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Abstract In this note, we prove a logarithmic Sobolev inequality which holds for compact

submanifolds without a boundary in manifolds with asymptotically nonnegative sectional cur-

vature. Like the Michale-Simon Sobolev inequality, this inequality contains a term involving

the mean curvature.
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1 Introduction

The classical logarithmic Sobolev inequality, first proven by Gross [7], is a very useful tool in

analysis and geometric evolution problems (cf. [4, 8, 11]). In 2000, Ecker [6] gave a logarithmic

Sobolev inequality which holds for submanifolds in Euclidean space. In 2020, using the ABP

technique, Brendle [2] established a sharp logarithmic Sobolev inequality for submanifolds in

Euclidean space without a boundary. He [3] also gave several Sobolev inequalities for manifolds

with nonnegative curvature by using the same technique. Combining the method in [3] with

some comparison theorems, the authors of [5] proved some Sobolev inequalities for manifolds

with asymptotically nonnegative curvature. In 2021, Yi and Zheng [10] proved a logarithmic

Sobolev inequality for compact submanifolds without a boundary in manifolds with nonnegative

sectional curvature. In this paper, we generalize the results of [2, 10] to the case where the

ambient space has asymptotically nonnegative sectional curvature. This curvature notion was

first introduced by Abresch [1]. We will use some comparison results for these kinds of manifolds

in order to prove our results. Complete manifolds with asymptotically nonnegative sectional

curvature belong to the class of complete manifolds with radial sectional curvature bounded from
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below. Readers may find more general comparison results for manifolds with radial sectional

curvature bounded below in [9, 12].

In this section, we follow closely the exposition of [5]. Let λ(t) : [0,+∞) → [0,+∞) be a

nonnegative and nonincreasing continuous function satisfing that

b0 :=

∫ +∞

0

sλ(s)ds < +∞, (1.1)

which implies that

b1 :=

∫ +∞

0

λ(s)ds < +∞. (1.2)

Recall that a complete noncompact Riemannian manifold (M, g) of dimension n+ p is said to

have asymptotically nonnegative sectional curvature if there is a base point o ∈M such that

Secq ≥ −λ(d(o, q)), (1.3)

where d(o, q) is the distance function of M relative to o. In particular, if λ ≡ 0 in (1.3), then

this becomes the case treated in [10].

Let h(t) be the unique solution of{
h′′(t) = λ(t)h(t),

h(0) = 0, h′(0) = 1.
(1.4)

By ODE theory, the solution h(t) of (1.4) exists for all t ∈ [0,+∞). According to [9, Theorem

2.14], the function
|{q ∈M : d(o, q) < r}|

(n+ p)|Bn+p|
∫ r

0
hn+p−1(t)dt

is not increasing on [0,+∞), and thus we may introduce the asymptotic volume ratio of M by

θ := lim
r→+∞

|{q ∈M : d(o, q) < r}|
(n+ p)|Bn+p|

∫ r
0
hn+p−1(t)dt

, (1.5)

which satisfies that θ ≤ 1, by the volume comparison theorem. Moreover, we define a function

P : [0,+∞)→ (0, 1] as

P (t) := (4π)−
n+p

2

∫
Rn+p

e−
(|x|+t)2

4 dx = (4π)−
n+p

2 (n+ p)|Bn+p|
∫ ∞

0

τn+p−1e−
(τ+t)2

4 dτ. (1.6)

Obviously, P (0) = 1, and P (t) is a nonnegative decreasing function.

By combining the ABP-method in [2, 3, 10] with some comparison theorems, we obtain a

logarithmic Sobolev inequality which holds for submanifolds without a boundary in manifolds

with asymptotically nonnegative sectional curvature as follows:

Theorem 1.1 Let M be a complete noncompact (n+ p)-dimensional manifold of asymp-

totically nonnegative sectional curvature with respect to a base point o ∈ M . Let Σ be a

compact n-dimensional submanifold of M without a boundary, and let f be a positive smooth

function on Σ. Then∫
Σ

f
(

log f + n+ 4n2b21 +
n

2
log(4π) + (n+ p− 1) log(

1 + b0
e2r0b1+b0

) + log(θP (4nb1))
)

d vol

−
∫

Σ

|DΣf |2

f
d vol−

∫
Σ

f |H|2 d vol ≤
(∫

Σ

f d vol
)

log
(∫

Σ

f d vol
)
,

where r0 = max{d(o, x)|x ∈ Σ}, H is the mean curvature vector of Σ, θ is the asymptotic

volume ratio of M given by (1.5), b0 and b1 are defined as in (1.1) and (1.2).
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2 Preliminaries

In this section, we prove some lemmas for later use.

