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Abstract In this paper, we consider a class of third-order nonlinear delay dynamic equa-

tions. First, we establish a Kiguradze-type lemma and some useful estimates. Second, we give

a sufficient and necessary condition for the existence of eventually positive solutions having

upper bounds and tending to zero. Third, we obtain new oscillation criteria by employing

the Pötzsche chain rule. Then, using the generalized Riccati transformation technique and

averaging method, we establish the Philos-type oscillation criteria. Surprisingly, the integral

value of the Philos-type oscillation criteria, which guarantees that all unbounded solutions

oscillate, is greater than θ4(t1, T ). The results of Theorem 3.5 and Remark 3.6 are novel.

Finally, we offer four examples to illustrate our results.
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1 Introduction

In the paper, we investigate the asymptotic behavior and oscillatory properties of the third-

order nonlinear delay dynamic equations of the form[
b(t)

(
a(t)x∆(t)

)∆]∆
+ p(t)|x(τ(t))|γ−1x(τ(t)) = 0, t ∈ T, (1.1)

where T is a time scale and γ > 0 is a constant. We put forward the following hypotheses:
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(A1) the functions p ∈ Crd(T,R+), a ∈ Crd(T,R+) and b ∈ Crd(T,R+) satisfy that∫ ∞
t0

1

b(s)
∆s =∞,

∫ ∞
t0

1

a(u)

∫ u

t0

1

b(s)
∆s∆u =∞; (1.2)

(A2) the function τ ∈ Crd(T,T), τ(t) ≤ t, lim
t→∞

τ(t) =∞.

A time scale T is an arbitrary nonempty closed subset of the real numbers R.

Definition 1.1 ([6, p1]) On every time scale we define the forward jump operator by

σ(t) = inf{s ∈ T : s > t},

and the backward jump operator by

ρ(t) = sup{s ∈ T : s < t}.

If σ(t) > t, we say that t is a right-scattered point, while if ρ(t) < t, we say that t is a

left-scattered point. If σ(t) = t and t 6= supT, we say that t is a right-dense point, while if

ρ(t) = t and t 6= inf T, we say that t is a left-dense point. For more information on this see the

monograph [6].

Definition 1.2 ([6, p22]) A function f : T→ R is said to be rd-continuous provided that

it is continuous at right-dense points in T and its left-sided limits exist (finite) at left dense

points in T. The set of rd-continuous functions f : T→ R is denoted as

Crd = Crd(T) = Crd(T,R).

The set of functions f : T→ R that are differentiable and whose derivative is rd-continuous is

denoted by

C1
rd = C1

rd(T) = C1
rd(T,R).

Similarly, we can define the set Cird (i = 2, 3, 4, · · · ).
Definition 1.3 By a solution x of equation (1.1), we mean a nontrivial real-valued func-

tion in Crd([t0,∞)T,R) with ax∆ ∈ C1
rd([t0,∞)T,R), b(ax∆)∆ ∈ C1

rd([t0,∞)T,R), and which

satisfies equation (1.1) on interval [t0,∞)T.

As usual, a solution of equation (1.1) is called nonoscillatory if it eventually has one sign;

otherwise it is said to be oscillatory. Equation (1.1) is oscillatory if all of its solutions are

oscillatory.

Oscillations of delay dynamic equations are common in applications, including continuum

mechanics, population dynamic behavior, and biology models. For more details, see the mono-

graphs [3, 4] and references [14, 34]. For the existence and uniqueness of solutions to delay

dynamic equations on time scales, we refer to [7–9, 17, 24, 26, 28, 33].

In recent years, great attention has been paid to the oscillation of third-order dynamic

equations. We refer readers to [1, 2, 5, 13, 15, 16, 18–23, 25, 27, 29–31] and the references

therein. In 2005, Erbe, et al [15] considered the oscillation of a third-order nonlinear dynamic

equation [
c(t)

(
a(t)x∆(t)

)∆]∆
+ p(t)f (x(t)) = 0, t ∈ T, (1.3)

where ∫ ∞
t0

1

c(t)
∆t =

∫ ∞
t0

1

a(t)
∆t =∞.
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Using the Riccati transformation techniques, they established some sufficient conditions which

ensure that every solution of equation (1.3) is oscillatory or converges to zero.

In 2007, Erbe, et al [16] studied the third-order linear dynamic equation

x∆∆∆(t) + p(t)x(t) = 0,

with the assumptions that x(t) > 0, x∆(t) > 0, x∆∆(t) > 0, x∆∆∆(t) < 0. They obtained an

important estimate, lim inf
t→∞

tx(t)
h2(t,s)x∆(t) ≥ 1, where the generalized polynomials {hn(t, s)}∞0 ([6,

p38]) on time scales are defined recursively by

h0(t, s) = 1, hn+1(t, s) =

∫ t

s

hn(τ, s)∆τ, s, t ∈ T.

With the help of this estimate, they obtained Hille and Nehari type oscillation criteria. For

when T = R, lim inf
t→∞

tx(t)
h2(t,s)x′(t) ≥ 1 which shows that 2x(t)

tx′(t) ≥ 1 is equivalent to [20, Lemma 3.2

(iv)].

In 2011, Han, et al [21] addressed the general form of equation (1.1) as follows:[
b(t)

(
a(t)x∆(t)

)∆]∆
+ p(t)f (x(τ(t))) = 0, t ∈ T. (1.4)

They obtained the oscillation criteria of equation (1.4), which extended and improved the results

of [15, 16]. However, [21] only considered the case f(u)/u > M > 0 for u 6= 0, where M is a

constant. [15, 16, 21] did not solve the general case f(u)/|u|γ−1u > M > 0 for u 6= 0. When

f(u) = |u|γ−1u, (1.4) reduces to (1.1).

In 2017, Hassan, et al [22] examined the third-order nonlinear functional dynamic equation{
r2(t)φα2(

[
r1(t)φα1(x∆(t))

]∆
)
}∆

+ q(t)φα(x(g(t))) = 0, t ∈ T, (1.5)

where

φα(u) = |u|α−1u, α1, α2, α := α1α2 > 0, φαi(u) = |u|αi−1u, i = 1, 2.

Under the conditions ∫ ∞
t0

r
− 1
αi

i (t)∆t =∞, i = 1, 2, (1.6)

they obtained some new oscillatory criteria of equation (1.5) and got that every solution of

equation (1.5) oscillates or converges to zero, which extended and improved the results of

[15, 16, 21]. However, α = α1α2 is a special condition, and the conditions (1.6) are stronger

than the conditions (1.2). When α1 = α2 = α = 1, (1.5) reduces to linear equations.

In 2022, Deng, et al [13] considered the third-order nonlinear delay differential equation[
b(t) (a(t)x′(t))

′
]′

+ p1(t)φγ(x(τ1(t)))− p2(t)φγ(x(τ2(t))) + p3(t)φγ(x(τ3(t))) = 0. (1.7)

They derived several sufficient conditions which ensured that every solution of equation (1.7)

is either oscillatory or tends to zero as t → ∞, taking on the assumptions of (1.2). However,

for when p2(t) = p3(t) = 0, [13] does not give the oscillation criteria for 0 < γ < 1 with respect

to unbounded solutions.

It is well known that the Philos-type oscillation criteria are useful for determining the

oscillatory properties of the corresponding equations. Deng, et al [10, 11] considered second-

order nonlinear dynamic equation

[P (t)|z∆(t)|γ−1z∆(t)]∆ + f(t, x(τ1(t))) = 0, t ∈ T,
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where z(t) = x(t) + r(t)x(τ(t)). They established the Philos-type oscillation condition

lim sup
t→∞

∫ t

t1

[
H(σ(t), σ(s))ϕ(s)

H(σ(t), t1)
− C(t, s)

]
∆s > ϕ3(t1), (1.8)

where

C(t, s) =
γγ([H(σ(t), σ(s))ϕ1(s) +H∆s(σ(t), s)]+)1+γ

(1 + γ)1+γH(σ(t), t1)[H(σ(t), σ(s))ϕ2(s)]γ
,

ϕ3(t1) = δ(t1)

[
1

Rγ(t1, T )
+ r(t1)α(t1)

]
.

