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Abstract This paper is concerned with the Navier-Stokes/Allen-Cahn system, which is

used to model the dynamics of immiscible two-phase flows. We consider a 1D free boundary

problem and assume that the viscosity coefficient depends on the density in the form of

η(ρ) = ρα. The existence of unique global H2m-solutions (m ∈ N) to the free boundary

problem is proven for when 0 < α < 1
4
. Furthermore, we obtain the global C∞-solutions if

the initial data is smooth.
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global solutions
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1 Introduction

In [1], Blesgen proposed a diffuse interface model for macroscopically immiscible two-phase

flows. Compared with the classical sharp interface models, this can naturally describe topo-

logical transitions on the interface, such as droplet formation, coalescence or the break-up of

droplets. A phase field variable φ was introduced to describe the interaction between two fluids.

This model couples together Navier-Stokes equations and Allen-Cahn equations, and has been

widely accepted and successfully used in numerical simulations [15, 28].

It is well known that the Navier-Stokes equations can be derived from the Boltzmann

equation through a Chapman-Enskog expansion to the second order [13], where the viscosity

coefficient depends on temperature. For the isentropic case, this dependence is transferred into

the dependence on the density by laws of Boyle and Gay-Lussac for an ideal gas [22]. From

the deduction of the compressible Navier-Stokes/Allen-Cahn equations [1, 10, 16], we can see

that the viscosity also depends on the density. In this paper, we consider the 1D compressible
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Navier-Stokes/Allen-Cahn equations with density-dependent viscosity and free boundaries

ρτ + (ρu)y = 0,

ρuτ + ρuuy + P (ρ)y = (η(ρ)uy)y −
δ

2

(
φ2y
)
y
,

ρφτ + ρuφy = −µ,

ρµ =
ρ

δ
(φ3 − φ)− δφyy

(1.1)

for (y, τ) ∈ (a(τ), b(τ))×(0,+∞), where ρ, u and φ represent the total density, the mean velocity

field and the concentration difference between two fluids, respectively. Moreover, µ denotes the

chemical potential, the positive constant δ is related to the thickness of the interfacial region,

η is the viscosity coefficient, and the pressure is P (ρ) = Aργ with γ > 1. Without loss of

generality, we assume that A = δ = 1. Here, a(τ) and b(τ) are the free boundaries satisfying

that 
da(τ)

dτ
= u(a(τ), τ),

a(0) = a,

and


db(τ)

dτ
= u(b(τ), τ),

b(0) = b.

We supplement system (1.1) with the initial and boundary value conditions

(ρ, u, φ)(y, 0) = (ρ0, u0, φ0)(y), a ≤ y ≤ b, (1.2)

(ργ − ηuy, φy)(d, τ) = (0, 0), d = a(τ), b(τ), τ ≥ 0. (1.3)

Moreover, we assume that the viscosity is of the form

η = η̃ ρα, (1.4)

where η̃ is a positive constant.

In [22], Liu-Xin-Yang indicated that the Navier-Stokes equations with constant viscosity

are not valid at the vacuum states, and they introduced the modified Navier-Stokes equations

with a density-dependent viscosity. Later, Okada [23] pointed out that physicists claimed that

the viscosity of a gas is proportional to the square root of the temperature. Since then, there

have been many efforts investigating the Navier-Stokes equations with a viscosity coefficient

like (1.4). Jiang [17] considered the full Navier-Stokes equations with stress-free and fixed

boundary conditions on the velocity. He proved that if the viscosity does not decrease to zero

too rapidly, i.e., 0 < α < 1
4 for a stress-free boundary condition and 0 < α < 1

3 for a fixed

boundary condition, then smooth solutions of initial boundary problem still exist globally in

time. Afterwards, Okada-Matus̆u̇-Makino [23], Yang-Yao-Zhu [29], Jiang-Xin-Zhang [18] and

Guo-Jiang-Xie [14] studied a free boundary problem for isentropic Navier-Stokes equations and

assumed that the initial density connected with a vacuum discontinuously. They proved the

existence of global weak solutions under the conditions that 0 < α < 1
3 , 0 < α < 1

2 , 0 < α < 1

and 0 < α < min{3 − γ, 32}. For when the initial density connects to a vacuum continuously,

we refer readers to [11, 12, 19, 21, 26, 30, 31] and the references therein. What attracts our

attention here is that, when 0 < α < 1, Qin-Huang-Yao [24] improved the regularity of the

weak solution, which was originally obtained in [18], and proved the Hi-solutions (i = 2, 4).

Furthermore, Ding-Huang-Liu-Wen raised the regularity of the solutions to C∞ in [7].
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In recent years, the compressible Navier-Stokes/Allen-Cahn system has attracted much

attention on account of its distinct physical background, and there have been many valuable

investigations of it. Here we recall some results on the 1D compressible NSAC system that

are closely related to our study. For the initial boundary value problem (IBVP), for when

the viscosity is assumed to be a constant, Ding-Li-Luo [8] and Chen-Guo [2] proved the global

strong solutions both without a vacuum and with a vacuum. Later, Zhang [32] improved the

regularity, and obtained the Hi-solutions (i = 2, 4). Meanwhile, Chen-Zhu [3] assumed that

η(ρ, φ) = 1 + ραφβ ,

and proved the global existence of strong solutions for when 2 ≤ α ≤ γ, β = 0, and established

blow-up criteria for strong solutions for when β ≥ 1 with a vacuum. Under the hypothesis that

η(ρ) ≥ η̃ > 0,

where η̃ is a positive constant, Su [25] established the existence of strong solutions. For 1D

compressible NSAC equations with free boundary conditions, Ding-Li-Tang [9] considered a

constant viscosity case, proved the existence and uniqueness of local solutions by using the

Schauder Fixed Point theorem, and then extended the local solution to a global one by attaining

global energy estimates. For when the viscosity depends on the density as

η(ρ) = 1 + ρα,

and the initial data is connected to a vacuum continuously, Li-Yan-Ding-Chen [20] obtained

the existence of weak solutions by a line method.

For 1D non-isentropic NSAC equations, Chen-He-Huang-Shi [4, 5] simplified the original

model and proved the existence of unique strong solutions to the 1D IBVP and the Cauchy

problem with a constant viscosity and temperature-dependent heat conductivity

η = η̃, κ(θ) = θβ ,

where β > 0. Yan-Ding-Li [27] considered the phase variable dependent viscosity and the

temperature-dependent heat conductivity

η = χα, κ(θ) = θβ ,

where β > 0. They obtained the well-posedness of strong solutions under the hypothesis that

α ≥ 0 is small. Recently, Dai-Ding-Li [6] studied the density-dependent viscosity and the

temperature-dependent heat conductivity

η(ρ) = 1 + ρα, κ(θ) = θβ ,

with α ≥ 0, β > 0, and

η(ρ) = ρα, κ(θ) = θβ ,

with 0 ≤ α < 1
4 , β ≥ 1. They obtained the existences of unique strong solutions to the initial

boundary problem with the above two conditions.

