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Abstract Motivated by recent advances made in the study of dividend control and risk

management problems involving the U.S. bankruptcy code, in this paper we follow [44] to

revisit the De Finetti dividend control problem under the reorganization process and the

regulator’s intervention documented in U.S. Chapter 11 bankruptcy. We do this by further

accommodating the fixed transaction costs on dividends to imitate the real-world procedure

of dividend payments. Incorporating the fixed transaction costs transforms the targeting

optimal dividend problem into an impulse control problem rather than a singular control

problem, and hence computations and proofs that are distinct from [44] are needed. To ac-

count for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,

the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process

with endogenous regime switching. Some explicit expressions of the expected net present val-

ues under a double barrier dividend strategy, new to the literature, are established in terms

of scale functions. With the help of these expressions, we are able to characterize the optimal

strategy among the set of admissible double barrier dividend strategies. When the tail of the

Lévy measure is log-convex, this optimal double barrier dividend strategy is then verified as

∗Received September 18, 2022; revised July 23, 2023. Wenyuan Wang acknowledges the financial support

from the National Natural Science Foundation of China (12171405 and 11661074) and the Program for New

Century Excellent Talents in Fujian Province University. Ruixing Ming acknowledges the financial support from

the Characteristic & Preponderant Discipline of Key Construction Universities in Zhejiang Province (Zhejiang

Gongshang University – Statistics), Collaborative Innovation Center of Statistical Data Engineering Technology

& Application, Digital + Discipline Construction Project (SZJ2022B004).
†Corresponding author



216 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

the optimal dividend strategy, solving our optimal impulse control problem.
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1 Introduction

As an alternative risk management tool to that of ruin probability, De Finetti’s dividend

control problem has remained an active research topic in corporate finance and insurance for

decades, mainly due to its effectiveness in signaling the health and stability of financial compa-

nies. The goal of this type of risk management is to maximize the expected total net present

value (NPV) of accumulated dividend payments, which is conventionally referred to as the

value of the company. The literature of the past decades has witnessed fruitful research (see

[16, 17, 21, 42] for some early works along these lines) on De Finetti’s dividend optimization

involving stochastic regular, singular, or impulse control problems under a number of risk mod-

els, among which the spectrally negative Lévy risk model has been gaining in popularity in

insurance applications, due to its capability to model the reserve process of an insurance com-

pany that collects premiums continuously and pays claim payments in lump sums. Early works

on De Finetti’s dividend control problem under the spectrally negative Lévy risk model are

[6, 25, 31, 32, 41]; see also the references therein. In particular, the works of [6, 31, 32, 43–45]

verified that the optimal dividend strategy yielding the maximum NPV of accumulated divi-

dends is the barrier strategy, here the fluctuation theory of spectrally negative Lévy processes

and the standard approach of the Hamilton-Jacobi-Bellman (HJB) equation was adopted. For a

more comprehensive review of developments in optimal dividends and the related methodology,

we refer to two survey papers, [1] and [3], where thorough and insightful reviews on the classical

contributions and recent progress in the dividend control field are provided. In addition, a va-

riety of recent works have taken into account new and different risk factors, control constraints

or model generalizations; see, for example, [4, 5, 10, 11, 15, 22, 28, 35, 36, 39, 43, 44, 46], etc..

In recent years, the modelling of the liquidation process (Chapter 7 bankruptcy) and the

reorganization process (Chapter 11 bankruptcy) written in the bankruptcy code of the United

States has attracted more and more research attention among at the insurance and finance

communities; see, [8, 9, 13, 14, 27, 37] as well as the references therein. To get a real-world

picture of Chapter 7 and Chapter 11 bankruptcy, [29] used a piece-wise time-homogeneous

diffusion process, as well as three constant barrier levels, a, b and c (a < b < c), to model

the reserve process of an insurance company. The lower barrier a represents the liquidation

barrier, i.e., once the reserve process falls below a, the company is liquidated because its assets

can no longer cover its debts. The middle barrier b represents the reorganization barrier, i.e.,

once the reserve process falls below b, the insurer enters a state of insolvency (the businesses

of an insolvent insurer are subject to reorganization under the interventions of the regulator),

and it may either return to the solvent state (a solvent insurer is free of interventions) if the

reserve process recovers to the upper barrier c within the grace period granted by the regulator,

or it remains in a state of insolvency and is then liquidated. The upper barrier c represents

the solvency barrier, i.e., an insurer who possesses a reserve above this barrier is solvent, since
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it is able to meet its liabilities, and the solvent insurer will not switch to the insolvent state

unless the reserve process falls below b at some future time. In addition, the dynamics of the

reserve process, subject to the state of the insurer, switches between two time-homogeneous

diffusion processes with different drifts and volatilities. [29] obtained closed-form expressions

of the liquidation probability and the Laplace transform of the liquidation time.

Inspired by the above mentioned works on the De Finetti dividend problems and the fi-

nancial modelling of the liquidation and reorganization process, [44] considered a variant of the

De Finetti optimal dividend control problem by incorporating an appealing feature of Chap-

ter 11 bankruptcy to the piece-wise spectrally negative Lévy risk processes embedded with a

reorganization barrier b and a solvency barrier c (b < c); it turned out that a single barrier

dividend strategy is the optimal dividend strategy. In this paper, to better imitate the real-

world procedure of dividend payments, we would like to incorporate the real-life factor of fixed

transaction costs on dividends into our new targeting variant for the De Finetti dividend opti-

mization problem. In addition, we follow [44] in assuming that the uncontrolled reserve process

(i.e., free of dividends) evolves as two spectrally negative Lévy processes switching between

each other, where a change in the state of the insurer triggers a switch of the dynamics of the

reserve process. To match the real life situation, we also assume that dividends are paid only

when the reserve is higher than c. An analytical characterization of the optimal strategy in the

set of all double barrier admissible dividend strategies is provided. Then important properties

of the optimal double barrier levels are studied. A sufficient condition that the Lévy measure

has a log-convex tail is finally found; under that our optimal control problem is solvable, in

that the optimal double barrier dividend strategy dominates all admissible impulse dividend

strategies. We mention that, since no fixed transaction costs are considered, the dividend op-

timization problem addressed in [44] is a singular control problem. With the presence of fixed

transaction costs, our new control problem becomes an impulse control problem, rather than

a singular control problem as in [44]. Therefore, compared with [44], we need distinct com-

putations and arguments to solve our control problem and characterize the optimal impulse

dividend strategy; for example, some different deep understandings of the scale functions and

delicate computations on generators and slope conditions are needed. Another contribution

of the current paper lies in that it helps understanding of how the impulse dividend decision

can be affected by reorganization and by regulator’s intervention for a concrete example, see

Section 4, where detailed discussions are provided.

The rest of the paper is organized as follows: some preliminary results on spectrally negative

Lévy processes are presented in Section 2. Section 3 focuses on solving De Finetti’s optimal

impulse dividend control problem by accommodating fixed transaction costs under Chapter 11

bankruptcy; here the optimal impulse control is shown to fit the double-barrier type dividend

strategy by following a “guess-and-verify” procedure. In Section 4, a concrete example is

provided and analyzed to illustrate the main results obtained in Section 3.

