Acta Mathematica Scientia, 2023, 43B(3): 1081-1104

https:/ /doi.org/10.1007/s10473-023-0306-1 J‘hﬂmaﬁm‘!%lmha
©Innovation Academy for Precision Measurement Science ﬁ % %@ % *ﬂ

and Technology, Chinese Academy of Sciences, 2023

http://actams.apm.ac.cn

ON THE RIGOROUS MATHEMATICAL DERIVATION
FOR THE VISCOUS PRIMITIVE EQUATIONS WITH
DENSITY STRATIFICATION*

Xueke PU (#%#t)  Wenli ZHOU (A L A1)T
School of Mathematics and Information Science, Guangzhou University,
Guangzhou 510006, China

E-mail: puzueke@gmail.com; wywlzhou@163.com

Abstract In this paper, we rigorously derive the governing equations describing the motion
of a stable stratified fluid, from the mathematical point of view. In particular, we prove that
the scaled Boussinesq equations strongly converge to the viscous primitive equations with
density stratification as the aspect ratio goes to zero, and the rate of convergence is of the
same order as the aspect ratio. Moreover, in order to obtain this convergence result, we also
establish the global well-posedness of strong solutions to the viscous primitive equations with
density stratification.
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1 Introduction

The primitive equations are considered to be a fundamental model in geophysical flows
([32, 33, 37, 40, 41]). For large-scale oceanic dynamics, an important feature is that the vertical
scale of the ocean is much smaller than the horizontal scale, which means that we can use
hydrostatic approximation to simulate the motion of the ocean in the vertical direction. Owing
to this fact, and the high accuracy of hydrostatic approximation, the primitive equations for
oceanic dynamics can be formally derived from the Boussinesq equations (see [10, 26]).

The small aspect ratio limit from the Navier-Stokes equations to the primitive equations
was first studied by Azérad-Guillén [1] in a weak sense, then by Li-Titi [28] in a strong sense
with error estimates, and finally by Furukawa et al. [14] in a strong sense but under a relaxed
regularity on the initial condition. Subsequently, the strong convergence of solutions of the
scaled Navier-Stokes equations to the corresponding ones of the primitive equations with only
horizontal viscosity was obtained by Li-Titi-Yuan [30]. In addition, the rigorous justification
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of the hydrostatic approximation from the scaled Boussinesq equations with rotation to the
primitive equations with full viscosity and diffusivity is due to the work of the authors in [34].

Fluid flow is strongly influenced by the effect of stratification from a physical point of view
([32, 33, 40]). An important observation for the effect of stratification is that the density of
a fluid changes with depth. Furthermore, the density stratification term plays an important
role in mathematical studies of the primitive equations with partial dissipation ([5-8, 11]).
These two facts show that the density stratification term is of great significance both physically
and mathematically. Therefore, the aim of this paper is to derive, rigorously, the governing
equations describing the motion of a stable stratified fluid, i.e., the viscous primitive equations
with density stratification, from the mathematical point of view.

Let Q. = M x (—7,7) be a 7-dependent domain, where M = (0,1) x (0,1). Here, 7 = H/L
is called the aspect ratio, which measures the ratio of the vertical scale H to the horizontal
scale L of the ocean. For large-scale ocean circulation, the aspect ratio 7 is close to 1072, so it
is much less than 1.

Denote by V), = (0s,9,) the horizontal gradient operator. Then the horizontal Laplacian
operator Ay is given by

Ap =V Vi = 0pe + Oyy-

Let us consider the anisotropic Boussinesq equations defined on 2,
atu + (u : V)’U, +Vr+ %E = MhAhu + Mzazzua
b

Oro+u-Vo=rpApo+ k.00, (1.1)
V-u=0,

where the three dimensional velocity field u = (v, w) = (v1, va, w), the pressure 7 and the density
o are the unknowns. ¢ is the gravitational acceleration and py is the reference constant density.
k= (0,0, 1) is unit vector pointing to the z-direction. pj and p, represent the horizontal and
vertical viscosity coefficients, respectively, while x; and k, represent the horizontal and vertical
heat conduction coefficients, respectively.

For simplicity, the reference constant density pp is set to be p, = 1. In fact, the anisotropic
Boussinesq equations (1.1) have an elementary exact solution (u, 7, 0) = (0,9(z), 8(z)) satisfying
the hydrostatic approximation

dp(2)
dz

+ go(z) = 0.
Assume that

p(x,y,2,t) = w(x,y,2,t) = p(2),  plx,y,2,t) = o(x,y, 2,1) — 0(2).
Then the anisotropic Boussinesq equations (1.1) become

O + (v Vp)v + wd.v + Vip = pupApv + 20,0,

Ow +v - Vyw +wd,w + 0:p+ gp = ppApw + p20;,w,
do d2p (1.2)
Op+v-Vyp+wd.p+ LZ) w:nhAhp—l-nzazzp%—nzL(z),
dz dz?
Vi v+ 0,w=0.
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N 172
Let N = (—gdg—(zz)) . If N > 0, then N is called the buoyancy or Brunt-Vaiséla frequency.

When dg(zz) < 0, the density decreases with height, and the lighter fluid is above the heavier

fluid, which is a situation referred to as stable stratification.

First, we transform the anisotropic Boussinesq equations (1.2), defined on the 7-dependent
domain (2, to the scaled Boussinesq equations defined on a fixed domain. To this end, we

introduce new unknowns with the subscript 7,
Ur = (UT?wT)7UT($7yazat) = ’U(ZC,y,TZ7t),
1
wT(I, y? Z? t) = _w(I, y? TZ? t)7pT (I, y? Z? t) = p(x7 y? TZ? t)’
T

pr(w,y,2,t) = (97)p(2, y,72,1),p-(2) = P(72), 0-(2) = (97)0(72),
for any (z,y,2) € Q=: M x (—1,1) and for any t € (0,00). Then the last two scalings allow us
to write the pressure and the density non-dimensionally as

Pr(2) + pr (2,9, 2,t) = p(12) + pla,y, 72, t) = (2, y,72,1)
and
0r(2) + pr(z,y, 2,t) = (97)(2(72) + p(x,y,72,1)) = (97)o(x, ¥, 72, 1),
respectively.

Suppose that up, = xp, = 1 and that u, = x, = 72. Under these scalings, the anisotropic
Boussinesq equations (1.2) defined on Q. can be written as the scaled Boussinesq equations

6tv7' + (UT : Vh)’Uq— + wrazvr + vhp‘r = Ahvr + 6ZZUT7

1
T(atw‘r +vr - Vawr + wTaZwT) + _(azp‘r + pT) = TApwr + Tazzwra
i (1.3)
da, %5,
atp‘r +vr - vhp‘r + w‘razpr + wri = Ahpr + &zﬂr + Q2 )
dz dz

Vi vy + 0w, =0,
defined on the fixed domain €.

