equation of (1.4) with the switching line x = 0:

⎛
⎝ ẋ

ẏ

⎞
⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ y + εf+(x, y)

sinx(cosx− r) + εg+(x, y)

⎞
⎠ , x ≥ 0,

⎛
⎝ y + εf−(x, y)

sinx(cosx− r) + εg−(x, y)

⎞
⎠ , x < 0.

(1.6)
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Here 0 < |ε| � 1,

f±(x, y) =
n∑

i+j=0

a±i,jy
j cosi x+

n−1∑
i+j=0

b±i,jy
j cosi x sinx,

g±(x, y) =
n∑

i+j=0

c±i,jy
j cosi x+

n−1∑
i+j=0

d±i,jy
j cosi x sinx,

where a±i,j , b
±
i,j , c

±
i,j and d±i,j are real constants.

In order to simplify the notations, we first fix some statements. From now on we denote by

Pk(u) and Qk(u) the polynomials of a degree of at most k, and by [x] the integer part for any

real number x.

Without loss of generality, we will consider only the case 0 ≤ r < 1 corresponding the phase

portraits in Figure 3 and Figure 4, since, the case r ≥ 1 is analogous and more digestible. For

convenience, we first give the first order Melnikov functions of system (1.6). By the Poincaré-

Pontryagin Theorem [3, 28] and Theorem A, the functions can be written as

M+(h) =

∫
L+

h,+

g+(x, y)dx− f+(x, y)dy

+

∫
L+

h,−

g−(x, y)dx− f−(x, y)dy, h ∈ (2r,+∞), (1.7)

M0(h) =

∫
L0

h,+

g+(x, y)dx− f+(x, y)dy

+

∫
L0

h,−

g−(x, y)dx− f−(x, y)dy, h ∈ (0, 2r) (1.8)

and

M∗(h) =
∮
L∗h,+

g+(x, y)dx− f+(x, y)dy, h ∈ (− 1

2
(1− r)2, 0

)
, (1.9)

where
L+
h,+ = {(x, y)|H(x, y) = h, h ∈ (2r,+∞), x ≥ 0, y > 0},

L+
h,− = {(x, y)|H(x, y) = h, h ∈ (2r,+∞), x < 0, y > 0},

L0
h,+ = {(x, y)|H(x, y) = h, h ∈ (0, 2r), x ≥ 0},

L0
h,− = {(x, y)|H(x, y) = h, h ∈ (0, 2r), x < 0},

L∗h,+ =
{
(x, y)|H(x, y) = h, h ∈ (− 1

2
(1− r)2, 0

)
, x ≥ 0

}
,

and the number of isolated zeros of them, counting multiplicities, provides the upper bounds

for the number of ovals of H(x, y) that generate limit cycles of system (1.6) for ε being close to

zero, if they are not identically zero. The next three Theorems are our main results, and they

hold only in one period annulus. The simultaneous bifurcation of limit cycles in more than one

period annuli is a very intricate problem. This problem is of interest and deserves further work.

Theorem 1.1 Consider the first order Melnikov functions of system (1.6) and 0 ≤ r < 1.

Then the following statements hold

(1) if M+(h) is not identically zero in (2r,+∞), then it has at most 137n+ 15[n+1
2 ] + 482

(resp. 14n + [n+1
2 ] + 30) zeros counting in multiplicity in the interval (2r,+∞) for 0 < r < 1

(resp. r = 0);
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(2) if M0(h) is not identically zero in (0, 2r), then it has at most 55n+15[n+1
2 ]+173 zeros

counting in multiplicity in the interval (0, 2r) for 0 < r < 1;

(3) if M∗(h) is not identically zero in
(− 1

2 (1−r)2, 0
)
, then it has at most 3n+25[n+1

2 ]+28

(resp. 3n+[n+1
2 ]+4) zeros counting in multiplicity in the interval

(− 1
2 (1−r)2, 0

)
for 0 < r < 1

(resp. r = 0).

Theorem 1.2 If, in (1.6), f+(x, y) = f−(x, y) and g+(x, y) = g−(x, y) such that system

(1.6) is smooth and 0 ≤ r < 1, then the following statements hold:

(1) if M+(h) is not identically zero in (2r,+∞), then it has at most 3n + 25[n+1
2 ] + 28

(resp. 3n + [n+1
2 ] + 4) zeros counting in multiplicity in the interval (2r,+∞) for 0 < r < 1

(resp. r = 0). The same result holds for M∗(h) in the interval
(− 1

2 (1− r)2, 0
)
;

(2) if M0(h) is not identically zero in (0, 2r), then it has at most 3n + 3[n+1
2 ] + 6 zeros

counting in multiplicity in the interval (0, 2r) for 0 < r < 1.

The bounds given in Theorem 1.1 and Theorem 1.2 are not optimal. In the next theorems,

we give optimal bounds for some particular smooth perturbations in the rotary region for r = 0.

In this case, there are forces to counteract gravity.

Theorem 1.3 Consider the system⎧⎪⎨
⎪⎩
ẋ = y,

ẏ = sinx cosx+ ε
n∑

i=0

(
aiy

2i cosi x+ biy
2i cosi+1 x+ ciy

2l+1 cos2i x
)
,

(1.10)

or ⎧⎪⎨
⎪⎩
ẋ = y,

ẏ = sinx cosx+ ε
n∑

i=0

(
aiy

2i cosi x+ biy
2i cosi+1 x+ ciy

2l+1 cos2i+1 x
)
,

(1.11)

where n, l ∈ N, ai, bi, ci ∈ R, and let M+(h) be its first order Melnikov function. Assume also

that M+(h) is not identically zero. Then it has at most 2n + 1 zeros in (0,+∞), counting in

multiplicity. This bound is optimal.

The techniques of the proofs of Theorems 1.1–1.3 mainly include use of the Melnikov func-

tion, the Picard-Fuchs equation, the Chebyshev criterion and the Gram determinant. We first

obtain the algebraic structure of the first order Melnikov functions (see Lemma 2.3 and Lemma

2.5), which are more complicated than the Melnikov functions corresponding to the smooth

case. Then we find that the corresponding generating functions of these satisfy some Picard-

Fuchs equations (see Lemma 2.4). Finally, we give the upper bounds of the number of the zeros

of the Melnikov functions by the Riccati equations and a derivation-division algorithm. For a

special case, we get the exact bound by using the Chebyshev criterion and the Gram deter-

minant, which is in fact similar to the proofs of [5]. It is worth noting that the Picard-Fuchs

equation method can be applied to other situations regarding the investigation of limit cycles

for differential systems under piecewise smooth non-polynomial perturbations.

The rest of the paper is organized as follows: in Section 2, we will give detailed expressions

of the first order Melnikov functions, which can be expressed by some generating functions. The

Picard-Fuchs equations of these generating functions are also derived. In Section 3 we prove

Theorem 1.1, while Sections 4 and 5 address the proofs of Theorems 1.2 and 1.3, respectively.

In Section 6, some numerical simulations are given to illustrate the existence of limit cycles.
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2 Algebraic Structures of the First Order Melnikov Functions

For i, j ∈ N, we denote that

I+i,j(h) =

∫
L+

h,+

yj cosi xdx, J+
i,j(h) =

∫
L+

h,+

yj cosi x sinxdx,

Ī+i,j(h) =

∫
L+

h,−

yj cosi xdx, J̄+
i,j(h) =

∫
L+

h,−

yj cosi x sinxdx, h ∈ (2r,+∞),

I0i,j(h) =

∫
L0

h,+

yj cosi xdx, J0
i,j(h) =

∫
L0

h,+

yj cosi x sinxdx, (2.1)

Ī0i,j(h) =

∫
L0

h,−

yj cosi xdx, J̄0
i,j(h) =

∫
L0

h,−

yj cosi x sinxdx, h ∈ (0, 2r),

I∗i,j(h) =
∫
L∗h,+

yj cosi xdx, J∗i,j(h) =
∫
L∗h,+

yj cosi x sinxdx, h ∈ (− 1

2
(1− r)2, 0

)
.

By a straightforward calculation, one has that

I+i,j(h) = Ī+i,j(h), J+
i,j(h) = −J̄+

i,j(h),

I0i,j(h) = Īi,j(h), J0
i,j(h) = −J̄i,j(h).

(2.2)

Lemma 2.1 If 0 ≤ r < 1, then the first order Melnikov functions M+(h), M0(h) and

M∗(h) can be written as

M+(h) =

n+1∑
i+j=0

λ+
i,jI

+
i,j(h) +

n∑
i+j=0

μ+
i,jJ

+
i,j(h) +

n∑
j=0

ν+j h
j+1
2 +

n∑
j=0

σ+
j (h− 2r)

j+1
2 , (2.3)

M0(h) =

n+1∑
i+j=0

λ0
i,jI

0
i,j(h) +

n∑
i+j=0

μ0
i,jJ

0
i,j(h) +

n∑
j=0

ν0j h
j+1
2 (2.4)

and

M∗(h) =
n+1∑

i+j=0

λ∗i,jI
∗
i,j(h) +

n∑
i+j=0

μ∗i,jJ
∗
i,j(h). (2.5)

Here λ+
i,j , μ

+
i,j , ν

+
j , λ0

i,j , μ
0
i,j , ν

0
j , σ

+
j , λ

∗
i,j and μ∗i,j are arbitrary constants which can be expressed

by the coefficients of f±(x, y) and g±(x, y).