2 Preliminaries on Spectrally Negative Lévy Processes

We collect in this section some elementary facts on the spectrally negative Lévy processes;

interested readers may refer to [23] for more details. A spectrally negative Lévy process is an
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upward-jump-free stochastic process having stationary and independent increments. Denote by

X = {X(t); t ≥ 0} a spectrally negative Lévy process defined on a filtered probability space

(Ω, {Ft; t ≥ 0},P) satisfying the usual conditions. To avoid trivialities, we assume that X has

no monotone paths. Let Px be the conditional probability, given that X starts from x, and let

Ex be the corresponding expectation operator. For simplicity, write P and E for P0 and E0,

respectively. The Laplace transform of X is given by

E
(
eθX(t)

)
= etψ(θ), θ ∈ R+,

where R+ = [0,∞), and

ψ(θ) = γθ +
1

2
σ2θ2 +

∫ ∞
0

(e−θz − 1 + θz1(0,1](z))υ(dz), γ ∈ R, σ ∈ R+,

with the σ-finite Lévy measure υ supported on (0,∞) satisfying that
∫∞

0
(1 ∧ z2)υ(dz) < ∞.

Here, (γ, σ, υ) is referred to as the Lévy triplet of X. It is known that the Laplace exponent ψ

is strictly convex and that lim
θ→∞

ψ(θ) = ∞, hence there is a well-defined right inverse function

of ψ given as Φq := sup{θ ∈ R+ : ψ(θ) = q}.
For each q ∈ R+, let us follow Chapter 8 of [23] to define the scale function of X, denoted

by Wq : R+ → R+, as the unique continuous and strictly increasing function defined on R+

such that ∫ ∞
0

e−θxWq(x)dx =
1

ψ(θ)− q
, θ ∈ (Φq,∞).

By convention, we may extend the definition of Wq(x) by letting Wq(x) = 0 for x < 0. Associ-

ated to Wq, we have two derivative scale functions, Zq(x, θ) and Zq(x), defined as

Zq(x, θ) : = eθx
(

1− (ψ(θ)− q)
∫ x

0

e−θwWq(w)dw

)
, x ∈ R+, q ∈ R+, θ ∈ R+, (2.1)

and

Zq(x) := Zq(x, 0) = 1 + q

∫ x

0

Wq(z)dz, x ∈ R+, q ∈ R+,

with Zq(x) ≡ 1 on (−∞, 0). We write W := W0 and Z := Z0, for short. It is well known that

lim
x→∞

W ′q(x)

Wq(x)
= Φq, lim

y→∞

Wq(x+ y)

Wq(y)
= eΦqx. (2.2)

We recall that the scale function Wq is left and right differentiable at x ∈ (0,∞). Furthermore,

Wq is continuously differentiable on (0,∞) if X has sample paths of unbounded variation or

has sample paths of bounded variation and the Lévy measure is atomless; in particular, it is

twice continuously differentiable on (0,∞) if X has a nontrivial Gaussian component. We are

refer to [31] for more analytical properties of the scale functions. To make our impulse control

problem solvable, we shall assume throughout this paper that the tail of the Lévy measure υ

is log-convex, and hence the scale function Wq(x) is continuously differentiable and W ′q(x) is

log-convex, implying that W ′q(x) is right and left differentiable over (0,∞) and is differentiable

over (0,∞) except for countably many points. In the sequel, by W ′′q (x), we mean the right

derivative of W ′q(x) when W ′q(x) is not differentiable at x.

For later use, we introduce another spectrally negative Lévy process, X̃ = {X̃(t); t ≥ 0}
with the Lévy triplet (γ̃, σ̃, υ̃), the Laplace exponent ψ̃, and the inverse Laplace exponent Φ̃q.

Denote by Wq and Zq the scale functions of X̃ defined in a way similar Wq and Zq, but with
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ψ replaced by ψ̃. Write W = W0 and Z = Z0. In addition, denote by P̃x the conditional

probability, given that X̃0 starts from x, and by Ẽx the corresponding conditional expectation.

3 De Finetti’s Optimal Dividend under Chapter 11 Bankruptcy and

Fixed Transaction Costs

This section investigates De Finetti’s optimal dividend control problem with fixed trans-

action costs on dividends under the Chapter 11 bankruptcy is written in the U.S. bankruptcy

code. To describe the dynamics of switching under the regulator’s intervention, we introduce

an auxiliary state process I(t), subject to the dividend control, as an indicator of the process

of solvency and insolvency states. Supposing that the insurer is solvent at time t ≥ 0 (i.e.,

I(t) = 0), it remains solvent until the reserve process U falls below the reorganization barrier

b, at which time the state of the insurer is switched to that of insolvency. On the other hand, if

the insurer is in the insolvent state at time t ≥ 0 (i.e., I(t) = 1), then it remains in the insolvent

state until the reserve process climbs up to the safety barrier c, at which period the state of the

insurer is switched to that of being solvent. As a result, the dynamics of the reserve process U

follows as a spectrally negative Lévy process X deduced with dividends whenever the insurer

is solvent, and U is governed by the spectrally negative Lévy process X̃ whenever the insurer is

insolvent. We mention that Chapter 11 bankruptcy takes place if the insurer stays continuously

in a state of insolvency for a time interval greater than that of the grace time limit granted

by the regulator. It also needs to be mentioned that, due to the additional costs at the time

of dividend payment, we shall restrict the admissible controls to impulse dividend strategies,

instead of regular or singular dividend strategies.

3.1 Problem Formulation

We assume that transaction costs are paid whenever the cumulative dividend payment

process (Dt)t≥0 increases, i.e., whenever a dividend is distributed, a lump sum of transaction

costs with a fixed amount should be paid. To avoid infinitely large transaction costs, the

cumulative dividend process (Dt)t≥0 needs to be a non-decreasing and left-continuous pure-

jump process such that D(t) =
∑
s<t
4D(t) with 4D(t) = D(t+)−D(t) for t ≥ 0 (the so-called

impulse control). We conjecture and aim to show that the optimal impulse dividend control

under a fixed transaction costs fits this type of double barrier dividend strategy. Let us first

construct the piece-wise underlying risk process using an impulse dividend strategy.

Definition 3.1 (The risk process U under an impulse dividend strategy D) Let D =

(D(t))t≥0 be a pure-jump non-decreasing and left-continuous process, i.e., D(t) =
∑
s<t
4D(t)

with 4D(t) = D(t+) − D(t) for t ≥ 0. Recalling that b < c, let U(0) := X(0) ∈ (b,∞) if

I(0) = 0, and let U(0) := X̃(0) ∈ (−∞, c) if I(0) = 1. In addition, set that T0 := 0. The

process (U, I) can be constructed recursively as follows:

(a) Suppose that the process (U, I) has been defined on [0, Tn] for some n ≥ 0 with Tn <∞.

