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Abstract We consider the interior transmission eigenvalue problem corresponding to the

scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the

boundary ∂Ω is split into two disjoint parts and possesses different transmission condition-

s. Using the variational method, we obtain the well posedness of the interior transmission

problem, which plays an important role in the proof of the discreteness of eigenvalues. Then

we achieve the existence of an infinite discrete set of transmission eigenvalues provided that

n ≡ 1, where a fourth order differential operator is applied. In the case of n 6≡ 1, we show

the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic

Fredholm theory and the T-coercive method.

Key words interior transmission eigenvalue; anisotropic medium; partially coated bound-

ary; the analytic Fredholm theory; T-coercive method
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1 Introduction

Interior transmission eigenvalue problems have become an important area of research in

inverse scattering theory. Now, we investigate the eigenvalue problem for an anisotropic medium

by a partially coated boundary. Let Ω be a bounded simply connected open domain in R2 with

a smooth boundary ∂Ω which is split into two parts Γ1, Γ2 and Γ1 ∩ Γ2 = ∅. Let A be a

2 × 2 symmetric matrix-valued function with L∞(Ω) entries such that Re(ξ · Aξ) ≥ ε|ξ|2 and

Im(ξ · Aξ) ≤ 0 for all ξ ∈ C2, a.e. x ∈ Ω and some constant ε > 0. Also, n ∈ L∞(Ω) is a
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complex-valued scalar function such that Re(n) > 0 and Im(n) ≥ 0. Then we can formulate

the interior transmission problem as follows:

∇ ·A∇w + k2nw = 0, in Ω,

∆v + k2v = 0, in Ω,
∂w

∂νA
=
∂v

∂ν
+ λv, on Γ1,

∂w

∂νA
=
∂v

∂ν
, on Γ2,

w = v, on ∂Ω.

(1.1)

Here ∂w
∂νA

:= ν ·A∇w denotes the co-normal derivative and ν denotes the unit outward normal.

In this work, we will consider the case where λ(x) ∈ L∞(Γ1) is a real valued function satisfying

that λ ≥ c (or λ ≤ −c) for some positive constant c.

Definition 1.1 Values of k ∈ C for which the homogeneous interior transmission prob-

lem (1.1) has a nontrivial solution pair w ∈ H1(Ω) and v ∈ H1(Ω) are called transmission

eigenvalues.

The transmission eigenvalue problem is a class of non-selfadjoint eigenvalue problems that

first appeared in inverse scattering theory for an inhomogeneous medium, and it is a boundary

value problem for a set of equations defined in a bounded domain coinciding with the support

of the scattering object. Due to the theoretical importance of transmission eigenvalues in

connection with the uniqueness and reconstruction results in inverse scattering theory, the

study of transmission eigenvalue problems has recently become an attractive research topic.

The first issue associated with the interior transmission problem is concerned with the

case of when the problem is well-posed. There are two main approaches: the boundary integral

equation method and the variational method. For the sake of mathematical and computational

interest, the boundary integral equation method has been applied to recover the solvability result

of isotropic media when the refractive index n is a positive constant different from one (refer to

Section 3.1.4 in the book [8], and to the paper [19, 25]). Since there are great limitations in terms

of using the boundary integral equation method, the variational method has been widely used

for both isotropic and anisotropic obstacles under different assumptions ([5, 6, 8, 11, 14, 26]).

The second issue concerns the discreteness of transmission eigenvalues that we can avoid

them in the procedure to reconstruct the boundary from far-field or near-field pattern. Based on

the spectral theory of compact operators in Hilbert spaces (see Theorem 6.8 in the book [4]), the

discreteness of eigenvalues for an isotropic medium has been shown in [2, 6, 8]. When it comes

to the anisotropic medium, we cannot construct a compact operator, so the analytic Fredholm

theory (see Section 8.5 in the book [23]) is widely used. And there has been much work based

on the analytic Fredholm theory under the case λ = 0 on Γ1, which means that the boundary

is integral (see [22, 23, 32] for the isotropic inhomogeneous medium, [7] for the anisotropic

medium with n ≡ 1, [3, 5, 16] for general anisotropic media with n 6≡ 1, [9] for regions with

cavities, [10] for absorbing media, [12] for inhomogeneous media containing obstacles, [2, 28, 33]

for the conductive boundary, etc).

The third and most difficult issue is whether there exist eigenvalues. The first result

about the existence of transmission eigenvalues was obtained by Colton and Monk in 1989
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for the case of a spherically stratified medium ([24]). Subsequently, McLaughliny used the

knowledge of the transmission eigenvalues to determine a radial scatterer ([29, 30]). Until

2008, Päivärinta and Sylvester ([31]) considered the general isotropic inhomogeneous scatterer

without radial symmetry and showed that there exist a finite number of transmission eigenvalues

provided that the index of refraction is large enough. Soon after in 2009, Cakoni and Haddar

([15]) extended their ideas to present the existence of transmission eigenvalues for isotropic

inhomogeneous media and also for anisotropic media with n ≡ 1. And in 2010, they studied

a difficult case for regions with cavities ([9]). In the same year, the paper [13] proved the

existence of an infinite discrete set of transmission eigenvalues for all of the above cases of the

Helmholtz and Maxwell equations, and the paper [12] considered the case for inhomogeneous

media containing obstacles. Furthermore, Cakoni and Kirsch ([17]) extended the investigation

to the case of anisotropic media with n 6≡ 1, where a fourth order differential operator is no

longer applicable. Recently, more and more research has been done for more complicated media

([1, 2, 18, 20, 27, 28]).

In this paper, we consider an anisotropic scatterer whose boundary is split into two parts

and possesses different boundary conditions (refer to the problem (1.1) for details). Given this

situation, the boundary loses its symmetry and some essential Poincáre inequalities, which will

be widely used in the proof, are difficult to obtain. Hence, we assume that λ(x) is a real valued

function satisfying that λ ≥ c or λ ≤ −c for some positive constant c. And we only obtain the

existence of infinite discrete eigenvalues under the case n ≡ 1 with a∗ > 1, λ ≤ −c or a∗ < 1,

λ ≥ c (Theorem 3.2 and Theorem 3.5). For the case n 6≡ 1, we just show the discreteness result

under the assumptions that a∗ > 1, n∗ > 1, λ ≤ −c or 0 < a∗ < a∗ < 1, 0 < n∗ < n∗ < 1, λ ≥ c
(Theorem 4.2), and the existence is an open problem that will require further investigation.