Proof Without loss of generality, we only prove (2.3). The proofs of (2.4) and (2.5) follow

in the same way. To see this, we need to add an auxiliary line BC, which is perpendicular to

the x-axis at the saddle point C(π, 0), and intersects L+
h,+ at B; see Figure 3. Let Ω be the

interior of L+
h,+ ∪ −−→

BC ∪ −−→
CO ∪ −→

OA, and let A be the point of intersection of L+
h,+ with y-axis.

By using Green’s Theorem two times, one has that∫
L+

h,+

yj cosi x sinxdy =

∮
L+

h,+∪
−−→
BC∪−−→CO∪−−→OA

yj cosi x sinxdy

= i

∫∫
Ω

yj cosi−1 xdxdy − (i+ 1)

∫∫
Ω

yj cosi+1 xdxdy,

∫
L+

h,+

yj cosi xdx =

∮
L+

h,+∪
−−→
BC∪−−→CO∪−−→OA

yj cosi xdx−
∮
−−→
CO

yj cosi xdx

= j

∫∫
Ω

yj−1 cosi xdxdy −
∮
−−→
CO

yj cosi xdx.
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Hence, ∫
L+

h,+

yj cosi x sinxdy =
i

j + 1
I+i−1,j+1(h)−

i+ 1

j + 1
I+i+1,j+1(h), i ≥ 0, j ≥ 0. (2.6)

In a similar way, we have that∫
L+

h,+

yj cosi xdy =
i

j + 1
J+
i−1,j+1(h)−

1

j + 1
(2h)

j+1
2 +

(−1)i

j + 1
(2h− 4r)

j+1
2 , i ≥ 0, j ≥ 0. (2.7)

For the orbits L+
h,− in the left half plane, similarly to L+

h,+, one can get, for i ≥ 0, j ≥ 0, that∫
L+

h,−

yj cosi x sinxdy =
i

j + 1
Ī+i−1,j+1(h)−

i+ 1

j + 1
Ī+i+1,j+1(h),

∫
L+

h,−

yj cosi xdy =
i

j + 1
J̄+
i−1,j+1(h) +

1

j + 1
(2h)

j+1
2 − (−1)i

j + 1
(2h− 4r)

j+1
2 .

(2.8)

Therefore, by (1.7), (2.1) and (2.6)–(2.8), one has that

M+(h) =

n∑
i+j=0

c+i,jI
+
i,j(h)+

n−1∑
i+j=0

d+i,jJ
+
i,j(h)−

n−1∑
i+j=0

b+i,j

[ i

j + 1
I+i−1,j+1(h)−

i+ 1

j + 1
I+i+1,j+1(h)

]

−
n∑

i+j=0

a+i,j

[ i

j + 1
J+
i−1,j+1(h)−

1

j + 1
(2h)

j+1
2 +

(−1)i

j + 1
(2h− 4r)

j+1
2

]

+

n∑
i+j=0

c−i,j Ī
+
i,j(h)+

n−1∑
i+j=0

d−i,j J̄
+
i,j(h)−

n−1∑
i+j=0

b−i,j
[ i

j + 1
Ī+i−1,j+1(h)−

i+ 1

j + 1
Ī+i+1,j+1(h)

]

−
n∑

i+j=0

a−i,j
[ i

j + 1
J̄+
i−1,j+1(h) +

1

j + 1
(2h)

j+1
2 − (−1)i

j + 1
(2h− 4r)

j+1
2

]

=

n∑
i+j=0

ai,jJ
+
i,j(h) +

n+1∑
i+j=0

bi,jI
+
i,j(h) +

n∑
i+j=0

āi,j J̄
+
i,j(h) +

n+1∑
i+j=0

b̄i,j Ī
+
i,j(h)

+

n∑
j=0

ν+j h
j+1
2 +

n∑
j=0

σ+
j (h− 2r)

j+1
2 , (2.9)

where

ai,j = d+i,j −
i+ 1

j
a+i+1,j−1, bi,j = c+i,j −

i+ 1

j
b+i+1,j−1 +

i

j
b+i−1,j−1,

āi,j = d−i,j −
i+ 1

j
a−i+1,j−1, b̄i,j = c−i,j −

i+ 1

j
b−i+1,j−1 +

i

j
b−i−1,j−1,

ν+j =
2

j+1
2

j + 1

n−j∑
i=0

(a+i,j − a−i,j), σ+
j =

2
j+1
2

j + 1

n−j∑
i=0

(−1)i(a−i,j − a+i,j).

(2.10)

If the subscripts of a±i,j , b
±
i,j , c

±
i,j and d±i,j in (2.10) satisfy that i < 0 or j < 0, then they vanish.

If i+j > n (resp. i+j > n−1) in a±i,j and c±i,j (resp. b
±
i,j and d±i,j) in (2.10), then a±i,j = c±i,j = 0

(resp. b±i,j = d±i,j = 0). Thus, inserting (2.2) into (2.9) gives (2.3) and

λ+
i,j = bi,j + b̄i,j , μ+

i,j = ai,j − āi,j .

This ends the proof. �
To understand the algebraic structure of the first order Melnikov functions M0(h) and

M∗(h), we need first to show that, for any i, j ∈ N, I0i,2j(h) = J0
i,2j(h) = I∗i,2j(h) = J∗i,2j(h) = 0.
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Indeed, this is a direct consequence of the symmetry with respect to the x-axis of the integral

paths and Green’s Theorem.

Lemma 2.2 For 0 ≤ r < 1, the following statements hold:

(1) letting h ∈ (2r,+∞), for n ≥ 3,

I+i,2j+1(h) = α+(h)I+0,1(h) + β+(h)I+1,1(h) + γ+(h)I+2,1(h), i+ 2j + 1 = n,

I+i,2j(h) = ξ+(h)I+0,0(h) + η+(h)I+1,0(h) + ζ+(h)I+2,0(h), i+ 2j = n
(2.11)

and

J+
i,2j+1(h) = δ+(h)J+

0,1(h) + h
3
2ϕ+(h) + (h− 2r)

3
2ψ+(h), i+ 2j + 1 = n,

J+
i,2j(h) = φ+(h), i+ 2j = n,

(2.12)

where α+(h), β+(h), γ+(h), ξ+(h), η+(h), ζ+(h), δ+(h), ϕ+(h), ψ+(h) and φ+(h) are polyno-

mials of h with

degα+(h), deg η+(h), deg δ+(h) ≤ [
n− 1

2
], deg ξ+(h), deg φ+(h) ≤ [

n

2
],

deg β+(h), deg ζ+(h), degϕ+(h), degψ+(h) ≤ [
n− 2

2
], deg γ+(h) ≤ [

n− 3

2
];

(2) letting h ∈ (0, 2r), for i+ 2j + 1 = n ≥ 2,

I0i,2j+1(h) = α0(h)I00,1(h) + β0(h)I01,1(h) + γ0(h)I02,1(h), (2.13)

and

J0
i,2j+1(h) = δ0(h)J0

0,1(h) + h
3
2ϕ0(h), (2.14)

where α0(h), β0(h), γ0(h), δ0(h) and ϕ0(h) are polynomials of h with

degα0(h) ≤ [
n− 1

2
], deg β0(h), degϕ0 ≤ [

n− 2

2
],

deg γ0(h) ≤ [
n− 3

2
], deg δ0(h) ≤ [

n− 1

2
];

(3) letting h ∈ (− 1
2 (1− r)2, 0

)
, for i+ 2j + 1 = n ≥ 2,

I∗i,2j+1(h) = α∗(h)I∗0,1(h) + β∗(h)I∗1,1(h) + γ∗(h)I∗2,1(h), (2.15)

and

J∗i,2j+1(h) = δ∗(h)J∗0,1(h), (2.16)

where α∗(h), β∗(h), γ∗(h) and δ∗(h) are polynomials of h with

degα∗(h) ≤ [
n− 1

2
], deg β∗(h) ≤ [

n− 2

2
],

deg γ∗(h) ≤ [
n− 3

2
], deg δ∗(h) ≤ [

n− 1

2
].