Noticing that the viscosity coefficient in the form η(ρ) = ρα has been discussed for the

non-isentropic case, we want to consider the isentropic case. Thus, in this paper, we deal with

the free boundary problem to the compressible NSAC equations with the following viscosity:

η(ρ) = η̃ρα.
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We will prove the existence and uniqueness of H2-solutions, then improve these into H2m(m ∈
N)-solutions and C∞-solutions. Obviously, system (1.5) is of strong coupling and strong non-

linearity, and degeneracy will appear near the vacuum state. In addition, although Li et al.

[20] dealt with the case of when the initial data is connected to a vacuum continuously, they

only obtain the existence of weak solutions, and not the uniqueness. At the cost of the free

boundary jump to the vacuum, we can study the case where the viscosity is proportional to the

density, and obtain the unique C∞-solutions.

To solve the free boundary problem (1.1)–(1.3), it is convenient to convert the free bound-

aries to the fixed boundaries by using Lagrangian coordinates. Set that x =
∫ y
a(τ)

ρ(ξ, τ)dξ,

t = τ , and assume that
∫ b
a
ρ0(ξ)dξ = 1. Then problem (1.1)–(1.3) becomes
ρt + ρ2ux = 0,

ut + (ργ)x = (ρα+1ux)x −
1

2

(
ρ2φ2x

)
x
,

ρφt = (ρφx)x − (φ3 − φ)

(1.5)

for (x, t) ∈ (0, 1)× (0,+∞), with the initial and boundary conditions

(ρ, u, φ)(x, 0) = (ρ0, u0, φ0)(x), 0 ≤ x ≤ 1, (1.6)

(ργ − ρα+1ux, φx)(d, t) = (0, 0), d = 0, 1, t ≥ 0. (1.7)

The assumptions on the initial data are

(A1) 0 < α < 1
4 , γ > 1, inf [0,1] ρ0 > 0, |φ0| ≤ 1,

(A2) ρ0, u0 ∈ H2([0, 1]), φ0 ∈ H3([0, 1]),

(A3) ρ0, u0 ∈ H4([0, 1]), φ0 ∈ H5([0, 1]),

(A4) ρ0, u0 ∈ H2m([0, 1]), φ0 ∈ H2m+1([0, 1]), m ∈ N,

(A5) ρ0, u0, φ0 ∈ C∞([0, 1]).

We now give the definition of an Hi-solution.

Definition 1.1 For any fixed constant T > 0, (ρ, u, φ) is called a global Hi([0, 1])-solution

(i = 2m) to problem (1.5)–(1.7) if it satisfies the condition (1.6) and that

0 ≤ c−1 ≤ ρ(x, t) ≤ c, |φ(x, t)| ≤ 1, (x, t) ∈ [0, 1]× [0, T ],

ρ ∈ L∞([0, T ];Hi), u ∈ L∞([0, T ];Hi) ∩ L2([0, T ];Hi+1), φ ∈ L∞([0, T ];Hi+1).

We now state our main results.

Theorem 1.1 If the initial data (ρ0, u0, φ0) is compatible with the boundary conditions

and satisfy (A1), (A2), then problem (1.5)–(1.7) admits a unique global H2-solution (ρ, u, φ)

on [0, 1]× [0, T ].

Theorem 1.2 If the initial data (ρ0, u0, φ0) is compatible with the boundary conditions

and satisfy (A1), (A4), then problem (1.5)–(1.7) admits a unique global H2m(m ∈ N)-solution

(ρ, u, φ) on [0, 1]× [0, T ].

Theorem 1.3 If the initial data (ρ0, u0, φ0) is compatible with the boundary conditions

and satisfy (A1), (A5), then problem (1.5)–(1.7) admits a unique global C∞-solution (ρ, u, φ)

on [0, 1]× [0, T ].
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Remark 1.1 In this paper, the initial density is assumed to be connected to a vacuum

with discontinuities. Although in [20] the initial density is connected to a vacuum continuously,

the form η(ρ) = 1 + ρα can provide the crucial estimate∫ 1

0

1

ρ
<∞.

With the help of this estimate, the bounds of φ(x, t) can be derived directly. Then one can derive

the bounds of ρ(x, t) and overcome the most important step in the global a priori estimates.

However, the form η(ρ) = ρα considered in this paper can only supply the estimate∫ 1

0

ρα−1 <∞,

which is not enough to get the bounds of φ(x, t). This is the main difficulty encountered in this

paper, and is also the reason that we need the hypothesis 0 < α < 1
4 . It is evident that this

difficulty comes from the coupling of the NS equations and AC equations, and indicates that

the phase variable does influence the range of α. We can see that the lower bound of ρ(x, t)

and the bounds of φ(x, t) are obtained simultaneously (Lemma 2.4).

In addition, if one can obtain the bounds on φ(x, t) before estimating the lower bound of

ρ(x, t), the range of α can be released to 0 < α < 1
3 .

Remark 1.2 Observing the relations of u(x, t) and φ(x, t) in the equations (1.5), the

global a priori estimates and the proof of the uniqueness, we see that the regularity of φ(x, t)

is always one order higher than u(x, t). Thus we retain this character in the definition of the

Hi-solution, which is different from [32], and this leads to some difficulties in terms of the

induction. Fortunately, because ρ(x, t) satisfies the transport equation, we can improve its

regularity a little with the aid of the regularity of u(x, t) and solve the problem (Lemma 3.3

Step 3).

The local existence of unique solutions is known from the standard method, based on the

Schauder Fixed Point theorem via the operator defined by the linearization of the problem on

a small time interval, as in [9]. We omit the proof and just state the result here.

Lemma 1.1 Suppose that (A1) and (A2) hold. Then there exists a small time T∗ > 0

depending only on initial data such that problem (1.5)–(1.7) admits a unique H2-solution

(ρ, u, φ) on [0, 1]× [0, T∗].

The structure of the rest of this paper is as follows: in Section 2, the global existence

of unique H2-solutions to problem (1.5)–(1.7) will be proven by the method of extending the

local solutions with respect to time based on a priori estimates. In Section 3, we establish

higher-order estimates by mathematical induction, then obtain H2m(m ∈ N)-solutions and

C∞-solutions.

2 Proof of Theorem 1.1

In this section, we will provide some a priori estimates of the H2-solutions to (1.5)–(1.7),

which enables us to extend the local solution to a global one. First, we give the energy estimate.
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Lemma 2.1 For any 0 ≤ t ≤ T , we have the identity∫ 1

0

(
u2

2
+
ργ−1

γ − 1
+
ρφ2x

2
+

(φ2 − 1)2

4

)
(t) +

∫ t

0

∫ 1

0

(
ρα+1u2x + ρφ2t

)
= E0, (2.1)

where

E0 =

∫ 1

0

(
u20
2

+
ργ−10

γ − 1
+
ρ0φ

2
0x

2
+

(φ20 − 1)2

4

)
.

Proof This estimate can be proven by multiplying (1.5)2 by u and multiplying (1.5)3 by
1
ρ (ρφx − (φ3 − φ)). �

Next, we get the upper bound of the density ρ.