When the fluid is steadily stratified, we can assume, for simplicity, that g(z) = 1—(1/g)N?z
for some positive constant N2, where N represents the strength of the stable stratification. This
assumption leads to 9, (z) = (g7)a(72) = g7 —7?N?2, and hence the third equation of the scaled
Boussinesq equations (1.3) becomes

Oipr + Uy - Vapr + wr0.pr — T2 N2wy = Appr + 0..p7.
Set 72- N? =1, i.e., N ~ 1/7, which means that the stratification effect is very strong. In such
a case, the scaled Boussinesq equations (1.3) can be rewritten as
815'07' - AUT + (UT ' vh)vT + w‘raz'UT + Vhpr = 07
72 (Opwy — Aw, + v, - Vyws +wr0,w,) + 0,07 + pr =0, (1.4)
Opr — Apr +v7 - Vippr +wr0,pr —wr =0,
Vi vr + 0w, =0.

Next, we supply the scaled Boussinesq equations (1.4) with the following boundary and
initial conditions:

Uy, Wr, pr and p, are periodic in x,y, 2, (1.5)
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(UTuwTupT)|t:0 = (U07w07p0)' (16)

Here (vg,wo, po) is given. Moreover, we also equip system (1.4) with the following symmetry
condition:

vy, Wr, pr and p, are even, odd, even and odd with respect to z, respectively. (1.7)

Note that the above symmetry condition is preserved by the scaled Boussinesq equations (1.4),
i.e., that it holds provided that the initial data satisfy this symmetry condition. Due to this
fact, throughout this paper, we always suppose that the initial data satisfy that

vo, wo and pg are periodic in x,y, z, and are even, odd and odd in z, respectively.  (1.8)

In this paper, we will use the same notation, LP(2) or H™(2), to denote both a space itself
and its finite product spaces. For convenience, we denote by notations ||-[|,, and ||-[|,, , the LP(€2)
norm and the LP(M) norm, respectively. Moreover, since the scaled Boussinesq equations (1.4)
satisfy the symmetry condition (1.7), it follows from the divergence-free condition that wq is
uniquely determined as

wo(%%z) = _‘/OZ vh . U0($,y7€)d§ (19)

for any (x,y) € M and z € (—1,1). Hence only the initial condition of (v;,p,) is given
throughout the paper.

For the proof of the global existence of weak solutions to the scaled Boussinesq equations
(1.4), we refer to the work of Lions-Temam-Wang [26, Part IV]. Specifically, for any initial
data (ug, po) = (vo,wo,po) € L?(2), with V - ug = 0, we can prove that there exists a global
weak solution (v,,w;,p;) of the scaled Boussinesq equations (1.4), subject to the boundary
and initial conditions (1.5)—(1.6) and the symmetry condition (1.7). Moreover, by an argument
similar to that of Lions-Temam-Wang [26, Part IV], we can also show that we have a unique
local strong solution (v,, w.,, p,) for initial data (ug, po) = (vo,wo, po) € H* (), with V-ug = 0.
The weak solutions of the scaled Boussinesq equations (1.4) are defined as follows:

Definition 1.1 Given (ug,po) = (vo,wo,po) € L*(), with V - ug = 0, we say that a
space periodic function (v,,w,, pr) is a weak solution of system (1.4), subject to the boundary
and initial conditions (1.5)—(1.6) and the symmetry condition (1.7), if

(i) (vr,wr, pr) € Cyw([0,T); L*(Q)) N L2(0,T; H(Q)) for any T > 0, where C,, is the space
of weakly continuous function in time;

(ii) (vr,wr, pr) satisfies the integral equality

/ / { - Oron — T2wrOpps — prOith + prips — W)
VU-,— Voo +T1 Vw, - Vs +Vpr- V’Q/J]

+ [(uT W)y o + 72 (ur - Vwy) s + (ur - VpT)d)] }dxdydzdt

= /Q (vo - @r(0) + T*wo3(0) + pot(0)) dedydz

for any spatially periodic function (p, 1) = (¢n, @3, %), with ¢, = (@1, p2), such that V- =0
and (¢, ) € C°(Q x [0,00)).
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Remark 1.2 Similar to the theory of three-dimensional Navier-Stokes equations (see
Temam [39, Ch.III, Remark 4.1] and Robinson et al. [36, Theorem 4.6]), we can prove that

(vr, wy, pr) satisfies the energy inequality

1 t
(o (13 + 72 s I3 + Lo+ (1)13) + / (170,113 + 721V, I + 70+ 1) s

2
1 2 2 2
< 5 (Iloll3 +72 lfwoll3 + llpoll3) (1.10)
for a.e. t € [0,00), as long as the weak solution (v,,w,, pr) is obtained by the Galerkin method.

In consequence, this paper aims to study the small aspect ratio limit for system (1.4).
In other words, when the aspect ratio 7 goes to zero, we are going to prove that the scaled

Boussinesq equations (1.4) converge to the viscous primitive equations with density stratification

0w — Av+ (v-Vi)v+wd,v+ Vpp =0,

O.p+p=0,

pp (1.11)
Op—Ap+v-Vpp+wd,p—w=0,

Vi v+ 0w =0,

in a suitable sense, where the density stratification term w in the third equation of system
(1.11) provides additional dissipation for this system. Moreover, the resulting system (1.11)
satisfies the same boundary and initial conditions (1.5)—(1.6) and the symmetry condition (1.7)
as system (1.4).

Next, we want to recall some results concerning the primitive equations. The global exis-
tence of weak solutions of the full primitive equations was first given by Lions-Temam-Wang
[25-27], but the question of uniqueness to this mathematical model is still unknown, except
for some special cases [3, 20, 22, 29, 38]. The existence and uniqueness of strong solutions to
the primitive equations with full dissipation in different settings is due to the work of Cao-Titi
[10], Kobelkov [21], Kukavica-Ziane [23, 24|, Hieber-Kashiwabara [18], and Hieber et al. [17],
as well as Giga et al. [15]. The study of the global strong solutions to the primitive equa-
tions is naturally carried out in the cases of partial dissipation. More details on these cases
can be found in the work of Cao-Titi [11], Fang-Han [13], Li-Yuan [31], and Cao-Li-Titi [5-9].
However, the inviscid primitive equations with or without rotation are known to be ill-posed in
Sobolev spaces, and the smooth solutions may develop singularity in finite time, see Renardy
[35], Han-Kwan and Nguyen [16], Ibrahim-Lin-Titi [19], Wong [42], and Cao et al. [4].