Proof (1) It follows from

1

2
y2 +

1

2
cos2 x− r cosx+ r − 1

2
= h (2.17)

that

y
∂y

∂x
− cosx sinx+ r sinx = 0. (2.18)
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Multiplying both sides of (2.18) by yj cosi−3 x sinxdx and integrating along L+
h,+, in view of

(2.6), one gets that

I+i,j(h) = rI+i−1,j(h) + I+i−2,j(h)− rI+i−3,j(h) +
i− 2

j + 2
I+i−2,j+2(h)−

i− 3

j + 2
I+i−4,j+2(h). (2.19)

Analogously, multiplying both sides of (2.17) by yj−2 cosi xdx and integrating along L+
h,+, yields

that

I+i,j(h) = (2h− 2r + 1)I+i,j−2(h) + 2rI+i+1,j−2(h)− I+i+2,j−2(h). (2.20)

We want the sum of the subscripts of the elements on the right side of equation (2.19) to be

less than i+ j. To this end, eliminating Ii−2,j+2(h) in (2.19) using (2.20) gives that

I+i,j(h) =
1

i+ j

[(
2(i− 2)(h− r) + i+ j

)
I+i−2,j(h) + (2i+ j − 2)rI+i−1,j(h)

−(j + 2)rI+i−3,j(h)− (i− 3)I+i−4,j+2(h)
]
. (2.21)

Now we prove the first equality of (2.11) by induction on n, using (2.20) and (2.21). In

fact, in view of (2.20) and (2.21), one has that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I+0,3(h) = (2h− 2r + 1)I+0,1(h) + 2rI+1,1(h)− I+2,1(h),

I+1,3(h) = (2h− 2r + 1)I+1,1(h) + 2rI+2,1(h)− I+3,1(h),

I+3,1(h) = −3

4
rI+0,1(h) +

1

2
(h− r + 2)I+1,1(h) +

5

4
rI+2,1(h),

(2.22)

which proves the result for n = 3, 4. Now assume that the first equality of (2.11) holds for all

i+ j ≤ n− 1, and that n is an even number (if n is an odd number, the proof is similar). Then,

taking that (i, j) = (1, n − 1), (3, n − 3), · · · , (n − 3, 3) in (2.20) and that (i, j) = (n − 1, 1) in

(2.21), respectively, one obtains that

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I+1,n−1(h)

I+3,n−3(h

· · ·
I+n−3,3(h)

I+n−1,1(h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2h− 2r + 1)I+1,n−3(h) + 2rI+2,n−3(h)

(2h− 2r + 1)I+3,n−5(h) + 2rI+4,n−5(h)

· · ·
(2h− 2r + 1)I+n−3,1(h) + 2rI+n−2,1(h)

1

n

[
(2n− 3)I+n−2,1(h) + ((n− 3)(2h− 2r + 1) + 3)I+n−3,1(h)

−3rI+n−4,1(h)− (n− 4)I+n−5,3(h)
]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.23)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0 0

0 1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 1

0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to (2.23), one has, for (i, j) = (1, n− 1), (3, n− 3), · · · , (n− 3, 3), that

I+i,j(h) = (2h− 2r + 1)
[
α(n−2)(h)I+0,1(h) + β(n−2)(h)I+1,1(h) + γ(n−2)(h)I+2,1(h)

]

+α(n−1)(h)I+0,1(h) + β(n−1)(h)I+1,1(h) + γ(n−1)(h)I+2,1(h)
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: = α(n)(h)I+0,1(h) + β(n)(h)I+1,1(h) + γ(n)(h)I+2,1(h),

where α(n−s)(h), β(n−s)(h) and γ(n−s)(h) are polynomials of h satisfying that

degα(n−s)(h) ≤ [
n− 1− s

2
], deg β(n−s)(h) ≤ [

n− 2− s

2
],

deg γ(n−s)(h) ≤ [
n− 3− s

2
], s = 1, 2.

Therefore, by using the induction hypothesis, on gets that

degα(n)(h) ≤ [
n− 1

2
], deg β(n)(h) ≤ [

n− 2

2
], deg γ(n)(h) ≤ [

n− 3

2
].

If (i, j) = (n− 1, 1), we can prove the first equality in (2.11) in a similar way. The proof of the

second equality in (2.11) follows in the same way.

To show the statement (2.12), in view of (2.7), we proceed by multiplying (2.18) yj cosi−1 xdx

and integrating along L+
h,+, which gives that

J+
i,j(h) = rJ+

i−1,j(h) +
i− 1

j + 2
J+
i−2,j+2(h)−

1

j + 2
(2h)

j+2
2 − (−1)i

j + 2
(2h− 4r)

j+2
2 . (2.24)

Multiplying both sides of (2.17) by yj−2 cosi x sinxdx implies that

J+
i,j(h) = (2h− 2r + 1)J+

i,j−2(h) + 2rJ+
i+1,j−2(h)− J+

i+2,j−2(h). (2.25)

Elementary manipulation reduces (2.24) and (2.25) to

J+
i,j(h) =

1

i+ j + 1

[
(i− 1)(2h− 2r + 1)J+

i−2,j(h) + (2i+ j)rJ+
i−1,j(h)

−(2h)
j+2
2 − (−1)i(2h− 4r)

j+2
2

]
(2.26)

and

J+
i,j(h) =

1

i+ j + 1

[
j(2h− 2r + 1)J+

i,j−2(h) + jrJ+
i+1,j−2(h)

+(2h)
j
2 + (−1)i(2h− 4r)

j
2

]
. (2.27)

Then, the first equality in (2.12) follows, by induction, using the above two equalities. For

the sake of brevity we only give the details of the second equality of (2.12). In fact, a simple

computation shows that

J+
i,2j(h) =

∫ π

0

y2j cosi x sinxdx

=

∫ π

0

cosi x(2h− 2r + 1− cos2 x+ 2r cosx)j sinxdx

=

j∑
k=0

Ck
j (2h)

j−k

∫ π

0

cosi x(1− 2r − cos2 x+ 2r cosx)j sinxdx,

which gives the desired result for i+ 2j = n.

(2) Similarly to (2.20), (2.21), (2.26) and (2.27), one can get that

I0i,j(h) = (2h− 2r + 1)I0i,j−2(h) + 2rI0i+1,j−2(h)− I0i+2,j−2(h),

I0i,j(h) =
1

i+ j

[(
2(i− 2)(h− r) + i+ j

)
I0i−2,j(h) + (2i+ j − 2)rI0i−1,j(h)

− (j + 2)rI0i−3,j(h)− (i− 3)I0i−4,j+2(h)
]

(2.28)
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and

J0
i,j(h) =

1

i+ j + 1

[
(i− 1)(2h− 2r + 1)J0

i−2,j(h) + (2i+ j)rJ0
i−1,j(h)−

(
1− (−1)j

)
(2h)

j+2
2

]
,

J0
i,j(h) =

1

i+ j + 1

[
j(2h− 2r + 1)J0

i,j−2(h) + jrJ0
i+1,j−2(h) +

(
1− (−1)j

)
(2h)

j
2

]
. (2.29)

The proofs of (2.13) and (2.14) are conducted along the lines of the proofs of (2.11) and (2.12),

using (2.28) and (2.29).

The proof of statment (3) is much easier, and follows by using the same arguments, so we

omit it for the sake of brevity. The proof of Lemma 2.2 is complete. �
The following lemma gives the algebraic structure of the first Melnikov functions M+(h),

M0(h) and M∗(h) in (1.7)–(1.9), which play a crucial role in the study of the number of limit

cycles of equation (1.6):

Lemma 2.3 For 0 ≤ r < 1, M+(h), M0(h) and M∗(h) can be expressed as

M+(h) = P+
2[n2 ]+2(

√
h) + P+

[n2 ](h)
√
h− 2r + P+

[n+1
2 ]

(h)
(
arctan

r + 1√
2h− 4r

− arctan
r − 1√
2h

)

+ P+
[n2 ](h)I

+
0,1(h) + P+

[n−1
2 ]

(h)I+1,1(h) + P+

[n−2
2 ]

(h)I+2,1(h), h ∈ (2r,+∞), (2.30)

M0(h) = P 0
2[n2 ]+2(

√
h) + P 0

[n+1
2 ]

(h) arctan
r − 1√
2h

+ P 0
[n2 ](h)I

0
0,1(h)

+ P 0
[n−1

2 ]
(h)I01,1(h) + P 0

[n−2
2 ]

(h)I02,1(h), h ∈ (0, 2r) (2.31)

and

M∗(h) = P ∗
[n+1

2 ]
(h) + P ∗[n2 ](h)I

∗
0,1(h) + P ∗

[n−1
2 ]

(h)I∗1,1(h)

+P ∗
[n−2

2 ]
(h)I∗2,1(h), h ∈ (− 1

2
(1− r)2, 0

)
, (2.32)

where P+
k (h), P 0

k (h) and P ∗k (h) are polynomials of a degree of at most k and P+

[n−2
2 ]

(h) =

P 0
[n−2

2 ]
(h) = P ∗

[n−2
2 ]

(h) = 0 for n = 1.