Zhang and Feng [32] considered the equation[
b(t)

((
a(t)z∆(t)

)∆)γ1
]∆

+ f(t, x(τ(t))) = 0, (1.9)

where z(t) = x(t) + r(t)xγ2(τ1(t)), 0 < r(t) ≤ r < 1, f(t, u)/uγ3 ≥ p(t) > 0 for u 6= 0, and

γ1, γ2, γ3 are quotients of odd positive integers, γ3 ≥ γ1, 0 < γ2, b∆(t) ≥ 0, and∫ ∞
t0

1

a(s)
∆s =∞,

∫ ∞
t0

b−
1
γ2 (s)∆s =∞. (1.10)

When r(t) = 0, γ1 = 1, and γ3 = γ, (1.9) becomes (1.1). Let D = {(t, s)|t ≥ s ≥ t0} and

D0 = {(t, s)|t > s ≥ t0}. In order to give the Philos-type oscillation theorem, Zhang and Feng

introduced a function H(t, s) ∈ C(D,R) satisfying the following conditions:

(H1) H(t, t) = 0, H(t, s) > 0 for (t, s) ∈ D0;

(H2) H
∆s

(t, t) = 0, H
∆s

(t, s) ≤ 0 for (t, s) ∈ D0.

Zhang and Feng established the following Philos-type oscillation theorem:

Theorem 1.4 Assume that (1.10) holds. Furthermore, suppose that there exist two

positive functions η(t) ∈ C1
rd(T,R) and h(t, s) ∈ Crd(D,R) satisfying conditions (H1), (H2),

and

H∆s(σ(t), σ(s)) +H(σ(t), σ(s))
(η∆(t))+

η(t)
= − (h(t, s)

η(t)
H

γ1
γ1+1 (σ(t), σ(s)).

If, for sufficiently large t1 ≥ t0 > 0,

lim sup
t→∞

1

H(σ(t), σ(t1))

∫ t

t1

[
H(σ(t), σ(s))K(s)− (h−(t, s)b(σ(s)))γ1+1

(γ1 + 1)γ1+1(η(s)b(s))γ1

]
∆s =∞ (1.11)

holds, where K(t) is defined by [32, Theorem 3.1], then every solution x of (1.9) is either

oscillatory or lim
t→∞

x(t) = 0.

Almost all the papers mentioned above established Philos-type oscillation criteria which

requiring the integral value (the forms are similar to the left hand side of (1.8) and the left

hand side of (1.11)) to be ∞.

Based on the above literature review, it is clear that there are several problems to be solved.

(i) Can we obtain a better estimate than lim inf
t→∞

tx(t)
h2(t,s)x∆(t) ≥ 1 in [16] and 2x(t)

tx′(t) ≥ 1 in

[20, Lemma 3.2 (iv)]? Since the polynomail function h2(t, s) is dependent on the time scales, it

has no uniform expression. Can we obtain a uniform estimate for x(t)/x∆(t)?

(ii) Can we derive oscillation criteria for 0 < γ < 1 ([13] did not solve this problem even if

p2(t) = p3(t) = 0 in (1.7)) with respect to unbounded solutions?

(iii) Can we establish a similar Philos-type oscillation criterion that requires the integral

value to be greater than some function value ϕ(t1), as Deng, et al established in [10, 11]?

Moreover, can we remove the conditions (H2) and H(t, t) = 0 in (H1)?
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On one hand, Deng, et al [12] considered the second-order neutral dynamic equation

[P (t)z∆(t)]∆ + h(t, x(σ(t)), x(τ1(t)), x(τ2(t)), x(ξ1(t)), x(ξ2(t))) = 0, t ∈ T,

where z(t) = x(t) + r(t)x(τ(t)), and gave the estimate z(t) > tz∆(t). On the other hand,

Deng, et al [12] also provided a method for establishing the oscillation criteria for 0 < γ < 1.

In view of [13, 15, 16, 21], inspired by [12, Lemma 2.2], in Section 2 we present some useful

lemmas, including x(t) > tx∆(t), which show problem (i) being solved perfectly. In Section

3, we first give sufficient and necessary conditions for the existence of a solution and we show

eventually positive solutions having upper bounds and tending to zero. Then, we investigate the

oscillation and asymptotic behavior of equation (1.1) and solve problems (ii) and (iii), inspired

by [12, Theorem 3.7] and [10, 11], respectively. Our work generalizes and improves upon the

main results of [13, 15, 16, 21, 25, 27, 30, 31] and related results that can be found in the

literature. In Section 4, we present four examples to illustrate the validity of our results.

2 Preliminaries

In this section, we will give several useful lemmas. Similarly to [13, Lemmas 2.1–2.3] and

[16, Lemmas 2.1–2.3], it is easy to obtain Lemmas 2.1–2.3.

Lemma 2.1 Assume that x is an eventually positive solution of equation (1.1). Then,

there exists a sufficiently large T ∈ [t0,∞)T such that, for t ∈ [T,∞)T, either

(i) x ∈ S0 := {x | x > 0, Y (t) = a(t)x∆(t) < 0, b(t)Y ∆(t) > 0, [b(t)Y ∆(t)]∆ < 0},
or

(ii) x ∈ S1 := {x | x > 0, Y (t) = a(t)x∆(t) > 0, b(t)Y ∆(t) > 0, [b(t)Y ∆(t)]∆ < 0}.
Lemma 2.2 Suppose that ∫ ∞

t0

p(t)∆t =∞, (2.1)

or ∫ ∞
t0

p(t)∆t <∞,
∫ ∞
t0

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

p(u)∆u∆s∆v =∞. (2.2)

Then every eventually positive solution x ∈ S0 of equation (1.1) satisfies that lim
t→∞

x(t) = 0.

Lemma 2.3 Assume that x ∈ S1 is a solution of equation (1.1). Then the estimate

a(t)x∆(t) ≥ B(t, T )b(t)[a(t)x∆(t)]∆ (2.3)

holds for large T and t ≥ T , where

B(t, T ) =

∫ t

T

1

b(s)
∆s. (2.4)

Inspired by the idea [12, Lemma 2.2], we have the following results:

Lemma 2.4 Assume that x ∈ S1 is an eventually positive solution of equation (1.1).

Moreover, suppose that a∆(t) ≤ 0 and∫ ∞
t0

p(s)τγ(s)∆s =∞. (2.5)

Then there exists a large T ∈ [t0,∞)T such that the following estimates hold:

(1) x(t) > tx∆(t) for t ∈ [T,∞)T;

(2) x
t is decreasing, and x(τ(t))

x(t) > τ(t)
t for t ∈ [T,∞)T.
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Proof Let x ∈ S1 be an eventually positive solution of equation (1.1). Then, for large T

and t ≥ T , by Lemma 2.1 (ii), (A1) and a∆(t) ≤ 0, it is apparent that

(a(t)x∆(t))∆ = a∆(t)x∆(t) + aσ(t)x∆∆(t) > 0

implies that x∆∆(t) > 0 for t ≥ T .

Letting A(t) := x(t)−tx∆(t), then A∆(t) = x∆(t)−x∆(t)−σ(t)x∆∆(t) = −σ(t)x∆∆(t) < 0,

which shows that A(t) > 0 or A(t) < 0 for t ≥ T .

We claim that A(t) > 0 on interval [T,∞)T. If we assume not, then A(t) < 0 on [T,∞)T,

and (
x(t)

t

)∆

=
tx∆(t)− x(t)

tσ(t)
= − A(t)

tσ(t)
> 0

implies that x(t)/t is increasing on [T,∞)T. Taking t1 ∈ [T,∞)T such that τ(t) ≥ T for t ≥ t1,

then we have that
x(τ(t))

τ(t)
≥ x(τ(t1))

τ(t1)
=: d1 > 0.

Note that b(t)(a(t)x∆(t))∆ > 0. Integrating equation (1.1) from t1 to t yields that

b(t1)(a(t1)x∆(t1))∆ = b(t)(a(t)x∆(t))∆ +

∫ t

t1

p(s)xγ(τ(s))∆s > dγ1

∫ t

t1

p(s)τγ(s)∆s.

Letting t→∞,
1

dγ1
b(t1)(a(t1)x∆(t1))∆ ≥

∫ ∞
t1

p(s)τγ(s)∆s, (2.6)

which contradicts (2.5).

Hence, A(t) > 0 and x(t) > tx∆(t) for t ∈ [T,∞)T. Consequently,(
x(t)

t

)∆

=
tx∆(t)− x(t)

tσ(t)
= − A(t)

tσ(t)
< 0, t ≥ T.

