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Abstract The fixed-time synchronization and preassigned-time synchronization are inves-

tigated for a class of quaternion-valued neural networks with time-varying delays and discon-

tinuous activation functions. Unlike previous efforts that employed separation analysis and

the real-valued control design, based on the quaternion-valued signum function and several

related properties, a direct analytical method is proposed here and the quaternion-valued

controllers are designed in order to discuss the fixed-time synchronization for the relevant

quaternion-valued neural networks. In addition, the preassigned-time synchronization is in-

vestigated based on a quaternion-valued control design, where the synchronization time is

preassigned and the control gains are finite. Compared with existing results, the direct

method without separation developed in this article is beneficial in terms of simplifying the-

oretical analysis, and the proposed quaternion-valued control schemes are simpler and more

effective than the traditional design, which adds four real-valued controllers. Finally, two

numerical examples are given in order to support the theoretical results.
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1 Introduction

Quaternion-valued neural networks (QVNNs) were proposed in 1995 for the study of color

image recognition [1], in which the state of each neuron is represented by a quaternion. One

of the strengths of QVNNs is that they can express 3-D affine transformations efficiently and

compactly. In addition, QVNNs have significant advantages over real-valued neural networks

(RVNNs) and complex-valued neural networks (CVNNs) when dealing with high-dimensional
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data [2–4]. However, because of the incommutability of quaternion multiplication, the progress

of research on QVNNs was held back for many years. Recently, however research on QVNNs has

become increasingly abundant, due to the improvement of quaternion theory and the associated

research analysis methods. By decomposing QVNNs into two complex-valued systems, several

sufficient conditions were established in [5–7] to achieve global µ-stability. By decomposing

QVNNs models into four real-valued systems, several sufficient criteria to ensure exponential

stability were derived in [8–10].

In addition to dynamics analysis, in view of the potential applications in secure commu-

nication and image encryption, research on the synchronization control of QVNNs has begun

to attract the attention of more and more scholars. Actually, synchronization is a significant

dynamic phenomenon in chaotic neural networks, and this has important applications in fields

such as information processing [11] and secure communication [12]. Many synchronization re-

sults about QVNNs have been published, including global asymptotic synchronization [13, 14],

exponential synchronization [15, 16], and finite-time (FNT) synchronization [17]. As opposed

to asymptotic or exponential synchronization, it is allowed in FNT synchronization to achieve

synchronization in a finite time, and has the advantages of faster convergence and stronger

anti-interference. However, the settling time (ST) of FNT synchronization relies on the ini-

tial states, which indicates that it is extremely difficult to discuss FNT synchronization for

systems with unknown initial values. To overcome this shortcoming, fixed-time (FXT) con-

trol and synchronization were proposed [18, 19], here the estimate of the ST was improved

to become independent of the initial values. So far, the FXT synchronization of RVNNs and

CVNNs has been extensively studied [20–25], but the related results on QVNNs are relatively

few. In [26, 27], the FXT synchronization of QVNNs was discussed by a separation method

and by designing nonlinear control schemes. Based on the separation technique, the FXT

synchronization for a class of QVNNs without delay was discussed in [28], this was achieved

by designing pure power law control strategies. By proposing nonlinear and delayed feedback

controllers for the separated real-valued submodels in [29, 30], FNT synchronization and FXT

synchronization were investigated for memristor-based QVNNs with time delays. The authors

of [31] studied FNT and FXT anti-synchronization of QVNNs with inconsistent Markovian and

reaction-diffusion terms by designing discontinuous control laws for the separated real-valued

systems.

Note that the FXT synchronization in [26–31] was analyzed based on the separation method,

which greatly increases the redundancy of the theoretical calculations. In addition, FXT syn-

chronization was achieved by adding four real-valued controllers, which not only increases the

cost of control, but also reduces the feasibility of control strategies. Therefore, it is a natural idea

to directly design quaternion-valued control schemes for analyzing the FXT synchronization of

QVNNs. Inspired by the complex-valued sign functions proposed in [20], Li et al. proposed the

quaternion-valued sign function in [32], and discussed the FNT anti-synchronization of QVNNs

with continuous activation functions based on the non-separation method. Subsequently, Peng

et al. studied the FNT synchronization and FXT synchronization of QVNNs with continu-

ous activation functions based on the non-separation method by designing quaternion-valued

controllers in [33] and by switching control strategies in [34]. However, it is noted that neu-

ral networks with discontinuous activation functions are ideal models for describing nonlinear
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physical problems with high slopes [35]. Furthermore, it has been shown that neural networks

composed of discontinuous activation functions can deal perfectly with dry friction problems,

optimization problems, and switching problems in electronic circuits [36]. Thus, the study of

neural networks with discontinuous activation functions has great theoretical value and practical

significance.

In addition to FXT synchronization, preassigned-time (PAT) synchronization has been a

hot topic in recent years. Differently from FNT synchronization and FXT synchronization,

the convergence time of PAT synchronization is preappointed based on practical and specific

needs that are independent of the initial states and model parameters [37]. Although syn-

chronization may also be realized for an appointed time by adjusting control parameters in

FXT synchronization controllers, this approach is not the best choice because the relationship

between the convergence time and control parameters is unclear, and the adjustment is blind

and time-consuming. Therefore, it is of great significance to study PAT synchronization by

designing feasible control laws for a specified convergence time. At present, there are many

research results on FNT control [38] and FXT control [39], but the PAT synchronization of

complex systems needs to be further explored [40–42]. In [28], by introducing four real-valued

controllers, the PAT synchronization problem of a class of QVNNs without delay was consid-

ered by the separation method. As pointed out in the above discussion, the separation analysis

undoubtedly results in a large amount of calculation, a high control cost and low feasibility in

terms of practical applications. It would be valuable to develop a direct analysis technique to

investigate the PAT synchronization of QVNNs.

This article aims to develop a direct analysis method and propose quaternion-valued control

schemes to discuss the FXT and PAT synchronization of QVNNs with time-varying delays and

discontinuous activation functions. The most innovative elements of this work are as follows.

(1) Differently from QVNN models with continuous activations in [33, 34], a class of QVNNs

involving discontinuous activation functions is here considered and several important properties

of the quaternion-valued signum function are established in order to effectively deal with the

QVNN model in the quaternion field.

(2) Based on the quaternion-valued signum function and the established properties, a direct

analytical method without separation is proposed and quaternion-valued discontinuous control

schemes are developed in order to investigate FXT synchronization of QVNNs. Compared with

the separation method and real-valued design in [26–31], the direct approach developed here

greatly reduces the amount of calculation needed in the theoretical analysis and improves the

feasibility of control strategies in applications.

(3) In addition to FXT synchronization, PAT synchronization for QVNNs is investigated

by designing discontinuous quaternion-valued control laws, where the synchronization time is

prespecified and is independent of the initial states and model parameters. Note that the

control scheme here is implemented in the quaternion field, which is more feasible and effective

in comparison with the separation-based real-valued design in [28].