Proof By a straightforward calculation, one has that

I+0,0(h) =

∫ π

0

dx = π, I+1,0(h) =

∫ π

0

cosxdx = 0, I+2,0(h) =

∫ π

0

cos2 xdx =
π

2
,

J+
0,1(h) =

∫ π

0

√
2h− 2r + 1− cos2 x+ 2r cosx sinxdx

=
1

2
(2h+ r2 − 2r + 1)

[
arctan

r + 1√
2h− 4r

− arctan
r − 1√
2h

]

+

√
2

2
(r + 1)

√
h− 2r −

√
2

2
(r − 1)

√
h.

(2.33)

If n ≥ 3, then inserting (2.11), (2.12) and (2.33) into (2.3) gives (2.30). If 1 ≤ n ≤ 2, (2.30)

follows from directly (2.3), (2.20), (2.26) and (2.33). (2.31) and (2.32) can be proven similarly.

This ends the proof. �
Lemma 2.4 If 0 ≤ r < 1, then the vector functions V1(h) =

(
I+0,1(h), I

+
1,1(h), I

+
2,1(h)

)T
,

V2(h) =
(
I00,1(h), I

0
1,1(h), I

0
2,1(h)

)T
and V3(h) =

(
I∗0,1(h), I

∗
1,1(h), I

∗
2,1(h)

)T
satisfy the Picard-

Fuchs equations

(Bh+ C)V ′i = Vi, i = 1, 2, 3, (2.34)
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respectively, where

B =

⎛
⎜⎜⎜⎜⎝

2 0 0

0 1 0

2

3

r

3

2

3

⎞
⎟⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎜⎜⎝

1− 2r 2r −1

r

2
−r

r

2

−1

6
r2 − 2

3
r +

1

3
− r2

3
+

4r

3

1

2
r2 − 2

3
r − 1

3

⎞
⎟⎟⎟⎟⎟⎠

.

Proof According to (1.5), one has that

1

2
y2 +

1

2
cos2 x− r cosx+ r − 1

2
= h. (2.35)

Differentiating the above equation with respect to h gives ∂y
∂h = 1

y , which implies that

I ′i,j(h) = j

∫
L0

h,+

yj−2 cosi xdx. (2.36)

Hence,

Ii,j(h) =
1

j + 2
I ′i,j+2(h). (2.37)

Multiplying both sides of (2.36) by h, one gets that

hI ′i,j(h) = j

∫
L0

h+

yj−2 cosi x
(1
2
y2 +

1

2
cos2 x− r cosx+ r − 1

2

)
dx

=
j

2(j + 2)
I ′i,j+2(h) +

1

2
I ′i+2,j(h)− rI ′i+1,j(h) + (r − 1

2
)I ′i,j(h). (2.38)

Thus, by (2.37) and (2.38), we have that

Ii,j(h) =
1

j

[
(2h− 2r + 1)I ′i,j(h) + 2rI ′i+1,j(h)− I ′i+2,j(h)

]
, (2.39)

which yields that ⎧⎪⎪⎨
⎪⎪⎩
I0,1(h) = (2h− 2r + 1)I ′0,1(h) + 2rI ′1,1(h)− I ′2,1(h),

I1,1(h) = (2h− 2r + 1)I ′1,1(h) + 2rI ′2,1(h)− I ′3,1(h),

I2,1(h) = (2h− 2r + 1)I ′2,1(h) + 2rI ′3,1(h)− I ′4,1(h),

which, together with (2.21), yields (2.34) for i = 1. Similarly, we can prove (2.34) for i = 2, 3.

This completes the proof. �
By using the above lemma, the forms of the first order Melnikov functions M+(h) and

M∗(h) for r = 0 are simpler, they are given in the following lemma:

Lemma 2.5 For r = 0,

M+(h) = P+
2[n2 ]+2(

√
h) + P+

[n+1
2 ]

(h) arctan
1√
2h

+P+
[n2 ](h)I

+
0,1(h) + P+

[n−2
2 ]

(h)I+2,1(h), h ∈ (0,+∞),

and

M∗(h) = P ∗
[n+1

2 ]
(h) + P ∗[n2 ](h)I

∗
0,1(h) + P ∗

[n−2
2 ]

(h)I∗2,1(h), h ∈ (− 1

2
, 0
)
,

where P+
k (h) and P ∗k (h) are polynomials of degree at most k.
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Proof In view of r = 0 and the second equation in (2.34) for i = 1, one has that

I+1,1(h) = h
dI+

1,1(h)

dh , which yields that I+1,1(h) = c0h, where c0 is a constant. Substituting the

above equality into (2.30) gives the desired result regarding M+(h). The other equality can be

proven similarly. This ends the proof. �
According to Theorem 1 in [20], we have, for r > 0, that

d2I+0,1(h)

dh2
< 0, h ∈ (2r,+∞);

d2I∗0,1(h)
dh2

> 0, h ∈ (− 1

2
(1− r)2, 0

)
,

and that
d2I0

0,1(h)

dh2 > 0 in h ∈ (0, 2r) for r ≥ 4 and that
d2I0

0,1(h)

dh2 has exactly one zero in (0, 2r)

for 0 < r < 4, denoted by h0. If r = 0, then it is easy to check that I+0,1(h) �= 0 in h ∈ (0,+∞)

and that I∗0,1(h) �= 0 in (− 1
2 , 0). Thus, let

�1(h) =
d2I+1,1(h)

dh2

/d2I+0,1(h)

dh2
, h ∈ (2r,+∞),

�2(h) =
d2I01,1(h)

dh2

/d2I00,1(h)

dh2
, h ∈ (0, h0) ∪ (h0, 2r),

�3(h) =
d2I∗1,1(h)

dh2

/d2I∗0,1(h)
dh2

, h ∈ (− 1

2
(1− r)2, 0

)
,

�1(h) =
I+2,1(h)

I+0,1(h)
, h ∈ (0,+∞),

�2(h) =
I∗2,1(h)
I∗0,1(h)

, h ∈ (− 1

2
, 0
)
.

(2.40)

Lemma 2.6 (1) If 0 < r < 1, then �i(h) satisfies the Riccati equations

G(h)�′i(h) = κ2(h)�
2
i (h) + κ1(h)�i(h) + κ0(h), i = 1, 2, 3, (2.41)

where

G(h) =
2

3
h(h− 2r)(2h+ r2 − 2r + 1),

κ0(h) = rh+ r2(r − 1),

κ1(h) =
4

3
(2r2 − 1)h− 2

3
r(r − 1)(r + 2),

κ2(h) = − 2

3r
h2 − 1

3
(5r − 4)h− r

3
(r − 1)(r − 4).

(2) If r = 0, then �i(h) satisfies the Riccati equations

G0(h)�
′
i(h) = −�2i (h) +

4

3
(h+ 1)�i(h)− 2

3
h− 1

3
, i = 1, 2, (2.42)

where G0(h) =
2
3h(2h+ 1).

Proof (1) From (2.34), one has that

(Bh+ C)V ′′1 (h) = (E −B)V ′1(h),

which gives that

d2I+2,1(h)

dh2
= −d2I+0,1(h)

dh2
− 2

r
(h− r)

d2I+1,1(h)

dh2
, (2.43)

and

G(h)V ′′′1 (h) = (Bh+ C)∗(E − 2B)V ′′1 (h), (2.44)
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where E is a 3× 3 identity matrix, and (Bh+ C)∗ is the adjoint matrix of Bh+ C. Then the

statement (2.41) for i = 1 follows from (2.43) and (2.44). The other two cases can be shown

similarly.

(2) Noting that r = 0 and (2.34), one gets that

I+0,1(h) = (2h+ 1)
dI+0,1(h)

dh
− dI+2,1(h)

dh
,

I+2,1(h) =
1

3
(2h+ 1)

dI+0,1(h)

dh
+

1

3
(2h− 1)

dI+2,1(h)

dh
.

Thus, by the above two equations, one can obtain the statement (2.42) for i = 1. The proof of

the case i = 2 follows by using the same arguments. The proof is complete. �

3 Proof of Theorem 1.1

In the sequel we will use the notation #{h ∈ (ρ1, ρ2) |φ(h) = 0} to indicate the number of

zeros of the function φ(h) in the interval (ρ1, ρ2), taking into account their multiplicities.

(1) In what follows, we drop the superscript + in I+(h), P+
l (h) and Q+

l (h) in (2.30), for

the sake of lighter notation. Suppose that 0 < r < 1, n ≥ 3 and

Σ = (2r,+∞)\{h ∈ (2r,+∞)|P[n+1
2 ](h) = 0}.