• Then, if I (Tn) = 0, we define Un+1 = (Un+1(Tn + t))t≥0 according to

Un+1(Tn + t) = U (Tn) +X(Tn + t)−X(Tn)−
∑

s∈[Tn,Tn+t)

1{Un+1(s)−c≥4D(s)}4D(s), t ≥ 0,
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and update Tn+1 := Tn + inf{t ≥ 0; Un+1(Tn + t) < b}. We then define the process (U, I) on

the time interval (Tn, Tn+1] by(U (Tn + t) , I (Tn + t)) := (Un+1(Tn + t), 0) , t ∈ (0, Tn+1 − Tn) ,

(U (Tn+1) , I (Tn+1)) := (Un+1 (Tn+1) , 1) .

• Otherwise, if I (Tn) = 1, we define Ũn+1 = (Ũn+1(Tn + t))t≥0 by

Ũn+1(Tn + t) := U (Tn) + X̃ (Tn + t)− X̃ (Tn) , t ≥ 0,

and update

Tn+1 := Tn + inf{t ≥ 0; Ũn+1(Tn + t) ≥ c}.

We then define the process (U, I) on (Tn, Tn+1] as(U (Tn + t) , I (Tn + t)) :=
(
Ũn+1 (Tn + t) , 1

)
, t ∈ (0, Tn+1 − Tn) ,

(U (Tn+1) , I (Tn+1)) :=
(
Ũn+1 (Tn+1) , 0

)
= (c, 0).

(b) Supposing that the process (U, I) has been defined on [0, Tn] for some n ≥ 0 with

Tn =∞, we update Tn+1 =∞.

Using the path and distributional properties of spectrally negative Lévy processes, we know

that it takes the reserve process U a positive amount of time to climb from a level below b up to

the level c with a probability of one. Then, one can easily verify that lim
n→∞

T2n =∞, and hence

the process U is well-defined under impulse controls. In addition, the bi-variate process (U, I)

is Markovian. We denote by Px,0 the probability law of (U, I), conditional upon having that

(U(0), I(0)) = (x, 0) for x ∈ (b,∞), and denote by Px,1 the probability law of (U, I) conditional

upon having that (U(0), I(0)) = (x, 1) for x ∈ (−∞, c).
Let us consider

κ := inf{k ≥ 1 : Tk + ekλ < Tk+1, I(Tk) = 1},

with the convention that inf ∅ = +∞. The Chapter 11 bankruptcy time can be defined by

TD :=

Tκ + eκλ when κ <∞,

∞, when κ =∞,
(3.1)

where {ekλ}k≥1 is a sequence of independent random variables having a common exponential

distribution with a mean of 1/λ. In particular, {ekλ}k≥1 models the sequence of grace times the

regulator grants to the managers of financial companies. It is also supposed that X and X̃ are

independent of {ekλ}k≥1.

Let us denote by D the set of all admissible impulse dividend controls, which consists

of all pure-jump non-decreasing and left-continuous F-adapted processes. For an admissible

impulse dividend control D ∈ D, we consider the next two expected NPVs with the fixed unit

transaction cost φ such that

VD(x) := Ex,0

[ ∑
0≤s≤TD

e−qt
(
4D(t)− φ

)
1{U(t)−c≥4D(t)}

]
, x ∈ (b,∞) , (3.2)

and

ṼD(x) := Ex,1

[ ∑
0≤s≤TD

e−qt
(
4D(t)− φ

)
1{U(t)−c≥4D(t)}

]
, x ∈ (−∞, c) , (3.3)
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where TD is the Chapter 11 bankruptcy time defined by (3.1). Our De Finetti’s optimal dividend

problem under Chapter 11 bankruptcy and fixed transaction costs is to find the optimal impulse

control D∗ that attains the maximal value function in the sense that

VD∗(x) = sup
D∈D

VD(x) for allx ∈ (b,∞) and ṼD∗(x) = sup
D∈D

ṼD(x) for all x ∈ (−∞, c) . (3.4)

3.2 Expected NPVs of Dividends under a Double Barrier Strategy

Let us now consider a double barrier (z1, z2) impulse dividend strategy Dz2
z1 (c ≤ z1 < z2);

namely, whenever the surplus level is above the upper level z2, a lump sum dividend is paid,

bringing the surplus value down to the lower level z1, while no dividend is paid when the surplus

level is below z2. Hence, the risk process U under the (z1, z2) impulse dividend strategy can be

constructed by Definition 3.1, with D being replaced by the more specific Dz2
z1 , which can be

written as

Dz2
z1 (Tn + t)−Dz2

z1 (Tn) = [U(Tn) ∨ z2 − z1]1{σ1
n<t,I(Tn)=0} +

∞∑
i=2

[z2 − z1]1{σin<t,I(Tn)=0},

t ≤ Tn+1 − Tn, n ≥ 1,

where

σin := inf{t ≥ 0 : U(Tn) +X(Tn + t)−X(Tn) > U(Tn) ∨ z2 + (z2 − z1)(i− 1)}, i ≥ 1, n ≥ 1.

Let V z2z1 (x) and Ṽ z2z1 (x) denote the expected NPVs in (3.2) and (3.3), respectively, when

the double barrier (z1, z2) impulse dividend strategy is employed. The next result shows that

V z2z1 (x) and Ṽ z2z1 (x) can be expressed in terms of the scale functions. As in [44], we define the

key auxiliary function `
(q,λ)
b,c (x) on R as

`
(q,λ)
b,c (x) = Wq(x− b)(1− e−Φ̃q+λ(c−b)Zq(c− b, Φ̃q+λ))

+e−Φ̃q+λ(c−b)Wq(c− b)Zq(x− b, Φ̃q+λ). (3.5)

Actually, `
(q,λ)
b,c acts as the scale function of our piece-wise spectrally negative Lévy processes

with endogenous regime switching.

Proposition 3.2 We have that

V z2z1 (x) =


`
(q,λ)
b,c (x)

z2 − z1 − φ
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
, x ∈ (b, z2],

x− z1 − φ+
`
(q,λ)
b,c (z1) (z2 − z1 − φ)

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
, x ∈ (z2,∞),

(3.6)

and

Ṽ z2z1 (x) =
eΦ̃q+λ(x−c)Wq(c− b)
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
(z2 − z1 − φ) , x ∈ (−∞, c). (3.7)

Proof Set that Tλ := TD|D≡0 and ζ+
z := inf{t ≥ 0;U(t) ≥ z}|D≡0, with TD and U being

defined by (3.1) and Definition 3.1, respectively. By Lemma 3.1 in [44], we have that

Ex,0
[
e−qζ

+
z 1{ζ+

z <Tλ}

]
=
`
(q,λ)
b,c (x)

`
(q,λ)
b,c (z)

,−∞ < b < x < z, c ≤ z <∞, (3.8)
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and

Ex,1
[
e−qζ

+
z 1{ζ+

z <Tλ}

]
= eΦ̃q+λ(x−c) `

(q,λ)
b,c (c)

`
(q,λ)
b,c (z)

=
eΦ̃q+λ(x−c)Wq(c− b)

`
(q,λ)
b,c (z)

, −∞ < x < c ≤ z <∞.