The rest of this article is organized as follows: Some basic preparations and research models

are provided in Section 2. The FXT synchronization and PAT synchronization for QVNNs are

studied in Sections 3 and 4. In Section 5, two numerical examples are given to verify the

theoretical results. Finally, a brief summary of this paper is given in Section 6.
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Notations In this article, ~n = {1, 2, · · · , n}, R
n is a space consisting of n-dimensional

real vectors and H
n is a space composed of all n-dimensional quaternion vectors. 0n denotes

an n-dimensional vector where all the entries are zero. F = C([−τ, 0],Hn) is a set composed

of all continuous functions on [−τ, 0]. The 1-norm and the 2-norm of a are defined as ‖a‖1 =

|aR| + |aI | + |aJ | + |aK | and ‖a‖2 =
√
aā, respectively, where ā = aR − aIi − aJj − aKk

represents the conjugate of a. Denote that d = R, I, J,K, and for a discontinuous function f ,

let fd−(x) and fd+(x) be the left and right limits of the real or imaginary parts of f at x, and

let f̌d(x) and f̂d(x) be the minimum and the maximum between fd−(x) and fd+(x). Define the

convex hull as co[f(x)] = co[fR(x)] + co[f I(x)]i+ co[fJ(x)]j + co[fK(x)]k = [f̌R(x), f̂R(x)] +

[f̌ I(x), f̂ I(x)]i+ [f̌J(x), f̂J (x)]j + [f̌K(x), f̂K(x)]k.

2 Preliminaries and Model Description

Consider the following QVNN model consisting of n neurons and involving time-varying

delays:

ẋp(t) = −ξpxp(t) +
n

∑

q=1

apqfq(xq(t)) +
n

∑

q=1

bpqgq(xq(t− τpq(t))) + Ip(t), p ∈ ~n. (2.1)

Here xp ∈ H is the state of the p-th neuron, ξp ∈ H is the feedback self-connection weight, fq(·)
and gq(·) : H → H are discontinuous quaternion activation functions without and with time

delays. apq, bpq ∈ H denote the connection weights of the qth neuron on the pth neuron at t

and t− τpq(t), τpq(t) is the time-varying delay satisfying 0 ≤ τpq(t) ≤ τ , while Ip(t) ∈ H is the

external input function. The initial condition of system (2.1) is provided by

xp(s) = σp(s), s ∈ [−τ, 0], p ∈ ~n,

and σ(s) = (σ1(s), · · · , σn(s))T ∈ F.

Let model (2.1) be the master model. The slave model is given as

ẏp(t) = −ξpyp(t) +
n

∑

q=1

apqfq(yq(t)) +
n

∑

q=1

bpqgq(yq(t− τpq(t))) + Ip(t) + up(t), p ∈ ~n, (2.2)

where yp ∈ H denotes the state variable of the slave model, up(t) ∈ H is the external controller

and will be developed later, and other parameters are defined as in model (2.1). The initial

condition of system (2.2) is provided by

yp(s) = σ̃p(s), s ∈ [−τ, 0], p ∈ ~n,

and σ̃(s) = (σ̃1(s), · · · , σ̃n(s))T ∈ F.

Assumption 1 ([19]) For q ∈ ~n, fq and gq are continuous except on countable sets of

isolated points {uq
r} and {vq

r}, respectively, and fd−
q (uq

r), f
d+
q (uq

r) and gd−
q (vq

r), gd+
q (vq

r) exist.

Moreover, in every bounded compact interval, there are a finite number of jump points at most

for fq and gq.

Definition 2.1 ([20]) A continuous function vector x(t) = (x1(t), · · · , xn(t))T : [−τ, T0) →
H

n is called a solution of system (2.1) on [−τ, T0) if

(1) x is absolutely continuous on [0, T0);
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(2) there exist measurable functions α = (α1, · · · , αn)T : [0, T0) → H
n and α̃ = (α̃1, · · · ,

α̃n)T : [−τ, T0) → H
n satisfying αq ∈ co[fq(xq)], α̃q ∈ co[gq(xq)] such that

ẋp(t) = −ξpxp(t) +

n
∑

q=1

apqαq(t) +

n
∑

q=1

bpqα̃q(t− τpq(t)) + Ip(t), p ∈ ~n (2.3)

for almost everywhere (a.e.) t ∈ [0, T0).

Similarly, for slave model (2.2), there exist measurable functions βq ∈ co[fq(yq)] and β̃q ∈
co[gq(yq)] such that

ẏp(t) = −ξpyp(t) +

n
∑

q=1

apqβq(t) +

n
∑

q=1

bpqβ̃q(t− τpq(t)) + Ip(t) + up(t), p ∈ ~n (2.4)

for a.e. t ∈ [0, T0).

Denoting that ep(t) = yp(t) − xp(t) with p ∈ ~n, from (2.3) and (2.4), the following error

system is derived

ėp(t) = − ξpep(t) +

n
∑

q=1

apq

(

βq(t) − αq(t)
)

+
n

∑

q=1

bpq

(

β̃q

(

t− τpq(t)
)

− α̃q

(

t− τpq(t)
)

)

+ up(t), p ∈ ~n. (2.5)

Definition 2.2 ([40]) QVNNs (2.1) and (2.2) are said to be FXT synchronized if there

exists a time point 0 < T < +∞ which is related to the system parameters, for any solutions

of (2.1) and (2.2) denoted by

x(t) =
(

x1(t), x2(t), · · · , xn(t)
)T

and y(t) =
(

y1(t), y2(t), · · · , yn(t)
)T
,

and with any different initial values σ, σ̃ ∈ F, there exists a time point 0 < T̃ (σ, σ̃) < +∞
called the synchronous ST such that

lim
t→T̃

‖y(t) − x(t)‖ = 0, ‖y(t) − x(t)‖ = 0 for all t ≥ T̃ ,

and T̃ (σ, σ̃) ≤ T for all σ, σ̃ ∈ F. Furthermore, QVNNs (2.1) and (2.2) are said to be PAT

synchronized within the preappointed time Tpat if

lim
t→Tpat

‖y(t) − x(t)‖ = 0, ‖y(t) − x(t)‖ = 0 for all t ≥ Tpat,

where Tpat > 0 is completely independent of initial values and system parameters.

Definition 2.3 ([32]) The signum function for a quaternion variable a = aR +aIi+aJj+

aKk ∈ H is defined as

[a] , sign(aR) + sign(aI)i+ sign(aJ)j + sign(aK)k,

where sign(ad) is the signum function of ad, d = R, I, J,K.

According to Definition 2.3, for any a ∈ H, the convex hull of [a] is defined by

co
(

[a]
)

= co
[

sign(aR)
]

+ co
[

sign(aI)
]

i+ co
[

sign(aJ)
]

j + co
[

sign(aK)
]

k,

where

co
[

sign(ad)
]

=















{1}, ad > 0,

[−1, 1], ad = 0,

{−1}, ad < 0,
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and ad ∈ R, d = R, I, J,K.

Lemma 2.4 For any a ∈ H and any measurable selection ã ∈ co
(

[a]
)

, the following

properties hold:

(1) [a]ã+ ã[a] = 2‖[a]‖1; (2) aã+ ãa = 2‖a‖1 ≥ 2‖a‖2.

Proof When ad > 0, d = R, I, J,K, one has that

[a]ã+ ã[a] = 2(1 + i+ j + k)(1 + i+ j + k) = 8,

and similarly, one can prove that

[a]ã+ ã[a] = 8 = 2‖[a]‖1

always holds for ad 6= 0.