The rest part of this paper is organized as follows: in Section 2, we will consider the well-

posedness of the interior transmission problem by the variational method. Section 3 is devoted

to the discreteness and existence of the transmission eigenvalues for n ≡ 1 where a fourth order

differential operator is applied. In Section 4, we use the analytic Fredholm theory and the

T-coercive method to investigate the discreteness of the transmission eigenvalues for n 6≡ 1.

2 The Well-posedness of the Interior Transmission Problem

In this section, we establish the well-posedness of a more general interior transmission

problem associated with (1.1); that is, given `1 ∈ L2(Ω), `2 ∈ L2(Ω), f1 ∈ H−1/2(Γ1), f2 ∈
H−1/2(Γ2) and f3 ∈ H1/2(∂Ω), find w ∈ H1(Ω) and v ∈ H1(Ω) satisfying that

∇ ·A∇w + k2nw = `1, in Ω,

∆v + k2v = `2, in Ω,
∂w

∂νA
− ∂v

∂ν
− λv = f1, on Γ1,

∂w

∂νA
− ∂v

∂ν
= f2, on Γ2,

w − v = f3, on ∂Ω.

(2.1)

Note that H−1/2(Γj) := { f |Γj : f ∈ H−1/2(∂Ω) } and the norm is defined by ‖f̃‖H−1/2(Γj) :=

inf{ ‖f‖H−1/2(∂Ω) for f ∈ H−1/2(∂Ω), f |Γj = f̃ } (j = 1, 2). Here and below, all notations
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possess the same meaning as defined in the introduction. We also make the following new

notations:

a∗ := inf
x∈Ω

inf
|ξ|=1

Re(ξ ·Aξ) > 0, a∗ := sup
x∈Ω

sup
|ξ|=1

Re(ξ ·Aξ) <∞.

To investigate the solvability of problem (2.1), we need to formulate a modified interior

transmission problem (2.2), which turns out to be a compact perturbation of our original

problem (2.1). Introducing a positive constant γ whose value will change in different cases, given

two functions `1 ∈ L2(Ω), `2 ∈ L2(Ω) and boundary data f1 ∈ H−1/2(Γ1), f2 ∈ H−1/2(Γ2),

f3 ∈ H1/2(∂Ω), find w ∈ H1(Ω) and v ∈ H1(Ω) satisfying that

∇ ·A∇w − γw = `1, in Ω,

∆v − v = `2, in Ω,
∂w

∂νA
− ∂v

∂ν
− λv = f1, on Γ1,

∂w

∂νA
− ∂v

∂ν
= f2, on Γ2,

w − v = f3, on ∂Ω.

(2.2)

First, we consider the case a∗ > 1 and λ ≤ −c on Γ1. In order to reformulate (2.2) as an

equivalent variational problem, we define the Hilbert space

W1(Ω) :=
{

v ∈ [L2(Ω)]2 : ∇ · v ∈ L2(Ω) and ∇× v = 0
}
,

equipped with the norm ‖v‖2W1(Ω) = ‖v‖2[L2(Ω)]2 + ‖∇ · v‖2L2(Ω).

Next, we multiply the first equation in (2.2) by a test function ϕ with ϕ ∈ H1(Ω) and use

the transmission boundary conditions:∫
Ω

`1ϕdx =

∫
Ω

(∇ ·A∇w − γw)ϕdx =

∫
∂Ω

∂w

∂νA
ϕds−

∫
Ω

(A∇w · ∇ϕ+ γwϕ)dx

=

∫
Γ1

(∂v
∂ν

+ λv + f1

)
ϕds+

∫
Γ2

(∂v
∂ν

+ f2

)
ϕds−

∫
Ω

(A∇w · ∇ϕ+ γwϕ)dx

=

∫
Γ1

f1ϕds+

∫
Γ2

f2ϕds+

∫
∂Ω

(ν · v)ϕds+

∫
Γ1

λwϕds

−
∫

Γ1

λf3ϕds−
∫

Ω

(A∇w · ∇ϕ+ γwϕ)dx.

Here, v = ∇v, and so v ∈W1(Ω). After arranging, we obtain that∫
Ω

(A∇w · ∇ϕ+ γwϕ)dx−
∫
∂Ω

(ν · v)ϕds−
∫

Γ1

λwϕds

=

∫
Γ1

f1ϕds+

∫
Γ2

f2ϕds−
∫

Γ1

λf3ϕds−
∫

Ω

`1ϕdx.

For the second equation in (2.2), we multiply it by a test function ∇ · ψ with ψ ∈ W1(Ω).

Similarly, integrate in Ω and use the boundary conditions to obtain that∫
Ω

(∇ · v)(∇ ·ψ)dx =

∫
Ω

(∇ · (∇v))(∇ ·ψ)dx =

∫
Ω

(v + `2)(∇ ·ψ)dx

=

∫
∂Ω

v(ψ · ν)ds−
∫

Ω

(∇v) ·ψdx+

∫
Ω

`2(∇ ·ψ)dx
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=

∫
∂Ω

(w − f3)(ψ · ν)ds−
∫

Ω

v ·ψdx+

∫
Ω

`2(∇ ·ψ)dx;

that is,∫
Ω

[
(∇ · v)(∇ ·ψ) + v ·ψ

]
dx−

∫
∂Ω

w(ψ · ν)ds =

∫
Ω

`2(∇ ·ψ)dx−
∫
∂Ω

f3(ψ · ν)ds.

Now we introduce the sesquilinear form A1(U, V ) defined on {H1(Ω)×W1(Ω)}2 by

A1(U, V ) =

∫
Ω

(A∇w · ∇ϕ+ γwϕ)dx+

∫
Ω

[
(∇ · v)(∇ ·ψ) + v ·ψ

]
dx

−
∫
∂Ω

w(ψ · ν)ds−
∫
∂Ω

(ν · v)ϕds−
∫

Γ1

λwϕds,

where U := (w,v) and V := (ϕ,ψ) are in H1(Ω)×W1(Ω). Denote by L1 : H1(Ω)×W1(Ω) −→ C
the bounded antilinear functional given by

L1(V ) =

∫
Γ1

(f1 − λf3)ϕds+

∫
Γ2

f2ϕds−
∫
∂Ω

f3(ψ · ν)ds−
∫

Ω

`1ϕdx+

∫
Ω

`2(∇ ·ψ)dx.