Then, for h ∈ Σ, in view of (2.30) and (2.34), one gets that

d

dh

( M+(h)

P[n+1
2 ](h)

)
= − (1 + r)

√
h+ (1− r)

√
h− 2r√

2h(h− 2r)(2h+ r2 − 2r + 1)

+
d

dh

[P2[n2 ]+2(
√
h)+

√
h− 2rP[n2 ](h)+P[n2 ](h)I0,1(h)+P[n−1

2 ](h)I1,1(h)+P[n−2
2 ](h)I2,1(h)

P[n+1
2 ](h)

]

=
1

h(h− 2r)(2h+ r2 − 2r + 1)P 2
[n+1

2 ]
(h)

{
P2n+6(

√
h) +

√
h− 2rPn+2(h)

+
1

G(h)

[
Pn+5(h)I0,1(h) + P2[n+1

2 ]+4(h)I1,1(h) + Pn+4(h)I2,1(h)
]}

: =
M+

1 (h)

h(h− 2r)(2h+ r2 − 2r + 1)P 2
[n+1

2 ]
(h)

. (3.1)

Letting u =
√
h, h ∈ (2r,+∞), M+

1 (h) in the above equality can be written as

M+
2 (u) = P2n+6(u) +

√
h− 2rPn+2(h)

+
1

G(h)

[
Pn+5(h)I0,1(h) + P2[n+1

2 ]+4(h)I1,1(h) + Pn+4(h)I2,1(h)
]
. (3.2)

Hence, M+
2 (u) and M+

1 (h) have the same number of zeros for u ∈ (
√
2r,+∞) and h ∈ (2r,+∞).

We want to eliminate P2n+6(u) in M+
2 (u). To this end, we differentiate M+

2 (u) in the above

expression with respect to u using Lemma 2.4. A simple computation shows that

dM+
2 (u)

du
= P2n+5(u) + u(h− 2r)−

1
2Pn+2(h)

+
u

G2(h)

[
Pn+7(h)I0,1(h) + P2[n+1

2 ]+6(h)I1,1(h) + Pn+6(h)I2,1(h)
]
,
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d2M+
2 (u)

du2
= P2n+4(u) + (h− 2r)−

3
2Pn+3(h)

+
1

G3(h)

[
Pn+10(h)I0,1(h) + P2[n+1

2 ]+9(h)I1,1(h) + Pn+9(h)I2,1(h)
]
,

In general, we have, for 1 ≤ k ≤ 2n+ 7, that

dkM+
2 (u)

duk
= P2n+6−k(u) +

(
1 + (−1)k+1

)
u+ 1 + (−1)k

2

[
(h− 2r)−k+ 1

2Pn+2+[ k2 ]
(h)

+
1

Gk+1(h)

(
Pn+6+5[ k2 ]+(−1)k+1(h)I0,1(h) + P2[n+1

2 ]+5+5[ k2 ]+(−1)k+1(h)I1,1(h)

+ Pn+5+5[ k2 ]+(−1)k+1(h)I2,1(h)
)]

,

Let k = 2n+ 7 in the above expression. Namely, we differentiate M+
2 (u) in (3.2) 2n+ 7 times,

and the polynomial P2n+6(u) vanishes. Then we have that

d2n+7M+
2 (u)

du2n+7
= u
[
(h− 2r)−2n− 13

2 P2n+5(h) +
1

G2n+8(h)

(
P6n+22(h)I0,1(h)

+P5n+2[n+1
2 ]+21(h)I1,1(h) + P6n+21(h)I2,1(h)

)]

= u(h− 2r)−2n− 13
2

[
P2n+5(h) +

√
h− 2r

G2n+8(h)

(
P8n+28(h)I0,1(h)

+P7n+2[n+1
2 ]+27(h)I1,1(h) + P8n+27(h)I2,1(h)

)]

: =
u

(h− 2r)2n+
13
2

M+
3 (h). (3.3)

Similarly, we eliminate polynomial P2n+5(h) by differentiating M+
3 (h) in (3.3) 2n + 6 times

using Lemma 2.4. Then, we have that

d2n+6M+
3 (h)

dh2n+6
=

1

(h− 2r)2n+
11
2 G4n+14(h)

[
P14n+46(h)I0,1(h)

+P13n+2[n+1
2 ]+45(h)I1,1(h) + P14n+45(h)I2,1(h)

]

: =
M+

4 (h)

(h− 2r)2n+
11
2 G4n+14(h)

. (3.4)

Therefore, it suffices to get the upper bound of the number of zeros of M+
4 (h) in (2r,+∞). To

this end, we now express M+
4 (h) in terms of I ′′0,1(h), I

′′
1,1(h) and I ′1,1(h). We begin by working

with the Picard-Fuchs equation in (2.34). Differentiating (2.34) for i = 1 with respect to h

gives that

(Bh+ C)V ′′1 (h) = (E −B)V ′1(h), (3.5)

which implies that

I ′0,1(h) = I ′′2,1(h)− (2h− 2r + 1)I ′′0,1(h)− 2rI ′′1,1(h),

I ′′2,1(h) = − I ′′0,1(h)−
2

r
(h− r)I ′′1,1(h),

I ′2,1(h) = rI ′1,1(h)− (2h+
r2

2
− 2r + 1)I ′′0,1(h) + (hr − r2)I ′′1,1(h)

+ (2h+
3r2

2
− 2r + 1)I ′′2,1(h),

(3.6)



1132 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

where we have used the first equality in the third equality of the above expression. Then, by

(2.44) and the second equality of (3.6), one obtains that

I ′′′0,1(h) =
1

G(h)

[
−
(
2h2 + (r − 4)rh− r2(r − 1)

)
I ′′0,1(h)

+
( 2

3r
h2 +

1

3
(5r − 4)h+

r

3
(r − 1)(r − 4)

)
I ′′1,1(h)

]
,

I ′′′1,1(h) =
1

G(h)

[(
rh+ r2(r − 1)

)
I ′′0,1(h)

−
(
2h2 − 1

3
(5r2 + 12r − 4)h− r

3
(r − 1)(r − 4)

)
I ′′1,1(h)

]
.

(3.7)

Using (2.34), M+
4 (h) becomes

M+
4 (h) = P14n+47(h)I

′
0,1(h) + P13n+2[n+1

2 ]+46(h)I
′
1,1(h) + P14n+46(h)I

′
2,1(h).

Differentiating M+
4 (h) with respect to h and using (3.6) yields that

dM+
4 (h)

dh
= P ′14n+47(h)I

′
0,1(h) + P ′

13n+2[n+1
2 ]+46

(h)I ′1,1(h) + P ′14n+46(h)I
′
2,1(h)

+P14n+47(h)I
′′
0,1(h) + P13n+2[n+1

2 ]+46(h)I
′′
1,1(h) + P14n+56(h)I

′′
2,1(h)

= P14n+47(h)I
′′
0,1(h) +Q14n+47(h)I

′′
1,1(h) + P13n+2[n+1

2 ]+45(h)I
′
1,1(h). (3.8)

In view of (3.7), one has that

d2M+
4 (h)

dh2
= P ′14n+47(h)I

′′
0,1(h) +Q′14n+47(h)I

′′
1,1(h) + P ′

13n+2[n+1
2 ]+45

(h)I ′1,1(h)

+ P14n+47(h)I
′′′
0,1(h) +Q14n+47(h)I

′′′
1,1(h) + P13n+2[n+1

2 ]+45(h)I
′′
1,1(h)

=
1

G(h)

[
P14n+49(h)I

′′
0,1(h) +Q14n+49(h)I

′′
1,1(h)

]
+ P13n+2[n+1

2 ]+44(h)I
′
1,1(h).

Thus, differentiating (3.8) 13n+ 2[n+1
2 ] + 46 times using (3.7) implies that

dmM+
4 (h)

dhm
=

1

Gm−1(h)

[
P40n+4[n+1

2 ]+139(h)I
′′
0,1(h) +Q40n+4[n+1

2 ]+139(h)I
′′
1,1(h)

]

: =
1

Gm−1(h)
M+

5 (h), (3.9)

where m = 13n + 2[n+1
2 ] + 47. We need to study the number of zeros of M+

5 (h) on (2r,+∞).

To see this, let

χ1(h) =
M+

5 (h)

I ′′0,1(h)
(I ′′0,1(h) �= 0).

Then, by (2.41), one gets that

G(h)P40n+4[n+1
2 ]+139(h)χ

′
1(h) = κ2(h)χ

2
1(h) + F1(h)χ1(h) + F0(h), (3.10)

where F0(h) and F1(h) are polynomials of h with

degF0(h) ≤ 80n+ 8[
n+ 1

2
] + 280.