Lemma 2.2 For any (x, t) ∈ [0, 1]× [0, T ], it holds that

ρ(x, t) ≤ C. (2.2)

Proof Rewriting (1.5)1 as (ρα)t = −αρα+1ux then integrating over [0, t] yields that

ρα(x, t) = −α
∫ t

0

ρα+1ux(x, s)ds+ ρα0 (x). (2.3)

On the other hand, integrating (1.5)2 over [x, 1], we get that

ρα+1ux(x, t) = − d

dt

∫ 1

x

u(ξ, t)dξ + ργ(x, t) +
1

2
ρ2φ2x(x, t). (2.4)

Substituting (2.4) into (2.3) gives that

ρα(x, t) + α

∫ t

0

ργ(x, s)ds+
α

2

∫ t

0

ρ2φ2x(x, s)ds

= α

∫ 1

x

[u(ξ, t)dξ − u0(ξ)] dξ + ρα0 (x) ≤ C‖u‖2L2 + C ≤ C.

From the nonnegativity of α, we obtain (2.2). This completes the proof of Lemma 2.2. �

Lemma 2.3 For any 0 ≤ t ≤ T , there exists a constant C > 0 such that∫ 1

0

ρα−1 ≤ C. (2.5)

Proof From equation (1.5)1 and the Cauchy inequality, we have that

d

dt

∫ 1

0

ρα−1dx = (α− 1)

∫ 1

0

ρα−2ρtdx = (1− α)

∫ 1

0

ραuxdx

≤ C
∫ 1

0

ρα−1dx+ C

∫ 1

0

ρα+1u2xdx.

Then, by using Grönwall’s inequality and (2.1), we arrive at (2.5). �

In what follows, we deal with the lower bound of ρ and the bounds of φ. This is the key

lemma of this section.

Lemma 2.4 It holds that

|φ(x, t)| ≤ C, ρ(x, t) ≥ C(T ), (x, t) ∈ [0, 1]× [0, T ], (2.6)∫ 1

0

ρ2x(t) ≤ C, t ∈ [0, T ]. (2.7)
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Proof Differentiating (2.3) respect to x and using (2.4), we have that

(ρα)xt = −α
(
ut + (ργ)x +

1

2
(ρ2φ2x)x

)
. (2.8)

Multiplying (2.8) by (ρα)x and integrating over [0, 1], we have that

α2

2

d

dt

∫ 1

0

ρ2α−2ρ2x + α2γ

∫ 1

0

ργ+α−2ρ2x

=− α d

dt

∫ 1

0

u(ρα)x + α

∫ 1

0

u(ρα)xt −
α

2

∫ 1

0

(ρ2φ2x)x(ρα)x.

Inserting (2.8) into the above equation again, using (2.1) and (2.2), and noting that α ≤ γ, we

get that

α2

2

d

dt

∫ 1

0

ρ2α−2ρ2x + α2γ

∫ 1

0

ργ+α−2ρ2x + α
d

dt

∫ 1

0

u(ρα)x +
α2

2

d

dt

∫ 1

0

u2

=− α2γ

∫ 1

0

ργ−1ρxu− α2

∫ 1

0

ρφx(ρφx)xu− α
∫ 1

0

ρφx(ρφx)x(ρα)x

≤ C

∫ 1

0

ρ2α−2ρ2x + C

∫ 1

0

ρ2(γ−α)u2 + C

∫ 1

0

|(ρφx)x|2 + C‖ρφx‖2L∞
(∫ 1

0

u2 +

∫ 1

0

ρ2α−2ρ2x

)
≤ C

(
‖ρφx‖2L∞ + 1

) ∫ 1

0

ρ2α−2ρ2x + C

∫ 1

0

|(ρφx)x|
2

+ ‖ρφx‖2L∞ + C.

Integrating the above equation over (0, t) yields that

α2

2

∫ 1

0

ρ2α−2ρ2x + α2γ

∫ t

0

∫ 1

0

ργ+α−2ρ2x +
α2

2

∫ 1

0

u2

≤ α2

2

∫ 1

0

ρ2α−20 ρ20x − α
∫ 1

0

u(ρα)x + α

∫ 1

0

u0(ρα0 )x +
α2

2

∫ 1

0

u20

+ C

∫ t

0

(
‖ρφx‖2L∞ + 1

) ∫ 1

0

ρ2α−2ρ2x + C

∫ t

0

∫ 1

0

|(ρφx)x|
2

+

∫ t

0

‖ρφx‖2L∞ + C.

By using Cauchy’s inequality, the assumptions on the initial data and (2.1), we arrive at

α2

4

∫ 1

0

ρ2α−2ρ2x + α2γ

∫ t

0

∫ 1

0

ργ+α−2ρ2x +
α2

2

∫ 1

0

u2

≤ C

∫ t

0

(
‖ρφx‖2L∞ + 1

) ∫ 1

0

ρ2α−2ρ2x + C

∫ t

0

∫ 1

0

|(ρφx)x|
2

+

∫ t

0

‖ρφx‖2L∞ + C. (2.9)

In what follows, we deal with the estimates
∫ t
0
‖ρφx‖2L∞ and

∫ t
0

∫ 1

0
|(ρφx)x|2. From the equation

(1.5)3 and boundary conditions (1.7), (2.1) and (2.2), we get that

‖ρφx‖2L∞ ≤ C
(∫ 1

0

|(ρφx)x|
)2

= C

(∫ 1

0

∣∣ρφt + (φ3 + φ)
∣∣)2

≤ C
∫ 1

0

ρφ2t +

(∫ 1

0

(|φ|3 + |φ|)
)2

≤ C
∫ 1

0

ρφ2t + C, (2.10)

which, together with (2.1), imply that∫ t

0

‖ρφx‖2L∞ ≤ C. (2.11)
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By using (2.1) and (2.5), for any (x, t) ∈ [0, 1]× [0, T ], it follows that

|φ(x, t)| ≤ C
∫ 1

0

(|φ|+ |φx|) ≤ C + C

(∫ 1

0

ρφ2x

)1/2(∫ 1

0

ρ−1
)1/2

≤ C + C

(
max
x∈[0,1]

ρ−α
∫ 1

0

ρα−1
)1/2

≤ C + C max
x∈[0,1]

ρ−α/2. (2.12)

Then, from (2.1) and (2.12), we get that∫ t

0

∫ 1

0

|(ρφx)x|2 ≤
∫ t

0

∫ 1

0

|ρφt + (φ3 − φ)|2

≤ C
∫ t

0

∫ 1

0

ρφ2t +

∫ t

0

max
x∈[0,1]

φ2
∫ 1

0

(φ2 − 1)2

≤ C + C

∫ t

0

max
x∈[0,1]

ρ−α. (2.13)

For the inequality (2.9), by using Grönwall’s inequality, (2.11), (2.13) and the positivity of α,

we obtain that ∫ 1

0

ρ2α−2ρ2x ≤ C
∫ t

0

max
x∈[0,1]

ρ−α + C. (2.14)

By the mean value theorem, (2.5) and (2.14), for any (x, t) ∈ [0, 1]× [0, T ], we find that

ρα−1(x, t) ≤ C + C

∫ 1

0

|ρα−2ρx| ≤ C + C

(∫ 1

0

ρ2α−2ρ2x

)1/2(∫ 1

0

ρ−2
)1/2

≤ C + C

(∫ t

0

max
x∈[0,1]

ρ−α + 1

)1/2

max
x∈[0,1]

ρ−
α+1
2

≤ C + C max
[0,1]×[0,t]

ρ−( 1
2+α)

≤ 1

2
max

[0,1]×[0,t]
ρα−1 + C,

where we have used the fact that 0 < α < 1
4 . This implies that

ρ(x, t) ≥ C−1, (x, t) ∈ [0, 1]× [0, T ]. (2.15)

Inserting (2.15) back into (2.12) and (2.14), we have that

|φ(x, t)| ≤ C,
∫ 1

0

ρ2x ≤ C.