Therefore, the variational formulation of the problem (2.2) is to find U = (w,v) ∈ H1(Ω) ×
W1(Ω) such that

A1(U, V ) = L1(V ), ∀ V ∈ H1(Ω)×W1(Ω). (2.3)

The next theorem states the equivalence between problems (2.2) and (2.3); the detailed

proof is the same as Theorem 3.3 in the paper [6] and Theorem 6.5 in the book [5], so we omit

the proof for brevity.

Theorem 2.1 The problem (2.2) has a unique solution (w, v) ∈ H1(Ω) ×H1(Ω) if and

only if the problem (2.3) has a unique solution U = (w,v) ∈ H1(Ω)×W1(Ω).

Now we investigate the modified interior transmission problem in the variational formulation

(2.3).

Theorem 2.2 Assume that a∗ > 1, γ ≥ a∗ and λ ≤ −c on Γ1. Then the variational

problem (2.3) has a unique solution U = (w,v) ∈ H1(Ω)×W1(Ω) which satisfies that

‖w‖H1(Ω) + ‖v‖W1(Ω) ≤ 2 C a∗ + 1

a∗ − 1

(
‖`1‖L2(Ω) + ‖`2‖L2(Ω) + ‖f1‖H−1/2(Γ1)

+ ‖f2‖H−1/2(Γ2) + ‖f3‖H1/2(∂Ω)

)
,

with C > 0 dependent on ‖λ‖L∞(Γ1).

Proof The trace theorems and Schwarz’s inequality ensure the continuity of the antilinear

functional L1 on H1(Ω) ×W1(Ω) and the existence of a constant C independent of `1, `2, f1,

f2 and f3 such that

‖L1‖ ≤ C
(
‖`1‖L2(Ω) + ‖`2‖L2(Ω) + ‖f1‖H−1/2(Γ1) + ‖f2‖H−1/2(Γ2) + ‖f3‖H1/2(∂Ω)

)
.

On the other hand, if U = (w,v) ∈ H1(Ω)×W1(Ω), the assumptions that a∗ > 1, γ ≥ a∗ and

λ ≤ −c imply

|A1(U,U)| ≥ a∗‖w‖2H1(Ω) + ‖v‖2W1(Ω) − 2Re
(∫

∂Ω

w(v · ν)ds
)

≥ a∗ − 1

a∗ + 1

(
‖w‖2H1(Ω) + ‖v‖2W1(Ω)

)
,
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whence A1 is coercive. The detailed procedure to obtain the last inequality can be found in

the paper [6] (Theorem 3.4) or in the book [8] (Lemma 3.30). The continuity of A1 follows

easily from Schwarz’s inequality and the classical trace theorems. Theorem 2.2 is now a direct

consequence of the Lax-Milgram Lemma applied to (2.3). �

Second, we consider the case a∗ < 1 and λ ≥ c on Γ1. To gain a different equivalent

variational form, we define another Hilbert space

W2(Ω) :=
{

w ∈ [L2(Ω)]2 : ∇ ·w ∈ L2(Ω) and ∇×A−1w = 0
}
,

equipped with the norm ‖w‖2W2(Ω) = ‖w‖2[L2(Ω)]2 + ‖∇ ·w‖2L2(Ω).

Similar to the first case, we multiply the first equation in (2.2) by a test function ∇·φ with

φ ∈W2(Ω), and the second equation by a test function χ with χ ∈ H1(Ω), then integrate in Ω

and use the boundary conditions to obtain that∫
Ω

[
(∇ ·w)(∇ · φ) + γA−1w · φ

]
dx−

∫
∂Ω

γv(φ · ν)ds =

∫
∂Ω

γf3(φ · ν)ds+

∫
Ω

`1(∇ · φ)dx,

where w = A∇w ∈W2(Ω), and∫
Ω

(∇v · ∇χ+ vχ)dx+

∫
Γ1

λvχds−
∫
∂Ω

(ν ·w)χds = −
∫

Γ1

f1χds−
∫

Γ2

f2χds−
∫

Ω

`2χdx.

Introduce the sesquilinear form A2(U,V) defined on {W2(Ω)×H1(Ω)}2 by

A2(U,V) =

∫
Ω

[
(∇ ·w)(∇ · φ) + γA−1w · φ

]
dx−

∫
∂Ω

γv(φ · ν)ds

+

∫
Ω

(∇v · ∇χ+ vχ)dx−
∫
∂Ω

(ν ·w)χds+

∫
Γ1

λvχds,

where U := (w, v) and V := (φ, χ) are in W2(Ω)×H1(Ω). Denote by L2 : W2(Ω)×H1(Ω) −→ C
the bounded antilinear functional given by

L2(V) =

∫
∂Ω

γf3(φ · ν)ds+

∫
Ω

`1(∇ · φ)dx−
∫

Γ1

f1χds−
∫

Γ2

f2χds−
∫

Ω

`2χdx.

Then the variational formulation of the problem (2.2) is to find U = (w, v) ∈ W2(Ω) ×H1(Ω)

such that

A2(U,V) = L2(V), ∀ V ∈W2(Ω)×H1(Ω). (2.4)

Theorem 2.3 The problem (2.2) has a unique solution (w, v) ∈ H1(Ω) ×H1(Ω) if and

only if the problem (2.4) has a unique solution U = (w, v) ∈W2(Ω)×H1(Ω).

Theorem 2.4 Assume that a∗ < 1, a∗ ≤ γ < 1 and λ ≥ c on Γ1. Then the variational

problem (2.4) has a unique solution U = (w, v) ∈W2(Ω)×H1(Ω) which satisfies that

‖w‖W2(Ω) + ‖v‖H1(Ω) ≤
4 C

1− γ

(
‖`1‖L2(Ω) + ‖`2‖L2(Ω) + ‖f1‖H−1/2(Γ1)

+ ‖f2‖H−1/2(Γ2) + ‖f3‖H1/2(∂Ω)

)
,

with C > 0 dependent on ‖λ‖L∞(Γ1).