(3.9)

Then, it follows from (3.8) that

V z2z1 (x) = Ex,1
(

e−qζ
+
z2 1{ζ+

z2
<Tλ}

) (
z2 − z1 − φ+ V z2z1 (z1)

)
=

`
(q,λ)
b,c (x)

`
(q,λ)
b,c (z2)

(
z2 − z1 − φ+ V z2z1 (z1)

)
, x ∈ (b, z2], (3.10)

which yields that

V z2z1 (z1) =
`
(q,λ)
b,c (z1)

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
(z2 − z1 − φ) . (3.11)

In view of (3.11) and (3.10), we readily have (3.6). In addition, (3.7) is a consequence of (3.9)

and the fact that

Ṽ z2z1 (x) = Ex,1
[
e−qζ

+
c 1{ζ+

c <Tλ}

]
V z2z1 (c), x ∈ (−∞, c),

which completes the proof. �

3.3 Optimal Double Barriers and Verification of the Optimality

For fixed b and c such that −∞ < b < c <∞, let us define the auxiliary function

ξ(z1, z2) :=
z2 − z1 − φ

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
, c ≤ z1 ≤ z2 − φ,

and consider the set of candidate optimal barriers defined by

M := {(z∗1 , z∗2) : c ≤ z∗1 ≤ z∗2 − φ and ξ(z∗1 , z
∗
2) ≥ ξ(z1, z2) for all c ≤ z1 ≤ z2 − φ}, (3.12)

which stands for the set of the maximizers of the above bi-variate function ξ. The following

lemma investigates some properties ofM that are useful for further computations and analysis;

see Proposition 3.2 and the proof of Lemma 3.3, etc.:

Lemma 3.3 The set M defined in (3.12) is non-empty, and there exists a z0 ∈ (c,∞)

such that

M⊆ {(z1, z2) : c ≤ z1 < z2 − φ, z2 ≤ z0}.

For (z1, z2) ∈M, we either have z1 = c and

z2 − z1 − φ
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
=

1

`
(q,λ)′
b,c (z2)

, (3.13)

or we have z1 ∈ (c,∞) and

z2 − z1 − φ
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
=

1

`
(q,λ)′
b,c (z1)

=
1

`
(q,λ)′
b,c (z2)

. (3.14)
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Proof From (2.1) and the L’Hôspital’s rule, it can be verified that

lim
x→∞

Zq(x, Φ̃q+λ)

Wq(x)
=



ψ(Φ̃q+λ)− q
Φ̃q+λ − Φq

, Φ̃q+λ > Φq,

ψ′(Φq), Φ̃q+λ = Φq,

q − ψ(Φ̃q+λ)

Φq − Φ̃q+λ
, Φ̃q+λ < Φq.

It is then straightforward to check that

lim
z↑∞

`
(q,λ)
b,c (z)

Wq(z − b)

=



[
ψ(Φ̃q+λ)− q

][ ∫ c−b

0

e−Φ̃q+λwWq(w)dw +
e−Φ̃q+λ(c−b)Wq(c− b)

Φ̃q+λ − Φq

]
, Φ̃q+λ > Φq,

e−Φ̃q+λ(c−b)Wq(c− b)ψ′(Φq), Φ̃q+λ = Φq,[
q − ψ(Φ̃q+λ)

][e−Φ̃q+λ(c−b)Wq(c− b)
Φq − Φ̃q+λ

−
∫ c−b

0

e−Φ̃q+λwWq(w)dw

]
, Φ̃q+λ < Φq,

which, by the arguments used in the proof of Case (ii) of Lemma 3.2 in [44], is positive. It is

therefore deduced that

lim
z2→∞

ξ(z1, z2) = lim
z2→∞

1

`
(q,λ)
b,c (z2)

Wq(z2−b) −
`
(q,λ)
b,c (z1)

Wq(z2−b)

z2 − z1 − φ
Wq(z2 − b)

=
1

lim
z2→∞

`
(q,λ)
b,c (z2)

Wq(z2−b)

lim
z2→∞

1

W ′q(z2 − b)
= 0 (3.15)

as lim
x→∞

W ′q(x) =∞. By the mean value theorem, it holds that

lim
z1→∞

ξ(z1, z2) ≤ lim
z2→∞

1

infz∈[z1,z2] `
(q,λ)′
b,c (z)

z2 − z1 − φ
z2 − z1

= 0 (3.16)

as lim
z→∞

`
(q,λ)′
b,c (z) = ∞. Combining (3.15), (3.16) and the definition of ξ, one can get the

desired conclusion: that the non-empty set of maximizers of the function ξ is a subset of

{(z1, z2) : c ≤ z1 < z2 − φ, z2 ≤ z0}.
To continue, for (z1, z2) ∈M, we have that

0 =
∂

∂z2
ξ(z1, z2) =

1

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
−

(z2 − z1 − φ) `
(q,λ)′
b,c (z2)(

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
)2 ,

which gives (3.13). Otherwise, if z1 ∈ (c,∞), we have that

0 =
∂

∂z1
ξ(z1, z2) =

−1

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
+

(z2 − z1 − φ) `
(q,λ)′
b,c (z1)(

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
)2 ,

which verifies (3.14). �

Putting together Proposition 3.1 and Lemma 3.3, we can immediately get the next Propo-

sition 3.4, which gives more simplified expressions of V z2z1 (x) and Ṽ z2z1 (x).
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Proposition 3.4 For (z1, z2) ∈M, we have that

V z2z1 (x) =



`
(q,λ)
b,c (x)

`
(q,λ)′
b,c (z2)

, x ∈ (b, z2],

x− z2 +
`
(q,λ)
b,c (z2)

`
(q,λ)′
b,c (z2)

, x ∈ (z2,∞),

(3.17)

and

Ṽ z2z1 (x) =
eΦ̃q+λ(x−c)Wq(c− b)

`
(q,λ)′
b,c (z2)

, x ∈ (−∞, c). (3.18)

By the definition of ξ, Proposition 3.1 and Lemma 3.1, it seems reasonable to take a double

barrier (z1, z2) ∈ M dividend strategy as the candidate optimal strategy among the set of all

admissible double barrier dividend strategies. As is stated above, we aim to show that the

optimal impulse dividend control under fixed transaction costs fits this type of double barrier

dividend strategy. To this end, we guess that the double barrier (z1, z2) ∈M dividend strategy

is the optimal one among the set of all admissible impulse dividend strategies, and verify in

the next lemma that its value function fits the Hamilton-Jacobi-Bellman (HJB) inequality to

which the optimal value function should fit.

Lemma 3.5 For (z1, z2) ∈M, we have that

V z2z1 (y)− V z2z1 (x) ≥ y − x− φ, c ≤ x < y <∞. (3.19)

Proof In view of the non-decreasing property of V z2z1 (x) in Proposition 3.2 (since `
(q,λ)
b,c (x)

is increasing), (3.19) holds for (x, y) such that c ≤ x < y <∞ and x > y − φ. It is sufficient to

show that (3.19) holds true for (x, y) such that c ≤ x < y − φ <∞.