The rest of this paper is organized as follows: some auxiliary lemmas frequently used in the
proof are collected in Section 2; the main results of the paper are stated in Section 3; the global
well-posedness of strong solutions to the viscous primitive equations with density stratification
(1.11) is established in Section 4; the proofs of Theorems 3.2 and 3.3 are presented in Sections

5 and 6, respectively.

2 Preliminaries

In this section, we present some Ladyzhenskaya-type inequalities in three dimensions for a

class of integrals which are frequently used throughout the paper.
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Lemma 2.1 ([12]) We have the inequalities

/M (/11 ‘P(x’y’”dz) </11¢($7y72)¢(x,y,z)dz> dady

< Clielly® (Ielly + 19l 1152 (1132 + IVa913*) ol

/M (/ S"@”’MdZ) ( / 11 e,y 2)ole,y, z)dz> dudy

< C Il (1037 + 19w ly*) N8l (o113 + 19013 llel,
for every o, 1, ¢ such that the quantities on the right-hand side are finite, where C' is a positive
constant.
Lemma 2.2 ([28]) Let ¢ = (p1,92,93), and let 1) and ¢ be periodic functions in €.
Denote by ¢ = (1, p2) the horizontal components of the function ¢. There exists a positive
constant C' such that it holds that

/Q (¢ - V) ¢pdadydz| < C[[Verlly? 1Al V91152 |Av]5 6]l

provided that ¢ € H'(Q), with V- ¢ =01in Q, [, ¢dzdydz =0, and p3].—0 = 0, Vi € H'(Q)
and ¢ € L*(Q).

3 Main Results

Now we state the main results of this paper. In order to obtain the strong convergence
results, i.e., Theorems 3.2 and 3.3, we first establish the global well-posedness of strong solutions
to the viscous primitive equations with density stratification (1.11) for initial data (vg, po) €
HY(Q).

Theorem 3.1 Suppose that we have a periodic function pair (vo, po) € H(2), with

1
/ Vi - vo(z,y,z)dz =0, / vo(z,y, z)dedydz = 0, and / po(z,y, z)dzdydz = 0.
1 Q Q

Then, for any T > 0, there exists a unique strong solution (v, p) depending continuously on
the initial data to system (1.11) on the time interval [0, T], subject to the boundary and initial
conditions (1.5)-(1.6) and the symmetry condition (1.7), such that (v, p) € C([0,T]; HY(Q)) N
L2(0,T; H*(Q)) and (dyv,d:p) € L2(0,T; L*(12)).

The global existence of weak solutions to the scaled Boussinesq equations (1.4) basically
follows the proof in Lions-Temam-Wang [26, Part IV]. For initial data (vo, po) € H'(Q2), it can
be deduced from (1.9) that (vo,wo, po) € L?(£2), which implies that system (1.4) has a global

weak solution (v;,w;, p;). For this case, we have the following strong convergence theorem.

Theorem 3.2 Take a periodic function pair (vo, pg) € H'(2) such that

1
/ Vi - vo(z,y, z)dz = 0, / vo(,y, z)dzdydz = 0, and / po(z,y, z)dzdydz = 0.
-1 Q Q

Suppose that (v,,w;, p;) is a global weak solution of system (1.4), satisfying the energy in-
equality (1.10), and that (v, p) is the unique global strong solution of system (1.11), with the
same boundary and initial conditions (1.5)—(1.6) and the symmetry condition (1.7). Let

Ve, Wo, T) = (v — v, wr —w, pr — p).
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Then, for any T > 0, it holds that
T

sup (Ve We L IB) @)+ [ 190V rWo D) < 72K (D),
0<t<T 0

where l%:(t) is a nonnegative continuously increasing function that does not depend on 7. As

a result, we have the strong convergences

(vr, 7wy, pr) — (v,0,p) in L (0,T; L*(2)),

(Vur, 7Vw,, Vpr, wy) — (Vv,0,Vp,w) in L? (O,T;LQ(Q)) ,
and the rate of convergence is of the order O(r).

Next we assume that initial data (vo, pg) belongs to H?(). Then, from (1.9), it follows
that (vo,wo, po) belongs to H(2). By an argument similar to that of Lions-Temam-Wang [26,
Part IV], there exists a unique local strong solution (v,,w,, p;) to system (1.4), subject to the
boundary and initial conditions (1.5)—(1.6) and the symmetry condition (1.7). In this case, we

also have the following strong convergence theorem.

Theorem 3.3 Take a periodic function pair (vo, po) € H?(Q2) such that

1
/ Vi - vo(z,y, z)dz = 0, / vo(,y, z)dzdydz = 0, and / po(z,y, z)dzdydz = 0.
-1 Q Q

Suppose that (v;, wr, pr) is the unique local strong solution of system (1.4), and that (v, p) is the
unique global strong solution of system (1.11), with the same boundary and initial conditions
(1.5)—(1.6) and the symmetry condition (1.7). Let

Ve, W, Tr) = (vr — v, wr — w, pr — p).

Then, for any T > 0, there is a small positive constant 7(7) = —3B__ such that system
y p Vi (T) /K (T) y

(1.4) exists a unique strong solution (v,,w,, p;) on the time interval [0,7], and that system

(6.1)—(6.4) (see Section 6, below) has the estimate

T

sup (Ve W Tl5) (0% [ IV (Ve W ) e < 72Ra(T),
0<t<T 0

~

provided that 7 € (0,7(T)), where both Ky(t) and Ks(t) are the nonnegative continuously

increasing functions that do not depend on 7. As a result, we have the strong convergences
(vr, Twr, pr) — (v,0,p) in L™ (0,T; H'(Q)),
(Vuy, 7Vw,, Vo, w,) — (Vv,0,Vp,w) in L (O,T;Hl(Q)) ,
wy — w in L™ (O,T;LQ(Q)) ,

and the rate of convergence is of the order O(r).

Remark 3.4 It should be pointed out that the case where g(z) = Constant has been
studied by the authors (see [34]). Compared with [34], the third equation of the resulting limit
system here contains the density stratification term w. In order to establish the global H*
theory for system (1.11), we carry out the a priori estimates on v and p, simultaneously. In
this way, the global well-posedness of strong solutions to the viscous primitive equations with
density stratification (1.11) is obtained, and the first order energy estimate on strong solutions

will be used in the proof of Theorem 3.2. Moreover, Theorem 3.3 is proven by establishing the

second order energy estimate on strong solutions of system (1.11).
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4 Global Well-Posedness of the Primitive Equations

In this section, we establish the global well-posedness of strong solutions to the viscous
primitive equations with density stratification (1.11), subject to the boundary and initial con-
ditions (1.5)—(1.6) and the symmetry condition (1.7).