Thus x(t)/t is decreasing on [T,∞)T, and x(τ(t))
x(t) > τ(t)

t . �

3 Main Results

In this section, we explore the asymptotic behavior and oscillatory properties of equation

(1.1). We are now in a position to derive a sufficient and necessary condition for the existence

of eventually positive solutions which have upper bounds and tend to zero.

Theorem 3.1 Suppose that (A1) and (A2) hold. Furthermore, assume that there exists

an increasing positive function g with lim
t→∞

g(t) =∞. Then,

(i) if there exists a sufficiently large T such that, for all t ≥ T ,∫ ∞
t

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

p(u)
1

gγ(τ(u))
∆u∆s∆v ≤ 1

g(t)
, (3.1)

equation (1.1) has an eventually positive solution x(t) ∈
(

0, 1
g(t)

]
for t ≥ T and lim

t→∞
x(t) = 0;

(ii) moreover, if ∫ ∞
t0

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

p(u)
1

gγ(τ(u))
∆u∆s∆v <∞ (3.2)
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and

lim
t→∞

g(t)gσ(t)
∫∞
t

1
b(s)

∫∞
s
p(u) 1

gγ(τ(u))∆u∆s

a(t)g∆(t)
≤ 1 (3.3)

hold, (3.1) is also a necessary condition for equation (1.1) having an eventually positive solution

x(t) ∈
(

0, 1
g(t)

]
.

Proof The assumption (A2) reveals that there exist sufficiently large T and T1 such that

τ(t) ≥ T for t ≥ T1.

(i) Introduce the Banach spaces BC[T,∞)T and Ω as follows:

BC[T,∞)T =

{
x | x(t) ∈ C([T,∞)T,R) and ||x|| = sup

t∈[T,∞)T

|x(t)| <∞
}
,

Ω =

{
x
∣∣∣x(t) ∈ BC[T,∞)T : 0 < x(t) ≤ 1

g(t)

}
.

Define the mapping I on Ω as

(Ix)(t) =


∫ ∞
t

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

p(u)xγ(τ(u))∆u∆s∆v, t ∈ [T1,∞),

(Ix)(T1), t ∈ [T, T1].

Similarly to [27, Theorem 3.5], we omit the rest proof.

(ii) We rewrite (3.1) as follows:

g(t)

∫ ∞
t

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

p(u)
1

gγ(τ(u))
∆u∆s∆v ≤ 1.

Therefore, if we show that

lim
t→∞

∫∞
t

1
a(v)

∫∞
v

1
b(s)

∫∞
s
p(u) 1

gγ(τ(u))∆u∆s∆v

1
g(t)

≤ 1, (3.4)

then (3.1) holds for t ≥ T .

In fact, by (3.2), the left hand side of (3.4) can be written as the indeterminate form 0/0.

By (3.3) and L’Hôpital’s Rule, it is easy to check that (3.4) holds. �

Next, we investigate the asymptotic and oscillatory behavior of solutions to equation (1.1).

Similarly to [13, Theorem 3.1], we derive the Leighton-Wintner Theorem.

Theorem 3.2 Suppose that (A1) and (A2) hold. If (2.1) holds, then every solution of

equation (1.1) is oscillatory or tends to zero.

Theorem 3.3 Suppose that (A1), (A2), (2.2), a∆(t) ≤ 0 and (2.5) hold. Then we have

the following statements.

(i) Every solution x of equation (1.1) oscillates or converges to zero for 0 < γ < 1 in case

that ∫ ∞
T

p(s)[Q(s)]γ∆s =∞ (3.5)

holds for some sufficiently large T ∈ T, where

Q(s) =
B(s, T )τ(s)

a(s)
,

and B(s, T ) is defined by (2.4).
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(ii) Every solution x of equation (1.1) oscillates or converges to zero for γ > 1 in case that∫ ∞
T

p(s)[Q(s)]γ∆s =∞ (3.6)

holds for some sufficiently large T ∈ T, where

p(s) =

∫ ∞
s

p(u)

(
τ(u)

u

)γ
∆u, Q(s) =

s

a(s)b
1
γ (s)

.

(iii) Every solution x of equation (1.1) oscillates or converges to zero for γ = 1 in case

tB(s, T )

a(t)

∫ ∞
T

p(s)
τ(s)

s
∆s > 1 (3.7)

holds for some sufficiently large T ∈ T, where B(s, T ) is defined by (2.4).

Proof Let x be a positive nonoscillatory solution of equation (1.1). Thus, there exists a

large T such that

x(τ(t)) > 0, x(t) > 0, t ≥ T.

If x ∈ S0, by Lemma 2.2, lim
t→∞

x(t) = 0.

If x ∈ S1, we have that

x(t) > 0, x∆(t) > 0, Y ∆(t) = (a(t)x∆(t))∆ > 0, [b(t)Y ∆(t)]∆ < 0.

From equation (1.1), and noticing that, from Lemma 2.4 (2): x(τ(t)) > ( τ(t)
t )x(t), we get that[

b(t)
(
a(t)x∆(t)

)∆]∆
+ p(t)

(τ(t)

t

)γ
xγ(t) ≤ 0. (3.8)

Now we prove the conclusions by contradiction.

First of all, we prove the conclusion of the part (i). If 0 < γ < 1, employing the Pötzsche

chain rule [12, (3.6)] and the fact that b(t)(a(t)x∆(t))∆ is decreasing on [T,∞)T, we have, for

t ∈ [T,∞)T, that(
[b(t)

(
a(t)x∆(t)

)∆
]1−γ

)∆

=
(
[b(t)Y ∆(t)]1−γ

)∆
= (1− γ)

∫ 1

0

(
h[b(σ(t))Y ∆(σ(t))] + (1− h)[b(t)Y ∆(t)]

)−γ
dh×

[
b(t)Y ∆(t)

]∆
≤ (1− γ)

[
b(t)Y ∆(t)

]−γ [
b(t)Y ∆(t)

]∆
< 0. (3.9)

It follows that [
b(t)Y ∆(t)

]∆
[b(t)Y ∆(t)]

γ ≥
[
(b(t)Y ∆(t))1−γ]∆

1− γ
(3.10)

and [
b(t)Y ∆(t)

]∆
+ p(t)( τ(t)

t )γxγ(t)

[b(t)Y ∆(t)]
γ ≥

[
(b(t)Y ∆(t))1−γ]∆

1− γ
+
p(t)( τ(t)

t )γxγ(t)

[b(t)Y ∆(t)]
γ . (3.11)

In view of Lemma 2.3, we see that

b(t)(a(t)x∆(t))∆ = b(t)Y ∆(t) ≤ a(t)x∆(t)

B(t, T )
.

Combining this with (3.11), we have

0 ≥
(
[b(t)Y ∆(t)]1−γ

)∆
1− γ

+
p(t)( τ(t)

t B(t, T ))γxγ(t)

aγ(t)(x∆(t))γ
. (3.12)
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From Lemma 2.4 (1), x(t) > tx∆(t), we get that

0 ≥
(
[b(t)Y ∆(t)]1−γ

)∆
1− γ

+ p(t)

(
B(t, T )τ(t)

a(t)

)γ
=:

(
[b(t)Y ∆(t)]1−γ

)∆
1− γ

+ p(t)Qγ(t), (3.13)

and hence

p(t)Qγ(t) ≤ −
(
[b(t)Y ∆(t)]1−γ

)∆
1− γ

.

Integrating this from T to ∞, we get that∫ ∞
T

p(s)Qγ(s)∆s ≤ −
∫ ∞
T

(
[b(s)Y ∆(s)]1−γ

)∆
1− γ

∆s ≤
[b(T )

(
a(T )x∆(T )

)∆
]1−γ

1− γ
, (3.14)

which contradicts (3.5).

Next, we shall prove the conclusion of part (ii). If γ > 1, integrating (3.8) from t to u, we

get

b(u)
(
a(u)x∆(u)

)∆ − b(t) (a(t)x∆(t)
)∆

+

∫ u

t

p(s)

(
τ(s)

s

)γ
xγ(s)∆s ≤ 0;

i.e.,

b(t)
(
a(t)x∆(t)

)∆ ≥ b(u)
(
a(u)x∆(u)

)∆
+

∫ u

t

p(s)

(
τ(s)

s

)γ
xγ(s)∆s.