Proof The trace theorems and Schwarz’s inequality ensure the continuity of the antilinear

functional L2 on W2(Ω) ×H1(Ω) and the existence of a constant C independent of `1, `2, f1,

f2 and f3 such that

‖L2‖ ≤ C
(
‖`1‖L2(Ω) + ‖`2‖L2(Ω) + ‖f1‖H−1/2(Γ1) + ‖f2‖H−1/2(Γ2) + ‖f3‖H1/2(∂Ω)

)
.
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On the other hand, if U = (w, v) ∈ W2(Ω)×H1(Ω), the assumptions that a∗ < 1, a∗ ≤ γ < 1

and λ ≥ c imply that

|A2(U,U)| ≥ ‖w‖2W2(Ω) + ‖v‖2H1(Ω) − (γ + 1)Re
(∫

∂Ω

v(w · ν)ds
)

≥ ‖w‖2W2(Ω) + ‖v‖2H1(Ω) − (γ + 1)‖w‖W2(Ω)‖v‖H1(Ω)

≥ 1− γ
2

(
‖w‖2W2(Ω) + ‖v‖2H1(Ω)

)
,

whence A2 is coercive. The proof is completed. �

Summarizing the above analysis, we can state the following result concerning the solvability

of the interior transmission problem (2.1):

Theorem 2.5 Assume that either a∗ > 1, λ ≤ −c or a∗ < 1, λ ≥ c, and that k is not a

transmission eigenvalue of the problem (1.1). Then the general interior transmission problem

(2.1) has a unique solution (w, v) ∈ H1(Ω)×H1(Ω) which satisfies that

‖w‖H1(Ω) + ‖v‖H1(Ω) ≤C
(
‖`1‖L2(Ω) + ‖`2‖L2(Ω) + ‖f1‖H−1/2(Γ1)

+ ‖f2‖H−1/2(Γ2) + ‖f3‖H1/2(∂Ω)

)
,

with C > 0 dependent on ‖λ‖L∞(Γ1).

The proof is completely the same as Theorem 3.6 in the paper [6] and Theorem 3.32 in the

book [8], so we omit it here.

Remark 2.6 Note that we obtain the well-posedness of the problem (2.1) under the

special condition that the sign of λ has a close relation with the value of A. Consequently,

in the following sections, we keep the assumptions of Theorem 2.5 above. And in the future,

we want to discard this strict restriction on λ or even consider that λ(x) is a complex valued

function.

Before we study the transmission eigenvalue problem (1.1), we first establish the uniqueness

of a solution to (2.1), i.e., there are no transmission eigenvalues.

Theorem 2.7 Assume that A ∈ (L∞(Ω))2×2 and n ∈ L∞(Ω). If either Im(ξ ·Aξ) < 0 or

Im(n) > 0 almost everywhere in Ω, then the interior transmission problem (2.1) has at most

one solution.

Proof Let w and v be a solution pair of the homogeneous interior transmission problem

(2.1); that is, `1 = `2 = f1 = f2 = f3 = 0. Applying the divergence theorem to w and A∇w,

using the boundary condition and applying Green’s first identity to v and v, we obtain that∫
Ω

(∇w ·A∇w − k2n|w|2)dx =

∫
∂Ω

w
∂w

∂νA
ds =

∫
∂Ω

v
∂v

∂ν
ds+

∫
Γ1

λ|v|2ds

=

∫
Ω

(|∇v|2 − k2|v|2)dx+

∫
Γ1

λ|v|2ds.

Hence,

Im
(∫

Ω

∇w ·A∇wdx
)

= 0, Im
(∫

Ω

n|w|2dx
)

= 0.

If Im(ξ ·Aξ) < 0 almost everywhere in Ω, then ∇w = 0 in Ω and from the equation w = 0.

From the boundary condition in (2.1) and the integral representation formula, v also vanishes

in Ω.
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If Im(n) > 0 almost everywhere in Ω, then w = 0 in Ω. Similarly, from the boundary

condition in (2.1) and the integral representation formula, v also vanishes in Ω. The proof is

complete. �

Remark 2.8 If A ∈ (C∞(Ω))2×2 and n ∈ C(Ω), the result of Theorem 2.7 also holds,

but in this case one just needs to assume that either Im(ξ · Aξ) < 0 or Im(n) > 0 at a point

x0 ∈ Ω.

3 The Transmission Eigenvalues for n ≡ 1

In this section, we study the discreteness and existence of the transmission eigenvalues

under the special case n ≡ 1, where we can obtain a fourth-order equation. Here we assume

that Im(A) = 0 and either a∗ > 1, λ ≤ −c or 0 < a∗ < 1, λ ≥ c. Then the transmission

eigenvalue problem for n ≡ 1 reads as

∇ ·A∇w + k2w = 0, in Ω,

∆v + k2v = 0, in Ω,
∂w

∂νA
=
∂v

∂ν
+ λv, on Γ1,

∂w

∂νA
=
∂v

∂ν
, on Γ2,

w = v, on ∂Ω,

(3.1)

with v ∈ H1(Ω) and w ∈ H1(Ω). We make the following substitutions:

w = A∇w ∈ [L2(Ω)]2 and v = ∇v ∈ [L2(Ω)]2.

Then the transmission problem (3.1) can be written as the equivalent problem

∇(∇ ·w) + k2Nw = 0, in Ω,

∇(∇ · v) + k2v = 0, in Ω,

ν ·w = ν · v − λ

k2
∇ · v, on Γ1,

ν ·w = ν · v, on Γ2,

∇ ·w = ∇ · v, on ∂Ω,

(3.2)

where N := A−1. Introduce the Sobolev space

W =
{

u ∈ [L2(Ω)]2 : ∇ · u ∈ H1
0 (Ω), ν · u = 0 on Γ2

}
,

equipped with the scalar product

(u,v)W = (u,v)L2(Ω) + (∇ · u,∇ · v)H1(Ω).

Following the classical procedure, let u = w− v. Then we can write (3.2) as an equivalent

eigenvalue problem for u ∈W satisfying the fourth order equation (∇∇ ·+k2N)(N − I)−1(∇∇ · u + k2u) = 0, in Ω,

ν · u = − λ

k2
∇ · v, on Γ1.