Before this, we use the symmetry condition (1.7) to reformulate system (1.11). This sym-
metry condition indicates that w|.,—o = 0. Integrating the last equation of system (1.11) with
respect to z yields

w(‘T?yazat) = _‘/0 vh . U(‘T?yaf?t)dg'

We integrate the second equation of system (1.11) with respect to z to obtain that

p('rvyvz?t)_p’)’('rvyvt)_A p(Iayvgvt)dgv

in which p,(x,y,t) represents the unknown surface pressure as z = 0. Based on the above
relations, we can recast system (1.11) as

v —Av+ (v-Vp)v — (/Z Vi, - U(:my,f,t)dﬁ) 0.v + Vipy(z,y,t)
0
- | uplev. e = o (4.1)

Op—Ap+v-Vip— (/OZ Vi v(x,y,fvf)d§> d.p+ /Oz Vi - v(z,y, & 1)d€ = 0, (4.2)
satisfying the boundary and initial conditions
v and p are periodic in z,y, 2,
(v, p)lt=0 = (vo, o),
and the symmetry condition that
v and p are even and odd with respect to z, respectively.

4.1 L? Estimates on v and p

Taking the L?(2) inner product of (4.1) and (4.2) with v and p, respectively, and integrating
by parts, we obtain

1d 2 2 2 2
535 (I3 +11pl3) + 19013 + 1Vl

= /Q (/Oz Vhp($,y7§,t)d§> -vdzdydz _/Q (/02 \v/3 .v(;ay,f,t)dg) pdzdydz = 0,

where we have used the facts that

/ [(U -Vi)v — (/Z Vi -U(:my,f,t)d{“) ('“)ZU} -vdadydz = 0,
Q 0
/ [v -Vnp — (/ Vi -U(:my,f,t)d{“) 8zp] pdzdydz =0

Q 0

/ Vipy(2z,y,t) - vdzdydz = 0.
Q

and
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Integrating the differential equation above in time between 0 to ¢, we have that

t
2 2 2 2
(hl+ 1013) 0+ [ (19013 + 19p13) ds < m, (43)

0

where
2 2
m = C (ool + looll3n )

4.2 L* Estimates on v and p

Multiplying (4.1) and (4.2) by |v|?v and |p|?p, respectively, and integrating over €2, then it
follows from integration by parts that

1d

4dt

1d

g Wi+ [ 16 (1V62 +2191011%) dadyaz
Adt o

- / < / v(x,y,é,wds) [V (1p2)] dadydz
Q 0
—/ (/ p(w,y7€,t)d§> (Vh-lvlzv)dwdydz—/ Vipy (@, y,t) - [v]*vdedydz
Q 0 Q

= . Dl —|— DQ —|— Dg, (44)

ol + [ of? (1908 + 219Dl ) oy
Q

in which we have used the facts that

/ [(v -Vi)v— </Z \V/ v(x,y,f,t)d{) (?zv} . |v|21)d:17dydz =0,
Q 0
/ [v Vhp — (/ Vi -v(a?,y,&t)dé) 3:4)} |p|? pdzdydz = 0.

Q 0

We now estimate the first integral term D; on the right-hand side of (4.4). Using Hélder’s
inequality yields that

i [ ( / v(x,y@t)ds)-[vh(lpl%)]dwdydz
1 1
<o [ ([ wlaz) ([ 10P19asla ) aoay
M —1 —1
1 1 1/2 1 1/2
o[ ([ i) ([ opas) ([ 1oPenopa:)  asay
M —1 —1 —1
1/4 1/4 1/2
C(/ |U|4d:vdydz) (/ |p|4d:vdydz) (/ |p|2|vhp|2dxdydz>
Q Q Q

1/2
< ¢l loll, ( / |p|2|w|2dxdydz) |

Due to Young’s inequality, we have that

IN

IN

3
Dy < Ol ol + 5 | 11V Pdadyas

. 3
< (Ioli+ o) + 5 [ 1o9pPdadya. (15)

A similar argument as that for the integral term Dy gives that

Do~ [ (= [ plog.ne) (V- oPo)saa:
Q 0
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3
< (Ioli+ ) + 5 [ 1ol 19efdadya. (1.6)

For the last integral term Dj on the right-hand side of (4.4), we use Lemma 2.1 and Poincaré’s

inequality to get that

Ds: = —/ Vip(z,y,t) - |v|*vdadydz
Q

1
</ |vhp7<x,y,t>|< / |v||v|2dz> dady
M —1

1/2 1/2 2 1/2
< Cllolly* 19913 (1013 + ol MeIFol5) 1981z, (4.7)

Applying the operator divy, to equation (4.1) and integrating the resulting equation with respect

to z from —1 to 1, we can see that p,(z,y,t) satisfies the system

1 [t z
_Ahp’y = 5/ Vi - (Vh : (U & ’U) — / Vhpd§> dz,
1 0

/ py(x,y,t)dedy = 0, p, is periodic in z,y,
M

where the condition fM py(x,y, t)dedy = 0 is imposed to guarantee the uniqueness of p,, (z, y, t).

By virtue of the elliptic estimates and Poincaré’s inequality, we obtain that

1 z
||Vhpy||27M <C ’/ (Vh (v @) —/ Vhpd§> dz
—1 0 2,M
<C(IVa-(vev)lly + [IVapll,)
< C([[lv[Volly, +1[Velly) - (4.8)

Substituting (4.8) into (4.7) and then using Young’s inequality yields that
Dy < Clolly 90132 (Il + el 1101V olly?) (190l + 0] Voll,)
< Clloly 19013 (190l 01l + 11Vl 0]l el Zol3?)
+ Cllly 1ol (Il HeVol, + ol o Vol3?)
< C (Ilelly 190l + 0l 19013 + 1913 ) (ol + lell)
+ 1 (ol 15l +19613) + 5 ol w3 (19)
Adding (4.5), (4.6) and (4.9) leads to
G (1 1018) + [ 0PIV + o190 dadya:
< C (Ilelly 199l + 0I5 190113 + 1915 + 1) (ol + ol
+ (ol 1¥ell, + 19013) -
Owing to Gronwall’s inequality, we get from (4.3) that

t
(Il +1013) @)+ [ [ QP19 +16PI9pP) dadyazas

t
< e {C [ (1ol Vel + I3 1913 + 19015 + 1) as
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t
4 4 2
< [lleoll3 + llpoll + / (Il 1970ll, + 1V0113) s | < ma(t), (4.10)

where
2
i (t) = (¢ + 2)eCU+2) (rH+m+1) [Hvollip +lpoll i + 771] .