Since x is increasing on [T,∞)T and b(u)
(
a(u)x∆(u)

)∆
> 0, letting u→∞, we have that

Y ∆(t) =
(
a(t)x∆(t)

)∆ ≥ xγ(t)

b(t)

∫ ∞
t

p(s)

(
τ(s)

s

)γ
∆s. (3.15)

Noting that 1−γ < 0, using the Pötzsche chain rule and Y ∆(t) = (a(t)x∆(t))∆ > 0 on [T,∞)T,

we have, for t ∈ [T,∞)T, that[
(a(t)x∆(t))1−γ]∆ = (1− γ)

∫ 1

0

[hY σ(t) + (1− h)Y (t)]
−γ

dh× Y ∆(t)

≤ (1− γ)[Y (σ(t))]−γY ∆(t) < 0. (3.16)

By (3.15), (3.16), [aσ(t)]−γ ≥ [a(t)]−γ and Lemma 2.4 , x(σ(t))
x∆(σ(t)) ≥ σ(t), x(t)

x(σ(t)) >
t

σ(t) , so we

have [(
a(t)x∆(t)

)1−γ]∆
1− γ

≥ Y ∆(t)

Y γ(σ(t))
≥
∫∞
t
p(s)( τ(s)

s )γ∆s

aγ(σ(t))b(t)

(
x(σ(t))

x∆(σ(t))

)γ (
x(t)

x(σ(t))

)γ
≥ tγ

aγ(t)b(t)

∫ ∞
t

p(s)

(
τ(s)

s

)γ
∆s := p(t)[Q(t)]γ .

Integrating this from T to ∞, we obtain∫ ∞
T

p(s)[Q(s)]γ∆s ≤
∫ ∞
T

[
(a(s)x∆(s))1−γ]∆

1− γ
∆s ≤

(
a(T )x∆(T )

)1−γ
γ − 1

,

which contradicts (3.6).

Finally, we prove the conclusion of part (iii). If γ = 1, integrating the equation (3.8) from

t to u, we get

b(u)
(
a(u)x∆(u)

)∆ − b(t) (a(t)x∆(t)
)∆

+

∫ u

t

p(s)

(
τ(s)

s

)
x(s)∆s ≤ 0;
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i.e.,

b(t)
(
a(t)x∆(t)

)∆ ≥ b(u)
(
a(u)x∆(u)

)∆
+

∫ u

t

p(s)

(
τ(s)

s

)
x(s)∆s.

Since x is increasing on [T,∞)T and b(u)
(
a(u)x∆(u)

)∆
> 0, letting u→∞, we have(

a(t)x∆(t)
)∆ ≥ x(t)

b(t)

∫ ∞
t

p(s)

(
τ(s)

s

)
∆s.

By Lemma 2.3, (a(t)x∆(t))∆ ≤ a(t)x∆(t)
B(t,T )b(t) , we obtain

a(t)x∆(t)

B(t, T )b(t)
≥ x(t)

b(t)

∫ ∞
t

p(s)

(
τ(s)

s

)
∆s;

i.e.,
a(t)

B(t, T )

x∆(t)

x(t)
≥
∫ ∞
t

p(s)

(
τ(s)

s

)
∆s. (3.17)

By (3.17) and Lemma 2.4 (1), x
∆(t)
x(t) < 1

t , we see that

a(t)

B(t, T )

1

t
>

∫ ∞
t

p(s)

(
τ(s)

s

)
∆s;

i.e.,
tB(t, T )

a(t)

∫ ∞
t

p(s)

(
τ(s)

s

)
∆s < 1.

This contradicts (3.7). The proof is complete. �

We introduce the function family R in the same way as [11]: H ∈ R if H : D = {(t, s) :

t ≥ s ≥ t0} → R is continuous, H(t, s) ≥ 0(6≡ 0) on D, and for each fixed t, H∆s(t, s) is delta

integrable with respect to s. We introduce auxiliary functions

β(t) =

 t/σ(t), 0 < γ < 1;

(t/σ(t))γ , γ ≥ 1,
(3.18)

and

C1(t, T ) :=
γβ(t)B(t, T )δσ(t)

a(t)
, (3.19)

where B(t, T ) is defined by (2.4).

Theorem 3.4 Suppose that (A1), (A2), (2.2), a∆(t) ≤ 0 and (2.5) hold. Furthermore,

assume that there exist a function α ∈ Crd(T,R) with (bα)∆ existing, a positive ∆-differentiable

function δ, and H ∈ R such that, for T large enough,

θ(t)− (θ1(t))2

4θ2(t)
≥ 0, t ≥ T, (3.20)

−
(
θ(s)− (θ1(s))2

4θ2(s)

)
H(σ(t), σ(s)) + θ3(s, T )[H∆s(σ(t), s)]+ ≤ 0, t ≥ s ≥ T, (3.21)

and

lim sup
t→∞

∫ t

t1

[
H(σ(t), σ(s))θ(s)

H(σ(t), t1)
−

[H(σ(t), σ(s))θ1(s) +H∆s(σ(t), s)]2+
4H(σ(t), t1)H(σ(t), σ(s))θ2(s)

]
∆s =∞ (3.22)

hold for for all constants k > 0 and t1 ∈ T, t1 > T , where

C(t, T ) := kγ−1C1(t, T ), [H∆s(σ(t), s)]+ = max{0, H∆s(σ(t), s)},
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[H(σ(t), σ(s))θ1(s) +H∆s(σ(t), s)]+ = max{0, [H(σ(t), σ(s))θ1(s) +H∆s(σ(t), s)]},

θ(t) := δσ(t)p(t)
( τ(t)

σ(t)

)γ
+ C(t, T )(b(t)α(t))2 − δσ(t)(b(t)α(t))∆,

θ1(t) :=
1

δ(t)

[
δ∆(t) + 2C(t, T )b(t)α(t)

]
, θ2(t) :=

C(t, T )

δ2(t)
,

θ3(t) := δ(t)

[
a(t)

kγ−1tB(t, T )
+ b(t)α(t)

]
> 0,

and where B(s, T ) is defined by (2.4).

Then,

(i) every solution x of equation (1.1) oscillates or converges to zero for γ ≥ 1;

(ii) any bounded solution x of equation (1.1) oscillates or tends to zero for 0 < γ < 1.

Proof Proceeding as in the proof of Theorem 3.3, we assume that equation (1.1) has a

nonoscillatory solution, say x(t) > 0, for all t ≥ T .

If x ∈ S0, by Lemma 2.2, lim
t→∞

x(t) = 0.

Next, we consider x ∈ S1. Define the function z by the generalized Riccati substitution

z(t) := δ(t)

[
b(t)(a(t)x∆(t))∆

xγ(t)
+ b(t)α(t)

]
, t ≥ T. (3.23)

From equation (1.1), and noticing that, from Lemma 2.4 (2), x(τ(t))
x(σ(t)) >

τ(t)
σ(t) , we have that

z∆(t) = δ∆(t)

[
b(t)(a(t)x∆(t))∆

xγ(t)
+ b(t)α(t)

]
+ δσ(t)

[
b(t)(a(t)x∆(t))∆

xγ(t)
+ b(t)α(t)

]∆

=
δ∆(t)

δ(t)
z(t) + δσ(t)

[
b(t)(a(t)x∆(t))∆

xγ(t)

]∆

+ δσ(t)
[
b(t)α(t)

]∆
=
δ∆(t)

δ(t)
z(t) + δσ(t)

[
b(t)α(t)

]∆
+ δσ(t)

xγ(t)[b(t)(a(t)x∆(t))∆]∆ − (xγ(t))∆
[
b(t)(a(t)x∆(t))∆

]
xγ(t)(xσ(t))γ

≤ δ∆(t)

δ(t)
z(t) + δσ(t)

([
b(t)α(t)

]∆ − p(t)( τ(t)

σ(t)
)γ
)
− δσ(t)

b(t)(a(t)x∆(t))∆

xγ(t)

(xγ(t))∆

(xσ(t))γ
.

(3.24)

Employing the Pötzsche chain rule [12, (3.6)], we have, for t ∈ [T,∞)T, that

(xγ(t))∆ = γ

∫ 1

0

[hxσ(t) + (1− h)x(t)]γ−1dh× x∆(t). (3.25)

Case 1 γ ≥ 1. Since x ∈ S1, then x is increasing for t ≥ T . By (3.18), (3.25) and the

Lemma 2.4 (2), x(t)
x(σ(t)) ≥

t
σ(t) , we have that

(xγ(t))∆

(xσ(t))γ
≥ γxγ−1(t)x∆(t)

(xσ(t))γ
=

γxγ(t)

(xσ(t))γ
x∆(t)

x(t)
≥ γtγ

(σ(t))γ
x∆(t)

x(t)
= γβ(t)

x∆(t)

x(t)
. (3.26)

In view of Lemma 2.3, we see that

x∆(t) ≥ 1

a(t)

[
b(t)

(
a(t)x∆(t)

)∆ ]
B(t, T ).