For (z1, z2) ∈M and x < y, it holds that

1

`
(q,λ)′
b,c (z2)

=
z2 − z1 − φ

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
≥ y − x− φ
`
(q,λ)
b,c (y)− `(q,λ)

b,c (x)
. (3.20)

From (3.20), it follows that, for x, y ∈ [c, z2],

V z2z1 (y)− V z2z1 (x) =
`
(q,λ)
b,c (y)− `(q,λ)

b,c (x)

`
(q,λ)′
b,c (z2)

=
(
`
(q,λ)
b,c (y)− `(q,λ)

b,c (x)
) z2 − z1 − φ
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)

≥
(
`
(q,λ)
b,c (y)− `(q,λ)

b,c (x)
) y − x− φ
`
(q,λ)
b,c (y)− `(q,λ)

b,c (x)

= y − x− φ, c ≤ x < y − φ <∞.

Again, by (3.20), we have that, for x ∈ [c, z2] and y ∈ (z2,∞),

V z2z1 (y)− V z2z1 (x) = y − x− φ− (z2 − x− φ) +
(
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (x)
) z2 − z1 − φ
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)

≥ y − x− φ− (z2 − x− φ) +
(
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (x)
) z2 − x− φ
`
(q,λ)
b,c (z2)− `(q,λ)

b,c (x)

= y − x− φ, c ≤ x ≤ z2 < y <∞, x+ φ < y.

In addition, for x, y ∈ (z2,∞), we also know that

V z2z1 (y)− V z2z1 (x) = y − x ≥ y − x− φ, c ≤ z2 < x < y − φ <∞.
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Putting all of the pieces together completes the proof. �

For any (z1, z2) ∈ M, the next lemma characterizes the monotonicity of the function

x 7→ `
(q,λ)′
b,c (x) over [z2,∞), whose proof is partly borrowed from Lemma 3.2 in [44]. We

mention that this result plays an critical role in solving our new dividend control problem with

fixed transaction costs under Chapter 11 bankruptcy. Before presenting this result, we recall

that a function f defined on (0,∞) is said to be log-convex if the function log f(x) is convex

on (0,∞), and that the tail of the Lévy measure υ refers to the function x 7→ υ(x,∞) for

x ∈ (0,∞).

Lemma 3.6 For (z1, z2) ∈ M, if the tail of the Lévy measure υ is log-convex, then the

function x 7→ `
(q,λ)′
b,c (x) for x ∈ [c,∞) is increasing on [z2,∞).

Proof Thanks to the mean value theorem, there exists a constant ϑ ∈ [z1, z2] such that

1

`
(q,λ)′
b,c (z2)

=
z2 − z1 − φ

`
(q,λ)
b,c (z2)− `(q,λ)

b,c (z1)
=

z2 − z1 − φ
`
(q,λ)′
b,c (ϑ) (z2 − z1)

≤ z2 − z1 − φ
min

x∈[z1,z2]
`
(q,λ)′
b,c (x) (z2 − z1)

<
1

min
x∈[z1,z2]

`
(q,λ)′
b,c (x)

, (z1, z2) ∈M,

which implies that

`
(q,λ)′
b,c (z2) > min

x∈[z1,z2]
`
(q,λ)′
b,c (x), (z1, z2) ∈M. (3.21)

We consider the following cases (i)-(iii) separately:

(i) ψ(Φ̃q+λ)− q > 0 (or, equivalently, Φ̃q+λ > Φq).

In this case, by the proof for case (i) of Lemma 3.2 in [44], one knows that `
(q,λ)′
b,c (x) is

convex on [c,∞). Hence, if z1 = c, we have that

• if `
(q,λ)′′
b,c (c+) < 0, then letting the x0 ∈ (0,∞) be the unique root of `

(q,λ)′′
b,c (x) = 0,

convexity of `
(q,λ)′
b,c (x) implies that `

(q,λ)′
b,c (x) is decreasing on [c, x0] and is increasing on [x0,∞).

This, together with (3.21), verifies that z2 ∈ (x0,∞). Therefore, `
(q,λ)′
b,c (x) is increasing on

[z2,∞), as desired;

• if `
(q,λ)′′
b,c (c+) ≥ 0, then the convexity of `

(q,λ)′
b,c (x) implies that `

(q,λ)′
b,c (x) is increasing on

[c,∞), and hence, on [z2,∞).

Otherwise, if z1 ∈ (c,∞), then `
(q,λ)′
b,c (z2) = `

(q,λ)′
b,c (z1), and consequently, z1 ∈ (c, x0)

and z2 ∈ (x0,∞). It follows that `
(q,λ)′
b,c (x) is increasing on [z2,∞). Actually, we have that

`
(q,λ)′′
b,c (c+) < 0 in this subcase.

(ii) ψ(Φ̃q+λ)− q < 0, and by following arguments similar to those used in the proof of case

(ii) of Lemma 3.2 in [44], we can get that `
(q,λ)′
b,c (x) is strictly increasing on [c,∞). Consequently,

`
(q,λ)′
b,c (x) is increasing on [z2,∞) as z2 ≥ c;

(iii) ψ(Φ̃q+λ)− q = 0, and again, similarly to the proof of case (iii) of Lemma 3.2 in [44],

it is easy to see that `
(q,λ)′
b,c (x) is increasing on [c,∞), and hence, on [z2,∞).

Putting all of the pieces together completes the proof. �

For f ∈ C2(−∞,∞), let us define the infinitesimal operator Af by

Af(x) := γf ′(x) +
1

2
σ2f ′′(x)

+

∫
(0,∞)

(
f(x− y)− f(x) + f ′(x)y1(0,1)(y)

)
υ(dy), x ∈ (−∞,∞). (3.22)
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Let Ã be an operator similar to A, where the Lévy triplet (γ, σ, υ) of X is replaced with the

Lévy triplet (γ̃, σ̃, υ̃) of X̃. Let N (Ñ), N(Ñ), and B (B̃) be, respectively, the Poisson random

measure, the compensated Poisson random measure, and the Brownian motion in the Lévy-Itô

decomposition of X (X̃). The following theorem proves the verification theorem corresponding

to the optimal impulse dividend control problem:

Theorem 3.7 (verification theorem) Suppose that two functions, V ∈ C2 [b,∞) and

Ṽ ∈ C2 (−∞, c], satisfy that V (x) = Ṽ (x) for all x ∈ (−∞, b) ∪ {c}, and that
(A− q)V (x) ≤ 0, b ≤ x <∞,

(Ã − q − λ)Ṽ (x) ≤ 0, −∞ < x ≤ c,

V (x)− V (y) ≥ x− y − φ, c ≤ y ≤ x <∞.

(3.23)

When X has paths of unbounded variation, we further suppose that V (b) = Ṽ (b). Then, we

have that V (x) ≥ sup
D∈D

VD(x) for x ∈ [b,∞), and that Ṽ (x) ≥ sup
D∈D

ṼD(x) for x ∈ (−∞, c).