Lemma 2.1 Let h be defined by (1.4). Then we have that

lim
t→∞

h(tC)

h(t)
= C,

where C is a positive constant.

Proof It is easy to show that(∫ t

0

e
∫ s
0
τλ(τ)dτds

)′′
≥ λ(t)

∫ t

0

e
∫ s
0
τλ(τ)dτds.

By Lemma 2.1 of [9], we have that h(t) ≤
∫ t

0
e
∫ s
0
τλ(τ)dτds ≤ teb0 . This gives that

h′(t) = h′(0) +

∫ t

0

h′′(s)ds = 1 +

∫ t

0

λhds ≤ 1 + b0eb0 .

Since h′ is nondecreasing and bounded from above, we can find that

lim
t→∞

h′(tC)

h′(t)
= 1.

Thus,

lim
t→∞

h(tC)

h(t)
= lim
t→+∞

Ch′(tC)

h′(t)
= C.

�

Lemma 2.2 Let P be defined by (1.6). Then we have that

P (t)θ = lim
r→∞

(
(4π)−

n+p
2

1

rhn+p−1(r)

∫
M

e−
(
d(x,o)
r

+t)2

4 d vol(x)
)
,

where θ is the asymptotic volume ratio of M and o is the base point.

Proof By the definition of the asymptotic volume ratio in (1.5), we obtain that

θ = lim
r→∞

|{q ∈M : d(o, q) < r}|
(n+ p)|Bn+p|

∫ r
0
hn+p−1(t)dt

= lim
r→∞

ω(r)

(n+ p)|Bn+p|hn+p−1(r)
,

where ω(r) is the area of the sphere of radius r with respect to the base point o. Using Lemma

2.1, it follows that

lim
r→∞

(
(4π)−

n+p
2

1

rhn+p−1(r)

∫
M

e−
(
d(x,o)
r

+t)2

4 d vol(x)
)

= lim
r→∞

(4π)−
n+p

2

∫ +∞

0

ω(rτ)

hn+p−1(r)
e−

(τ+t)2

4 dτ

= lim
r→∞

(4π)−
n+p

2

∫ +∞

0

ω(rτ)

hn+p−1(rτ)

hn+p−1(rτ)

hn+p−1(r)
e−

(τ+t)2

4 dτ

= (4π)−
n+p

2 (n+ p)|Bn+p|θ
∫ +∞

0

τn+p−1e−
(τ+t)2

4 dτ = θP (t).

�

Lemma 2.3 Letting P be defined as in (1.6), we have that

P (t)θ = lim
r→∞

(
(4π)−

n+p
2

1

rhn+p−1(r)

∫
M

e−
(
dmax(x,Σ)

r
+t)2

4 d vol(x)
)
,
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where θ is the asymptotic volume ratio of M and dmax(x,Σ) = max{d(x, y)|y ∈ Σ}.
Proof Noting that r0 = max{d(y, o)|y ∈ Σ}, using the triangle inequality, we get that

|d(x, o)− r0| ≤ dmax(x,Σ) ≤ d(x, o) + r0.

Following the proof of Lemma 2.2, it is easy to show that

lim
r→∞

(
(4π)−

n+p
2

1

rhn+p−1(r)

∫
M

e−
(
dmax(x,Σ)

r
+t)2

4 d vol(x)
)

≥ lim
r→∞

(
(4π)−

n+p
2

1

rhn+p−1(r)

∫
M

e−
(
d(x,o)+r0

r
+t)2

4 d vol(x)
)

= (4π)−
n+p

2 (n+ p)|Bn+p|θ
∫ +∞

0

τn+p−1e−
(τ+t)2

4 dτ = θP (t).