This completes the proof of Lemma 2.4. �

The rest lemmas are about higher order estimates for (ρ, u, φ).

Lemma 2.5 For any 0 ≤ t ≤ T , the following inequality holds:∫ 1

0

(φ2t + φ2xx)(t) +

∫ t

0

∫ 1

0

φ2xt ≤ C. (2.16)

Proof Differentiating (1.5)3 with respect to t, multiplying the result by φt, then inte-

grating with respect to x over [0, 1] and using(1.5)1 and (2.10), we have that

1

2

d

dt

∫ 1

0

ρφ2t +

∫ 1

0

ρφ2xt =
1

2

∫ 1

0

ρ2uxφ
2
t +

∫ 1

0

ρ2uxφxφxt −
∫ 1

0

(3φ2 − 1)φ2t
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≤ C
∥∥∥ρα+1

2 ux

∥∥∥
L2
‖φt‖L∞ ‖

√
ρφt‖L2 + C

∥∥∥ρα+1
2 ux

∥∥∥
L2
‖ρφx‖L∞ ‖

√
ρφxt‖L2

+ C‖3φ2 − 1‖L∞‖
√
ρφt‖2L2

≤ C
∥∥∥ρα+1

2 ux

∥∥∥
L2

(
‖√ρφt‖L2 + ‖√ρφxt‖L2

)
‖√ρφt‖L2

+ C
∥∥∥ρα+1

2 ux

∥∥∥
L2

(
‖√ρφt‖L2 + 1

)
‖√ρφxt‖L2 + C ‖√ρφt‖2L2

≤ 1

2

∫ 1

0

ρφ2xt + C

(∫ 1

0

ρα+1u2x + 1

)∫ 1

0

ρφ2t + C

∫ 1

0

ρα+1u2x.

By using Grönwall’s inequality, (2.1) and (2.6), we arrive at∫ 1

0

φ2t (t) +

∫ t

0

∫ 1

0

φ2xt ≤ C.

Recalling (1.5)3, we can derive (2.16) directly. The proof of the lemma is complete. �

Lemma 2.6 For any 0 ≤ t ≤ T , it holds that∫ 1

0

(u2t + u2xx + ρ2t + ρ2xt)(t) +

∫ t

0

∫ 1

0

(u2xt + ρ2tt) ≤ C. (2.17)

Proof Differentiating (1.5)2 wtih respect to t and multiplying the result by ut, then

integrating over [0, 1], we have that

1

2

d

dt

∫ 1

0

u2t +

∫ 1

0

ρα+1u2xt

=− γ
∫ 1

0

ργ+1uxuxt + (α+ 1)

∫ 1

0

ρα+2u2xuxt −
∫ 1

0

ρ3φ2xuxuxt +

∫ 1

0

ρ2φxφxtuxt

≤ 1

2

∫ 1

0

ρα+1u2xt + C

∫ 1

0

ρα+1u2x

∫ 1

0

u2t + C

∫ 1

0

ρα+1u2x + C

∫ 1

0

φ2xt.

Applying Grönwall’s inequality, by (2.1), (2.15) and (2.16), we get that∫ 1

0

u2t +

∫ t

0

∫ 1

0

u2xt ≤ C.

From (1.5)2, by using the above inequality and (2.1), (2.2), (2.7) and (2.16), we have that∥∥ρα+1uxx
∥∥
L2 ≤ ‖ut‖L2 + ‖(ργ)x‖L2 +

1

2

∥∥(ρ2φ2x)x∥∥L2 +
∥∥(ρα+1

)
x
ux
∥∥
L2

≤ ‖ut‖L2 + C ‖ρx‖L2 + ‖ρφx‖L∞‖(ρφx)x‖L2 + C‖ux‖L∞ ‖ρx‖L2

≤ 1

2

∥∥ρα+1uxx
∥∥
L2 + C.

Moreover, by using equation (1.5)1, we get that

ρt = −ρ2ux, ρxt = −ρ2uxx − 2ρρxux,

ρtt = −ρ2uxt − 2ρρtux = −ρ2uxt + 2ρ3u2x.

It is easy to prove that (2.17) holds. �

Lemma 2.7 For any 0 ≤ t ≤ T , it holds that∫ 1

0

ρ2xx(t) +

∫ t

0

∫ 1

0

(φ2xxx + u2xxx) ≤ C. (2.18)
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Proof From (1.5)1, we see that

(ρα)t = −αρα+1ux.

Differentiating the above equation with respect to x twice, multiplying the result by (ρα)xx,

then integrating over [0, 1], we have that

1

2

d

dt

∫ 1

0

|(ρα)xx|2 ≤ C
∫ 1

0

|(ρα)xx|2 + C

∫ 1

0

∣∣(ρα+1ux)xx
∣∣2

≤ C
∫ 1

0

|(ρα)xx|2 + C

(∫ 1

0

|(ργ)xx|2 +

∫ 1

0

u2xt +

∫ 1

0

∣∣(ρ2φ2x)xx
∣∣2) , (2.19)

where we have used equation (1.5)2. Also, it holds that∫ 1

0

|(ργ)xx|2 =

∫ 1

0

∣∣∣γ
α

(ργ−α(ρα)x)x

∣∣∣2 ≤ ∫ 1

0

∣∣∣γ
α

(ργ−α)x(ρα)x

∣∣∣2 +

∫ 1

0

∣∣∣γ
α
ργ−α(ρα)xx

∣∣∣2
≤ C ‖(ρα)x‖2L∞

∫ 1

0

|(ρα)x|2 + C

∫ 1

0

|(ρα)xx|2

≤ C
∫ 1

0

|(ρα)xx|2 + C, (2.20)∫ 1

0

∣∣(ρ2φ2x)xx
∣∣2 ≤ C ∫ 1

0

|(ρφx)x|4 +

∫ 1

0

|ρφx|2 |(ρφx)xx|2

≤ C
∫ 1

0

∣∣ρφt + (φ3 − φ)
∣∣4 + ‖ρφx‖2L∞

∫ 1

0

∣∣ρφxt + ρxφt + (3φ2 − 1)φx
∣∣2

≤ C
∫ 1

0

φ2xt + C. (2.21)

Substituting (2.20) and (2.21) into inequality (2.19), we arrive at

d

dt

∫ 1

0

|(ρα)xx|2 ≤ C
∫ 1

0

|(ρα)xx|2 + C

∫ 1

0

φ2xt + C

∫ 1

0

u2xt + C.

Applying Grönwall’s inequality, (2.16) and (2.17), we obtain that
∫ 1

0
|(ρα)xx|2 ≤ C. Moreover,

it follows from (1.5)2,3 that

ρφxxx = (ρφt)x + (φ3 − φ)x − ρxxφx − 2ρxφxx,

ρα+1uxxx = uxt + (ργ)xx +
1

2
(ρ2φ2x)xx − (ρα+1)xxux − 2(ρα+1)xuxx.