Proof For a given strategyD ∈ D and the resulting surplus process U , given by Definition

3.1, we denote (Uc(t))t≥0 as the continuous part of (U(t))t≥0. In addition, for a positive integer

N ≥ 1, let us define η
N

:= inf{t ≥ 0 : |U(t)| > N} as the sequence of localizing stopping times.

By definition, it holds that, for t < η
N

,

−N ≤ U(t) ≤ N ; (3.24)

i.e., both U(t−) and U(t) are restricted to the compact set [−N,N ]. For simplicity, we write

that

S := ∪k≥0,I(Tk)=0 [Tk, Tk+1) , S := ∪k≥0,I(Tk)=1 [Tk, Tk+1) , J(t) := qt+ λ

∫ t

0

1S(s) ds, t ≥ 0,

and

G(U, I)(s) := (A− q)V (U(s)) 1S(s) + (Ã − q − λ)Ṽ (U(s)) 1S(s).

Note that V (x) = Ṽ (x) for all x ∈ (−∞, b) ∪ {c}, and that V (b) = Ṽ (b) when X has paths of

unbounded variation. It follows that

• if I(0) = 0, then[
e−J(η

N
)V (U(η

N
))− V (x)

]
1[T2k,T2k+1)(ηN )

=

[ k∑
i=1

[
− e−J(T2i)V (U(T2i)) + e−J(T2i)Ṽ (U(T2i))− e−J(T2i−1)Ṽ (U(T2i−1)) + e−J(T2i−1)

×V (U(T2i−1))
]

+ e−J(η
N

)V (U(η
N

))− e−J(T0)V (U(T0))

]
1[T2k,T2k+1)(ηN ), (3.25)

and [
e−J(η

N
)Ṽ (U(η

N
))− V (x)

]
1[T2k+1,T2k+2)(ηN )

=

[ k∑
i=1

[
− e−J(T2i+1)Ṽ (U(T2i+1)) + e−J(T2i+1)V (U(T2i+1))− e−J(T2i)V (U(T2i))

+e−J(T2i)Ṽ (U(T2i))
]
− e−J(T1)Ṽ (U(T1)) + e−J(T1)V (U(T1))

+e−J(η
N

)Ṽ (U(η
N

))− e−J(T0)V (U(T0))

]
1[T2k+1,T2k+2)(ηN ); (3.26)
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• if I(0) = 1, then[
e−J(η

N
)V (U(η

N
))− Ṽ (x)

]
1[T2k+1,T2k+2)(ηN )

=

[
k∑
i=1

[
− e−J(T2i+1)V (U(T2i+1)) + e−J(T2i+1)Ṽ (U(T2i+1))− e−J(T2i)Ṽ (U(T2i))

+e−J(T2i)V (U(T2i))
]
− e−J(T1)V (U(T1)) + e−J(T1)Ṽ (U(T1))

+e−J(η
N

)V (U(η
N

))− e−qJ(T0)Ṽ (U(T0))

]
1[T2k+1,T2k+2)(ηN ), (3.27)

and [
e−J(η

N
)Ṽ (U(η

N
))− Ṽ (x)

]
1[T2k,T2k+1)(ηN )

=

[
k∑
i=1

[
− e−J(T2i)Ṽ (U(T2i)) + e−J(T2i)V (U(T2i))− e−J(T2i−1)V (U(T2i−1)) + e−J(T2i−1)

×Ṽ (U(T2i−1))
]

+ e−J(η
N

)Ṽ (U(η
N

))− e−J(T0)Ṽ (U(T0))

]
1[T2k,T2k+1)(ηN ). (3.28)

By (3.25), (3.26), (3.27), (3.28) and Theorem 4.57 in [20], we deduce that, for x ∈ (−∞,∞),

e−J(η
N

)V (U(η
N

)) 1S(η
N

) + e−J(η
N

)Ṽ (U(η
N

)) 1S(η
N

)− V (x)1{I(0)=0} − Ṽ (x)1{I(0)=1}

= −
∫ η

N

0−

(
q + λ1S(s)

)
e−J(s)

[
V (U(s))1S(s) + Ṽ (U(s))1S(s)

]
ds

+

∫ η
N

0−
e−J(s)

[
V ′(U(s))1S(s) + Ṽ ′(U(s))1S(s)

]
dU(s)

+
1

2

∫ η
N

0−
e−J(s)

[
V ′′(U(s))1S(s) + Ṽ ′′(U(s))1S(s)

]
d〈Uc(·), Uc(·)〉s

+
∑
s≤η

N

e−J(s) (V (U(s−) + ∆U(s))− V (U(s−))− V ′(U(s−))∆U(s)) 1S(s)

+
∑
s≤η

N

e−J(s)
(
Ṽ (U(s−) + ∆U(s))− Ṽ (U(s−))− Ṽ ′(U(s−))∆U(s)

)
1S(s)

+
∑
s≤η

N

e−J(s) (V (U(s+))− V (U(s)) + V ′(U(s)) (D(s+)−D(s))) 1{U(s+)≥c}

=

∫ η
N

0−
e−J(s)G(U, I)(s)ds+

∫ η
N

0−
e−J(s)

(
σV ′(U(s))1S(s)dB(s) + σ̃Ṽ ′(U(s))1S(s)dB̃(s)

)
+

∫ η
N

0−

∫ ∞
0

e−J(s) (V (U(s−)− y)− V (U(s−))) 1S(s)N(ds,dy)

+

∫ η
N

0−

∫ ∞
0

e−J(s) (V (U(s−)− y)− V (U(s−))) 1S(s) Ñ(ds,dy)

+
∑
s≤η

N

e−J(s)
(
V (U(s+))− V (U(s+) +D(s+)−D(s))

)
1{U(s+)≥c}

=

∫ η
N

0−
e−J(s)G(U, I)(s)ds+

∫ η
N

0−
e−J(s)

(
σV ′(U(s))1S(s)dB(s) + σ̃Ṽ ′(U(s))1S(s)dB̃(s)

)
−
∑
s≤η

N

e−J(s)(D(s+)−D(s))1{U(s+)≥c}
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+
∑
s≤η

N

e−J(s)
[
V (U(s+))− V (U(s+) +D(s+)−D(s)) + (D(s+)−D(s))

]
1{U(s+)≥c}

+

∫ η
N

0−

∫ ∞
0

e−J(s) (V (U(s−)− y)− V (U(s−))) 1S(s)N(ds,dy)

+

∫ η
N

0−

∫ ∞
0

e−J(s)
(
Ṽ (U(s−)− y)− Ṽ (U(s−))

)
1S(s) Ñ(ds,dy), (3.29)

where ∆U(s) = U(s)−U(s−). In light of the third inequality in (3.23), we have for s ∈ [0, η
N

),

that

(V (U(s+))− V (U(s+) + (D(s+)−D(s))) +D(s+)−D(s)− φ) 1{U(s+)≥c}(s) ≤ 0. (3.30)

Hence, by (3.23), (3.29) and (3.30), we have that, for x ∈ (−∞,∞),

e−J(η
N

)V (U(η
N

))− V (x)