For the case where one of ad is equal to 0, one has that

[a]ã+ ã[a] = 6 = 2‖[a]‖1.

Moreover, when two of ad are equal to 0, it is easy to get that

[a]ã+ ã[a] = 4 = 2‖[a]‖1.

Furthermore, when three of ad are equal to 0,

[a]ã+ ã[a] = 2 = 2‖[a]‖1.

In addition, for the case in which a = 0,

[a]ã+ ã[a] = 0 = 2‖[a]‖1.

Hence, for any a ∈ H,

[a]ã+ ã[a] = 2‖[a]‖1.

Similarly, it is easy to derive that

aã+ ãa = 2(|aR| + |aI | + |aJ | + |aK |) = 2‖a‖1 ≥ 2‖a‖2.

The proof is finished. �

Remark 2.5 The proof method used in Lemma 2.4 is similar to the proof of Lemma 4 in

[20]. co
(

[a]
)

in [20] has a total of 9 cases, which are on the complex field. Since the quaternion

numbers have two more imaginary parts than the complex numbers, there are 81 cases in co
(

[a]
)

in this paper; this is much more complicated than the proof of Lemma 4 in [20]. In addition,

the cases in this paper include the cases in [20]. Therefore, Lemma 4 in [20] can be regarded

as a special case of Lemma 2.4 in this paper.

Lemma 2.6 ([32]) For any a, b ∈ H and any e(t) : R → H, the following properties hold:

(1) ¯̄a = a; (2) a+ ā = 2aR ≤ 2‖a‖2 ≤ 2‖a‖1; (3) ab = ba;

(4) d‖e(t)‖1

dt
= 1

2

(

[e(t)]de(t)
dt

+ de(t)
dt

[e(t)]
)

.

Lemma 2.7 For any a, b, c ∈ H, the following inequalities hold:

(1)
(

bR − |bI | − |bJ | − |bK |
)

‖a‖1 ≤ ([a]ba)R ≤
(

bR + |bI | + |bJ | + |bK |
)

‖a‖1;

(2) −‖b‖1‖c‖1 ≤ ([a]bc)R ≤ ‖b‖1‖c‖1.
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Proof According to the Hamilton criterion,

([a]ba)R =
(

sign(aR)bR + sign(aI)bI + sign(aJ )bJ + sign(aK)bK
)

· aR

+
(

sign(aR)bI − sign(aI)bR − sign(aJ )bK + sign(aK)bJ
)

i · aIi

+
(

sign(aR)bJ + sign(aI)bK − sign(aJ)bR − sign(aK)bI
)

j · aJj

+
(

sign(aR)bK − sign(aI)bJ + sign(aJ)bI − sign(aK)bR
)

k · aKk

= |aR|bR + sign(aI)aRbI + sign(aJ )aRbJ + sign(aK)aRbK

− sign(aR)aIbI + |aI |bR + sign(aJ )aIbK − sign(aK)aIbJ

− sign(aR)aJbJ − sign(aI)aJbK + |aJ |bR + sign(aK)aJbI

− sign(aR)aKbK + sign(aI)aKbJ − sign(aJ)aKbI + |aK |bK .

On the one hand,

([a]ba)R ≤ |aR|bR + |aR||bI | + |aR||bJ | + |aR||bK |
+ |aI ||bI | + |aI |bR + |aI ||bK | + |aI ||bJ |
+ |aJ ||bJ | + |aJ ||bK | + |aJ |bR + |aJ ||bI |
+ |aK ||bK | + |aK ||bJ | + |aK ||bI | + |aK |bK

=
(

bR + |bI | + |bJ | + |bK |
)

|aR| +
(

bR + |bI | + |bJ | + |bK |
)

|aI |
×

(

bR + |bI | + |bJ | + |bK |
)

|aJ | +
(

bR + |bI | + |bJ | + |bK |
)

|aK |
=

(

bR + |bI | + |bJ | + |bK |
)

‖a‖1.

On the other hand,

([a]ba)R ≥ |aR|bR − |aR||bI | − |aR||bJ | − |aR||bK |
− |aI ||bI | + |aI |bR − |aI ||bK | − |aI ||bJ |
− |aJ ||bJ | − |aJ ||bK | + |aJ |bR − |aJ ||bI |
− |aK ||bK | − |aK ||bJ | − |aK ||bI | + |aK |bK

=
(

bR − |bI | − |bJ | − |bK |
)

|aR| +
(

bR − |bI | − |bJ | − |bK |
)

|aI |
+

(

bR − |bI | − |bJ | − |bK |
)

|aJ | +
(

bR − |bI | − |bJ | − |bK |
)

|aK |
=

(

bR − |bI | − |bJ | − |bK |
)

‖a‖1.

According to the above discussion,
(

bR − |bI | − |bJ | − |bK |
)

‖a‖1 ≤ ([a]ba)R ≤
(

bR + |bI | + |bJ | + |bK |
)

‖a‖1,

which implies that property (1) is true.

Applying a similar method to property (2),

([a]bc)R =
(

sign(aR)bR + sign(aI)bI + sign(aJ )bJ + sign(aK)bK
)

· cR

+
(

sign(aR)bI − sign(aI)bR − sign(aJ)bK + sign(aK)bJ
)

i · cIi
+

(

sign(aR)bJ + sign(aI)bK − sign(aJ )bR − sign(aK)bI
)

j · cJ j
+

(

sign(aR)bK − sign(aI)bJ + sign(aJ )bI − sign(aK)bR
)

k · cKk
= sign(aR)bRcR + sign(aI)bIcR + sign(aJ)bJcR + sign(aK)bKcR

− sign(aR)bIcI + sign(aI)bRcI + sign(aJ)bKcI − sign(aK)bJcI
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− sign(aR)bJcJ − sign(aI)bKcJ + sign(aJ )bRcJ + sign(aK)bIcJ

− sign(aR)bKcK + sign(aI)bJcK − sign(aJ )bIcK + sign(aK)bKcK .

First,

([a]bc)R ≤ |bR||cR| + |bI ||cR| + |bJ ||cR| + |bK ||cR| + |bI ||cI | + |bR||cI | + |bK ||cI | + |bJ ||cI |
+ |bJ ||cJ | + |bK ||cJ | + |bR||cJ | + |bI ||cJ |
+ |bK ||cK | + |bJ ||cK | + |bI ||cK | + |bK ||cK |

=
(

|bR| + |bI | + |bJ | + |bK |
)

|cR| +
(

|bR| + |bI | + |bJ | + |bK |
)

|cI |
×

(

|bR| + |bI | + |bJ | + |bK |
)

|cJ | +
(

|bR| + |bI | + |bJ | + |bK |
)

|cK |
= ‖b‖1‖c‖1.

In addition,

([a]bc)R ≥−
(

|bR| + |bI | + |bJ | + |bK |
)

|cR| −
(

|bR| + |bI | + |bJ | + |bK |
)

|cI |
−

(

|bR| + |bI | + |bJ | + |bK |
)

|cJ | −
(

|bR| + |bI | + |bJ | + |bK |
)

|cK |
= − ‖b‖1‖c‖1.