4.3 L? Estimates on 0,v and 0,p

Taking the L?(Q) inner product of (4.1) and (4.2) with —9,,v and —9,.p, respectively, we
obtain that

1
537 (19015 + 110-p113) + 1VO-] + V011

= [(/z Vi .v(a:,y,ﬁ,t)dé) 0z2p — (/z Vhp(a?,y,g,t)dg) .azzv} dzdydz
Q 0 o
+ /Q [v “Vhp — </0 Vi .U(:v,y,&t)dg) sz] 0, pdxdydz

—|—/ [(U -Vi)v — (/ Vi - U(x,y,&t)dﬁ) (’LU} -0, vdzdydz
Q 0
=:D1 + D2 + Ds. (4.11)

For the first integral term D; on the right-hand side of (4.11), we use integration by parts,
Holder’s inequality and Young’s inequality to get that

D= /Q [(/(JZ Vi -vd§> O0z2p — (/Oz Vhpd§> -(’LZU} dedydz

= / (v-V3p0.p— pVi - Ov)dxdydz
Q
< wlly [VaO:zplly + [lplly [[VRO:vll,

1
< C (Il + 116l13) + 5 (V0013 + 1702113

Next, we estimate the second integral term D5 on the right-hand side of (4.11). Using integration
by parts, Holder’s inequality, the Lebesgue interpolation inequality, the Sobolev embedding
theorem, and Poincaré’s inequality gives that

Dy = / [U.vhp— ( / vh-v@,y,wdﬁ) azp] 0...pdadyd=
Q 0

= / [(Vh - 0:0) pdzp + (0.0 - Vi05p) p — 2 (v - V05p) 02 p] dzdydz
Q

< [lplly 182 pll4 1V 10=0ll5 + (ol 185011, + ol 10:01,) V1020l
1/4 3/4 1/4 7/4
< Cplly 18-pll3"* IV D-p| 3 IV 0. 0]l + C [0l 18-pll3"* [V D-pl13

1/4 3/4
+Clplly 10:0l5"* V.03 V8. p, -
By virtue of Young’s inequality, we have that

8 8 2 2 1 2 2

Dy < C (Il + l1pl}) (No-l3 + 10:0113) + ¢ (19013 + ¥ .013) -

With an argument similar to that for the second integral term Dy on the right-hand side of
(4.11), the last integral term D3 can be estimated as

Dy — / [@-vh)v— ( / ) vh-v<x,y,s7t>d§) azv] - O..vdzdydz
Q 0
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= / (V- 00)v- 00+ (0.0 V) Ov-v—2(v-Vy)0,v- 0.0 dedydz
Q

1
< Cllolly (J0:v13 + 19:013) + 5 V00113
Combining the estimates for D1, Dy and D3 gives that
d 2 2 2 2
= (10015 + 10:113) + I90-015 + V0l
< ¢ (Il + 1) (10:v13 + 19:013) + € (Il0l + loll3) -

Using Gronwall’s inequality, it follows from (4.3) and (4.10) that

t
(10013 + o-p1B) )+ [ (19001 + 199-13) a

t t
<esp{C [ (Il + 1ol) as} |10.00lf + W0l +C [ (1ol + 113) as
0 0
< n3(t), (4.12)

ma(t) = C(t + 1) B [fjuoll3, + llpoll 3 +m] -

4.4 [? Estimates on Vv and Vp

Multiplying (4.1) and (4.2) by dyv — Av and 9;p — Ap, respectively, integrating over €2, and
integrating by parts, we get that

< (19012 + 1912) + 0wl + 180l + [9boll3 + 1212

:/Q K/O Vi - v(x,y,f,t)d§> (Ap —ip) — (/0 Vhp(x,y,g,t)dg) - (Av _;M)] dzdydz
T /Q [V Vap(Ap—0ip) + (v- Vi) v (Av — )] dedydz
* /Q ( /0 Vi vl@y, &, f>d5> [02p (Bip — Ap) + 0-v - (Ov — Av)] dardydz

:ZDl + D2 + Dg. (413)

Due to Holder’s inequality and Young’s inequality, the first integral term D; on the right-hand
side of (4.13) can be bounded as

Dui= [ ([ oot o) @)
—</0 vhp(a:,y,g,t)dg) - (Awv —8,51))] dadydz
<[/ 11 wla: ) ([ 11 ousl + 87)a
+(/_11 |Vhp|d2’> (/_11 |atv|+|m|)dzﬂ dady

< ClIVrolly (10:plly + [1A0ll5) + ClIVaplly (100l + [|Av]l,)

1
< C (Ivol3 + 1Vl ) + 5 (I0e0ll3 + A3+ 19upl3 + 12013) . (4.14)
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For the second integral term Dy on the right-hand side of (4.13), we use Lemma 2.1, Poincaré’s

inequality and Young’s inequality to obtain that

Dy : = / [v-Vhp(Ap—0wp) + (v-Vp)v- (Av — Ow)] dadydz
Q

< [ ([ i+ naz) ([ 190l 0000l + 19D az ) avay
+/M (/11 (o] + |8zv|)dz> (/11 Vav| (1950 + |Av|)dz> dady

< ¢ (Jelly 190l + 102013 1V0-0lly*) 1ol 180113 (101pll; + 1 A0]l,)
+C (Il 1901y + 9.1 1V 0.0132) 19032 1a0lly (10wl + 1Acl,)
< € (Iol3 1v0ll3 + l-0l13 [90.013) (IVll3 + 1Vel13)

1
+ = (100113 + 1A0]3 + 9epl3 + 12011 (4.15)

Finally, it remains to estimate the last integral term D3 on the right-hand side of (4.13). A
similar argument as that for Dy yields that

Dyi= [ ( | ~v<x,y,§,t>dg) 0.9 (9ep — Ap) + 0.0 - (9w — Av)] dadyd
Q 0
< C (10-013 190013 + 10-113 190013 (013 + 9013
1
+ = (100113 + 18013 + 9epl + 120113) (4.16)
Summing (4.14), (4.15) and (4.16) gives that
d 2 2 1 2 2 2 2
= (1903 + 190113) + 5 (196013 + 180113 + 1900l + 120113
< € (Il0l3 19013 + 10013 1V 0-0l13 + 10213 10-0115 + 1) (IV0ll3 + ¥pl3) . (417)
Applying Grénwall’s inequality to the above inequality, it follows from (4.3) and (4.12) that
ymg

t
(Iv0ll3 + 1I9013) (1) + / (el + 1av5 + leal + 12013) ds

t
<exp {o / (I3 190113 + 10-0l13 1V 2-v]3 + 10113 9 0-pl3+1) ds} (1720 l3+19p0l13)