≤ −
∑

s≤t∧η
N

e−J(s) (∆D(s)− φ) 1{U(s+)≥c}

+

∫ η
N

0−
e−J(s)

(
σV ′(U(s))1S(s) dB(s) + σ̃Ṽ ′(U(s))1S(s) dB̃(s)

)
+

∫ η
N

0−

∫ ∞
0

e−J(s) (V (U(s−)− y)− V (U(s−))) 1S(s)N(ds,dy)

+

∫ η
N

0−

∫ ∞
0

e−J(s)
(
Ṽ (U(s−)− y)− Ṽ (U(s−))

)
1S(s) Ñ(ds,dy). (3.31)

In addition, according to [19, p62], the compensated sums∫ η
N

0−

∫ ∞
0

e−J(s) (V (U(s−)− y)− V (U(s−))) 1S(s)N(ds,dy)

and ∫ η
N

0−

∫ ∞
0

e−J(s)
(
Ṽ (U(s−)− y)− Ṽ (U(s−))

)
1S(s) Ñ(ds,dy)

have zero means. In fact, the integrands of the above stochastic integrations are bounded from

below and above thanks to (3.24) and sup
x∈[−N,N ]

|V (x)| <∞. Similarly, the integration∫ η
N

0−
e−J(s)

(
σV ′(U(s))1S(s)dB(s) + σ̃Ṽ ′(U(s))1S(s)dB̃(s)

)
also has zero mean.

Taking expectations on both sides of (3.31) and then using the monotone convergence

theorem as N tends to ∞, we derive that

V (x)1{I(0)=0} + Ṽ (x)1{I(0)=1}

≥ Ex,I(0)

(
e−J(η

N
)V (U(η

N
)) 1S(η

N
) + e−J(η

N
)Ṽ (U(η

N
)) 1S(η

N
)
)

+Ex,I(0)

( ∑
s≤η

N

e−J(s)(∆D(s)− φ)1{U(s+)≥c}

)

≥ Ex,I(0)

( ∑
s≤η

N

e−J(s)(∆D(s)− φ)1{U(s+)≥c}

)

→ Ex,I(0)

( ∑
s<∞

e−J(s)(∆D(s)− φ)1{U(s+)≥c}

)
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= VD(x)1{I(0)=0} + ṼD(x)1{I(0)=1} for x ∈ (−∞,∞) as N →∞, (3.32)

where the last equality follows by the Poisson method introduced in [30] and the memory-less

property of exponential random variables. To wit, we denote by (Ti)i≥1 the successive arrival

times of a Poisson processes with a rate λ that are independent of the four-dimensional process

(X(t), X̃(t), U(t), I(t))t≥0, and denote by FX,X̃,U,I the smallest sigma field generated by the

four-dimensional process (X(t), X̃(t), U(t), I(t))t≥0. It holds that

Ex,I(0)

( ∑
s<∞

e−J(s)(∆D(s)− φ)1{U(s+)≥c}

)
= Ex,I(0)

(∑
t<∞

e−qt E
(

1{((Ti)i≥1)
⋂

S
⋂

[0,t]=∅}
∣∣∣FX,X̃,U,I) (∆D(t)− φ)1{U(t+)≥c}

)
= Ex,I(0)

(∑
t<∞

e−qt E
(

1{TD>t}
∣∣FX,X̃,U,I) (∆D(t)− φ)1{U(t+)≥c}

)
= Ex,I(0)

(
E
(∑
t<∞

e−qt1{TD>t}(∆D(t)− φ)1{U(t+)≥c}

∣∣∣∣FX,X̃,U,I))
= Ex,I(0)

( ∑
t<TD

e−qt(∆D(t)− φ)1{U(t+)≥c}

)
= VD(x)1{I(0)=0} + ṼD(x)1{I(0)=1}, x ∈ (−∞,∞).

By (3.32), the arbitrariness of D and the continuity of V and Ṽ , we can conclude that V (x) ≥
sup
D∈D

VD(x) for all x ∈ (b,∞), and that Ṽ (x) ≥ sup
D∈D

ṼD(x) for all x ∈ (−∞, c), as desired. �

The next theorem is the main result of this section, and it shows that the double barrier

(z1, z2) ∈ M dividend strategy is the optimal one among all admissible impulse dividend

strategies.

Theorem 3.8 Suppose that the tail of the Lévy measure is log-convex. Recall thatM is

as defined in (3.12). The double barrier (z1, z2) ∈ M dividend strategy is the optimal impulse

dividend strategy achieving the maximal value function up to the Chapter 11 bankruptcy time.

Proof Let (z1, z2) ∈ M. By Proposition 3.4 and Lemmas 3.4–3.5, one can adapt the

techniques of Theorem 4.8 in [43] (or, Lemmas 3.3–3.5 in [44]) to obtain that the candidate

optimal value functions V z2z1 (x) and Ṽ z2z1 (x) satisfy the HJB inequalities (3.23); i.e., the dou-

ble barrier (z1, z2) ∈ M dividend strategy outperforms all other admissible impulse dividend

strategies. �

4 An Illustrative Example

Under the mild condition that the Lévy measure of X has a log-convex tail, Theorem

3.8 verifies that the double barrier dividend strategy with barriers (z1, z2) ∈ M serves as the

optimal impulse dividend strategy, and yields the maximum expected discounted total dividends

(subtracting with transaction costs). To compute explicitly the two barriers of the optimal

impulse dividend strategy, we consider the Cramér-Lundberg process X with exponential jump

sizes; namely, a process X defined by a deterministic drift p (the premium income) subtracting

a compound Poisson process with jump intensity λ0 and exponentially distributed jump sizes
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with a mean of 1/µ. It is well known that

Wq(x) = p−1(A+eq+x −A−eq−x),

where A± := µ+q±
q+−q− and q± :=

q+λ0−µp±
√

(q+λ0−µp)2+4pqµ

2p . Together with (3.5), it readily

follows that

`
(q,λ)′
b,c (x) = (ψ(Φ̃q+λ)− q)p−1(B+eq+(x−b) −B−eq−(x−b)), (4.1)

where B± :=
p−1A±q±

[
µ+Φ̃q+λ−(µ+q∓)e(q∓−Φ̃q+λ)(c−b)

]
(q+−Φ̃q+λ)(q−−Φ̃q+λ)

with B+ > 0 and B− < 0. By (4.1), one

knows that `
(q,λ)′′′
b,c (x) > 0, hence `

(q,λ)′′
b,c (x) is strictly increasing, and `

(q,λ)′′
b,c (∞) = ∞. Denote

that x0 = b+ 1
q+−q− ln B−q−

B+q+
, which is the unique zero of `

(q,λ)′′
b,c (x). We first consider the case

ψ(Φ̃q+λ) > q and identify the set M according to two scenarios, (i) and (ii).