Therefore,

−‖b‖1‖c‖1 ≤ ([a]bc)R ≤ ‖b‖1‖c‖1.

The proof of Lemma 2.7 is finished. �

Lemma 2.8 ([40]) Assume that there exists a C-regular function V (e) : R
n → R such

that
d

dt
V (e(t)) ≤ κV (e(t)) − ϕV θ(e(t)) − ψV δ(e(t)), e(t) ∈ R

n \ {0n},

where κ ∈ R, ϕ > 0, ψ > 0, 0 ≤ θ < 1 and δ > 1. Denote that ̟ = (1−θ)/(δ−θ), ι = 4ϕψ−κ2.

Then

(i) if κ ≤ 0, then V (e(t)) ≡ 0 and e(t) ≡ 0 for t ≥ T1, where

T1 =
π

(δ − θ)ϕ

(

ϕ

ψ

)̟

csc(̟π);

(ii) if 0 < κ < min{ϕ, ψ}, then V (e(t)) ≡ 0 and e(t) ≡ 0 for t ≥ T2, where

T2 =
π csc(̟π)

ψ(δ − θ)

(

ψ

ϕ− κ

)1−̟

I

(

ψ

ϕ+ ψ − κ
,̟, 1 −̟

)

+
π csc(̟π)

ϕ(δ − θ)

(

ϕ

ψ − κ

)̟

I

(

ϕ

ϕ+ ψ − κ
, 1 −̟,̟

)

,

and I(r, p, q) is the incomplete Beta function ratio given in [40];

(iii) if 0 < κ < 2
√
ϕψ and δ + θ = 2, then V (e(t)) ≡ 0 and e(t) ≡ 0 for t ≥ T3, where

T3 =
1

δ − 1

2√
ι

(

π

2
+ arctan

( κ√
ι

)

)

.

Remark 2.9 The lemma cited in [26, 27, 29, 30, 33, 43, 48] requires that

d

dt
V (e(t)) ≤ −ϕV θ(e(t)) − ψV δ(e(t)), e(t) ∈ R

n \ {0n},
where ϕ > 0, ψ > 0, 0 ≤ θ < 1 and δ > 1. Obviously, the condition is only a special case of

Lemma 2.8. Therefore, Lemma 2.8 introduced in this paper is more general and gives a more

accurate estimate of the ST.



No.3 W.L. Wei et al: FIXED/PREASSIGNED-TIME SYNCHRONIZATION 1447

Lemma 2.10 ([40]) If there exist a C-regular function V (e) : R
n → R and constants κ,

ϕ > 0, ψ > 0, 0 ≤ θ < 1, δ > 1, Tpat > 0 such that

d

dt
V (e(t)) ≤ − T

Tpat

(

−κV (e(t)) + ϕV θ(e(t)) + ψV δ(e(t))
)

, e(t) ∈ R
n \ {0n},

then V (e(t)) ≡ 0 and e(t) ≡ 0 for t ≥ Tpat, where

T =















T1, κ ≤ 0,

T2, 0 < κ ≤ min{ϕ, ψ},
T3, 0 < κ < 2

√

ϕψ, θ + δ = 2.

Remark 2.11 Note that the upper bound of convergence time given in Lemma 2.10 is

quite different from the counterpart in Lemma 2.9. In fact, the upper estimate Tϑ in Lemma 2.8

with ϑ = 1, 2, 3 is dependent upon other parameters, but the convergence time Tpat in Lemma

2.10 can be prescribed in advance and is unaffected by other parameters.

Lemma 2.12 If ep ≥ 0, 0 < θ ≤ 1, δ > 1, then

n
∑

p=1

eθ
p ≥

( n
∑

p=1

ep

)θ

,

n
∑

p=1

eδ
p ≥ n1−δ

( n
∑

p=1

ep

)δ

.

Assumption 2 For m = 1, 2 and p ∈ ~n, there exist positive real numbers Lm
p , L̃m

p and

Gm
p such that

‖βp − αp‖m ≤ Lm
p ‖yp − xp‖m + L̃m

p , ‖gp(·)‖m ≤ Gm
p ,

where αp ∈ co[fp(xp)] and βp ∈ co[fp(yp)] with xp, yp ∈ H.

3 Fixed-Time Synchronization

To analyze the FXT synchronization, the following discontinuous controller is designed:

up(t) = −
(

µp + εp‖ep(t)‖δ
1

)

[ep(t)], p ∈ ~n. (3.1)

Here δ > 1 and µp, εp ∈ R are positive real constants.

For convenience, denote that

k1 = max
p∈~n

{

|ξI
p | + |ξJ

p | + |ξK
p | − ξR

p + L1
p

n
∑

q=1

‖aqp‖1

}

, (3.2)

ϕ1 =
n

∑

p=1

(

µ̌− 2
n

∑

q=1

G1
q‖bpq‖1 − L̃1

q

n
∑

q=1

‖apq‖1

)

, (3.3)

ψ1 = ε̌n1−δ, (3.4)

where µ̌ = min{µp, p ∈ ~n} and ε̌ = min{εp, p ∈ ~n}.
Theorem 3.1 Based on Assumptions 1 and 2, under the controller (3.1), if ϕ1 > 0, then

(1) the master-slave systems (2.1) and (2.2) are FXT synchronized, provided that k1 ≤ 0

and the ST is estimated by

T (σ, σ̃) ≤ T̂1 =

(

π

ϕ1δ

) (

ϕ1

ψ1

)
1
δ

csc
(π

δ

)

;
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(2) if 0 < k1 < min{ϕ1, ψ1}, the networks (2.1) and (2.2) are FXT synchronized and the

ST is evaluated by

T (σ, σ̃) ≤ T̂2 =
π csc(π

δ
)

ψ1δ

(

ψ1

ϕ1 − k1

)1− 1
δ

I

(

ψ1

ϕ1 + ψ1 − k1
,
1

δ
, 1 − 1

δ

)

+
π csc(π

δ
)

ϕ1δ

(

ϕ1

ψ1 − k1

)
1
δ

I

(

ϕ1

ϕ1 + ψ1 − k1
, 1 − 1

δ
,
1

δ

)

;

(3) in particular, when δ = 2 in controller (3.1), the networks (2.1) and (2.2) are FXT

synchronized if 0 < k1 < 2
√
ϕ1ψ1 and the ST is estimated by

T (σ, σ̃) ≤ T̂3 =
1

δ

2√
ι1

(

π

2
+ arctan

(

k1√
ι1

))

,

where ι1 = 4ϕ1ψ1 − k2
1 > 0.

Proof Note that the controller (3.1) is discontinuous, so by the theory of non-smooth

analysis [44–46],

up(t) ∈ −
(

µp + εp‖ep(t)‖δ
1

)

co([ep(t)]), p ∈ ~n.

By virtue of the measurable selection theorem [45, 47], a function γp(t) ∈ co([ep(t)]) can be

found such that

up(t) = −
(

µp + εp‖ep(t)‖δ
1

)

γp(t), p ∈ ~n,

which, combined with (2.5), gives that

dep(t)

dt
= − ξpep(t) +

n
∑

q=1

apq

(

βq(t) − αq(t)
)

+

n
∑

q=1

bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

− (µp + εp‖ep(t)‖δ
1)γp(t), p ∈ ~n.