< nalt), (4.18)

where
() = CD (O +1) (||UOH§{1 I HpOHﬁ{l) ,

Based on the above energy estimates, we now give the proof of Theorem 3.1.
Proof of Theorem 3.1 Adding (4.3) and (4.18), we have that

t
sup (ol + i) )+ [ (10l + 190l + 10103 + 1130 ) ds < +ma(o)
SRS 0

where 74 (¢) is a nonnegative continuously increasing function defined on [0, 00). For any T > 0,
the following estimate holds

T
sup (Il + ol ) 0+ [ (101 + 1701 + 1oupl3 + 191 )t < o+ ma(T).
sSis 0
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As a consequence, the strong solution (v, p) exists globally in time, with (v,p) € C([0,T];
HY(Q)) N L2(0,T; H*(Q)) and (8:v, 0:p) € L*(0,T; L*(Q)).
Moreover, the proofs of continuous dependence on the initial data and the uniqueness of

strong solutions are standard (see, e.g., [10]), so we omit these proofs here. 0

5 Strong Convergence for H' Initial Data

In this section, assume that initial data (vg, po) belongs to H'(Q) with
1
/ Vi - vo(z,y,2)dz =0, for all (z,y) € M.
-1

We prove that the scaled Boussinesq equations (1.4) strongly converge to the viscous primitive
equations with density stratification (1.11) as the aspect ratio T goes to zero.

The following proposition is formally obtained by testing the scaled Boussinesq equations
(1.4) with (v,w, p). As for the rigorous justification for this proposition, we refer to the work
of Li-Titi [28] and Bardos et al. [2].

Proposition 5.1 Given a periodic function pair (vo, po) € H'(2) with

1 z
/ Vi -vodz =0 and wo(z,y,z) = —/ Vi - vo(z,y,£)dE,
-1 0

suppose that (v, w,,p;) is a global weak solution of system (1.4), satisfying the energy in-
equality (1.10), and that (v, p) is the unique global strong solution of system (1.11). Then it
holds that

([ e et pop) doudz) () - G )l
+ /OT/Q (Vo, : Vo +7°Vw, - Vu + Vp, - Vp) dedydzdt

= looll3+ | ' [ = ¥per v 2 Vi = (ur- Vo)) dadyezds
+ %2 [[woll5 + 72 /0 /Q (/0 (%v(x,y,f,t)d{) -V Wedzdydzdt

+ ||PO||§ + / / (vr - 00 + prOp + wrp — prw) dedydzdt (5.1)
0 Q

for any r € [0, 00).
With the help of this proposition, we can now estimate the difference function (V;, W,,T';).

Proposition 5.2 Let (V;, W,,T';) = (v; —v, w; —w, pr —p). Under the same assumptions
as in Proposition 5.1, it holds that

t
sup. (VW TIE) () + [ 1907 oW T ) s < 72 0)

0<s<t

for any t € [0, 00), where

2 2
K(6) = Cet ae) 470) + (Lol + 72 ol + Lool)

Here C is a positive constant that does not depend on 7.
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Proof Multiplying the first three equations in system (1.11) by v,, w, and p,, respec-

tively, and integrating over Q x (0,r), it follows from integration by parts that

/ / (vr - O + prOp + Vo, : Vo + Vp, - Vp)dedydzde
0 Q

:/ / [wpr — pwr — (u-V)v- v, — (u- Vp)p,] dedydzdt. (5.2)
0o Ja
Replacing (v;, wr, pr) with (v, w, p), a similar argument gives that
1 " 1
5 (10O + 10)13) + [ (190l +19013) @t = 5 (hol} + I0l3) - 63)
Thanks to Remark 1.2, the weak solution (v,,w,, p;) of system (1.4) satisfies the energy in-
equality
1 2 2 2 " 2 2 2
5 (ler @3 + 72 o ()3 + lor(r)113) + / (170,113 + 72 Ve, |3 + V- 3)
1 2 2 2
< 3 (llvoll3 + 72 lwol3 + llpoll3) - (5.4)
Subtracting the sum of (5.1) and (5.2) from the sum of (5.3) and (5.4), we have that

1 T
5 (VoI5 + 72 1) 1 + 1T (0)113) + / (1923 + 72 VW13 + 9T 13) e

< / / [(ur - Vpr)p + (u- Vp)p,] dedydzdt
0 Q

+ 7’2/ / {— (/ 8tv(x,y,§,t)d§> VW, —Vuw- VWT} dzdydzdt
0o Jo 0
+ / / [(ur - V)vr v+ (u- Vv - v, ] dedydzdt + 7’2/ / (ur - Vw, )wdzdydzdt
0 JQ 0 JQ
=:J1+ Jo+ J3+ Js. (55)

First, we estimate the integral term J; on the right-hand side of (5.5). Using Holder’s inequality,

Lemma 2.1 and Young’s inequality gives that
Jr1:= / / [(ur - Vpr)p + (u-Vp)ps] dedydzdt
o Ja
= / / [(VT “Vil'7) p— (aZWT)FTp - er—‘razp] dzdydzdt
o Ja

= / / (V7 - Vi) p+ (Vi - Vi) p] dedydzde
0o Jo

+ /O ' /Q T, (0.p) ( /O z(vhvnd&) dedydzdt

< / / (VA lIVaTllo] 4+ [V Vil [T p]) dadydd
0 Q

1 1
+ (/ |vhv7|dz) (/ |FT||azp|dz>dwdy
M -1 -1
" 2 2 2 2 1 " 2 2
<c [ Ivol 1803 (1134 I0-13) e+ 5 [ (IVV B+ 198 e (6.0)

Note that the divergence-free condition, the Sobolev embedding H' C L°® and Poincaré’s in-

equality are used in the above estimate. By virtue of Holder’s inequality and Young’s inequality,
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we obtain that

Ty = 72/ / {_ (/ atu(:c,y,g,t)dg) VAW — V- VWT} dedydzdt
0 Q 0

T 1 T
<cr® [ (10wl + 19wl + fo-ul3) at+ 5 [ 7 19w,

S [natvn% s [ ([ 9 )

T 1 T
+CT2/O |\th||§dt+§/0 | VW[5 dt

2
dxdydz] dt

T 1 T
<cr [ (lowl + [avlE) e+ [ 19w 3 (5.7)
0 0

The bounds for J3 and J4 on the right-hand side of (5.5) can be found in Li-Titi [28, Proposition

4.2]. These two integral terms can be estimated as

Jg 1= / / [(ur - V)vr - v+ (u- V)v - v,] dedydzdt
0 Jo

" 2 2 2 L[ 2
<c [ IvelIavl IviiZat+ 5 [ IvV: I a (59)
and
Ja :7’2/ /(uT~VwT)wd:17dydzdt
o Ja
" 2 2 2 2 2 2
< 077 [ (o3 190r B+ 1901 18015 + 7 o [ V- )
L[ 2, 9 2
+3 ) (I9vlz+ 72 w3 ar, (5.9)
respectively.