From this, we can derive (2.18). This completes the proof of Lemma 2.7. �

Lemma 2.8 For any 0 ≤ t ≤ T , it holds that∫ 1

0

(φ2xt + φ2xxx)(t) +

∫ t

0

∫ 1

0

(φ2tt + φ2xxt) ≤ C. (2.22)

Proof The equation(1.5)3 implies that

φt = φxx +
1

ρ
ρxφx −

1

ρ
(φ3 − φ).

Differentiating the above equation with respect to t, multiplying the result by φtt and integrating

over [0, 1] yields that

1

2

d

dt

∫ 1

0

φ2xt +

∫ 1

0

φ2tt =

∫ 1

0

ρxuxφxφtt +

∫ 1

0

1

ρ
ρxtφxφtt +

∫ 1

0

1

ρ
ρxφxtφtt
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−
∫ 1

0

ux(φ3 − φ)φtt −
∫ 1

0

1

ρ
(3φ2 − 1)φtφtt

≤ 1

2

∫ 1

0

φ2tt + C ‖φx‖2L∞ ‖ux‖
2
L∞ ‖ρx‖

2
L2 + C ‖φx‖2L∞ ‖ρxt‖

2
L2

+ C ‖ρx‖2L∞
∫ 1

0

φ2xt + C ‖ux‖2L2 + C ‖φt‖2L2

≤ 1

2

∫ 1

0

φ2tt + C

∫ 1

0

φ2xt + C.

By using Grönwall’s inequality, we get that∫ 1

0

φ2xt(t) +

∫ t

0

∫ 1

0

φ2tt ≤ C.

This, together with (1.5)3, yields (2.22). The proof of Lemma 2.8 is complete. �

Proof of Theorem 1.1 Based on the local existence Lemma 1.1 and Lemmas 2.1 to 2.8,

we can finish the proof the existence of the H2-solutions to problem (1.5)–(1.7) by standard

procedure. It remains for us to prove the uniqueness of the solution.

Let (ρi, ui, φi) (i = 1, 2) be two H2-solutions to problem (1.5)–(1.7). For convenience, we

set that vi(x, t) = 1
ρi(x,t)

(i = 1, 2). From (1.5)2, we get

(u1 − u2)t + (ργ1 − ρ
γ
2)x = (ρα+1

1 u1x − ρα+1
2 u2x)x −

1

2

(
ρ21φ

2
1x − ρ22φ22x

)
x
.

Multiplying the above equation by u1−u2, integrating by parts, using the boundary conditions

(1.7) and noticing that ρα+1
i ∂xui = − 1

α∂tρ
α
i , ∂xui = ∂tvi (i = 1, 2), we find that

1

2

d

dt

∫ 1

0

(u1 − u2)2 =

∫ 1

0

(v−γ1 − v−γ2 )(v1 − v2)t −
∫ 1

0

ρα+1
1 (u1x − u2x)2

−
∫ 1

0

(
v
−(α+1)
1 − v−(α+1)

2

)
u2x(u1x − u2x)

+
1

2

∫ 1

0

ρ21(φ1x − φ2x)(φ1x + φ2x)(u1x − u2x)

+
1

2

∫ 1

0

(v−21 − v
−2
2 )φ22x(u1x − u2x)

≤− d

dt

∫ 1

0

a(x, t)(v1 − v2)2 +

∫ 1

0

at(x, t)(v1 − v2)2

− C0

∫ 1

0

(u1x − u2x)2 + C

∫ 1

0

u22x(v1 − v2)2

+ C

∫ 1

0

(φ21x + φ22x)(φ1x − φ2x)2 + C

∫ 1

0

φ42x(v1 − v2)2, (2.23)

where C0 and C are positive constants depending only on the upper and lower bounds of ρ1

and ρ2, and where a(x, t) is defined as

a(x, t) :=
γ

2

∫ 1

0

(v2 + τ(v1 − v2))−(γ+1)dτ,

which has a positive lower bound on [0, 1]× [0, T ]. Since

|at(x, t)| ≤ C (|v2t|+ |v1t − v2t|) ,
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we have that∫ 1

0

at(x, t)(v1 − v2)2 ≤ C0

2

∫ 1

0

(v1t − v2t)2 + C

∫ 1

0

(1 + |v2t|)(v1 − v2)2.

Hence, from (2.23), we get that

1

2

∫ 1

0

(u1 − u2)2 +

∫ 1

0

a(x, t)(v1 − v2)2 +
C0

2

∫ t

0

∫ 1

0

(u1x − u2x)2

≤ C

∫ t

0

∫ 1

0

(
1 + |u2x|2 + |φ2x|4

)
(v1 − v2)2 + C

∫ t

0

∫ 1

0

(
|φ1x|2 + |φ2x|2

)
(φ1x − φ2x)2. (2.24)

On the other hand, from (1.5)3, we can deduce that

(φ1 − φ2)t − (φ1 − φ2)xx = (ρ1xv1φ1x − ρ2xv2φ2x)− (v1φ
3
1 − v2φ32) + (v1φ1 − v2φ2).

Multiplying the above equation by φ1 − φ2, integrating over [0, 1], and integrating by parts,

yields that

1

2

d

dt

∫ 1

0

(φ1 − φ2)2 +

∫ 1

0

(φ1x − φ2x)2

=

∫ 1

0

ρ1xv1(φ1x − φ2x)(φ1 − φ2) +

∫ 1

0

ρ1x(v1 − v2)φ2x(φ1 − φ2)

−
∫ 1

0

(v−11 − v
−1
2 )v2φ2x(φ1x − φ2x)−

∫ 1

0

(v−11 − v
−1
2 )v2xφ2x(φ1 − φ2)

−
∫ 1

0

(v−11 − v
−1
2 )v2φ2xx(φ1 − φ2)−

∫ 1

0

v1
(
φ31 − φ32

)
(φ1 − φ2)

−
∫ 1

0

(v1 − v2)φ32(φ1 − φ2) +

∫ 1

0

v1(φ1 − φ2)2 +

∫ 1

0

(v1 − v2)φ2(φ1 − φ2)

≤ 1

2

∫ 1

0

(φ1x − φ2x)2 + C

∫ 1

0

(
|ρ1x|2 + |φ2xx|2 + 1

)
(φ1 − φ2)2

+ C

∫ 1

0

(
|φ2x|2 + |ρ2x|2 + 1

)
(v1 − v2)2.

From this, we have that∫ 1

0

(φ1 − φ2)2 +

∫ t

0

∫ 1

0

(φ1x − φ2x)2

≤ C

∫ t

0

∫ 1

0

(
|ρ1x|2 + |φ2xx|2 + 1

)
(φ1 − φ2)2 + C

∫ t

0

∫ 1

0

(
|φ2x|2 + |ρ2x|2 + 1

)
(v1 − v2)2.

(2.25)

Noticing that ‖φix‖L∞ ≤ C (i = 1, 2) and that a(x, t) ≥ C > 0, combining (2.24) and (2.25)

together, it holds that∫ 1

0

[
(v1 − v2)2 + (u1 − u2)2 + (φ1 − φ2)2

]
≤ C

∫ t

0

∫ 1

0

(
|ρ1x|2 + |ρ2x|2 + |u2x|2 + |φ2x|4 + |φ22xx|+ 1

) [
(v1 − v2)2 + (φ1 − φ2)2

]
.