936 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

Since x ∈ S1, x
∆(t) > 0 implies that x(t) ≥ x(T ) := k > 0 for t ≥ T . By (3.24) and (3.26), we

have that

z∆(t) ≤ δ∆(t)

δ(t)
z(t) + δσ(t)

[
(b(t)α(t))∆ − p(t)

( τ(t)

σ(t)

)γ]
− C(t, T )

[
b(t)(a(t)x∆(t))∆

xγ(t)

]2

, (3.27)

where C(t, T ) = kγ−1C1(t, T ). From the definition of z(t), we see that[
b(t)(a(t)x∆(t))∆

xγ(t)

]2

=

[
z(t)

δ(t)
− b(t)α(t)

]2

=

(
z(t)

δ(t)

)2

− 2
b(t)α(t)

δ(t)
z(t) + (b(t)α(t))2. (3.28)

Substituting (3.28) into (3.27), we obtain that

z∆(t) ≤ −
[
δσ(t)p(t)(

τ(t)

σ(t)
)γ + C(t, T )(b(t)α(t))2 − δσ(t)(b(t)α(t))∆

]
+

[
δ∆(t)

δ(t)
+ 2

1

δ(t)
b(t)α(t)C(t, T )

]
z(t)− C(t, T )

δ2(t)
z2(t)

= −θ(t) + θ1(t)z(t)− θ2(t)z2(t), (3.29)

where

θ(t) = δσ(t)p(t)

(
τ(t)

σ(t)

)γ
+ C(t, T )(b(t)α(t))2 − δσ(t)(b(t)α(t))∆,

θ1(t) =
1

δ(t)

[
δ∆(t) + 2C(t, T )b(t)α(t)

]
, θ2(t) =

C(t, T )

δ2(t)
.

By (3.20) and (3.29), we have

z∆(t) ≤ −θ(t)− θ2(t)

[
z(t)− θ1(t)

2θ2(t)

]2

+
θ2

1(t)

4θ2(t)
≤ −θ(t) +

θ2
1(t)

4θ2(t)
≤ 0. (3.30)

In view of (3.21), (3.30), x(t) > tx∆(t) and the definition of z(t),

[z(s)H(σ(t), s)]∆s

= z∆(s)H(σ(t), σ(s)) + z(s)H∆s(σ(t), s)

≤ z∆(s)H(σ(t), σ(s)) + δ(s)

[
b(s)(a(s)x∆(s))∆

xγ(s)
+ b(s)α(s)

]
[H∆s(σ(t), s)]+

≤ z∆(s)H(σ(t), σ(s)) + δ(s)

[
a(s)x∆(s)

B(s, T )x(s)

1

xγ−1(s)
+ b(s)α(s)

]
[H∆s(σ(t), s)]+

≤ −
(
θ(s)− θ2

1(s)

4θ2(s)

)
H(σ(t), σ(s)) + θ3(s, T )[H∆s(σ(t), s)]+ ≤ 0.

Thus, z(s)H(σ(t), s) is non-increasing with respect to s. Then, we can choose t ≥ t1 ≥ T such

that H(σ(t), t1) > 0 and

0 ≤ −H(σ(t), t)z(t) +H(σ(t), t1)z(t1) ≤ H(σ(t), t1))z(t1). (3.31)

Evaluating both the sides of (3.29) at s, multiplying by H(σ(t), σ(s)) and integrating by parts,

we get that∫ t

t1

H(σ(t), σ(s))θ(s)∆s ≤ −
∫ t

t1

H(σ(t), σ(s))z∆(s)∆s+

∫ t

t1

H(σ(t), σ(s))θ1(s)z(s)∆s

−
∫ t

t1

H(σ(t), σ(s))θ2(s)z2(s)∆s
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≤ H(σ(t), t1)z(t1) +

∫ t

t1

[H(σ(t), σ(s))θ1(s) +H∆s(σ(t), s)]z(s)∆s

−
∫ t

t1

H(σ(t), σ(s))θ2(s)z2(s)∆s

≤ H(σ(t), t1)z(t1) +

∫ t

t1

[H(σ(t), σ(s))θ1(s) +H∆s(σ(t), s)]+z(s)∆s

−
∫ t

t1

H(σ(t), σ(s))θ2(s)z2(s)∆s

≤ H(σ(t), t1)z(t1) +

∫ t

t1

[H(σ(t), σ(s))θ1(s) +H∆s(σ(t), s)]2+
4H(σ(t), σ(s))θ2(s)

∆s.

This implies that∫ t

t1

[
H(σ(t), σ(s))θ(s)

H(σ(t), t1)
−

[H(σ(t), σ(s))θ1(s) +H∆s(σ(t), s)]2+
4H(σ(t), t1)H(σ(t), σ(s))θ2(s)

]
∆s ≤ z(t1),

which contradicts (3.22).

Case 2 0 < γ < 1. Since x ∈ S1, and x(t) > 0, letting x eventually be bounded, there

exists a constant k > 0 such that x(t) ≤ k for t ≥ T , and

kγ−1 ≥ xγ−1(t) ≥ kγ−1
, t ≥ T.

Combining (3.25) with (3.18), we also get (3.26). The rest of the proof is similar to the Case 1

γ ≥ 1, so we omit it, and the proof is complete. �

Theorem 3.5 Suppose that (A1), (A2), (2.2), a∆(t) ≤ 0 and (2.5) hold. Furthermore,

assume that there exist a function α ∈ Crd(T,R) with (bα)∆ existing, a positive ∆-differentiable

function δ, and H ∈ R such that, for sufficiently large T ∈ T,

θ∗(t)− (θ∗1(t))2

4θ∗2(t)
≥ 0, t ≥ T, (3.32)

−
(
θ∗(s)− (θ∗1(s))2

4θ∗2(s)

)
H(σ(t), σ(s)) + θ4(s, T )[H∆s(σ(t), s)]+ ≤ 0, t ≥ s ≥ T, (3.33)

and

lim sup
t→∞

∫ t

t1

[
H(σ(t), σ(s))θ∗(s)

H(σ(t), t1)
−

[H(σ(t), σ(s))θ∗1(s) +H∆s(σ(t), s)]2+
4H(σ(t), t1)H(σ(t), σ(s))θ∗2(s)

]
∆s > θ4(t1, T )

(3.34)

hold for t1 ≥ T , where

θ4(t, T ) := δ(t)

[
a(t)

B(t, T )
+ b(t)α(t)

]
> 0, C∗(t, T ) =

1

t
C1(t, T ),

θ∗(t) := δσ(t)p(t)

(
τ(t)

σ(t)

)γ
+ C∗(t, T )(b(t)α(t))2 − δσ(t)(b(t)α(t))∆,

θ∗1(t) :=
1

δ(t)

[
δ∆(t) + 2C∗(t, T )b(t)α(t)

]
, θ∗2(t) :=

C∗(t, T )

δ2(t)
,

and C1(t, T ) is defined by (3.18). Then, every unbounded solution x of equation (1.1) oscillates

and all of the bounded solutions tend to zero for γ > 0.

Proof Let x > 0 be a unbounded nonoscillatory solution of equation (1.1). Then there

exists a large T such that

x(τ(t)) > 0, x(t) > 0, t ≥ T.
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Since x is a unbounded solution, it is easy to see that x ∈ S1. Then, by defining z(t) again by

(3.23) as in the Theorem 3.4, we have that z(t) > 0 and

z∆(t) ≤ δ∆(t)

δ(t)
z(t) + δσ(t)

[
(b(t)α(t))∆ − p(t)

(
τ(t)

σ(t)

)γ]
− C1(t, T )

x1−γ(t)

[
b(t)(a(t)x∆(t))∆

xγ(t)

]2

.

(3.35)

Case 1 γ ≥ 1. Since x is increasing and unbounded, there exists a sufficiently large t1

such that

txγ−1(t) ≥ 1, and − 1

x1−γ(t)
= − tx

γ−1(t)

t
≤ −1

t
, for t ≥ t1 ≥ T.

Case 2 0 < γ < 1. By Lemma 2.3, x(T ) ≤ x(t) ≤ x(T )
T t. Noting that x is increasing and

unbounded, for all t ≥ t1 ≥ T , we have that

x1−γ(t) ≤
(
x(T )

T
t

)1−γ

≤ t, − 1

x1−γ(t)
≤ −1

t
.