Adding (5.6), (5.7), (5.8) and (5.9) yields that
2 2 K 2 2
)= (07 T+ 7 WHE) 0+ [ (1902l + 7 197, ) ds
¢ 2 2 2 ¢ 2 2
<C [CIvol vl VI3 ds+ 07 [ (1ol + aul) ds
t
2 2 2 2 2 2
+07% [ (Ierl 170, 1 + V0l §Ao]3 +7* oo 1319, 1) s
¢ 2 2 2 2
+C [CIVpI 10l (V15 + 1) ds = 1)
for a.e. t € [0,00). Taking the derivative of H(t) with respect to ¢, we obtain that
2 2 2 2 2 2
H'(t) < Cr? (||UTH2 [Vurlly + [[Volly [[Av]; + Tt [[wrl3 var||2)
2 2 2 2 2 2 2 2
+C (Ivvl11all3 + 1913 18015 ) (V15 + IT713) + 72 (19l + 1 Av]3)
< ¢ (IVol3 180l3 + Vo3 18013) H(E) + €72 (010l + 1 A0]]3)
+C72 (Jlur 3 1970, 13 + 19013 11A0ll3 + 7 e 3 1 Ve0-]3)
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Note that the fact that H(0) = 0. Applying Gronwall’s inequality to the above inequality, it
follows from (4.18) and (5.4) that

t
m(t) : = (Ve T+ 72 W2 113) () + / (IV VD) 5+ 72 VW2 ) ds
t
<cren{c [ (1ol lals + 19513 1asl2) as
t
[ (10001 + 1801 + 3 19715+ [713 1801 + 74 e P ) s

2 2 2 22
< Cr2eCmi® [m(t) + () + (Jleol3 + 72 lwol3 + llooll3) } .

This completes the proof. O

Based on Proposition 5.2, the proof of Theorem 3.2 is as follows:
Proof of Theorem 3.2 For any T' > 0, according to Proposition 5.2, the following
estimate holds:

T —
sup (H(VT,TWT,PT)H;’) (t)+/0 IV (Ve Wy, Ty 3dt < 7201 (T).

0<t<T
Here

— 5 2
K1(T) = Ce?i™) [m(T) + () + (llol3 + lfwoll3 + llpoll3) ] :

and C is a positive constant that does not depend on 7. It can be deduced from the above

estimate that
(vr, w7, pr) — (v,0,p) in L™ (0,T; L*(2)),
(Vur, 7Vw,, Vpr, wy) — (Vv,0,Vp,w) in L? (O,T;LQ(Q)) .

Obviously, the rate of convergence is of the order O(7). The theorem is proven. O

6 Strong Convergence for H? Initial Data

In this section, assume that initial data (vg, po) lies in H?(Q), where initial velocity v
satisfies that

1
/ Vi - vo(z,y,2)dz =0, for all (z,y) € M.
-1
We prove that the scaled Boussinesq equations (1.4) strongly converge to the viscous primitive
equations with density stratification (1.11) as the aspect ratio 7 goes to zero. In this case, there
is a unique local strong solution (v,, w,, p;) to system (1.4), subject to the boundary and initial
conditions (1.5)—(1.6) and the symmetry condition (1.7). Denote by T the maximal existence

time of this local strong solution.
Let

(U,.T1, Py) = (Vy, Wy, T, Py),
(Ve Wr, Iz, Pr) = (vr — 0,07 — w, pr — p,pr — p).
We subtract system (1.11) from system (1.4) to obtain system
Ve — AV + (U - V)V + (u- V)V + (Ur - Vv + Vi P =0, (6.1)
€\ Springer



1098 ACTA MATHEMATICA SCIENTIA Vol.43 Ser.B

T (OW, — AW, + U, - VW, + U, - Vw +u-VW,) + 0, P,

+ T, + 72 (0w — Aw + u - Vw) = 0, (6.2)
O, — AT, + U, - VI, + Uy - Vp+u-VDy — W, =0, (6.3)
Vi Vi +8.W, =0, (6.4)

defined on Q x (0,77).

Proposition 6.1 Suppose that (v, po) € H?(Q) with f_ll Vi - vodz = 0. Then system
(6.1)—(6.4) has the basic energy estimate

t
sup. (VoW TIE) () + [ IV oW T ) s < 720

0<s<t

for any t € [0,T), where

2 2
Ka(t) = CeCri® [m(t) +12(0) + (lleol3 + 7 o3 + lpol3) } .

Here C is a positive constant that does not depend on 7.

It is important to note that the Proposition 6.1 is a direct consequence of Proposition 5.2.
Moreover, the basic energy estimate on system (6.1)—(6.4) can also be obtained by the energy
method. The strong solution (v, w;, pr) to system (1.4) is local, so is the basic energy estimate.
In order to obtain the first order energy estimate for system (6.1)—(6.4), we need to perform

the second order energy estimate on system (1.11).

Proposition 6.2 Suppose that (v, po) € H?(Q) with fil Vi - vgdz = 0. Then system
(1.11) has the second order energy estimate

t
sup (180]3 + 18613) () + [ (I9000l3 + IV A3 + V013 + [T 2]3) ds < ns(t)
0<s<t 0

for any t € [0, 00), where
s (1) = CUrD(EO+1) [||UO|\§12 I HpOquz} ,

Proof Taking the L2(2) inner product of (4.1) and (4.2) with A (Av —dv) and A
(Ap — Oip), respectively, we deduce from integration by parts that

< (18013 + 18012) + V00013 + IV 80l3 + V0l + V22
:/QV (/O V- v(x,y,f,t)d§> Y (Ap — Dup) dadyd=

+ /Q v (/0 Vhp(a:,y,g,t)dg) .V (00 — Av) dedydz

+ /Q \Y [U -Vpp — (/OZ Vi, - U(x,y,&t)dﬁ) (’Lp] -V (Ap — O¢p) dzdydz

+/ \% [(U -Vp)v— (/Z Vi - v(x,y7§,t)d§> (9ZU:| : V (Av — 9p) dedydz
Q 0

=:G1+ G2+ G3+ Gy. (6.5)

For the first integral term Gp on the right-hand side of (6.5), we use Holder’s inequality and
Young’s inequality to get that