Since
∫ t
0
‖(ρ1x, ρ2x, u2x, φ2xx)‖2L∞ds ≤ C, applying Grönwall’s inequality yields that

v1(x, t) = v2(x, t), u1(x, t) = u2(x, t), φ1(x, t) = φ2(x, t), a.e. (x, t) ∈ [0, 1]× [0, T ].

The proof of uniqueness is complete. �
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3 Proof of Theorem 1.2 and Theorem 1.3

In this section, we will prove Theorems 1.2 and 1.3 by establishing some a priori estimates.

First, by virtue of the estimates in Section 2, we obtain the following lemma:

Lemma 3.1 For any 0 ≤ t ≤ T , the H2-solution (ρ, u, φ) to the problem (1.5)–(1.7)

satisfies that

0 < C(T )−1 ≤ ρ(x, t) ≤ C(T ), |φ(x, t)| ≤ 1, (x, t) ∈ [0, 1]× [0, T ],

‖ρt‖2H1 + ‖ρ‖2H2 + ‖ut‖2 + ‖u‖2H2 + ‖φt‖2H1 + ‖φ‖2H3

+

∫ t

0

(
‖ut‖2H1 + ‖u‖2H3 + ‖φt‖2H2 + ‖φtt‖2

)
dτ ≤ C2(T ).

As pointed out in [9], we can also obtain

Lemma 3.2 Under the conditions (A1) and (A3), there exists a unique H4-solution

(ρ, u, φ) to the problem (1.5)–(1.7) such that, for any 0 ≤ t ≤ T , it holds that

‖ρt‖2H2 + ‖ρtt‖2 + ‖ρ‖2H4 + ‖ut‖2H2 + ‖utt‖2 + ‖u‖2H4 + ‖φt‖2H3 + ‖φtt‖2H1 + ‖φ‖2H5

+

∫ t

0

(
‖ut‖2H3 + ‖utt‖2H1 + ‖u‖2H5 + ‖φt‖2H4 + ‖φtt‖2H2 + ‖φttt‖2

)
dτ ≤ C4(T ).

Next, we will prove the higher a priori estimates by induction. Here we use the notation

‖ · ‖ := ‖ · ‖L2([0,1]).

Lemma 3.3 Under conditions (A1) and (A4), there exists a unique global solution (ρ, u, φ)

to the problem (1.5)–(1.7) such that, for any 0 ≤ t ≤ T , it holds that

‖ρx2stm−s‖2+‖ux2stm−s‖2+‖φx2s+1tm−s‖2+

∫ t

0

(
‖ux2s+1tm−s‖2 + ‖φx2stm−s+1‖2

)
dτ ≤ C2m(T ),

(3.1)

where 0 ≤ s ≤ m.

Proof For m = 1, 2, (3.1) has been achieved in Lemmas 3.1 and 3.2. Now we suppose

that (3.1) is valid for all 1 ≤ m ≤M − 1, and we will prove that (3.1) is also valid for m = M .

Step 1 We prove that

‖utM ‖2 + ‖φxtM ‖2 +

∫ t

0

(
‖uxtM ‖2 + ‖φtM+1‖2

)
dτ ≤ C2M (T ). (3.2)

Taking the tM -order derivative to the equation (1.5)2, multiplying the result by utM , integrating

over [0, 1], then applying integration by parts and the Leibniz formula, we have that

1

2

d

dt
‖utM ‖2 =

∫ 1

0

(ργ)tM uxtM −
∫ 1

0

(
ρα+1ux

)
tM
uxtM +

1

2

∫ 1

0

(
ρ2φ2x

)
tM
uxtM

=

∫ 1

0

(ργ)tM uxtM −
∫ 1

0

ρα+1u2xtM −
∫ 1

0

(ρα+1)tMuxuxtM

−
∫ 1

0

M−1∑
k=1

CkM (ρα+1)tkuxtM−kuxtM +
1

2

∫ 1

0

(
ρ2φ2x

)
tM
uxtM

≤− 1

2

∫ 1

0

ρα+1u2xtM + C

∫ 1

0

(
ργ+1ux

)2
tM−1 + C‖ux‖2L∞

∫ 1

0

(ρα+2ux)2tM−1
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+ C

∫ 1

0

[M−1∑
k=1

CkM (ρα+1)tkuxtM−k
]2

+ C

∫ 1

0

(
ρ2φ2x

)2
tM
. (3.3)

By using the Leibniz formula, we calculate that∫ 1

0

(
ργ+1ux

)2
tM−1 =

∫ 1

0

[M−1∑
k=0

CkM−1(ργ+1)tkuxtM−k−1

]2
=

∫ 1

0

[
ργ+1uxtM−1 +

M−1∑
k=1

CkM−1(ργ+1)tkuxtM−k−1

]2
≤ C‖uxtM−1‖2 + C2(M−1)(T ). (3.4)

Similarly, it holds that ∫ 1

0

(ρα+2ux)2tM−1 ≤ C‖uxtM−1‖2 + C2(M−1)(T ).

Moreover, ∫ 1

0

(
ρ2φ2x

)2
tM

=

∫ 1

0

[ M∑
k=0

CkM (ρφx)tk(ρφx)tM−k
]2

=

∫ 1

0

[
2ρφx(ρφx)tM +

M−1∑
k=1

CkM (ρφx)tk(ρφx)tM−k
]2

≤ C2‖φxtM ‖2 + C‖uxtM−1‖2 + C2(M−1)(T ), (3.5)

where we have used that

‖ρtM ‖ = ‖(−ρ2ux)tM−1‖ ≤ C‖uxtM−1‖+ C2(M−1)(T ).

Substituting (3.4)–(3.5) into (3.3), we arrive at

d

dt
‖utM ‖2 + ‖uxtM ‖2 ≤ C2‖uxtM−1‖2 + C2‖φxtM ‖2 + C2(M−1)(T ). (3.6)

Taking the tM -order derivative to equation (1.5)3, multiplying the result by φtM+1 , inte-

grating over [0, 1], and applying Leibniz’s formula yields that

d

dt
‖φxtM ‖2 + ‖φtM+1‖2

≤
∫ 1

0

((ln ρ)xφx)
2
tM +

∫ 1

0

(1

ρ
(φ3 − φ)

)2
tM

=

∫ 1

0

[
(ln ρ)xφxtM + (ln ρ)xtMφx + CM−1M (ln ρ)xtM−1φxt +

M−2∑
k=1

CkM (ln ρ)xtkφxtM−k
]2

+

∫ 1

0

[1

ρ
(φ3 − φ)tM +

(1

ρ

)
tM

(φ3 − φ) +
M−1∑
k=1

CkM

(1

ρ

)
tk

(φ3 − φ)tM−k
]2

≤ C2‖φxtM ‖2 + C2‖ρxtM ‖2 + C2‖ρxtM−1‖2 + C‖φtM ‖2 + C‖ρtM ‖2 + C2(M−1)(T ). (3.7)

From equation (1.5)1,2 and the Leibniz formula, we calculate that

‖ρxtM−1‖ =
∥∥−(ρ2ux)xtM−2

∥∥ ≤ C2 ‖ρxtM−2‖+ C ‖ux2tM−2‖+ C2(M−1)(T )