(i) c ≥ x0. For this case, `
(q,λ)′′
b,c (x) > 0 over (c,∞), that is, `

(q,λ)′
b,c (x) strictly increases

over [c,∞). The function ξ cannot attain a local maximum at an interior point (x, y), since

the second equation of (3.14) is violated. Hence,M = {(c, z2)}, with z2 ∈ (c+φ,∞) being the

unique solution of (see, (3.13)) h(y) := `
(q,λ)
b,c (y)− `(q,λ)

b,c (c)− (y − c− φ)`
(q,λ)′
b,c (y) = 0; i.e.,

(1− (y − c− φ)q+)eq+y − eq+c

q+eq+b/B+
− (1− (y − c− φ)q−)eq−y − eq−c

q−eq−b/B−
= 0. (4.2)

The uniqueness of the solution of the above equation follows due to the fact that h′(y) =

− (y − c− φ) ×`(q,λ)′′
b,c (y) < 0 over (c + φ,∞), h(c + φ) = `

(q,λ)
b,c (c + φ) − `

(q,λ)
b,c (c) > 0, and

h(∞) = −∞, because `
(q,λ)′
b,c (∞) =∞ and

h(∞)

`
(q,λ)′
b,c (∞)

:= lim
y→∞

h(y)

`
(q,λ)′
b,c (y)

≤ lim
y→∞

[
`
(q,λ)
b,c (y)

`
(q,λ)′
b,c (y)

− y + c+ φ

]
= −∞.

(ii) c < x0. For this case, `
(q,λ)′′
b,c (x) < 0 over [c, x0) and `

(q,λ)′′
b,c (x) > 0 over (x0,∞), that is,

`
(q,λ)′
b,c (x) strictly decreases over [c, x0) and strictly increases over (x0,∞). Let x1 be the unique

solution x of `
(q,λ)′
b,c (x) = `

(q,λ)′
b,c (c) such that x > x0. Then we have following:

• c < x0 and φ ≥ x1 − c. In this case, there cannot be (x, y) satisfying that y − x− φ > 0

such that the second equation in (3.14) holds true. Hence, similarly to case (i), M reduces to

a singleton, i.e., M = {(c, z2)} with z2 ∈ (x0,∞) being the unique solution of (4.2).

• c < x0 and φ < x1 − c. Denote by y = k(x) the implicit function determined by the

second equation in (3.14). Then k′(x) =
`
(q,λ)′′
b,c (x)

`
(q,λ)′′
b,c (y)

< 0 for all x ∈ [c, x0) and y ∈ (x0,∞).

Additionally, define that

g(x) := `
(q,λ)
b,c (k(x))− `(q,λ)

b,c (x)− (k(x)− x− φ) `
(q,λ)′
b,c (x), x ∈ [c, x0],

G(ϕ) := `
(q,λ)
b,c (x1)− `(q,λ)

b,c (c)− (x1 − c− ϕ) `
(q,λ)′
b,c (x1), ϕ ∈ [0, x1 − c].

We have that g′(x) = − (k(x)− x− φ) `
(q,λ)′′
b,c (x) > 0 over [c, x0), G′(ϕ) = `

(q,λ)′
b,c (x1) > 0,

G(0) < 0, and G(x1 − c) > 0. Hence, there is a unique ϕ0 ∈ (0, x1 − c) such that

`
(q,λ)
b,c (x1)− `(q,λ)

b,c (c)− (x1 − c− ϕ0) `
(q,λ)′
b,c (x1) = 0. (4.3)

• c < x0 and ϕ0 ≤ φ < x1 − c. From (4.3) we have that g(c) > 0, which, together with

the fact that g is strictly increasing, yields that g(x) > 0 for all x ∈ [c, x0], which contradicts
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the first equation in (3.14). Hence, there should not be an interior local maximum point of ξ,

which implies that M reduces to a singleton, i.e., M = {(c, z2)} with z2 ∈ (x0,∞) being the

unique solution of (4.2).

• c < x0 and φ ∈ (0, ϕ0). By (4.3), we have that g(c) < 0, which, together with g(x0) =

φ `
(q,λ)′
b,c (x0) > 0 and the strict increasing property of g, yields the existence of a unique solution

z′1 ∈ (c, x0) of the first equation in (3.14). Hence, (z′1, z
′
2 := k(z′1)) is the unique solution of

(3.14), i.e.
B+e−q+b

(
eq+x − eq+y

)
−B−e−q−b

(
eq−x − eq−y

)
= 0,

(1− (y − x− φ)q+)eq+y − eq+x

q+eq+b/B+
− (1− (y − x− φ)q−)eq−y − eq−x

q−eq−b/B−
= 0.

(4.4)

Thus, we have two potential miximizers of ξ, (c, z2) and (z′1, z
′
2). It can be verified that ξ(c, z2) 6=

ξ(z′1, z
′
2). Otherwise, we have, by (3.13) and (3.14), that

1

`
(q,λ)′
b,c (z2)

= ξ(c, z2) = ξ(z′1, z
′
2) =

1

`
(q,λ)′
b,c (z′2)

, z2, z
′
2 ∈ (x0,∞),

which, together with the strict increasing property of `
(q,λ)′
b,c (x) over (x0,∞), implies that z2 =

z′2, which, combined with (3.13) and (3.14), further implies that

`
(q,λ)
b,c (z′1)− `(q,λ)

b,c (c) = (z′1 − c) `
(q,λ)′
b,c (z′1), z′1 ∈ (c, x0),

which contradicts the fact that `
(q,λ)′
b,c (x) strictly decreases over (c, x0). Therefore,M = {(c, z2)}

when ξ(c, z2) > ξ(z′1, z
′
2), and M = {(z′1, z′2)} when ξ(c, z2) < ξ(z′1, z

′
2).

Finally, when ψ(Φ̃q+λ) ≤ q, by Lemma 3.6, we know that `
(q,λ)′
b,c (x) strictly increases over

[c,∞), and hence M = {(c, z2)} with z2 ∈ (c+ φ,∞) being the unique solution of (4.2).
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with fixed transaction costs. Scand Actuar J, 2021, 8: 645–670

[5] Avanzi B, Lau H, Wong B. On the optimality of joint periodic and extraordinary dividend strategies. Eur

J Oper Res, 2021, 295(3): 1189–1210

[6] Avram F, Palmowski Z, Pistorius M. On the optimal dividend problem for a spectrally negative Lévy
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insurance risk process. J Appl Probab, 2007, 44(2): 428–443

[26] Leland H. Corporate debt value, bond covenants, and optimal capital structure. J Finance, 1994, 49(4):

1213–1252

[27] Li B, Tang Q, Wang L, Zhou X. Liquidation risk in the presence of Chapters 7 and 11 of the US bankruptcy

code. J Financ Eng, 2014, 1(3): 1–19

[28] Li J, Liu G, Zhao J. OPtimal dividend-penalty strategies for insurance risk model with surplus-dependent

premium. Acta Math Sci, 2020, 40B(1): 170–198

[29] Li X, Liu H, Tang Q, Zhu J. Liquidation risk in insurance under contemporary regulatory frameworks.

Insur Math Econ, 2020, 93(1): 36–49

[30] Li Y, Zhou X. On pre-exit joint occupation times for spectrally negative Lévy processes. Stat Probabil Lett,
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