On the other hand, we have that

lim
r→∞

(
(4π)−

n+p
2

1

rhn+p−1(r)

∫
M

e−
(
dmax(x,Σ)

r
+t)2

4 d vol(x)
)

≤ lim
r→∞

(
(4π)−

n+p
2

1

rhn+p−1(r)

∫
M

e−
(
|d(x,o)−r0|

r
+t)2

4 d vol(x)
)

= (4π)−
n+p

2 (n+ p)|Bn+p|θ
∫ +∞

0

τn+p−1e−
(τ+t)2

4 dτ = θP (t).

This completes the proof. �

3 Proof of Theorem 1.1

In this section, we assume that the ambient space M is a complete noncompact (n+p)-

dimensional Riemannian manifold of asymptotically nonnegative sectional curvature with re-

spect to a base point o ∈ M . Let Σ ⊂ M be a compact submanifold of dimension n without

a boundary, and let f be a positive smooth function on Σ. Let D̄ denote the Levi-Civita con-

nection of M and let DΣ denote the induced connection on Σ. The second fundamental form

B of Σ is given by

〈B(X,Y ), V 〉 = 〈D̄XY, V 〉,

where X,Y are the tangent vector fields on Σ, and V is a normal vector field along Σ. In

particular, the mean curvature vector H is defined as the trace of the second fundamental form

B.

We only need to show the proof of Theorem 1.1 in the case where Σ is connected. By

scaling, we may assume that∫
Σ

f log f d vol−
∫

Σ

|DΣf |2

f
d vol−

∫
Σ

f |H|2 d vol = 0. (3.1)

By the connectedness of Σ and (3.1), following the statement in [2], there exists a smooth

function u : Σ→ R such that

divΣ(fDΣu) = f log f − |D
Σf |2

f
− f |H|2.

For each r > 0, we denote by Ar the set of all points (x̄, ȳ) ∈ T⊥Σ satisfing that

ru(x) +
1

2
d(x, expx̄(rDΣu(x̄) + rȳ))2 ≥ ru(x̄) +

1

2
r2(|DΣu(x̄)|2 + |ȳ|2)
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for all x ∈ Σ. Define the transport map Φr : T⊥Σ→M by

Φr(x, y) = expx(rDΣu(x) + ry)

for all x ∈ Σ, y ∈ T⊥x Σ.

The proof of the next lemma is identical to the proof of Lemma 3.2 in [10], so we omit it

here.

Lemma 3.1 For each r > 0, we have that Φr(Ar)=M.

Similarly to the proof of (3.20) in [5], it is easy to get an estimate for the Jacobian deter-

minant of Φr, we omit the proof of the next Lemma.

Lemma 3.2 For each r > 0, the Jacobian determinant of Φr satisfies that

|det D̄Φr(x̄, ȳ)| ≤ (2b1

√
|DΣu(x̄)|2 + ȳ2 +

1

r
+

1

n
(∆Σu(x̄)−〈H(x̄), ȳ〉))nrn+pe(n+p−1)(2r0b1+b0)

for all (x̄, ȳ) ∈ Ar. Moreover, we have that

(2b1

√
|DΣu(x̄)|2 + ȳ2 +

1

r
+

1

n
(∆Σu(x̄)− 〈H(x̄), ȳ〉)) ≥ 0.

Lemma 3.3 For each r > 0, the Jacobian determinant of Φr satisfies that

0 ≤ e−
(
d(x̄,Φr(x̄,ȳ))

r
+4nb1)2

4 |det D̄Φr(x̄, ȳ)| ≤ e(n+p−1)(2r0b1+b0)rn+pf(x̄)e
n
r−n−4n2b21e−

|2H(x̄)+ȳ|2
4

for all (x̄, ȳ) ∈ Ar.
Proof Similarly to [3, 10], using the identity divΣ(fDΣu) = f log f − |D

Σf |2
f − f |H|2, we

obtain that

∆Σu(x̄)− 〈H(x̄), ȳ〉 ≤ log f(x̄) +
|DΣu(x̄)|2 + |ȳ|2

4
− |2H(x̄) + ȳ|2

4
.