≤ C2

(
‖ρtM−2‖1/2 ‖ρx2tM−2‖1/2 + ‖ρtM−2‖

)
+ C2(M−1)(T )
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≤ C2(M−1)(T ), (3.8)

‖ρxtM ‖ =
∥∥−(ρ2ux)xtM−1

∥∥ ≤ C2 ‖uxtM−1‖+ C ‖ux2tM−1‖+ C2(M−1)(T ), (3.9)

where we have used the Gagliardo-Nirenberg inequality. Now we estimate ‖ux2tM−1‖. Rewrite

equation (1.5)2 as

uxx = ρ−(α+1)ut + ρ−(α+1)(ργ)x − (α+ 1)ρ−1ρxux + ρ−αφx(ρφx)x. (3.10)

Then we have

‖ux2tM−1‖ ≤ C‖utM ‖+ C‖uxtM−1‖+ C‖φx2tM−1‖+ C2(M−1)(T ). (3.11)

From (3.8), (3.9) and (3.11), inequality (3.7) becomes

d

dt
‖φxtM ‖2 + ‖φtM+1‖2

≤ C2‖φxtM ‖2 + C‖utM ‖2 + C2‖uxtM−1‖2 + C‖φx2tM−1‖2 + C‖φtM ‖2 + C2(M−1)(T ). (3.12)

Adding (3.6) and (3.12) together yields that

d

dt

(
‖utM ‖2 + ‖φxtM ‖2

)
+ ‖uxtM ‖2 + ‖φtM+1‖2

≤ C2

(
‖utM ‖2 + ‖φxtM ‖2

)
+ C2

(
‖uxtM−1‖2 + ‖φx2tM−1‖2 + ‖φtM ‖2

)
+ C2(M−1)(T ).

Applying Grönwall’s inequality, we obtain that

‖utM ‖2 + ‖φxtM ‖2 +

∫ t

0

(
‖uxtM ‖2 + ‖φtM+1‖2

)
dτ

≤ C2(‖utM (0)‖2 + ‖φxtM (0)‖2) + C2(M−1)(T ). (3.13)

In what follows, we will handle ‖utM (0)‖ and ‖φxtM (0)‖. First, taking x2M−2-order deriva-

tive to equation (1.5)2 gives that

‖utx2M−2‖ =

∥∥∥∥−(ργ)x2M−1 + (ρα+1ux)x2M−1 − 1

2
(ρ2φ2x)x2M−1

∥∥∥∥
≤ C (‖ρ‖H2M−1 + ‖u‖H2M + ‖φ‖H2M ) .

Next, rewrite the equation (1.5)3 as

φt = φxx + (ln ρ)xφx −
1

ρ
(φ3 − φ). (3.14)

Taking the x2M−1-order derivative to equation (3.14), we get that

‖φtx2M−1‖ =

∥∥∥∥φx2M+1 + ((ln ρ)xφx)x2M−1 −
(1

ρ
(φ3 − φ)

)
x2M−1

∥∥∥∥
≤ C (‖φ‖H2M+1 + ‖ρ‖H2m) .

Then taking the tx2M−4-order derivative to equation (1.5)2, it holds that

‖ut2x2M−4‖ =

∥∥∥∥−(ργ)tx2M−3 + (ρα+1ux)tx2M−3 − 1

2
(ρ2φ2x)tx2M−3

∥∥∥∥
≤ C‖(ργ+1ux)x2M−3‖+ C‖utx2M−2‖+ C‖φtx2M−2‖+ C

≤ C (‖ρ‖H2M + ‖u‖H2M + ‖φ‖H2M ) .
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Taking the tx2M−3-order derivative to equation (3.14), we have that

‖φt2x2M−3‖ =
∥∥∥φtx2M−1 + ((ln ρ)xφx)tx2M−3 −

(1

ρ
(φ3 − φ)

)
tx2M−3

∥∥∥
≤ C‖φtx2M−1‖+ C‖φtx2M−2‖+ C‖(ρ2ux)x2M−2‖+ C

≤ C (‖ρ‖H2M + ‖u‖H2M + ‖φ‖H2M+1) .

Applying the same method M − 1 times and recalling the assumption (A4), we conclude that

‖utM (0)‖+ ‖φxtM (0)‖ ≤ C2M (T ).

From this and (3.13), we obtain that

‖utM ‖2 + ‖φxtM ‖2 +

∫ t

0

(
‖uxtM ‖2 + ‖φtM+1‖2

)
dτ ≤ C2M (T ).

Step 2 We prove

‖ux2stM−s‖+ ‖φx2s+1tM−s‖ ≤ C2M (T ), 0 ≤ s ≤M. (3.15)

Taking the tM−1-order derivative to equation (1.5)2, it holds that

utM + (γργ−1ρx)tM−1 =
(
(ρα+1)xux + ρα+1uxx

)
tM−1 − (ρφx(ρφx)x)tM−1 .

Applying Leibniz’s formula, we get that

u2x2tM−1 = ρ−2(α+1)

[
utM + γ

M−1∑
k=0

CkM−1(ργ−1)tkρxtM−1−k −
M−1∑
k=0

CkM−1(ρα+1)xtkuxtM−1−k

−
M−1∑
k=1

CkM−1(ρα+1)tkux2tM−1−k +

M−1∑
k=0

CkM−1(ρφx)tk(ρφx)xtM−1−k

]2
.

Integrating the above equality over [0, 1], using (3.2), (3.8) and applying the Gagliardo-Nirenberg

inequality yields that

‖ux2tM−1‖ ≤ C (‖utM ‖+ ‖uxtM−1‖+ ‖φx2tM−1‖) + C2(M−1)(T )

≤ ε‖ux2tM−1‖+ ε‖φx3tM−1‖+ C2M (T ). (3.16)

Taking the xtM−1-order derivative to (3.14), we have that

‖φx3tM−1‖ =
∥∥∥φxtM − ((ln ρ)xφx)xtM−1 +

(1

ρ
(φ3 − φ)

)
xtM−1

∥∥∥
≤ ‖φxtM ‖+ C‖ρx2tM−1‖+ C‖φx2tM−1‖+ C2(M−1)(T )

≤ ‖φxtM ‖+ C‖ρx2tM−1‖+ ε‖φx3tM−1‖+ C2(M−1)(T ). (3.17)

Moreover, by (1.5)1, we deduce that

‖ρx2tM−1‖ =
∥∥−(ρ2ux)x2tM−2

∥∥ ≤ C ‖ux3tM−2‖+ C2(M−1)(T ). (3.18)

Recalling (3.10) and applying the Gagliardo-Nirenberg inequality, it holds that

‖ux3tM−2‖ ≤ C‖uxtM−1‖+ C‖ρx2tM−2‖+ C‖φx3tM−2‖+ C2(M−1)(T )

≤ ε‖ux2tM−1‖+ C2(M−1)(T ). (3.19)

Substituting (3.18) and (3.19) into (3.17) gives that

‖φx3tM−1‖ ≤ ε‖ux2tM−1‖+ ε‖φx3tM−1‖+ C2M (T ). (3.20)
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Adding (3.16) and (3.20) together and choosing ε small enough, we arrive at

‖ux2tM−1‖+ ‖φx3tM−1‖ ≤ C2M (T ).