(3.3)
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Note that w = − 1
k2 (N − I)−1(∇∇ · u + k2u) and v = − 1

k2 (N − I)−1(∇∇ · u + k2Nu). Next,

we will transform the fourth order equation (3.3) into an equivalent variational formulation.

Hence, we multiply the equation in (3.3) by a test function u′ with u′ ∈W to obtain that

0 =

∫
Ω

[
(∇∇ ·+k2N)(N − I)−1(∇∇ · u + k2u)

]
· u′dx

=

∫
∂Ω

[
∇ · ((N − I)−1(∇∇ · u + k2u))

]
(ν · u′)ds

−
∫
∂Ω

ν ·
[
(N − I)−1(∇∇ · u + k2u)

]
(∇ · u′)ds

+

∫
Ω

(N − I)−1(∇∇ · u + k2u) · (∇∇ · u′)dx

+

∫
Ω

(N − I)−1(∇∇ · u + k2u) · (k2Nu′)dx

=

∫
Ω

(N − I)−1(∇∇ · u + k2u) · (∇∇ · u′ + k2Nu′)dx− k2

∫
∂Ω

(∇ ·w)(ν · u′)ds.

In the last equation, we have used the fact that ∇ · u′|∂Ω = 0, as well as the relation between

w and u. Recalling the boundary condition on ∂Ω in (3.2), ν · u′|Γ2 = 0 and the boundary

condition on Γ1 in (3.3), we have∫
∂Ω

(∇ ·w)(ν · u′)ds =

∫
∂Ω

(∇ · v)(ν · u′)ds =

∫
Γ1

(∇ · v)(ν · u′)ds = −
∫

Γ1

k2

λ
(ν · u)(ν · u′)ds.

Consequently, the variational form reads as follows: find u ∈W such that∫
Ω

(N − I)−1(∇∇ · u + k2u) · (∇∇ · u′ + k2Nu′)dx+

∫
Γ1

k4

λ
(ν · u)(ν · u′)ds = 0. (3.4)

In what follows, we introduce the sesquilinear forms Ak, Ãk and B given by

Ak(u,u′) =
(
N(I −N)−1(∇∇ · u + k2u), (∇∇ · u′ + k2u′)

)
Ω

+
(
∇∇ · u,∇∇ · u′

)
Ω
−
〈k4

λ
ν · u, ν · u′

〉
Γ1

,

Ãk(u,u′) =
(

(N − I)−1(∇∇ · u + k2u), (∇∇ · u′ + k2u′)
)

Ω

+ k4(u,u′)Ω +
〈k4

λ
ν · u, ν · u′

〉
Γ1

,

B(u,u′) = (∇ · u,∇ · u′)Ω,

where (·, ·)Ω denotes the inner product in L2(Ω) and 〈·, ·〉Γ1
denotes the dual pairing between

H1/2(Γ1) and H̃−1/2(Γ1). Then we have

Ak(u,u′)− k2B(u,u′) = 0, Ãk(u,u′)− k2B(u,u′) = 0 for all u′ ∈W.

By means of the Riesz representation theorem, the bounded linear operators Aδ : W −→W ,

Ãδ : W −→W and B : W −→W can be defined by

(Aδu,u′) = Ak(u,u′), (Ãδu,u′) = Ãk(u,u′), (Bu,u′) = B(u,u′), (3.5)

where δ := k2. Then the variational form (3.4) can be rewritten as an operator equation

Aδu− δBu = 0 or Ãδu− δBu = 0 for u ∈W.
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Theorem 3.1 Let Λ1(Ω) be the first Dirichlet eigenvalue of −∆ in Ω. Then the following

hold:

1. for a∗ > 1 and λ ≤ −c on Γ1, real wave numbers k > 0 such that k2 < Λ1(Ω) are not

transmission eigenvalues;

2. for a∗ < 1 and λ ≥ c on Γ1, real wave numbers k > 0 such that k2 < a∗Λ1(Ω) are not

transmission eigenvalues.

Proof First, we recall that for ∇·u ∈ H1
0 (Ω), using the Poincaré inequality, we have that

‖∇ · u‖2L2(Ω) ≤
1

Λ1(Ω)
‖∇∇ · u‖2L2(Ω), (3.6)

where Λ1(Ω) is the first Dirichlet eigenvalue of −∆ in Ω.

Now assume that a∗ > 1 and λ ≤ −c, which implies that ξ ·N(I −N)−1ξ ≥ α1|ξ|2 for all

ξ ∈ R2 and a.e. x ∈ Ω with α1 = 1
a∗−1 . Then we have that

Ak(u,u) ≥ α1‖∇∇ · u + k2u‖2L2(Ω) + ‖∇∇ · u‖2L2(Ω) −
∫

Γ1

k4

λ
|ν · u|2ds

≥ α1‖k2u‖2L2(Ω) − 2α1‖k2u‖L2(Ω)‖∇∇ · u‖L2(Ω) + (α1 + 1)‖∇∇ · u‖2L2(Ω)

≥
(
α1 −

α2
1

ε

)
k4‖u‖2L2(Ω) + (1 + α1 − ε)‖∇∇ · u‖2L2(Ω)

for α1 < ε < α1 + 1, and therefore,

Ak(u,u)− k2B(u,u)

≥
(
α1 −

α2
1

ε

)
k4‖u‖2L2(Ω) + (1 + α1 − ε)‖∇∇ · u‖2L2(Ω) −

k2

Λ1(Ω)
‖∇∇ · u‖2L2(Ω)

≥
(
α1 −

α2
1

ε

)
k4‖u‖2L2(Ω) +

(
1 + α1 − ε−

k2

Λ1(Ω)

)
‖∇∇ · u‖2L2(Ω).

Hence, if k2 < Λ1(Ω)(1 +α1 − ε) for every α1 < ε < α1 + 1, then Ak(·, ·)− k2B(·, ·) is coercive.

By taking ε > 0 arbitrarily close to α1, we have that if k2 < Λ1(Ω), then k is not a transmission

eigenvalue, which proves the first part.