By Lemma 4.4 in [39], we have, for h ∈ (0, 2r), that

#{χ1(h) = 0} ≤ #{F0(h) = 0}+#{P40n+4[n+1
2 ]+139(h) = 0}+ 1,

≤ 120n+ 12[
n+ 1

2
] + 420. (3.11)
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Suppose that h0 in (2.40) is a zero point of M+(h). Therefore, applying Rolle’s Theorem, and

in view of (3.1), (3.3), (3.4) and (3.9), we have that

#{h ∈ (2r,+∞)|M+(h) = 0} ≤ #{h ∈ (2r,+∞)|M+
1 (h) = 0}+ [

n+ 1

2
] + 2

≤ #{h ∈ (2r,+∞)|M+
3 (h) = 0}+ 2n+ [

n+ 1

2
] + 9

≤ #{h ∈ (2r,+∞)|M+
4 (h) = 0}+ 4n+ [

n+ 1

2
] + 15

≤ #{h ∈ (2r,+∞)|M+
5 (h) = 0}+ 17n+ 3[

n+ 1

2
] + 62

≤ 137n+ 15[
n+ 1

2
] + 482. (3.12)

Similarly, one can check that (3.12) is also true for n = 1, 2. If r = 0, we can prove statement

(1) along the lines of the above proof by using Lemma 2.5 and (2.42) in a similar fashion.

The proofs of the statements (2) and (3) are much easier, and follow by using the same

arguments, which we omit. This ends the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Without loss of generality, we only prove the case 0 < r < 1. If, in (1.6), f+(x, y) = f−(x, y)
and g+(x, y) = g−(x, y) such that system (1.6) is smooth, then system (1.6) reads as

⎧⎨
⎩
ẋ = y + εf+(x, y),

ẏ = sinx(cosx− r) + εg+(x, y).
(4.1)

It is well known that the first order Melnikov functions M+(h), M0(h) of system (4.1) have the

form

M+(h) =

∮
L+

h

g+(x, y)dx− f+(x, y)dy, h ∈ (2r,+∞),

M0(h) =

∮
L0

h

g+(x, y)dx− f+(x, y)dy, h ∈ (0, 2r),

where L+
h = L+

h,+ ∪ L+
h,−, L

0
h = L0

h,+ ∪ L0
h,−, and M∗(h) is defined as (1.9). Thus we only

consider M+(h) and M0(h) in this section. Because yj cosi x sinx is an odd function, we have

that ∮
L+

h

yj cosi x sinxdx =

∫ π

−π

yj cosi x sinxdx = 0 (4.2)

in (2r,+∞). By using Green’s Theorem and the symmetry with respect to the coordinate axes,

one has that ∮
L+

h

yj cosi xdy = 0,

∮
L0

h

yj cosi x sinxdx = 0,

∮
L0

h

y2l cosi xdx = 0,

∮
L0

h

yj cosi xdy = 0.

(4.3)
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Denote that

U+
i,j(h) =

∮
L+

h

yj cosi xdx, h ∈ (2r,+∞),

U0
i,j(h) =

∮
L0

h

yj cosi xdx, h ∈ (0, 2r).

Easy computations yield that∮
L+

h

yj cosi x sinxdy =
i

j + 1
U+
i−1,j+1(h)−

i+ 1

j + 1
U+
i+1,j+1(h),

∮
L0

h

yj cosi x sinxdy =
i

j + 1
U0
i−1,j+1(h)−

i+ 1

j + 1
U0
i+1,j+1(h).

(4.4)

Then, the first order Melnikov functions M+(h) and M0(h) of system (4.1) are obtained by an

analogous argument using (4.2), (4.3) and (4.4), and are given by

M+(h) =

n∑
i+j=0

c+i,jU
+
i,j(h)−

n−1∑
i+j=0

b+i,j
[ i

j + 1
U+
i−1,j+1(h)−

i+ 1

j + 1
U+
i+1,j+1(h)

]

=

n+1∑
i+j=0

ρ+i,jU
+
i,j(h) (4.5)

= P+

[n+1
2 ]

(h) + P+
[n2 ](h)U

+
0,1(h) + P+

[n−1
2 ]

(h)U+
1,1(h) + P+

[n−2
2 ]

(h)U+
2,1(h), h ∈ (2r,+∞),

and

M0(h) =

n∑
i+j=0

c+i,jU
0
i,j(h)−

n−1∑
i+j=0

b+i,j
[ i

j + 1
U0
i−1,j+1(h)−

i+ 1

j + 1
U0
i+1,j+1(h)

]

=

n+1∑
i+j=0

ρ0i,jU
0
i,j(h)

= P 0
[n2 ](h)U

0
0,1(h) + P 0

[n−1
2 ]

(h)U0
1,1(h) + P 0

[n−2
2 ]

(h)U0
2,1(h), h ∈ (0, 2r), (4.6)

where ρ+i,j and ρ0i,j are real constants and P+
k (h) and P 0

k (h) are polynomials of a degree of at

most k. Following the same lines as the proof of Theorem 1.1 gives that

#{h ∈ (2r,+∞)|M+(h) = 0} ≤ 3n+ 25[
n+ 1

2
] + 28,

#{h ∈ (0, 2r)|M0(h) = 0} ≤ 3n+ 3[
n+ 1

2
] + 9.

(4.7)

This ends the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Let f0, f1, · · · , fn be analytic functions defined on an open interval I of R. It is said that

(f0, f1, · · · , fn) is an extended complete Chebyshev system (for shorter, an ECT-system) on I

if, for all k = 0, 1, · · · , n, any non-trivial linear combination

α0f0(x) + α1f1(x) + · · ·+ αkfk(x)

has at most k isolated zeros on I, counting multiplicity. Here “T” stands for Tchebycheff, which

is one of the transcriptions of the Russian name Chebyshev.
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According to some results in [14, 24, 32], we can see that, for each k = 0, 1, · · · , n, there
exists a real linear combination f0, f1, · · · , fn with exactly k simple zeros on I if (f0, f1, · · · , fn)
is an ECT-system on I. A very useful characterization of ECT-system is given in the following

lemma (see [14] for instance).

Lemma 5.1 Let f0, f1, · · · , fn be analytic functions defined on an open interval I of R.

Then (f0, f1, · · · , fn) is an ECT-system on I if and only if, for each k = 0, 1, · · · , n, and all

x ∈ I, the Wronskian

W [f0, f1, · · · , fk](x) =

∣∣∣∣∣∣∣∣∣∣∣

f0(x) f1(x) · · · fk(x)

f ′0(x) f ′1(x) · · · f ′k(x)

· · · · · · · · · · · ·
f
(k)
0 (x) f

(k)
1 (x) · · · f (k)

k (x)

∣∣∣∣∣∣∣∣∣∣∣
is different from zero.

The following well-known result of linear algebra will else be a key point in our argument.

Lemma 5.2 Let v0, v1, · · · , vn be elements of a vectorial space S endowed with an inner

product 〈·, ·〉. Then

G(v0, v1, · · · , vn) =

∣∣∣∣∣∣∣∣∣∣∣

〈v0, v0〉 〈v0, v1〉 · · · 〈v0, vn〉
〈v1, v0〉 〈v1, v1〉 · · · 〈v1, vn〉
· · · · · · · · · · · ·

〈vn, v0〉 〈vn, v1〉 · · · 〈vn, vn〉

∣∣∣∣∣∣∣∣∣∣∣
≥ 0,

and it is zero if and only if the vectors v0, v1, · · · , vn are linearly dependent.

The determinant G above is usually called the integral Gram determinant; see [5, 23]. We

will use this result for S being the space of continuous functions on a closed interval [a, b], and

with the inner product 〈u, v〉 = ∫ b
a
u(t)v(t)dt.

Now we introduce the family of analytic functions

Kk,α(y) =

∫ b

a

gk(x)(
1− yg2m(x)

)α dx, (5.1)

where g is a continuous function, k ∈ N and α, a, b ∈ R. These functions are defined on the

open interval J, where 1− yg2m(x) > 0 for all x ∈ [a, b]. Easy computations yield that

K
(l)
k,α(y) =

l−1∏
j=0

(α+ j)Kk+2lm,α+l(y). (5.2)

Lemma 5.3 The following equality holds:

Kk+2lm,α(y) = y−l
l∑

i=0

(−1)iCi
lKk,α−i(y). (5.3)

Proof We will prove the quality (5.3) by induction on l. Multiplying by 1− yg2m(x) the

numerator and the denominator of the integrand of Kk,α−1(y) gives that

Kk+2m,α(y) = y−1
(
Kk,α(y)−Kk,α−1(y)

)
, (5.4)
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which implies that (5.3) is true for l = 1. Thus, let us assume that the expression (5.3) holds

until l. Then, one has that

Kk,α−l−1(y) =

∫ b

a

gk(x)
(
1− yg2m(x)

)l+1

(
1− yg2m(x)

)α dx

= (−1)l+1yl+1Kk+2(l+1)m,α(y) +

l∑
i=0

(−1)iCi
l+1y

iKk+2im,α(y)

= (−1)l+1yl+1Kk+2(l+1)m,α(y) +

l∑
i=0

(−1)iCi
l+1

i∑
j=0

(−1)jCj
iKk,α−j(y),

where we have used the induction hypothesis in the last equality of the above expression.