Combining this with (3.35), we always obtain that

z∆(t) ≤ δ∆(t)

δ(t)
z(t) + δσ(t)

[
(b(t)α(t))∆ − p(t)

(
τ(t)

σ(t)

)γ]
− C∗(t, T )

[
b(t)(a(t)x∆(t))∆

xγ(t)

]2

,

(3.36)

where C∗(t, T ) = C1(t, T )/t.

In view of a(t)x∆(t) ≥ B(t, T )b(t)[a(t)x∆(t)]∆, x(t) > tx∆(t) and the definition of z(t),

when γ ≥ 1, we obtain that

z(t1) = δ(t1)
[b(t1)(a(t1)x∆(t1))∆

xγ(t1)
+ b(t1)α(t1)

]
= δ(t1)

[ a(t1)

B(t1, T )

x∆(t1)

x(t1)

1

xγ−1(t1)
+ b(t1)α(t1)

]
≤ δ(t1)

[ a(t1)

B(t1, T )

1

t1

1

xγ−1(t1)
+ b(t1)α(t1)

]
≤ δ(t1)

[ a(t1)

B(t1, T )
+ b(t1)α(t1)

]
= θ4(t1, T ). (3.37)

Then, from (3.35), we have that

1

H(σ(t), t1)

∫ t

t1

[
H(σ(t), σ(s))θ(s)−

[H(σ(t), σ(s))θ1(s) +H∆s(σ(t), s)]2+
4H(σ(t), σ(s))θ2(s)

]
∆s

≤ z(t1) ≤ θ4(t1, T ),

which contradicts (3.34).

Similarly, when 0 < γ < 1, we also have that

z(t1) = δ(t1)
[b(t1)(a(t1)x∆(t1))∆

xγ(t1)
+ b(t1)α(t1)

]
= δ(t1)

[ a(t1)

B(t1, T )

x∆(t1)

x(t1)
x1−γ(t1) + b(t1)α(t1)

]
≤ δ(t1)

[
a(t1)

B(t1, T )

1

t1

(
x(T )

T
t1

)1−γ

+ b(t1)α(t1)

]

≤ δ(t1)

[
a(t1)

B(t1, T )

1

t1
t1 + b(t1)α(t1)

]
≤ δ(t1)

[
a(t1)

B(t1, T )
+ b(t1)α(t1)

]
= θ4(t, T ).
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The rest proof is similar to the case of γ ≥ 1.

Finally, we show that all bounded solutions of equation (1.1) tend to zero. Now we show

that every bounded nonoscillatory solution x of equation (1.1) with lim
t→∞

x(t) = l > 0 does not

exist. Let

f(t, x) = p(t)|x|γ−1x.

By [27, Theorem 3.3], (1.1) has a nonoscillatory solution x with lim
t→∞

x(t) = l > 0 if only if

there exists a constant K such that∫ ∞
t0

∫ ∞
v

∫ ∞
s

1

a(v)b(s)
f(u,K)∆u∆s∆v = Kγ

∫ ∞
t0

∫ ∞
v

∫ ∞
s

1

a(v)b(s)
p(u)∆u∆s∆v

= Kγ

∫ ∞
t0

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

p(u)∆u∆s∆v <∞.

However, (2.2) holds, so we see that
∫∞
t0

1
a(v)

∫∞
v

1
b(s)

∫∞
s
p(u)∆u∆s∆v = ∞ implies that (1.1)

does not have any bounded nonoscillatory solution x with lim
t→∞

x(t) = l > 0. �

Remark 3.6 In view of (3.37), if γ ≥ 1, we also have that

z(t1) ≤ δ(t1)

[
a(t1)

B(t1, T )

x∆(t1)

x(t1)

1

xγ−1(t1)
+ b(t1)α(t1)

]
≤ δ(t1)

[
a(t1)

t1B(t1, T )
+ b(t1)α(t1)

]
:= θ∗4(t1, T ).

Thus, if (3.36) is replaced by

lim sup
t→∞

∫ t

t1

[
H(σ(t), σ(s))θ∗(s)

H(σ(t), t1)
−

[H(σ(t), σ(s))θ∗1(s) +H∆s(σ(t), s)]2+
4H(σ(t), t1)H(σ(t), σ(s))θ∗2(s)

]
∆s > θ∗4(t1, T ),

then every unbounded solution of equation (1.1) oscillates for γ ≥ 1. In particular, if we choose

that H(t, s) = δ(t) = 1, α(t) = 0, then the condition

lim sup
t→∞

∫ t

t1

p(s)

(
τ(s)

s

)γ
∆s >

a(t1)

t1B(t1, T )

guarantees that all unbounded solutions of equation (1.1) oscillate for γ ≥ 1.

Moreover, in Theorems 3.4 and 3.5, we remove the conditions (H2) and H(t, t) = 0 in (H1).

Now we choose another function class R as follows: H1 ∈ R if H1 : D = {(t, s) : t ≥ s ≥
t0} → R is continuous, H1(t, s) ≥ 0(6≡ 0), H1(t, t) = 0, H∆s

1 (t, s) ≤ 0 on D, and, for each fixed

t, H∆s
1 (t, s) is delta integrable with respect to s.

Theorem 3.7 Suppose that (A1), (A2), (2.2), a∆(t) ≤ 0 and (2.5) hold. Furthermore,

assume that there exist a function α ∈ Crd(T,R) with (bα)∆ existing, a positive ∆-differentiable

function δ, and H1 ∈ R such that, for sufficiently large t1, and all k > 0,

lim sup
t→∞

1

H1(t, t1)

∫ t

t1

H1(t, s)

[
θ∗∗(s)−

E2
+(t, s)

4θ∗∗2 (s)

]
∆s =∞, (3.38)

where β(t) is defined by (3.18), and

C∗∗(t, T ) := γkγ−1 β(t)B(t, T )δ(t)

a(t)
, (3.39)

θ∗∗(t) := δ(t)p(t)

(
τ(t)

σ(t)

)γ
+ C∗∗(t, T )(bσ(t)ασ(t))2 − δ(t)(b(t)α(t))∆, (3.40)
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θ∗∗1 (t) :=
1

δσ(t)

[
δ∆(t) + 2C∗∗(t, T )bσ(t)ασ(t)

]
, θ∗∗2 (t) :=

C∗∗(t, T )

(δσ(t))2
, (3.41)

E(t, s) :=
H∆s

1 (t, s)

H1(t, s)
+ θ∗∗1 (s), E+(t, s) = max{0, E(t, s)}, (3.42)

where B(t, T ) is defined by (2.4).

Then,

(i) every solution x of equation (1.1) oscillates or converges to zero for γ ≥ 1;

(ii) any bounded solution x of equation (1.1) oscillates or tends to zero for 0 < γ < 1.

Proof Proceeding as in the proof of Theorem 3.4, we assume that equation (1.1) has a

nonoscillatory solution, say x(t) > 0, for all t ≥ T .

If x ∈ S0, by Lemma 2.2, lim
t→∞

x(t) = 0.

Next, we consider x ∈ S1, and define z(t) by (3.23) as in the Theorem 3.4.

Case 1 γ ≥ 1. We have that z(t) > 0 and

z∆(t) = δ(t)

[
b(t)(a(t)x∆(t))∆

xγ(t)
+ b(t)α(t)

]∆

+ δ∆(t)

[
b(t)(a(t)x∆(t))∆

xγ(t)
+ b(t)α(t)

]σ
≤ −

[
δ(t)p(t)(

τ(t)

σ(t)
)γ + C∗∗(t, T ) (bσ(t)ασ(t))

2 − δ(t)(b(t)α(t))∆

]
+

[
δ∆(t)

δσ(t)
+

2

δσ(t)
bσ(t)ασ(t)C∗∗(t, T )

]
zσ(t)− C∗∗(t, T )

(δσ(t))2
(zσ(t))2

= −θ∗∗(t) + θ∗∗1 (t)zσ(t)− θ∗∗2 (t)(zσ(t))2, (3.43)

where C∗∗(t, T ), θ∗∗1 (t), θ∗∗2 (t), θ∗∗(t) are defined by (3.39), (3.40) and (3.41), respectively.