Next, let 0 < a∗ < 1 and λ ≥ c, which implies that ξ · (N − I)−1ξ ≥ α2|ξ|2 for all ξ ∈ R2

and a.e. x ∈ Ω with α2 = a∗
1−a∗ . Then, in exactly the same way as for the first part, we obtain

that

Ãk(u,u) ≥ α2‖∇∇ · u + k2u‖2L2(Ω) + k4‖u‖2L2(Ω) +

∫
Γ1

k4

λ
|ν · u|2ds

≥ α2‖∇∇ · u‖2L2(Ω) − 2α2‖∇∇ · u‖L2(Ω)‖k2u‖L2(Ω) + (α2 + 1)‖k2u‖2L2(Ω)

≥
(
α2 −

α2
2

ε

)
‖∇∇ · u‖2L2(Ω) + (1 + α2 − ε)k4‖u‖2L2(Ω)

for α2 < ε < α2 + 1 and

Ãk(u,u)− k2B(u,u)

≥
(
α2 −

α2
2

ε

)
‖∇∇ · u‖2L2(Ω) + (1 + α2 − ε)k4‖u‖2L2(Ω) −

k2

Λ1(Ω)
‖∇∇ · u‖2L2(Ω)

≥
(
α2 −

α2
2

ε
− k2

Λ1(Ω)

)
‖∇∇ · u‖2L2(Ω) + (1 + α2 − ε)k4‖u‖2L2(Ω).
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Therefore, if k2 < Λ1(Ω)
(
α2− α2

2

ε

)
for every α2 < ε < α2 +1, then Ãk(·, ·)−k2B(·, ·) is coercive.

By taking ε > 0 arbitrarily close to α2 + 1, we have that if k2 < α2

α2+1Λ1(Ω) = a∗Λ1(Ω), then k

is not a transmission eigenvalue, which proves the second part. �

Theorem 3.2 Assume that n ≡ 1, Im(A) = 0 and either a∗ > 1, λ ≤ −c or a∗ < 1,

λ ≥ c. Then the transmission eigenvalues form a discrete (possibly empty) set with +∞ as the

only possible accumulation point.

Proof Let us set

H(Ω) =
{

(w, v) ∈ H1(Ω)×H1(Ω) : ∇ ·A∇w ∈ L2(Ω) and ∆v ∈ L2(Ω)
}
,

and consider the operator Fk fromH(Ω) into L2(Ω)×L2(Ω)×H−1/2(Γ1)×H−1/2(Γ2)×H1/2(∂Ω)

defined by

Fk(w, v) =
(
∇ ·A∇w + k2nw,∆v + k2v,

( ∂w
∂νA

− ∂v

∂ν
− λv

)∣∣∣
Γ1

,( ∂w
∂νA

− ∂v

∂ν

)∣∣∣
Γ2

, (w − v)|∂Ω

)
.

Then the family of operators Fk depends analytically on k. Based on Theorem 3.1, we find

that Fκ is injective if κ2 < Λ1(Ω) when a∗ > 1, λ ≤ −c or κ2 < a∗Λ1(Ω) when a∗ < 1, λ ≥ c.

Combining that with Theorem 2.5, we conclude that Fκ is invertible and has a bounded inverse

operator F−1
κ . So Fk = Fκ(I −F−1

κ (Fκ −Fk)).

Since (Fκ −Fk)(w, v) = ((κ2 − k2)nw, (κ2 − k2)v, 0, 0, 0) is compact based on the compact

embedding of H1(Ω) to L2(Ω), we conclude that the transmission eigenvalues are discrete by

the analytic Fredholm theory (see Section 8.5 in the book [23]). The proof is complete. �

The following theorem provides the theoretical basis of our analysis regarding the existence

of transmission eigenvalues (refer to Theorem 6.15 in the book [5] or Theorem 4.5 in the book

[8]):

Theorem 3.3 Let δ 7−→ Aδ be a continuous mapping from (0,+∞) to the set of bounded,

self-adjoint, and coercive operators on the Hilbert space X and let B be a self-adjoint and

nonnegative compact bounded linear operator on X. We assume that there exist two positive

constants δ0 > 0 and δ1 > 0 such that the following hold:

1. Aδ0 − δ0B is positive on X;

2. Aδ1 − δ1B is nonpositive on an `-dimensional subspace Wj of X.

Then each of the equations λj(δ) = δ for j = 1, · · · , ` has at least one solution in [δ0, δ1]

where λj(δ) is the j-th eigenvalue (counting multiplicity) of Aδ with respect to B, i.e., ker(Aδ−
λj(δ)B) 6= {0}.

Recalling the definitions of Aδ : W −→ W , Ãδ : W −→ W , B : W −→ W in (3.5), and

Theorem 3.1, we summarize the properties of these operators.

Lemma 3.4 Assume that n ≡ 1, Im(A) = 0 and a∗ > 1, λ ≤ −c or a∗ < 1, λ ≥ c. Then

1. B is a bounded, positive, compact and self-adjoint operator;

2. Aδ is a bounded coercive self-adjoint operator provided that a∗ > 1 and λ ≤ −c;
3. Ãδ is a bounded coercive self-adjoint operator provided that a∗ < 1 and λ ≥ c;
4. for δ0 = κ2, either Aδ0 − δ0B or Ãδ0 − δ0B is positive on W (κ is defined in the proof of

Theorem 3.2).
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To investigate the existence of eigenvalues for the problem (3.1), we need to consider the

classical transmission eigenvalue problem for a ball Bρ of radius ρ centered at the origin with

a constant index of refraction m > 0 and m 6= 1, which is formulated as

∆w + k2mw = 0, in Bρ,

∆v + k2v = 0, in Bρ,
1

m

∂w

∂ν
=
∂v

∂ν
, on ∂Bρ,

w = v, on ∂Bρ.

(3.7)

We denote by kρ,m the smallest real eigenvalue to (3.7). An eigenfunction corresponding to

kρ,m is uBρ,m = m−1∇wBρ,m−∇vBρ,m, where wBρ,m, vBρ,m is a nonzero solution pair to (3.7)

(refer to subsection 4.3.1 in the book [8]). Furthermore, uBρ,m satisfies that∫
Bρ

1

m− 1
(∇∇ · uBρ,m + k2

ρ,muBρ,m) · (∇∇ · uBρ,m + k2
ρ,mmuBρ,m)dx = 0. (3.8)

Theorem 3.5 Assume that n ≡ 1, Im(A) = 0 and a∗ > 1, λ ≤ −c or a∗ < 1, λ ≥ c. Then

there exists an infinite set of real transmission eigenvalues for the anisotropic medium problem

(3.1) with +∞ as the only accumulation point.