Choose the Lyapunov function

V1(e(t)) =

n
∑

p=1

‖ep(t)‖1,

where e(t) = (‖e1(t)‖1, ‖e2(t)‖1, · · · , ‖en(t)‖1)
T ∈ R

n. Calculate the derivative of V1(e(t)) for

e(t) 6= 0, from Lemma 2.6, one has that

d

dt
V1(e(t)) = − 1

2

n
∑

p=1

(

[ep(t)]ξpep(t) + ξpep(t)[ep(t)]
)

+
1

2

n
∑

p=1

n
∑

q=1

(

[ep(t)]apq

(

βq(t) − αq(t)
)

+ apq

(

βq(t) − αq(t)
)

[ep(t)]
)

+
1

2

n
∑

p=1

n
∑

q=1

(

[ep(t)]bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

+ bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

[ep(t)]
)

− 1

2

n
∑

p=1

(

[ep(t)]µpγp(t) + µpγp(t)[ep(t)]
)

− 1

2

n
∑

p=1

(

[ep(t)]εp‖ep(t)‖δ
1γp(t) + εp‖ep(t)‖δ

1γp(t)[ep(t)]
)

. (3.5)
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Next, we will analyze each term separately in (3.5). By using Lemma 2.6 and Lemma 2.7,

−1

2

n
∑

p=1

(

[ep(t)]ξpep(t) + ξpep(t)[ep(t)]
)

= −
n

∑

p=1

(

[ep(t)]ξpep(t)
)R

≤ −
n

∑

p=1

(

ξR
p − |ξI

p | − |ξJ
p | − |ξK

p |
)

‖ep(t)‖1. (3.6)

According to Assumption 2, Lemma 2.6 and Lemma 2.7,

1

2

n
∑

p=1

n
∑

q=1

(

[ep(t)]apq

(

βq(t) − αq(t)
)

+ apq

(

βq(t) − αq(t)
)

[ep(t)]
)

=

n
∑

p=1

n
∑

q=1

(

[ep(t)]apq

(

βq(t) − αq(t)
)

)R

≤
n

∑

p=1

n
∑

q=1

‖apq‖1‖βq(t) − αq(t)‖1

≤
n

∑

p=1

n
∑

q=1

‖apq‖1

(

L1
q‖eq(t)‖1 + L̃1

q

)

=

n
∑

p=1

n
∑

q=1

(

L1
p‖aqp‖1‖ep(t)‖1 + L̃1

q‖apq‖1

)

. (3.7)

Similarly,

1

2

n
∑

p=1

n
∑

q=1

(

[ep(t)]bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

+ bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

[ep(t)]
)

≤
n

∑

p=1

n
∑

q=1

‖bpq‖1‖β̃q(t− τpq(t)) − α̃q(t− τpq(t))‖1 ≤ 2

n
∑

p=1

n
∑

q=1

‖bpq‖1G
1
q . (3.8)

Moreover, based on Lemma 2.4,

−1

2

n
∑

p=1

(

[ep(t)]µpγp(t) + µpγp(t)[ep(t)]
)

= −
n

∑

p=1

µp‖[ep(t)]‖1,

and

−1

2

n
∑

p=1

(

[ep(t)]εp‖ep(t)‖δ
1γp(t) + εp‖ep(t)‖δ

1γp(t)[ep(t)]
)

= −
n

∑

p=1

εp‖[ep(t)]‖1‖ep(t)‖δ
1. (3.9)

Plugging (3.6)–(3.9) into (3.5), and from Lemma 2.12, for e(t) 6= 0,

d

dt
V1(e(t)) ≤

n
∑

p=1

(

|ξI
p | + |ξJ

p | + |ξK
p | − ξR

p + L1
p

n
∑

q=1

‖aqp‖1

)

‖ep(t)‖1

−
n

∑

p=1

(

µp‖[ep(t)]‖1 − 2
n

∑

q=1

G1
q‖bpq‖1 −

n
∑

q=1

L̃1
q‖apq‖1

)

−
n

∑

p=1

εp‖[ep(t)]‖1‖ep(t)‖δ
1

≤ k1

n
∑

p=1

‖ep(t)‖1 −
n

∑

p=1

(

µ̌− 2

n
∑

q=1

G1
q‖bpq‖1 −

n
∑

q=1

L̃1
q‖apq‖1

)

− ε̌n1−δ

( n
∑

p=1

||ep(t)||1
)δ

= k1V1(e(t)) − ϕ1 − ψ1V
δ
1 (e(t)). (3.10)
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If k1 ≤ 0, for e(t) ∈ R
n \ {0n},

d

dt
V1(e(t)) ≤ −ϕ1 − ψ1V

δ
1 (e(t)), (3.11)

which, with Lemma 2.8 (i), gives that the networks (2.1) and (2.2) are FXT synchronized within

the time T̂1. Similarly, the remaining results in Theorem 3.1 can be easily obtained from Lemma

2.8 (ii) and (iii). �

Theorem 3.1 is presented under 1-norm; in fact, the FXT synchronization can also be

ensured under 2-norm.

The controller is designed as

up(t) = −
(

µp + εp‖ep(t)‖δ
2

)

[ep(t)], p ∈ ~n, (3.12)

where δ > 1, µp, εp ∈ R are positive real constants.

Denote that

k2 = max
p∈~n

{

1

2

n
∑

q=1

(

‖aqp‖2L
2
p + ‖apq‖2L

2
q

)

− ξR
p

}

, (3.13)

ϕ2 = min
p∈~n

{

−
n

∑

q=1

(

2G2
q‖bpq‖2 + L̃2

q‖apq‖2

)

+ µp

}

, (3.14)

ψ2 = ε̌n
1−δ

2 , (3.15)

where ε̌ = min{εp, p ∈ ~n}.
Theorem 3.2 Based on Assumptions 1 and 2, under the controller (3.12), if ϕ2 > 0, then

(1) the networks (2.1) and (2.2) are FXT synchronized provided that k2 ≤ 0 and that the

ST is estimated by

T (σ, σ̃) ≤ Ť1 =
( 2π

ϕ2δ

)

(

ϕ2

ψ2

)
1
δ

csc
(π

δ

)

;

(2) if 0 < k2 < min{ϕ2, ψ2}, the networks (2.1) and (2.2) are FXT synchronized and the

ST is evaluated by

T (σ, σ̃) ≤ Ť2 =
2π csc(π

δ
)

ψ2δ

(

ψ2

ϕ2 − k2

)1− 1
δ

I

(

ψ2

ϕ2 + ψ2 − k2
,
1

δ
, 1 − 1

δ

)

+
2π csc(π

δ
)

ϕ2δ

(

ϕ2

ϕ2 − k2

)
1
δ

I

(

ϕ2

ϕ2 + ψ2 − k2
, 1 − 1

δ
,
1

δ

)

;

(3) in particular, when δ = 2 in controller (3.12), the networks (2.1) and (2.2) are FXT

synchronized if 0 < k2 < 2
√
ϕ2ψ2 and the ST is estimated by

T (σ, σ̃) ≤ Ť3 =
2

δ − 1

2√
ι2

(

π

2
+ arctan

(

k2√
ι2

))

,

where ι2 = 4ϕ2ψ2 − k2
2 > 0.