Therefore the assertion is proven for l + 1. This ends the proof. �

Lemma 5.4 Let K0,α,K1,α, · · · ,K2n,α be the functions defined in (5.1). Then, for y �= 0,

W1 := y−
n(n+1)

2 Λn(α)

∣∣∣∣∣∣∣∣∣∣∣

K0,α K2,α · · · K2n,α

K0,α+1 K2,α+1 · · · K2n,α+1

· · · · · · · · · · · ·
K0,α+n K2,α+n · · · K2n,α+n

∣∣∣∣∣∣∣∣∣∣∣
, (5.5)

W2 := y−
n(n+1)

2 Λn(α)

∣∣∣∣∣∣∣∣∣∣∣

K1,α K3,α · · · K2n+1,α

K1,α+1 K3,α+1 · · · K2n+1,α+1

· · · · · · · · · · · ·
K1,α+n K3,α+n · · · K2n+1,α+n

∣∣∣∣∣∣∣∣∣∣∣
, (5.6)

where Λn(α) =
n−1∏
i=0

(α+ i)n−i.

Proof We only prove (5.5). The proof for (5.6) follows in the same way. Using the

expression for the derivatives provided by (5.2), one gets that

W1 = Λn(α)

∣∣∣∣∣∣∣∣∣∣∣

K0,α K2,α · · · K2n,α

K ′
0,α K ′

2,α · · · K ′
2n,α

· · · · · · · · · · · ·
K

(n)
0,α K

(n)
2,α · · · K(n)

2n,α

∣∣∣∣∣∣∣∣∣∣∣
= Λn(α)

∣∣∣∣∣∣∣∣∣∣∣

K0,α K2,α · · · K2n,α

K2m,α+1 K2m+2,α+1 · · · K2m+2n,α+1

· · · · · · · · · · · ·
K2nm,α+n K2nm+2,α+n · · · K2nm+2n,α+n

∣∣∣∣∣∣∣∣∣∣∣
. (5.7)

Then, in view of (5.3) and by the elementary properties of the determinants, we obtain (5.5).

This completes the proof. �

Lemma 5.5 For m = 1 and y �= 0, W1 and W2 can be written as

W1 = y−n(n+1)Λn(α)

∣∣∣∣∣∣∣∣∣∣∣

K0,α−n K0,α−n+1 K0,α−n+2 · · · K0,α

K0,α−n+1 K0,α−n+2 K0,α−n+3 · · · K0,α+1

· · · · · · · · · · · · · · ·
K0,α K0,α+1 K0,α+2 · · · K0,α+n

∣∣∣∣∣∣∣∣∣∣∣
, (5.8)
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W2 = y−n(n+1)Λn(α)

∣∣∣∣∣∣∣∣∣∣∣

K1,α−n K1,α−n+1 K1,α−n+2 · · · K1,α

K1,α−n+1 K1,α−n+2 K1,α−n+3 · · · K1,α+1

· · · · · · · · · · · · · · ·
K1,α K1,α+1 K1,α+2 · · · K1,α+n

∣∣∣∣∣∣∣∣∣∣∣
. (5.9)

Proof It follows from (5.3) that

K2l,α+i = y−l
( l−1∑

j=0

(−1)jCj
l Kk,α+i−j + (−1)lKk,α+i−l

)
, l = 1, 2, · · · , n; i = 0, 1, · · · , n.

Then, using the above equality and the elementary column transformations of determinants,

the determinant in (5.5) can be written as∣∣∣∣∣∣∣∣∣∣∣

K0,α −y−1K0,α−1 y−2K0,α−2 · · · (−1)ny−nK0,α−n

K0,α+1 −y−1K0,α y−2K0,α−1 · · · (−1)ny−nK0,α−n+1

· · · · · · · · · · · · · · ·
K0,α+n −y−1K0,α+n−1 y−2K0,α+n−2 · · · (−1)ny−nK0,α

∣∣∣∣∣∣∣∣∣∣∣
, (5.10)

which gives the desired result (5.8). The statement (5.9) follows by using the same arguments,

which we omit for the sake of brevity. The proof is complete. �
Proposition 5.6 Let W1 and W2 be the Wronskian defined in Lemma 5.5. For n ∈

N\{0} and any α ∈ R\(Z− ∪ {0}), the ordered sets of functions (K0,α,K2,α, · · · ,K2n,α) and

(K1,α,K3,α, · · · ,K2n+1,α) are ECT-systems on Σ.

Proof Let

fi(x) =
(
1− yg2(x)

)n−α
2 −i

, x ∈ Σ, i = 0, 1, · · · , n.
Then, in view of Lemma 5.2, W1 in (5.8) can be written as

W1 = y−n(n+1)Λn(α)G(f0, f1, · · · , fn), y �= 0, (5.11)

where G(f0, f1, · · · , fn) is the integral Gram determinant. Notice that n ∈ N\{0} and α ∈
R\(Z− ∪ {0}), so one has that Λn(α) �= 0. Since g(x) is not identically equal to zero, the

functions f0, f1, · · · , fn are linearly independent. Hence, by Lemma 5.2, W1 is different from

zero, which, in view of Lemma 5.1, concludes the proof. If y = 0, then one has that∣∣∣∣∣∣∣∣∣∣∣

K0,α K2,α · · · K2n,α

K2,α+1 K4,α+1 · · · K2+2n,α+1

· · · · · · · · · · · ·
K2n,α+n K2n+2,α+n · · · K4n,α+n

∣∣∣∣∣∣∣∣∣∣∣
= G(1, g, g2, · · · , gn) > 0.

It follows from (5.7) that W1 �= 0 for y = 0. Thus W1 does not vanish on J. The proof of the

case W2 follows by using the same argument. This ends the proof. �
Proposition 5.7 Let

Ii,l(h) =

∫ π

0

y2l+1 cosi xdx, l ∈ N.

Then, for n ∈ N and p = 2l + 1, the families(
I0,p(h), I2,p(h), · · · , I2n,p(h)

)
and

(
I1,p(h), I3,p(h), · · · , I2n+1,p(h)

)



1138 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

are an ECT-system on (2r,+∞). Moreover, the same holds for the families

(
I
(k)
0,p (h), I

(k)
2,p (h), · · · , I(k)2n,p(h)

)
and

(
I
(k)
1,p (h), I

(k)
3,p (h), · · · , I(k)2n+1,p(h)

)
,

where I
(k)
i,p (h) denotes the kth-derivative of Ii,p(h).

Proof Easy computation gives that

Ii,p(h) =

∫ π

0

cosi x(2h+ 1− cos2 x)
p
2

= (2h+ 1)
p
2

∫ π

0

cosi x
(
1− cos2 x

2h+ 1

) p
2

dx

= (2h+ 1)
p
2Ki,− p

2

( 1

2h+ 1

)
,

where Ki,− p
2
(y) =

∫ π
0
cosi x(1 − y cos2 x)

p
2 dx. Choosing g(x) = cosx, m = 1 and α = −p

2

in (5.1), it follows from Proposition 5.6 that
(
K0,− p

2
(y),K2,− p

2
(y), · · · ,K2n,− p

2
(y)
)
is an ECT-

system on (0, 1
4r+1 ). Observe that, for any k > 0, we have

I
(k)
i,p (h) = p(p− 2) · · · (p− 2k + 2)Ii,p−2k(h).

This ends the proof. �
Proof of Theorem 1.3 It is well known that the first order Melnikov function of system

(1.10) is

M+(h) =

n∑
i=0

ci

∫
L+

h

y2l+1 cos2i xdx+

n∑
i=0

ai

∫
L+

h

y2i cosi xdx+

n∑
i=0

bi

∫
L+

h

y2i cosi+1 xdx

=

n∑
i=0

2ciI2i,l(h) +

n∑
i=0

∫
L+

h

y2i(ai cos
i x+ bi cos

i+1 x)dx,

and direct computations give that

n∑
i=0

∫
L+

h

y2i(ai cos
i x+ bi cos

i+1 x)dx = Pn(h)

for a certain polynomial Pn(h) of degree n. Therefore, it suffices to show that the family

(
1, h, · · · , hn, I0,l(h), I2,l(h), · · · , I2n,l(h)

)

is an ECT-system. To this end, consider that

φ(h) =

n∑
i=0

cih
i +

k∑
i=0

diI2i,l(h), k ≤ n,

where ci and di are constants. Then

φ(n+1)(h) =

k∑
i=0

d1i I2i,l−n−1(h),

and Proposition 5.7 implies that φ(n+1)(h) has at most k zeros counting multiplicity. By Rolle’s

Theorem, one obtains that φ(h) has at most k + n + 1 zeros counting multiplicity. The proof

of Theorem 1.3 is complete.
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6 Numerical Simulations

In this section, some numerical simulations show that the perturbed whirling pendulum

equation with f+(x, y) = f−(x, y) and g+(x, y) = g−(x, y) in system (1.4) has limit cycles in

the oscillatory and rotary regions in one period annulus for the given values of the coefficients

of the perturbation polynomials, as well as |ε| small when r = 0.