Using the same method s times, we conclude that

‖ux2stM−s‖+ ‖φx2s+1tM−s‖ ≤ C2M (T ).

Step 3 We prove that

‖ρx2stM−s‖2 +

∫ t

0

(
‖ux2s+1tM−s‖2 + ‖φx2stM−s+1‖2

)
dτ ≤ C2M (T ), 0 ≤ s ≤M. (3.21)

Taking the x2M−1-order derivative to (1.5)1 yields that

ρtx2M−1 = −(ρ2ux)x2M−1 .

Multiplying this by ρx2M−1 , integrating over [0, 1] and using Leibniz’s formula, we have that

1

2

d

dt
‖ρx2M−1‖2 = ‖ − (ρ2ux)x2M−1ρx2M−1‖

=
∥∥∥ρ2ux2Mρx2M−1 +ux

(
ρ2
)
x2M−1 ρx2M−1 +

2M−2∑
k=1

Ck2M−1
(
ρ2
)
xk
ux2M−kρx2M−1

∥∥∥
≤ C2‖ρx2M−1‖2 + C2M (T ).

Then Grönwall’s inequality and (A5) imply that

‖ρx2M−1‖ ≤ C2M (T ).

Using equation (1.5)1 and (3.15) gives that

‖ρtx2M−1‖ = ‖ − (ρ2ux)x2M−1‖ ≤ C‖ρx2M−1‖+ C‖ux2M ‖ ≤ C2M (T ). (3.22)

Then it follows that

‖ρtx2M−2‖ ≤ C2M (T ).

From this and (1.5)1 we derive that

‖ρt2x2M−4‖ = ‖ − (ρ2ux)tx2M−4‖ ≤ C‖ρtx2M−4‖+ ‖utx2M−3‖ ≤ C2M (T ),

‖ρt3x2M−6‖ = ‖ − (ρ2ux)t2x2M−6‖ ≤ C‖ρt2x2M−6‖+ ‖ut2x2M−5‖ ≤ C2M (T ).

Applying the same procedure s times, we conclude that

‖ρx2stM−s‖ ≤ C2M (T ), 0 ≤ s ≤M − 1. (3.23)

In fact, from (3.22), by a similar procedure, we can also obtain that

‖ρx2s+1tM−s‖ ≤ C2M (T ), 0 ≤ s ≤M − 1. (3.24)

Taking the xtM−1-order derivative to equation (3.14) and using (3.23), we have that

‖φx3tM−1‖ =
∥∥∥φxtM + ((ln ρ)xφx)xtM−1 +

(1

ρ
(φ3 − φ)

)
xtM−1

∥∥∥
≤ ‖φxtM ‖+ C‖ρx2tM−1‖+ C‖φx2tM−1‖+ C2(M−1)(T )

≤ C2M (T ).
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Taking the xtM−1-order derivative to equation (1.5)2 yields that

uxtM + (ργ)x2tM−1 = (ρα+1ux)x2tM−1 − 1

2
(ρ2φ2x)x2tM−1 .

From this, along with (3.2), (3.15) and (3.23), we have that∫ t

0

‖ux3tM−1‖2dτ ≤ C
∫ t

0

‖uxtM ‖2dτ + ‖ρx2tM−1‖2 + ‖φx3tM−1‖2 + C2(M−1)(T )

≤ C2M (T ).

Taking the tM -order derivative to equation (3.14) and using (3.2), (3.15) and (3.24), we have

that ∫ t

0

‖φx2tM ‖2dτ =

∫ t

0

∥∥∥φtM+1 − ((ln ρ)xφx)tM −
(1

ρ
(φ3 − φ)

)
tM

∥∥∥2dτ

≤ C
∫ t

0

‖φtM+1‖2dτ + C‖ρxtM ‖2 + C‖φxtM ‖2 + C2(M−1)(T )

≤ C2M (T ).

Applying a similar procedure s times, we conclude that∫ t

0

(
‖ux2s+1tM−s‖2 + ‖φx2stM−s+1‖2

)
dτ ≤ C2M (T ), 0 ≤ s ≤M − 1. (3.25)

Finally, we deal with the case s = M . Multiplying (1.5)1 by ρx2M , integrating over [0, 1]

and using Leibniz’s formula yields that

1

2

d

dt
‖ρx2M ‖2 = ‖ − (ρ2ux)x2Mρx2M ‖

=
∥∥∥ρ2ux2M+1ρx2M + ux

(
ρ2
)
x2M ρx2M +

2M−1∑
k=1

Ck2M
(
ρ2
)
xk
ux2M−k+1ρx2M

∥∥∥
≤ C2‖ρx2M ‖2 + C‖ux2M+1‖2 + C2M (T ). (3.26)

Taking the x2M−1-order derivative to equation (1.5)2 and using (3.15) yields that

‖ux2M+1‖ ≤ C‖ux2M−1t‖+ C2‖ρx2M ‖+ C‖φx2M+1‖+ C2(M−1)(T )

≤ C‖ux2M−1t‖+ C2‖ρx2M ‖+ C2M (T ). (3.27)

Inserting (3.27) into (3.26) yields that

1

2

d

dt
‖ρx2M ‖2 ≤ C2‖ρx2M ‖2 + C‖ux2M−1t‖2 + C2M (T ).

Then it follows from Grönwall’s inequality, (A5) and (3.25) that

‖ρx2M ‖ ≤ C2M (T ). (3.28)

Substituting (3.28) back into (3.27), integrating over [0, t] and using (3.25), we obtain that∫ t

0

‖ux2M+1‖dτ ≤ C
∫ t

0

‖ux2M−1t‖dτ + C2‖ρx2M ‖+ C2M (T ) ≤ C2M (T ). (3.29)

Finally, taking the x2M−2t-order derivative to equation (3.14) and using (3.15), (3.24) and

(3.25) yields that∫ t

0

‖φx2M t‖2dτ =

∫ t

0

∥∥∥φx2M−2t2 − ((ln ρ)xφx)x2M−2t −
(1

ρ
(φ3 − φ)

)
x2M−2t

∥∥∥2dτ
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≤ C
∫ t

0

‖φx2M−2t2‖2dτ + C‖ρx2M−1t‖2 + C‖φx2M−1t‖2 + C2(M−1)(T )

≤ C2M (T ).

This together with (3.23), (3.25), (3.28) and (3.29), implies (3.21).

Collecting together (3.15) and (3.21) finishes the proof of Lemma 3.3. �

Noticing that equation (1.5)1 can be written as ( 1
ρ )t = ux, with the aid of (3.21), it is easy

to obtain the following estimate:

Lemma 3.4 Under conditions (A1) and (A4), there exists a unique global solution (ρ, u, φ)

to problem (1.5)–(1.7) such that, for any 0 ≤ t ≤ T , it holds that∫ t

0

‖ρx2stM+1−s‖2dτ ≤ C2M (T ), 0 ≤ s ≤M.

Proof of Theorem 1.2 Applying Lemmas 3.1–3.4 and the interpolation inequality

readily proves the theorem. �

Proof of Theorem 1.3 The embedding theorem easily proves the theorem. �
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