From (3.43), we obtain that

θ∗∗(t) ≤ −z∆(t) + θ∗∗1 (t)zσ(t)− θ∗∗2 (t)(zσ(t))2. (3.44)

Evaluating both sides of (3.44) at s, and multiplying by H1(t, s), we get that∫ t

t1

H1(t, s)θ∗∗(s)∆s ≤−
∫ t

t1

H1(t, s)z∆(s)∆s+

∫ t

t1

H1(t, s)θ∗∗1 (s)zσ(s)∆s

−
∫ t

t1

H1(t, s)θ∗∗2 (s)(zσ(s))2∆s. (3.45)

Integrating by parts and using the fact that H1(t, t) = 0, we get that

−
∫ t

t1

H1(t, s)z∆(s)∆s = H1(t, t1)z(t1) +

∫ t

t1

H∆s
1 (t, s)zσ(s)∆s.

Substituting this into (3.45), we have that∫ t

t1

H1(t, s)θ∗∗(s)∆s ≤ H1(t, t1)z(t1) +

∫ t

t1

[H1(t, s)θ∗∗1 (s) +H∆s
1 (t, s)]zσ(s)∆s

−
∫ t

t1

H1(t, s)θ∗∗2 (s)(zσ(s))2∆s

≤ H1(t, t1)z(t1) +

∫ t

t1

H1(t, s)
[
θ∗∗1 (s) +

H∆s
1 (t, s)

H1(t, s)

]
zσ(s)∆s

−
∫ t

t1

H1(t, s)θ∗∗2 (s)(zσ(s))2∆s
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≤ H1(t, t1)z(t1) +

∫ t

t1

H1(t, s)E+(t, s)zσ(s)∆s

−
∫ t

t1

H1(t, s)θ∗∗2 (s)(zσ(s))2∆s,

where

E(t, s) = θ∗∗1 (s) +
H∆s

1 (t, s)

H1(t, s)
, E+(t, s) = max{0, E(t, s)}.

Applying the inequality a1y − b1y2 ≤ a2
1

4b1
(b1 > 0), we obtain that∫ t

t1

H1(t, s)θ∗∗(s)∆s ≤ H1(t, t1)z(t1) +

∫ t

t1

H1(t, s)E2
+(t, s)

4θ∗∗2 (s)
∆s;

i.e.,

1

H1(t, t1)

∫ t

t1

H1(t, s)

[
θ∗∗(s)−

E2
+(t, s)

4θ∗∗2 (s)

]
∆s ≤ z(t1), (3.46)

which contradicts (3.38).

Case 2 0 < γ < 1. Since the proof is similar to the Case 1 γ ≥ 1, we omit it. The proof

is complete. �

Remark 3.8 Compared with Theorem 3.4, Theorem 3.7 removes the conditions (3.20)

and (3.21). However, the function H1 satisfies conditions H1(t, t) = 0 and H∆s
1 (t, s) ≤ 0 on D,

which is stronger than H in theorem 3.4. Moreover, the conclusions of Theorem 3.4 are also

true if (3.21) is replaced by H∆s
1 (t, s) ≤ 0. In particular, Han, et al [21, Theorem 2.2] show a

special case of Theorem 3.4, and Erbe, et al [15, Theorem 2] show a special case of Theorems

3.4 and 3.7.

Remark 3.9 If we choose H(t, s) = H1(t, s) = (t− s)m, m ∈ N in Theorems 3.4, 3.5 and

3.7, then we have that

H∆s(t, s) = H∆s
1 (t, s) =

(
(t− s)m

)∆s
=


−m(t− s)m−1, µ(s) = 0,

− (t− σ(s))m − (t− s)m

µ(s)
, µ(s) > 0,

and m ≥ 1, H∆s
1 (t, s) < 0 for t ≥ σ(s). Thus we have the following three statements:

(i) If H(t, s) = (t− s)m, m ∈ N, and (3.22) is replaced by

lim sup
t→∞

∫ t

t1

 (σ(t)− σ(s))mθ(s)

(σ(t)− t1)m
−
[
(σ(t)− σ(s))mθ1(s) + ((σ(t)− s)m)

∆s
]2
+

4(σ(t)− t1)m(σ(t)− σ(s))mθ2(s)

∆s =∞,

(3.47)

then the conclusions of Theorem 3.4 are also true.

(ii) If H(t, s) = (t− s)m, m ∈ N, and (3.34) is replaced by

lim sup
t→∞

∫ t

t1

 (σ(t)− σ(s))mθ∗(s)

(σ(t)− t1)m
−
[
(σ(t)− σ(s))mθ∗1(s) +

(
(σ(t)− s)m

)∆s
]2
+

4(σ(t)− t1)m(σ(t)− σ(s))mθ∗2(s)

∆s > θ4(t1, T ),

(3.48)

then the conclusions of Theorem 3.5 are also true.
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(iii) If H1(t, s) = (t− s)m, m ∈ N, and (3.38) is replaced by

lim sup
t→∞

1

(t− t1)m

∫ t

t1

(t− s)m
[
θ∗∗(s)−

E2
+(t, s)

4θ∗∗2 (s)

]
∆s =∞, (3.49)

then the conclusions of Theorem 3.7 are also true.

(3.47), (3.48) and (3.49) are called the Kamenev-type oscillation criteria.

4 Examples

In this section, we would like to illustrate the main results obtained in Section 3 with four

examples.

Example 4.1 Let T = N, γ = 1
3 . Consider the third-order delay difference equation

∆

(
n

1
2 ∆

(
1

n
∆xn

))
+ pn|xn−2|−

2
3xn−2 = 0, (4.1)

where

an =
1

n
, bn = n

1
2 , τn = n− 2, ∆an =

−1

n(n+ 1)
< 0,

pn =

√
n+ 1(4n4 + 12n3 + 10n2) +

√
n(4n4 + 20n3 + 34n2 + 24n+ 8)

n2(n+ 1)2(n+ 2)2
.

It is easy to see that (A1), (A2), (2.2) and (2.5) hold. Furthermore, a simple calculation shows

that the condition (3.5) becomes

∞∑
n=1

pnQ
1
3
n =

∞∑
n=1

pn

[
τn
an

n−1∑
k=1

1

bk

] 1
3

≥
∞∑
n=1

√
n(4n4 + 12n3 + 10n2)

n2(n+ 1)2(n+ 2)2

[(
n2 − 2n

) n−1∑
k=1

1

k
1
2

] 1
3

=∞.

Thus, the condition (3.5) is satisfied, and, by Theorem 3.3, every solution of equation (4.1)

oscillates or converges to zero. In fact, xn = (−1)n is such an oscillatory solution of equation

(4.1).

Example 4.2 Let T = Pa,b =
∞⋃
k=1

[k(a+b), k(a+b)+a], a > 0, b > 0 and γ ≥ 1. Consider

the third-order delay dynamic equation(
t

(
1

t
x∆(t)

)∆)∆

+
1

t2
|x(τ(t))|γ−1x(τ(t)) = 0, (4.2)

where

a(t) =
1

t
, b(t) = t, p(t) =

1

t2
,

τ(t) =


0, t ∈

2⋃
k=1

[
k(a+ b), k(a+ b) + a

]
,

t− 2(a+ b), t ∈
∞⋃
k=3

[
k(a+ b), k(a+ b) + a

]
.

It is easy to see that (A1), (A2), (2.2) and (2.5) hold. Set that α(t) = 0, δ(t) = t and H(t, s) = 1

in Theorem 3.4. Then, for large T and t ≥ T , we have that

δ∆(t) = 1, θ1(t) =
1

t
, H∆s(t, s) = 0, [H(t, s)θ1(s) +H∆s(t, s)]+ =

1

s
,
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and

τ(t)

σ(t)
≥ 1

2
, θ(t) =

σ(t)

t2
·
(
τ(t)

σ(t)

)γ
≥ 1

2γt
, θ3(t, T )[H∆s(t, s)]+ = 0,

t

σ(t)
≥ 1

2
, θ2(t) = γkγ−1B(t, T )

(
t

σ(t)

)γ−1

≥ γ
(
k

2

)γ−1

B(t, T ).

It is not difficult to check that (3.18) and (3.19) hold. For s >> T , we get that

[θ1(s)]2

4θ2(s)
=

[H(t, s)θ1(s) +H∆s(t, s)]2+
4H(t, s)θ2(s)

=
1

s2
· 1

4γkγ−1( s
σ(s) )γ−1B(s, T )

≤ 2γ−1

4γkγ−1
· 1

sσ(s)
.