When n = 2 and r = 0, in view of (2.1) and (2.5), one can get the first Melnikov function

for x > 0 and h ∈ (− 1
2 , 0):

M∗(h) =(c+0,1 − b+1,0)I
∗
0,1(h) + (c+1,1 + b+0,0)I

∗
1,1(h) + 2b+1,0I

∗
2,1(h)

+ (d+0,1 − a+1,0)J
∗
0,1(h)− 2a+2,0J

∗
1,1(h).

(6.1)

By a straightforward calculation, one has that

I∗1,1(h) = J∗1,1(h) = 0, J∗0,1(h) = π(2h+ 1). (6.2)

Letting u = cosx allows us to rewrite the integrals I∗0,1(h) and I∗2,1(h) as

I∗0,1(h) = 4

∫ π
2

arccos
√
2h+1

√
2h+ 1− cos2 xdx = 4

√
2h+ 1E

(√
2h+ 1,

1√
2h+ 1

)
(6.3)

and

I∗2,1(h) = 4

∫ π
2

arccos
√
2h+1

cos2 x
√

2h+ 1− cos2 xdx

=
4

3

√
2h+ 1

[
2hF
(√

2h+ 1,
1√

2h+ 1

)
− (2h− 1)E

(√
2h+ 1,

1√
2h+ 1

)]
, (6.4)

where F (z, k) and E(z, k) are the incomplete elliptic integrals of the first and second kind

F (z, k) =

∫ z

0

1√
1− u2

√
1− k2u2

du,

E(z, k) =

∫ z

0

√
1− k2u2

√
1− u2

du.

Thus, by (6.1)–(6.4), one obtains that

M∗(h) = κ1ϕ1(h) + κ2ϕ2(h) + κ3ϕ3(h), (6.5)

where

κ1 = d+0,1 − a+1,0, κ2 = c+0,1 − b+1,0, κ3 = b+1,0

ϕ1(h) = (2h+ 1), ϕ2(h) = 4
√
2h+ 1E

(√
2h+ 1,

1√
2h+ 1

)
,

ϕ3(h) =
8

3

√
2h+ 1

[
2hF
(√

2h+ 1,
1√

2h+ 1

)
− (2h− 1)E

(√
2h+ 1,

1√
2h+ 1

)]
.

Moreover, a simple computation shows that

det
∂(κ1, κ2, κ3)

∂(a+1,0, c
+
0,1, b

+
1,0)

= −1,

which implies that κi, 1 = 1, 2, 3 can be chosen arbitrarily. We want to determine the existence

of the zeros of M0(h) in (6.5). To this end, we first obtain the asymptotic expansions of
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functions ϕi(h), i = 1, 2, 3 from (− 1
2 , 0) to R given in (6.5) in the variable h, around h = − 1

2 ,

as follows:

ϕ1(h) = 2(h+
1

2
),

ϕ2(h) = 2π(h+
1

2
) +

π

2
(h+

1

2
)2 +

3π

8
(h+

1

2
)3 + o

(
(h+

1

2
)4
)
,

ϕ3(h) = 2π(h+
1

2
)2 + π(h+

1

2
)3 + o

(
(h+

1

2
)4
)
.

Now, applying the above expressions, one can obtain the asymptotic expansion of the following

Melnikov function M∗(h) at h = − 1
2 :

M∗(h) = ζ1(h+
1

2
) + ζ2(h+

1

2
)2 + ζ3(h+

1

2
)3 + o

(
(h+

1

2
)4
)
.

Here

ζ1 = 2π(κ1 + κ2), ζ2 =
π

2
κ2 + 2πκ3, ζ3 =

3π

8
κ1 + πκ3.

Furthermore, one has that

det
∂(ζ1, ζ2, ζ3)

∂(κ1, κ2, κ3)
=

5

2
π3,

which implies that ζ1, ζ2 and ζ3 can be taken as free parameters. Hence, we can choose

appropriate ζ1, ζ2 and ζ3 such that M∗(h) can have two simple zeroes near h = − 1
2 .

According to the above discussion, we consider the following perturbed equation:⎧⎨
⎩
ẋ = y + 0.1(cosx− 0.2539385136 cosx sinx),

ẏ = sinx cosx+ 0.1× 0.7460993676y.
(6.6)

The first Melnikov function M∗(h) of system (6.6) has two zeroes, −0.4 and −0.45, in (− 1
2 , 0)

near − 1
2 , which implies that system (6.6) can have two limit cycles for x > 0; see Figure 5.

0 20 40 60 80 100 120 140 160

1.4

1.6

1.8

2
x(t) vs time

t

x(
t)

0 20 40 60 80 100 120 140 160
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0
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0.4
y(t) vs time

t

y(
t)

1.2 2
−0.4

0.4
solution orbit in x−y plane

x

y

Figure 5 Two limit cycles of system (6.6)

In a similar way, for x < 0 and h ∈ (− 1
2 , 0), we consider the following perturbed whirling

pendulum equation: ⎧⎨
⎩
ẋ = y + 0.1(cosx+ 0.2539385136 cosx sinx),

ẏ = sinx cosx− 0.1× 0.7460993676y.
(6.7)
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The first Melnikov function M∗(h) of system (6.7) has two zeroes, −0.4 and −0.45, in (− 1
2 , 0)

near − 1
2 , which implies that system (6.7) can have two limit cycles for x < 0; see Figure 6.
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0.4
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x

y

Figure 6 Two limit cycles of system (6.7)

Next we will consider the case h ∈ (0,+∞). When n = 2 and y > 0, by (2.2) and (2.3),

one has that

M+(h) = 2πc+0,0 + πc+0,2 + πc+2,0 + 4πc+0,2h+ 4(c+0,1 − b+1,0)
√
2h+ 1E

( 1√
2h+ 1

)

+
8

3
b+1,0

√
2h+ 1

[
2hK

( 1√
2h+ 1

)
− (2h− 1)E

( 1√
2h+ 1

)]
, (6.8)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind

K(k) =

∫ 1

0

1√
1− u2

√
1− k2u2

du, E(k) =

∫ 1

0

√
1− k2u2

√
1− u2

du.

In a similar way, one can choose the appropriate coefficients of f+(x, y) and g+(x, y) such that

M+(h) in (6.8) has two zeroes in (0,+∞) near 0. Consider the following equation:⎧⎨
⎩
ẋ = y,

ẏ = sinx cosx+ 0.001(y − 0.8947516328y2 − 1.286289275 cos2 x).
(6.9)

It is easy to check that the first Melnikov function M+(h) has two zeros, h = 0.01 and h = 0.05,

which implies that system (6.9) can have two limit cycles in the rotary region; see Figure 7.
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Figure 7 Two limit cycles of system (6.9)
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In order to see this result more intuitively, we can roll up the phase plane between the two

straight lines of x = π and x = −π, and glue the two straight lines of x = ±π together, so as to

form a cylindrical surface, which is called a phase cylinder. All the motions of the pendulum

can be represented by the phase trajectories on the phase cylinder. The phase trajectories

corresponding to the rotary region are the trajectories around the phase cylinder, as shown in

Figure 8.

Figure 8 Two limit cycles in the phase cylinder of system (6.9)

Similarly, for y < 0 and h ∈ (0,+∞), we consider the following perturbed whirling pendu-

lum equation:⎧⎨
⎩
ẋ = y,

ẏ = sinx cosx+ 0.001(y + 0.8947516328y2 + 1.286289275 cos2 x).
(6.10)

The first Melnikov function M+(h) of system (6.10) has two zeroes, 0.01 and 0.05 in h ∈
(0,+∞), near 0, which implies that system (6.10) can have two limit cycles for y < 0; see

Figure 9 and Figure 10.
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Figure 9 Two limit cycles of system (6.10)
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Figure 10 Two limit cycles in the phase cylinder of system (6.10)

7 Conclusion and Discussion

In this paper, we have given the upper bounds for the number of limit cycles bifurcating from

the oscillatory and rotary regions of the whirling pendulum equation under piecewise polynomial

perturbations. For some particular smooth perturbations in the rotary region, we obtained

the optimal bounds. The main tools used are the Picard-Fuchs equations, the Chebyshev

criterion, the Gram determinant and combination techniques. However, there still exist some

open problems on the optimal bounds for the general case, since the Melnikov functions contain

the complete and incomplete elliptic integrals and anti-trigonometric functions. It is difficult

to solve these problems by applying recent by discovered methods and techniques, even if n is

small. We need improve the algebraic criterion and develop more efficient approaches.

Conflict of Interest The author declares no conflict of interest.

References

[1] Baker G L, Blackbuen J A. The Pendulum: A Case Study in Physics. New York: Oxford University Press,

2005

[2] Belley J, Drissi K S. Almost periodic solutions to Josephson’s equation. Nonlinearity, 2003, 16: 35–47

[3] Christopher C, Li C. Limit Cycles of Differential Equations. Berlin: Birkhäuser Verlag, 2007
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