Proof Similarly, a function γp(t) ∈ co([ep(t)]) can be selected such that

dep(t)

dt
= − ξpep(t) +

n
∑

q=1

apq

(

βq(t) − αq(t)
)

+

n
∑

q=1

bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

− (µp + εp‖ep(t)‖δ
2)γp(t), p ∈ ~n.
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Choose the Lyapunov function V2(e(t)) = 1
2

n
∑

p=1
‖ep(t)‖2

2, where e(t) =
(

‖e1(t)‖2
2, ‖e2(t)‖2

2,

· · · , ‖en(t)‖2
2

)T ∈ R
n. From the error system, when e(t) 6= 0, one has that

d

dt
V2(e(t)) = − 1

2

n
∑

p=1

(

ξpep(t)ep(t) + ep(t)ξpep(t)
)

+
1

2

n
∑

p=1

n
∑

q=1

(

apq

(

βq(t) − αq(t)
)

ep(t) + ep(t)apq

(

βq(t) − αq(t)
)

)

+
1

2

n
∑

p=1

n
∑

q=1

(

bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

ep(t)

+ ep(t)bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

)

− 1

2

n
∑

p=1

(

µpγp(t)ep(t) + ep(t)µpγp(t)
)

− 1

2

n
∑

p=1

(

εpγp(t)‖ep(t)‖δ
2ep(t) + ep(t)εpγp(t)‖ep(t)‖δ

2

)

. (3.16)

According to Lemma 2.6,

−1

2

n
∑

p=1

(

ξpep(t)ep(t) + ep(t)ξpep(t)
)

= − 1

2

n
∑

p=1

(

ξp‖ep(t)‖2
2 + ep(t)ep(t)ξp

)

= − 1

2

n
∑

p=1

(ξp + ξp)‖ep(t)‖2
2 = −

n
∑

p=1

ξR
p ‖ep(t)‖2

2. (3.17)

Moreover,

1

2

n
∑

p=1

n
∑

q=1

(

apq

(

βq(t) − αq(t)
)

ep(t) + ep(t)apq

(

βq(t) − αq(t)
)

)

≤
n

∑

p=1

n
∑

q=1

‖apq(βq(t) − αq(t))ep(t)‖2

≤
n

∑

p=1

n
∑

q=1

(

‖apq‖2L
2
q‖eq(t)‖2‖ep(t)‖2 + L̃2

q‖apq‖2‖ep(t)‖2

)

≤ 1

2

n
∑

p=1

n
∑

q=1

(‖aqp‖2L
2
p + ‖apq‖2L

2
q)‖ep(t)‖2

2 +

n
∑

p=1

n
∑

q=1

L̃2
q‖apq‖2‖ep(t)‖2.

Similarly,

1

2

n
∑

p=1

n
∑

q=1

(

bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

ep(t)

+ep(t)bpq

(

β̃q(t− τpq(t)) − α̃q(t− τpq(t))
)

)

≤
n

∑

p=1

n
∑

q=1

‖bpq(β̃q(t− τpq(t)) − α̃q(t− τpq(t)))ep(t)‖2

≤ 2
n

∑

p=1

n
∑

q=1

‖bpq‖2G
2
q‖ep(t)‖2. (3.18)
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Moreover, from Lemma 2.4,

−1

2

n
∑

p=1

(

µpγp(t)ep(t) + ep(t)µpγp(t)
)

≤ −
n

∑

p=1

µp‖ep(t)‖2, (3.19)

−1

2

n
∑

p=1

(

εpγp(t)‖ep(t)‖δ
2ep(t) + ep(t)εpγp(t)‖ep(t)‖δ

2

)

≤ −
n

∑

p=1

εp‖ep(t)‖δ+1
2 . (3.20)

According to (3.17)–(3.19),

d

dt
V2(e(t)) ≤

n
∑

p=1

[

n
∑

q=1

1

2

(

‖aqp‖2L
2
p + ‖apq‖2L

2
q

)

− ξR
p

]

‖ep(t)‖2
2

−
n

∑

p=1

(

µp − 2

n
∑

q=1

G2
q‖bpq‖2 −

n
∑

q=1

L̃2
q‖apq‖2

)

‖ep(t)‖2 −
n

∑

p=1

εp‖ep(t)‖δ+1
2

= k2V2(e(t)) − ϕ2V
1
2

2 (e(t)) − ψ2V
δ+1

2

2 (e(t)). (3.21)

Therefore, it is easy to get, based on Lemma 2.8, that the networks (2.1) and (2.2) are FXT

synchronized. �

Remark 3.3 Compared with previous studies on the FXT synchronization of QVNNs

using the separation method [26–30], it is clear that the non-separated direct method used in

this paper can significantly reduce computational redundancy. At the same time, by virtue of

introducing a quaternion sign function, the 1-norm and the 2-norm, the quaternion controllers

(3.1) and (3.12) are designed directly in this paper, this is a method that is more concise and

efficient than adding four real-valued controllers as in [26–30].

Remark 3.4 The authors in [33] only introduced the 1-norm to analyze the FNT syn-

chronization of QVNNs with and without delay. In this paper, the FXT synchronization of

QVNNs is explored based on 1-norm and the quadratic norm. More specifically, Theorem 3.1 is

established by applying the 1-norm to construct Lyapunov function and to design the controller,

but Theorem 3.2 is obtained by introducing the quadratic norm. Note that the two results,

including synchronization criteria and the estimates for the synchronization time, are totally

different. Hence, our results are more plentiful and flexible compared with related work that is

only based on a single type of norm.

Remark 3.5 In [48], the authors discussed the problem of FXT consensus for a class of

heterogeneous nonlinear multiagent systems based on the result of fixed-time stability given in

[18]. As opposed to that work, the FXT synchronization of QVNNs is investigated based on

the improved theorem of fixed-time stability [19]. It has been revealed that the estimate for

the settling time provided in [19] is more accurate compared with that of [18], which indirectly

improves the estimation accuracy of synchronization in our paper.

4 Preassigned-Time Synchronization

The PAT synchronization of QVNNs (2.1) and (2.2) will be analyzed below. To achieve

this, the following control strategies are proposed:

up(t) = − T̂1

Tpat

(

µp + εp‖ep(t)‖δ
1

)

[ep(t)], p ∈ ~n, (4.1)
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up(t) = − T̂2

Tpat

(

µp + εp‖ep(t)‖δ
1

)

[ep(t)], p ∈ ~n, (4.2)

up(t) = − T̂3

Tpat

(

µp + εp‖ep(t)‖2
1

)

[ep(t)], p ∈ ~n. (4.3)

Here δ > 1, µp > 0, εp > 0, Tpat > 0 is a preassigned time, and T̂ϑ is defined as in Theorem 3.1

with ϑ = 1, 2, 3.

Theorem 4.1 Under Assumptions 1 and 2, the following PAT synchronization results

are established:

(1) if k1 ≤ 0, the networks (2.1) and (2.2) are PAT synchronized within the preassigned

time Tpat satisfying that 0 < Tpat ≤ T̂1 under the control law (4.1);

(2) if 0 < k1 < min{ϕ1, ψ1}, the networks (2.1) and (2.2) are PAT synchronized within the

preassigned time Tpat satisfying that 0 < Tpat ≤ T̂2 under the control law (4.2);

(3) if 0 < k1 < 2
√
ϕ1ψ1, the networks (2.1) and (2.2) are PAT synchronized within the

preassigned time Tpat satisfying that 0 < Tpat ≤ T̂3 under the control strategy (4.3).