Proof Based on the Lemma 3.4, we need only to prove the Assumption 2 in Theorem 3.3

(refer to Theorem 6.20 in [5] or Theorem 4.12 in [8]).

For the first case a∗ > 1, λ ≤ −c, we let k1,a−1
∗

be the first transmission eigenvalue for

the ball Bρ of radius ρ = 1 and the index of refraction m = a−1
∗ of the problem (3.7). By a

scaling argument, it is obvious that kε,a−1
∗

= k1,a−1
∗
/ε is the first transmission eigenvalue of the

problem (3.7) corresponding to the ball of radius ε > 0 with the index of refraction a−1
∗ .

Now take ε > 0 small enough such that Ω contains M = M(ε) ≥ 1 disjoint balls B1
ε , B2

ε , · · · ,
BMε of radius ε; that is, Bjε ⊂ Ω, j = 1, · · · ,M , and Bjε ∩ Bιε = ∅ for j 6= ι. Then kε,a−1

∗
is the

first transmission eigenvalue for each of these balls with the index of refraction a−1
∗ and we let

uj , j = 1, · · · ,M be the corresponding eigenfunction. The extension by zero ũj of uj to the

whole domain of Ω is obviously in W and ũj |∂Ω = 0. Furthermore, the vectors {ũ1, ũ2, · · · , ũM}
are linearly independent and orthogonal in W since they have disjoint supports. From (3.8),

we have that ∫
Ω

1

a−1
∗ − 1

(∇∇ · ũj + k2
ε,a−1
∗

ũj) · (∇∇ · ũ
j

+ a−1
∗ k2

ε,a−1
∗

ũ
j
)dx = 0 (3.9)

for j = 1, · · · ,M . Let Y denote theM -dimensional subspace ofW spanned by {ũ1, ũ2, · · · , ũM}.
Since each ũj , j = 1, · · · ,M satisfies (3.9) and they have disjoint supports, then for δ1 = k2

ε,a−1
∗

and for every ũ ∈ Y ⊂W , ũ|∂Ω = 0, we have

(Aδ1 ũ− δ1Bũ, ũ) =

∫
Ω

(I −N)−1(∇∇ · ũ + δ1ũ) · (∇∇ · ũ + δ1N ũ)dx−
∫

Γ1

δ2
1

λ
(ν · ũ)(ν · ũ)ds

≤
∫

Ω

1

1− a−1
∗

(∇∇ · ũ + δ1ũ) · (∇∇ · ũ + δ1a
−1
∗ ũ)dx = 0.

This means that Assumption 2 of Theorem 3.3 is also satisfied, and therefore we conclude

that there are M(ε) transmission eigenvalues (counting multiplicity) inside [δ0, δ1]. Note that

M(ε) and kε,a−1
∗

both go to +∞ as ε → 0. Since the multiplicity of each eigenvalue is finite,
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we have shown, by letting ε → 0, that there exists an infinite countable set of transmission

eigenvalues that accumulate at +∞.

The proof of the second case is the same, so we omit it for brevity. �

4 The Discreteness of Transmission Eigenvalues for n 6≡ 1

In this section, we only consider the discreteness of transmission eigenvalues (1.1) for the

general case n 6≡ 1. Based on Theorem 2.7, we assume that Im(A) = 0, Im(n) = 0, and we

introduce the notations

n∗ := inf
x∈Ω

n(x) > 0, n∗ := sup
x∈Ω

n(x) <∞.

We multiply the first equation in (1.1) by a test function w′ with w′ ∈ H1(Ω) and the

second equation by a test function v′ with v′ ∈ H1(Ω), then integrate in Ω to obtain:

0 =

∫
Ω

(∇ ·A∇w + k2nw)w′dx =

∫
∂Ω

∂w

∂νA
w′ds−

∫
Ω

(A∇w · ∇w′ − k2nww′)dx,

0 =

∫
Ω

(∆v + k2v)v′dx =

∫
∂Ω

∂v

∂ν
v′ds−

∫
Ω

(∇v · ∇v′ − k2vv′)dx.

Recalling the transmission boundary conditions and w′|∂Ω = v′|∂Ω, we have

0 =

∫
∂Ω

( ∂w
∂νA

− ∂v

∂ν

)
v′ds−

∫
Ω

(A∇w · ∇w′ − k2nww′)dx+

∫
Ω

(∇v · ∇v′ − k2vv′)dx

=

∫
Γ1

λvv′ds−
∫

Ω

(A∇w · ∇w′ − k2nww′)dx+

∫
Ω

(∇v · ∇v′ − k2vv′)dx.

We observe that k is a transmission eigenvalue to (1.1) if and only if there exists a non-trivial

element (w, v) ∈ X such that

ak((w, v), (w′, v′)) = 0, for all (w′, v′) ∈ X,

where the sesquilinear form is defined by

ak((w, v), (w′, v′)) =

∫
Ω

(A∇w · ∇w′ − k2nww′)dx−
∫

Ω

(∇v · ∇v′ − k2vv′)dx−
∫

Γ1

λvv′ds,

and the Sobolev space X is X =
{

(w, v) ∈ H1(Ω)×H1(Ω) : w − v ∈ H1
0 (Ω)

}
.

By means of the Riesz representation theorem, there exists a bounded linear operator

Gk : X −→ X defined by

(Gk(w, v), (w′, v′))X = ak((w, v), (w′, v′)), for all (w′, v′) ∈ X.

Similarly to Section 3, we want to find a k ∈ C such that Gk is invertible. However, differently

from the classical form, we find that ak(·, ·) is not coercive for any k ∈ C. Hence, we will use

the T-coercive method ([3, 21]) to show that aiκ(·, ·) is T-coercive for κ ∈ R\{0}.

Theorem 4.1 Assume that either a∗ > 1, n∗ > 1, λ ≤ −c or a∗ < 1, n∗ < 1, λ ≥ c.

Then there exists k = iκ with κ ∈ R\{0} such that the operator Gk is invertible.