Due to the definition of Ar, we conclude that

d(x̄,Φr(x̄, ȳ)) = r
√
|DΣu(x̄)|2 + ȳ2.

By Lemma 3.2 and the elementary inequality λ ≤ eλ−1, it follows that

|det D̄Φr(x̄, ȳ)|

≤ (2b1

√
|DΣu(x̄)|2 + ȳ2 +

1

r
+

1

n
(∆Σu(x̄)− 〈H(x̄), ȳ〉))nrn+pe(n+p−1)(2r0b1+b0)

≤ e(n+p−1)(2r0b1+b0)rn+pe
n
r +2nb1

√
|DΣu(x̄)|2+ȳ2+log f(x̄)+

|DΣu(x̄)|2+|ȳ|2
4 − |2H(x̄)+ȳ|2

4 −n

= e(n+p−1)(2r0b1+b0)rn+pf(x̄)e
n
r−n−4n2b21e−

|2H(x̄)+ȳ|2
4 e

(
√
|DΣu(x̄)|2+ȳ2+4nb1)2

4

= e(n+p−1)(2r0b1+b0)rn+pf(x̄)e
n
r−n−4n2b21e−

|2H(x̄)+ȳ|2
4 e

(
d(x̄,Φ(x̄,ȳ))

r
+4nb1)2

4 .

Dividing the above inequality by e−
(
d(x̄,Φr(x̄,ȳ))

r
+4nb1)2

4 completes the proof. �

Proof of Theorem 1.1 Let x = Φr(x̄, ȳ) for (x̄, ȳ) ∈ T⊥Σ. Using Lemma 3.3 and the

formula for the change of variables in multiple integrals, we find that∫
M

e−
(
dmax(x,Σ)

r
+4nb1)2

4 d vol(x)

≤
∫

Σ

(∫
T⊥x̄ Σ

e−
(
d(x̄,Φr(x̄,ȳ))

r
+4nb1)2

4 |det D̄Φr(x̄, ȳ)|1Ar (x̄, ȳ)dȳ
)

d vol(x̄)
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≤ e(n+p−1)(2r0b1+b0)rn+pe
n
r−n−4n2b21

∫
Σ

f(x̄)
(∫

T⊥x̄ Σ

e−
|2H(x̄)+ȳ|2

4

)
d vol(x̄)

= e(n+p−1)(2r0b1+b0)rn+pe
n
r−n−4n2b21(4π)

p
2

∫
Σ

f(x̄)d vol(x̄). (3.2)

Moreover, by (1.4), we obtain h(t) ≥ t and

lim
t→∞

h′(t) = 1 +

∫ ∞
0

h(s)λ(s)ds ≥ 1 +

∫ ∞
0

sλ(s)ds = 1 + b0.

Dividing (3.2) by rhn+p−1(r) and sending r → +∞, and using Lemma 2.3, we have that

(4π)
n+p

2 θP (4nb1) ≤
(e(2r0b1+b0)

1 + b0

)n+p−1

e−n−4n2b21(4π)
p
2

∫
Σ

f(x̄) d vol(x̄).

Thus,

n+ 4n2b21 +
n

2
log(4π) + (n+ p− 1) log(

1 + b0
e2r0b1+b0

) + log(θP (4nb1)) ≤ log
(∫

Σ

f d vol
)
.

Combining the above inequality with (3.1), we obtain that∫
Σ

f
(

log f + n+ 4n2b21 +
n

2
log(4π) + (n+ p− 1) log(

1 + b0
e2r0b1+b0

) + log(θP (4nb1))
)

d vol

−
∫

Σ

|DΣf |2

f
d vol−

∫
Σ

f |H|2 d vol ≤
(∫

Σ

f d vol
)

log
(∫

Σ

f d vol
)
.

This completes the proof of Theorem 1.1. �
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CRC Press, 2011

[12] Zhu S H. A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its

applications. Amer J Math, 1994, 116(3): 669–682