Proof This is similar to the proof of Theorem 3.1. Note that 0 < Tpat ≤ T̂1 and k1 ≤ 0,

so when e(t) 6= 0,

d

dt
V1(e(t)) ≤ −

n
∑

p=1

n
∑

q=1

(

T̂1

Tpat
µ̌−G1

q‖bpq‖1 − L̃1
q‖apq‖1

)

−
n

∑

p=1

T̂1

Tpat
ε̌n1−δV δ

1 (e(t))

≤ − T̂1

Tpat

(

ϕ1 + ψ1V
δ
1 (e(t))

)

.

According to Lemma 2.8, QVNNs (2.1) and (2.2) are PAT synchronized within the time Tpat.

For the case where 0 < k1 < min{ϕ1, ψ1}, it is easy to obtain that

d

dt
V1(e(t)) ≤ k1V1(e(t)) −

T̂2

Tpat
ϕ1 −

T̂2

Tpat
ψ1V

δ
1 (e(t)).

Therefore, when e(t) 6= 0,

d

dt
V1(e(t)) ≤ − T̂2

Tpat

(

−k1V1(e(t)) + ϕ1 + ψ1V
δ
1 (e(t))

)

,

which implies that QVNNs (2.1) and (2.2) achieve PAT synchronization within the time Tpat.

For the case where 0 < k1 < 2
√
ϕ1ψ1, the proof is similar to the above analysis, so is

omitted here. �

Next, the following control strategies based on 2-norm are proposed in order to realize PAT

synchronization of networks (2.1) and (2.2):

up(t) = − Ť1

Tpat

(

µp + εp‖ep(t)‖δ
2

)

[ep(t)], p ∈ ~n, (4.4)

up(t) = − Ť2

Tpat

(

µp + εp‖ep(t)‖δ
2

)

[ep(t)], p ∈ ~n, (4.5)

up(t) = − Ť3

Tpat

(

µp + εp||ep(t)||22
)

[ep(t)], p ∈ ~n. (4.6)

Here δ > 1, µp > 0, εp > 0, Tpat > 0 is a preassigned time, and Ťϑ is defined as in Theorem 3.2

with ϑ = 1, 2, 3.
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Theorem 4.2 Under Assumptions 1 and 2, the following PAT synchronization results

are established:

(1) If k2 ≤ 0, the networks (2.1) and (2.2) are PAT synchronized within the preassigned

time Tpat, satisfying that 0 < Tpat ≤ Ť1 under the control law (4.4);

(2) if 0 < k2 < min{ϕ2, ψ2}, the networks (2.1) and (2.2) are PAT synchronized within the

preassigned time Tpat, satisfying that 0 < Tpat ≤ Ť2 under the control strategy (4.5);

(3) if 0 < k2 < 2
√
ϕ2ψ2, the networks (2.1) and (2.2) are PAT synchronized within the

preassigned time Tpat, satisfying that 0 < Tpat ≤ Ť3 under the controller (4.6).

Remark 4.3 If the preassigned synchronized time is Tpat > T̂ϑ (ϑ = 1, 2, 3) as in Theorem

4.1, it follows from Theorem 3.1 that the PAT synchronization can be also achieved under the

controller (3.1), since the synchronization has been realized within the time T̂ϑ. Similarly, if

the preassigned synchronized time is Tpat > Ťϑ (ϑ = 1, 2, 3) as in Theorem 4.2, it follows from

Theorem 3.2 that the PAT synchronization can be also achieved under the controller (3.12).

Remark 4.4 Recently, much has been published on the synchronization of QVNNs, in-

cluding on global synchronization [13, 14], exponential synchronization [15, 16], quasi synchro-

nization [50, 51], FNT anti-synchronization [32], FXT synchronization [26, 27, 29, 30, 33].

However, there are few results on the PAT synchronization of QVNNs. In [28], the PAT syn-

chronization of QVNNs without delay was analyzed based on four real-valued controllers by

a separation method. In Theorems 4.1 and 4.2 in this paper, we have studied PAT synchro-

nization of QVNNs with a time-varying delay by designing quaternion controllers based on the

unseparated method. It is evident that the quaternion controllers designed in this paper is

simpler.

Remark 4.5 Note that the synchronization can be also solved for a specified time in

advance under the FXT control schemes (3.1) and (3.12) by adjusting the control parameters.

However, the adjustment may be seriously troublesome, since the relation between the con-

vergence time and the parameters are not clear. Moreover, the quicker convergence time may

result in larger control costs. To avoid these shortcomings, the control protocols (4.1)–(4.6)

have been developed in order to achieve the preassigned-time synchronization.

5 Numerical Examples

In this section, some numerical examples are presented in order to verify the correctness of

the above theoretical results.

Example 5.1 Consider the QVNN

ẋ(t) = −ξx(t) + Af(x(t)) + Bg(x(t − τ(t))) + I, (5.1)

where x(t) = (x1(t), x2(t))
T , and the activation functions are given by

f(x(t)) =





fR
1 (xR

1 (t)) + if I
1 (xI

1(t)) + jfJ
1 (xJ

1 (t)) + kfK
1 (xK

1 (t))

fR
2 (xR

2 (t)) + if I
2 (xI

2(t)) + jfJ
2 (xJ

2 (t)) + kfK
2 (xK

2 (t))





and

g(x(t)) =





gR
1 (xR

1 (t)) + igI
1(xI

1(t)) + jgJ
1 (xJ

1 (t)) + kgK
1 (xK

1 (t))

gR
2 (xR

2 (t)) + igI
2(xI

2(t)) + jgJ
2 (xJ

2 (t)) + kgK
2 (xK

2 (t))



 ,
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where fd
q (xd

q(t)) = sin(xd
q(t)) + 0.01sign(xd

q(t)) and gd
q (xd

q(t)) =
(

|xd
q(t) + 1| − |xd

q(t) − 1|
)

/2,

q = 1, 2. Obviously, L1
q = 1, L̃1

q = 0.02 and G1
q = 4. The time-varying delay is τ(t) = et/

(

1+et
)

.

In addition,

ξ = diag(ξ1, ξ2) =





0.6 + 0.5i− 0.4j − 0.1k 0

0 0.2 + 0.1i− 0.5j − 0.5k



 ,

A = (apq)2×2 =





−0.4 + 0.8i− 0.2j + 0.6k 0.1 − 0.4i− 0.4j − 0.8k

0.1 + 0.6i+ 0.7j − 0.5k 0.3 + 0.4i− 0.2j + 1.0k



 ,

B = (bpq)2×2 =





0.2 − 0.5i− 0.7j − 0.1k 0.5 + 0.4i− 0.2j − 0.3k

−0.2 + 0.5i− 0.3j − 0.1k 0.4 − 0.4i− 0.4j + 0.5k



 ,

I = (Ip)2×1 =





−2.0 + 1.0i+ 1.2j − 2.5k

1.5 + 0.4i− 1.8j + 0.6k



 .