Proof For the first case a∗ > 1, n∗ > 1, λ ≤ −c, we consider the mapping T : X −→ X

defined by T : (w, v) −→ (w,−v + 2w). Note that T 2 = I, and hence T is an isomorphism in

X.
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Then for all (w, v) ∈ X, we have that

aTiκ((w, v), (w, v)) = aiκ((w, v), T (w, v)) = aiκ((w, v), (w,−v + 2w))

=

∫
Ω

(A∇w · ∇w + κ2nww)dx−
∫

Γ1

λv(−v + 2w)ds

−
∫

Ω

[
∇v · ∇(−v + 2w) + κ2v(−v + 2w)

]
dx

=

∫
Ω

(A∇w · ∇w + |∇v|2 − 2∇v · ∇w)dx−
∫

Γ1

λvvds

+ κ2

∫
Ω

(n|w|2 + |v|2 − 2vw)dx,

where κ ∈ R\{0}. Using Hölder’s inequality and the facts that ξ · Aξ ≥ a∗|ξ|2 for all ξ ∈ C2,

n ≥ n∗ (note that Im(A) = 0 and Im(n) = 0), we have

2
∣∣∣ ∫

Ω

∇v · ∇wdx
∣∣∣ ≤ 2

(∫
Ω

|∇w|2dx
) 1

2
(∫

Ω

|∇v|2dx
) 1

2

≤ 2
√
a∗

(∫
Ω

A∇w · ∇wdx
) 1

2
(∫

Ω

|∇v|2dx
) 1

2

≤ 1
√
a∗

(∫
Ω

A∇w · ∇wdx+

∫
Ω

|∇v|2dx
)
,

2
∣∣∣ ∫

Ω

vwdx
∣∣∣ ≤ 2

(∫
Ω

|w|2dx
) 1

2
(∫

Ω

|v|2dx
) 1

2 ≤ 2
√
n∗

(∫
Ω

nwwdx
) 1

2
(∫

Ω

|v|2dx
) 1

2

≤ 1
√
n∗

(∫
Ω

nwwdx+

∫
Ω

|v|2dx
)
.

Based on the above two equalities and the assumptions, we obtain that∣∣∣aTiκ((w, v), (w, v))
∣∣∣ =

∣∣∣ ∫
Ω

(A∇w · ∇w + |∇v|2 − 2∇v · ∇w)dx

+ κ2

∫
Ω

(n|w|2 + |v|2 − 2vw)dx−
∫

Γ1

λvvds
∣∣∣

≥ (A∇w,∇w) + (∇v,∇v)− 2|(∇v,∇w)|+κ2
[
(nw,w) + (v, v)− 2|(v, w)|

]
≥
(

1− 1
√
a∗

)[
(A∇w,∇w) + (∇v,∇v)

]
+κ2

(
1− 1
√
n∗

)[
(nw,w) + (v, v)

]
.

That is,∣∣∣aTiκ((w, v), (w, v))
∣∣∣ ≥ min

{(
1− 1
√
a∗

)
, κ2
(

1− 1
√
n∗

)}(
‖w‖2H1(Ω) + ‖v‖2H1(Ω)

)
.

The above estimate proves that aTiκ is coercive over X, which implies that Giκ is invertible.

For the second case 0 < a∗ < a∗ < 1, 0 < n∗ < n∗ < 1 and λ ≥ c, the isomorphism

mapping T : X −→ X is defined by

T : (w, v) −→ (w − 2v,−v).

For all (w, v) ∈ X, we have

aTiκ((w, v), (w, v)) =

∫
Ω

(A∇w · ∇w + |∇v|2 − 2A∇w · ∇v)dx+

∫
Γ1

λvvds

+ κ2

∫
Ω

(n|w|2 + |v|2 − 2nwv)dx.
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Similarly, we will used the following two inequalities:

2
∣∣∣ ∫

Ω

A∇w · ∇vdx
∣∣∣ ≤ √a∗(∫

Ω

A∇w · ∇wdx+

∫
Ω

|∇v|2dx
)
,

2
∣∣∣ ∫

Ω

nwvdx
∣∣∣ ≤ √n∗(∫

Ω

nwwdx+

∫
Ω

|v|2dx
)
.

Then, we obtain that∣∣∣aTiκ((w, v), (w, v))
∣∣∣ ≥ (1−

√
a∗)
[
(A∇w,∇w) + (∇v,∇v)

]
+ κ2(1−

√
n∗)
[
(nw,w) + (v, v)

]
≥ min

{(
1−
√
a∗
)
a∗, κ

2
(
1−
√
n∗
)
n∗

}(
‖w‖2H1(Ω) + ‖v‖2H1(Ω)

)
.

The above estimate proves that aTik is coercive. This completes the proof. �

Considering κ0 ∈ R\{0}, then Giκ0
is invertible. Since Gk − Giκ0

is a compact operator for

all k ∈ C, using the analytic Fredholm theory (see Section 8.5 in the book [23]), we deduce the

following theorem:

Theorem 4.2 Assume that either a∗ > 1, n∗ > 1, λ ≤ −c or 0 < a∗ < a∗ < 1,

0 < n∗ < n∗ < 1, λ ≥ c. Then the transmission eigenvalues of (1.1) form a discrete (possibly

empty) set in C with +∞ as the only possible accumulation point.

Remark 4.3 For the case n 6≡ 1 and A 6≡ I (I is the identity matrix), we only obtain

the discreteness under the assumption that a∗ > 1, n∗ > 1, λ ≤ −c or 0 < a∗ < a∗ < 1,

0 < n∗ < n∗ < 1, λ ≥ c. The discreteness for weaker assumptions and the existence of

eigenvalues are open problems.

Remark 4.4 In this paper, we consider two cases: A 6≡ I, n ≡ 1 and A 6≡ I, n 6≡ 1. For

the third case, A ≡ I, n 6≡ 1, the discreteness and existence of transmission eigenvalues can be

achieved by the same procedure as in the paper [2] where the boundary is integral.

Remark 4.5 If Ω ⊂ R3 simply connected and ∇ × v = 0 in Ω, then there exists a

potential p such that v = ∇p. Based on this fact, the results in this paper can be extended for

the 3-dimensional case.
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