For s ≥ t1 >> s, direct calculation shows that the condition (3.20) becomes

lim sup
t→∞

1

H(t, t1)

∫ t

t1

[
H(t, s)θ(s)−

[H(t, s)θ1(s) +H∆s(t, s)]2+
4H(t, s)θ2(s)

]
∆s

≥ lim sup
t→∞

∫ t

t1

[
1

2γs
− 2γ−1

4γkγ−1
· 1

sσ(s)

]
∆s =∞.

Thus, condition (3.20) is satisfied, and hence, by Theorem 3.4, every solution of equation (4.2)

oscillates or converges to zero.

Example 4.3 Let T = R, 0 < λ < 1 and γ ≥ 3. Consider the third-order delay differential

equation (
1

t2
x′(t)

)′′
+

1

t4
|x(λt)|γ−1x(λt) = 0, (4.3)

where

a(t) =
1

t2
, b(t) = 1, p(t) =

1

t4
, τ(t) = λt, a′(t) = − 2

t3
< 0.

It is easy to see that (A1), (A2), (2.2) and (2.5) hold.

Set that α(t) = 0, δ(t) = 1, and H(t, s) = 1 in Theorems 3.4 and 3.5. Then we have that

δ′(t) = 0,
∂H(t, s)

∂s
= 0, θ1(t) = θ∗1(t) = 0, θ∗2(t) = γt(t− T ),

θ4(t, T ) =
a(t)

B(t, T )
=

1

t2(t− T )
, θ(t) = θ∗(t) = p(t)

(
τ(t)

σ(t)

)γ
=
λγ

t4
,

and [
H(t, s)θ1(s) +

∂H(t, s)

∂s

]
+

=

[
H(t, s)θ∗1(s) +

∂H(t, s)

∂s

]
+

= 0.

It is not difficult to check that (3.18), (3.19), (3.30) and (3.31) hold. Furthermore, a simple

calculation shows that the conditions (3.20) and (3.32) are the same as the inequality.

lim sup
t→∞

1

H(t, t1)

∫ t

t1

[
H(t, s)θ(s)−

[
H(t, s)θ1(s) + ∂H(t,s)

∂s

]2
+

4H(t, s)θ2(s)

]
ds

= lim sup
t→∞

1

H(t, t1)

∫ t

t1

[
H(t, s)θ∗(s)−

[
H(t, s)θ∗1(s) + ∂H(t,s)

∂s

]2
+

4H(t, s)θ∗2(s)

]
ds

= lim sup
t→∞

∫ t

t1

θ(s)ds = lim sup
t→∞

∫ t

t1

θ∗(s)ds = lim sup
t→∞

∫ t

t1

λγ

s4
ds

=
λγ

3t31
< θ4(t1, T ) =

1

t21(t1 − T )
.
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Thus, Theorems 3.4 and 3.5 fail if we choose that α(t) = 0, δ(t) = 1, and H(t, s) = 1. However,

in view of Remark 3.6,

lim sup
t→∞

∫ t

t1

p(s)

(
τ(s)

s

)γ
ds =

λγ

3t31
> θ∗4(t1, T ) =

a(t1)

t1B(t1, T )
=

1

t31(t1 − T )
,

which implies that every unbounded solution of equation (4.3) oscillates. In [32], when r(t) =

0, γ1 = 1, γ3 = γ, (1.9) becomes (1.1). However, H(t, s) = 1 does not satisfy condition (H1).

Our results for Theorem 3.5 and Remark 3.6 do not need the left hand side of (1.11) to be ∞.

Let f(t, x) = p(t)|x|γ−1x. By [27, Theorem 3.3], equation (4.3) has a nonoscillatory solution

x with lim
t→∞

x(t) = l (l > 0 is a constant) if and only if there exists a constant K such that∫ ∞
t0

∫ ∞
v

∫ ∞
s

1

a(v)b(s)
f(u,K)dudsdv = Kγ

∫ ∞
t0

∫ ∞
v

∫ ∞
s

1

a(v)b(s)
p(u)dudsdv

= Kγ

∫ ∞
t0

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

p(u)dudsdv <∞.

However,
∫∞
t0

1
a(v)

∫∞
v

1
b(s)

∫∞
s
p(u)dudsdv =∞ implies that equation (4.3) has no nonoscillatory

solution x with lim
t→∞

x(t) = l > 0, by Theorem 3.5.

Now, we pick up on the fact that g(t) = et in Theorem 3.1, so∫ ∞
t

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

p(u)
1

eγu
dudsdv <

∫ ∞
t

1

a(v)

∫ ∞
v

1

b(s)

∫ ∞
s

1

eγu
dudsdv

=
1

γ2

∫ ∞
t

1

a(v)

1

eγt
dudsdv

=

(
1

γ
t2 +

2

γ
t+

1

γ

)
e−γt < e−t,

which implies that (3.1) and (3.2) hold. Moreover, if γλ ≥ 1, it is easy to see that

lim
t→∞

g2(t)
∫∞
t

1
b(s)

∫∞
s
p(u) 1

eγλu
duds

a(t)g′(t)
= 0 < 1.

Hence, for γλ ≥ 1, we have given a necessary and sufficient condition which guarantees that

equation (4.3) has an eventually positive solution x(t) ∈
(
0, e−t

]
.

In summary, the equation (4.3) oscillates or has at least a nonoscillatory solution x(t) ∈(
0, e−t

]
.

Example 4.4 Let T = qN, q > 1, γ > 3 > γ1 + 1 > 2. Consider the third-order delay

dynamic equation

x∆∆∆(t) +
1

tγ1
|x(t)|γ−1x(t) = 0, (4.4)

where

a(t) = 1, b(t) = 1, p(t) =
1

tγ1
, τ(t) = t, a∆(t) = 0.

It is easy to see that (A1), (A2), (2.2) and (2.5) hold.

Set that α(t) = 0, δ(t) = t, and define that H: H1(t, t) = 0, t ≥ t0, H1(t, s) = 1, t > s ≥ t0.

Then we have that

δ∆(t) = 1, C∗∗(t, T ) = γkγ−1q−γt(t− T ), θ∗∗(t) =
1

qγtγ1−1
,

θ∗∗1 (t) =
1

qt
, θ∗∗2 (t) =

C∗∗(t, T )

q2t2
,
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and

H∆s
1 (t, s) =


−q

(q − 1)t
< 0, s = ρ(t) < t;

0, t1 ≤ s < ρ(t) < t,

E(t, s) =


− 1

(q − 1)t
< 0, s = ρ(t) < t;

θ∗∗1 (s), t1 ≤ s < ρ(t) < t.

A simple calculation shows that the condition (3.36) becomes

lim sup
t→∞

1

H1(t, t1)

∫ t

t1

H1(t, s)

[
θ∗∗(s)−

E2
+(t, s)

4θ∗∗2 (s)

]
∆s

= lim sup
t→∞

∫ t

t1

[
1

qγsγ1−1
−
E2

+(t, s)q2s2

4C∗∗(s, T )

]
∆s

= lim sup
t→∞

(∫ ρ(t)

t1

[
1

qγsγ1−1
− 1

4C∗∗(s, T )

]
∆s+

∫ t

ρ(t)

1

qγsγ1−1
∆s

)
= lim sup

t→∞

(∫ ρ(t)

t1

[
1

qγsγ1−1
− 1

4C∗∗(s, T )

]
∆s+

q − 1

qγ+γ1−2
t2−γ1

)
=∞.

Thus, condition (3.38) is satisfied, so every solution of equation (4.4) oscillates or converges to

zero, by Theorem 3.7.

Conflict of Interest The authors declare no conflict of interest.

References

[1] Agarwal R P, Bohner M, Li T, Zhang C. Hille and Nehari type criteria for third-order delay dynamic

equations. J Difference Equ Appl, 2013, 19(10): 1563–1579

[2] Agarwal R P, Bohner M, Li T, Zhang C. A Philos-type theorem for third-order nonlinear retarded dynamic

equations. Appl Math Comput, 2014, 249: 527–531

[3] Agarwal R P, Grace S R, O’Regan D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear

and Sublinear Dynamic Equations. Dordrecht: Kluwer Academic Publishers, 2002

[4] Agarwal R P, O’Regan D, Saker S H. Oscillation and Stability of Delay Models in Biology. New York:

Springer, 2014

[5] Banu M N, Banu S M. Osillatory behavior of half-linear third order delay difference equations. Malaya J

Matema, 2021, 1: 531–536

[6] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston:
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