The dynamic behavior of system (5.1) is presented in Figure 1.
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Figure 1 Dynamic behavior of system (5.1)

The response system is described by

ẏ(t) = −ξy(t) + Af(y(t)) + Bg(y(t− τ(t))) + I + U(t), (5.2)

where y(t) = (y1(t), y2(t))
T , U(t) = (u1(t), u2(t))

T is the controller, which will be shown later.
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First, the FXT synchronization of networks (5.1) and (5.2) will be verified. Consider the

controller designed in Theorem 3.1:

up(t) = −
(

µp + εp‖ep(t)‖δ
1

)

[ep(t)], p ∈ {1, 2}. (5.3)

By a simple calculation, we get that k1 = 4.90. Select µ1 = 25.5, µ2 = 25.5, ε1 = 7.5, ε2 = 7.5

and δ = 1.5. It is evident that, µ̆ = 25.5 and ε̆ = 7.5. Therefore, ϕ1 = 5.25, ψ1 = 5.30,

and the inequality 0 < k1 < min{ϕ1, ψ1} is satisfied. According to Theorem 3.1, the FXT

synchronization is ensured and the ST is estimated by T1 = 3.1215. The simulation result is

presented in Figure 2 by picking random initial values.
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Figure 2 FXT synchronization of master-slave systems (5.1) and (5.2)
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Figure 3 PAT synchronization of master-slave systems (5.1) and (5.2)
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In what follows, the PAT synchronization of networks (5.1) and (5.2) will be verified.

Selecting Tpat = 0.8, the control scheme is given as

up(t) = − T1

Tpat

(

µp + εp‖ep(t)‖δ
1

)

[ep(t)], p ∈ {1, 2}, (5.4)

in which µ1 = 25.5, µ2 = 25.5, ε1 = 7.5, ε2 = 7.5 and δ = 1.5. According to Theorem 4.1,

systems (5.1) and (5.2) are PAT synchronized within the preassigned time Tpat = 0.8. The

corresponding numerical result is illustrated in Figure 3, by picking random initial values.

Next, the FXT synchronization and the PAT synchronization under 2-norm will be verified

in Example 5.2, according to Theorem 3.2 and Theorem 4.2.

Example 5.2 Consider the QVNN

ẋ(t) = −ξx(t) + Af(x(t)) + Bg(x(t − τ(t))) + I, (5.5)

where x(t) = (x1(t), x2(t))
T , and the activation functions are

f(x(t) =





fR
1 (xR

1 (t)) + if I
1 (xI

1(t)) + jfJ
1 (xJ

1 (t)) + kfK
1 (xK

1 (t))

fR
2 (xR

2 (t)) + if I
2 (xI

2(t)) + jfJ
2 (xJ

2 (t)) + kfK
2 (xK

2 (t))





and

g(x(t) =





gR
1 (xR

1 (t)) + igI
1(xI

1(t)) + jgJ
1 (xJ

1 (t)) + kgK
1 (xK

1 (t))

gR
2 (xR

2 (t)) + igI
2(xI

2(t)) + jgJ
2 (xJ

2 (t)) + kgK
2 (xK

2 (t))



 ,

where fd
q (xd

q(t)) = tanh(xd
q(t)) and gd

q (xd
q(t)) =

(

|xd
q(t)+1|− |xd

q(t)−1|
)

/2, q = 1, 2. Obviously,

L2
q = 1, L̃2

q = 0 and G2
q = 2. The time-varying delay is τ(t) = et/

(

1 + et
)

. In addition,

ξ = diag(ξ1, ξ2) =





−0.04− 0.10i+ 6.80j + 3.10k 0

0 0.02 + 0.01i− 1.50j − 2.00k



 ,

A = (apq)2×2 =





0.6 + 0.5i+ 0.5j − 0.6k −0.3 + 0.1i− 0.1j + 0.4k

0.2 + 0.6i− 0.2j + 0.5k 0.1 + 0.2i+ 0.3j − 0.6k



 ,

B = (bpq)2×2 =





0.6 + 0.9i+ 0.1j + 0.1k −0.6 + 0.4i− 0.1j + 0.6k

−0.1 − 0.7i+ 0.2j − 0.4k 0.5 − 0.3i+ 0.4j + 0.2k



 ,

I = (Ip)2×1 =





−0.1 − 0.1i− 1.2j + 1.3k

0.5 + 1.4i− 1.8j + 0.6k



 .

The dynamic behavior of system (5.5) is presented in Figure 4.

The response system is described by

ẏ(t) = −ξy(t) + Af(y(t)) + Bg(y(t− τ(t))) + I + U(t), (5.6)

where y(t) = (y1(t), y2(t))
T , U(t) = (u1(t), u2(t))

T is the controller, which will be shown later.

First, the FXT synchronization will be verified. Consider the control strategy designed in

Theorem 3.2:

up(t) = −
(

µp + εp‖ep(t)‖δ
2

)

[ep(t)], p ∈ {1, 2}. (5.7)
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Figure 4 Dynamic behavior of system (5.5)

By a simple calculation, k2 = 1.7835, ϕ2 = 1 and ψ2 = 2.1213. Select µ1 = 9.1371,

µ2 = 7.2860, ε1 = 3, ε2 = 5 and δ = 2. Then, k2 < 2
√
ϕ2ψ2 = 5.8259. According to Theorem

3.2, the FXT synchronization is realized within the time T2 = 3.8726. The simulation result is

presented in Figure 5 by picking random initial values.
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Figure 5 FXT synchronization of master-slave systems (5.5) and (5.6)
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In what follows, the PAT synchronization of networks (5.5) and (5.6) will be verified.

Selecting Tpat = 0.8, the control scheme is given as

up(t) = − T2

Tpat

(

µp + εp‖ep(t)‖δ
2

)

[ep(t)], p ∈ {1, 2}, (5.8)

in which µ1 = 9.1371, µ2 = 7.2860, ε1 = 3, ε2 = 5 and δ = 2. From Theorem 4.2, systems (5.5)

and (5.6) are PAT synchronized within the preassigned time Tpat = 0.8. The corresponding

numerical result is illustrated in Figure 6 by picking random initial values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-8

-6

-4

-2

0

2

4

6

8

10

e
R
(t

),
e

I (t
),

e
J (t

),
e

K
(t

)

e
1
R(t)

e
2
R(t)

e
1
I (t)

e
2
I (t)

e
1
J (t)

e
2
J (t)

e
1
K(t)

e
2
K(t)

T
pat

=0.8

Figure 6 PAT synchronization of master-slave systems (5.5) and (5.6)

6 Conclusion

In this article, the FXT synchronization and the PAT synchronization for a class of QVNNs

with time-varying delay and discontinuous activation functions were achieved by designing a

direct quaternion controller based on a non-separation method. Compared with the existing

results [26–31, 33, 34], our results have the advantage of less computation, a simpler control

design, lower conservatism and more accurate estimation of ST. It is noted that stochastic

disturbance and the switching effect are inevitable in neural circuits and practical problems

[52, 53], so it would be valuable and meaningful to investigate the FXT and PAT synchronization

of QVNNs; this will be one of the directions of our future research.
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