Gii= [ v( / ) vh-v<x,y,f7t>df) V(A — Bup) dadyd
Q 0
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- / v ( / V- v(x,y@,t)dg) -V (Ap — Bip) dadydz
Q 0
+ / (Vi - 0) (0.Ap — 8.0 p) dedydz
Q
= / [/ Vi, ~3iv(x,y,§,t)d§] (0;Ap — 0;0¢p) dedydz
Q 0

+ / (Vi -v) (0.Ap — 0,0¢p) dedydz
Q

1 1
< / (/ |8thv|dz) (/ (10:0:p| + |5iAp|)dz> dzdy
I’ -1 -1

+ / Vo] (10:00p] + 92 5p]) dardydz
Q

1
< O (Ivoll; + 1avl3) + < (IVarll3 + 1V 20]3) - (6.6)

Next, we estimate the second integral term G2 on the right-hand side of (6.5). Using the same

method as for the integral term G; gives that

Gy := / \Y4 </z Vhp(x,y,ﬁ,t)dg) : V (0w — Av) dadydz
Q 0

1
< C IVl + 18013) + 5 (IVar0l3 + [V A0]3) - (6.7)

Due to Lemma 2.2 and Young’s inequality, the third integral term G3 on the right-hand side of
(6.5) can be estimated as

Goi= [ [ V- < [ o v(x,y@,t)ds) azp} Y (8p— p) dardyd
Q 0
= / V(u-Vp) -V (Ap— 0ip)dadydz
Q
= / (Oiu-Vp+u-9;Vp) (0;Ap — 0;0¢p) dedydz
Q
< C[aivolly* lo:Avlly® [V plly 12011y (|0:0epll, + 10:20]],)
+C[Volly 2 1av]y* 10:Vplly 2 10: 8011y (10:0epl, + 10:20]],)
< ¢ (190l Naoll3 + 1Vl 12013) (1a0l3 + 120013)
1
+ 5 (IV20l3 + [V0ll3 + 1720013 (6.8)

For the last integral term G4 on the right-hand side of (6.5), a similar argument as to that for
the integral term G3 gives that

Gy:= / \Y |:(’U -Vp)v — (/ Vi -v(x,y7§,t)d§> Bzv] : V (Av — 0yv) dzdydz
Q 0
= / Vi(u-V)v]: V(Av — 0w) dedydz
Q
1
< OVl vl [Av]3 + 5 (IVorll; + VAv]3) (6.9)
Substituting (6.6)—(6.9) into (6.5), we have that

d 1
= (12015 + 120113) + 5 (V0I5 + [V A0]5 + [Vl + [V 20]3)
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< C (IVol 180l + 1913 18013 + 1) (l1Ael3 + 120)2)

Thanks to Gronwall’s inequality, it follows from (4.18) that

t
(1avl3 + 1anl3) (8) + / (IV0wl3 + IV Al + [ Varpll3 + IV A3 ) ds

t
<exp{C [ (IT0l3 haoll + 1901318015 + 1) s | (lawol + 1 m]2)

< (i (B+1) [Hvonip + Hpollip} :

The proof is completed. O
With the help of Proposition 6.2, we can perform the first order energy estimate on system
(6.1)—(6.4).
Proposition 6.3 Suppose that (vg, po) € H?(Q) with f_ll Vi -vgdz = 0. Then there exists

a small positive constant By such that system (6.1)—(6.4) has the first order energy estimate
t
sup (I (V. 717, 1)) (s) +/ AV, 7 W, T 2 ds < 72Ka(t)
0<s<t 0

for any t € [0,T), provided that

sup (IIV(V, To)II3 +72 [V [) () < 3,

0<s<t
where
Ka(t) = Ce®HHIm [5(0) +n2(1)]
Here C is a positive constant that does not depend on 7.
Proof Multiplying the first three equations in system (6.1)—(6.4) by —AV,, —AW, and
— AT, respectively, then integrating over 2 and finally integrating by parts gives
1d
2dt
= / (U, - VT +u- -Vl + U, - Vp)AT  dzdydz
Q

(IV OV TOIE + 72 VW2 3) + AV T3 + 72 | AW- 3

+ 72 / (Opw — Aw + u - Vw) AW, dadydz
Q
+ 72 / (U, - VW, +u- VW, + U, - Vw) AW, dxdydz
Q
+/ (U, - V)V; + (u-V)V; + (U, - V)] - AV, dzdydz
Q

=L+ 1L+ 13+ 14 (6.10)

For the first integral term I on the right-hand side of (6.10), we apply Lemma 2.2 and Poincaré’s
inequality and Young’s inequality to obtain that

I : = / Uy - VI +u- VI + U, - Vp)ATl' dadydz
Q
< CIIVV |y 1AV, 132 VT 12 | AT, 15/% | AT, |
+C | Voll52 | Av|3/ | VT, |52 | AT, |3/

+CVVA 2 1AV 2 IVl 1 Aplly 2 |AT |,
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5
< = (IaV; 3 + 1arc ) + ¢ (19 Ve |3 + VT2 13)
< [(1AVAI3 + IAT ) + 1ApI3 IV ApI5 + | A0l3 IVAW3] . (6.11)
The integral terms I3, I3 and Iy on the right-hand side of (6.10) can be bounded as

I: =12 / (Orw — Aw + u - Vw) AW, dzdydz
Q
5
< 720 (|1avll; VA3 + | Vawll; + VA3 ) + 2 |AW- |, (6.12)
I3: = 7'2/ Uy - VW, 4+ u- VW, + U, - Vw) AW, dzdydz
Q

< 2 (18V 13 + 72 1AW 13) + C (IVVA I3 + 72 195 |3)

3
~ 64

< [(1AVIS + 72 1AW, [13) + (147 A0 |V Av]3] (6.13)
and

I,:= / [(U: -V, + (u- VYV, + (U - V)v] - AV, dzdydz
Q
)
< C (IVV- I3 1AVAI5 + 1Al VAl 19V, [13) + = IAVA

5
< OVl (IAVE I+ 1ael3 [V Aul3) + - IAVH3, (6.14)
respectively. The details of the above calculations can be found in [28, Proposition 5.2].
Combining the estimates for (6.11), (6.12), (6.13) and (6.14), we obtain that

1d

2dt

2 2 2 2 2 2

< Cs (IV VA TI5 + 72 VWA IZ) [ (1A0R T3 + 72 | AW- )

11
IV (Ve Do)l + 72 VW l3) + 12 (IAVE T3 + 7 AW |13
16

2 2 2 2
+ 12015 1V AI5 + (1 + 1) 1 Av]l3 [ VAv]3
2 2 2 2
+72C5 (1802 VA + V00 + [V Av]3) (6.15)
Using the assumption given by the proposition,

sup (IIV(Ve, Do)II5 +72 [V [15) () < 3,

0<s<t

and choosing Gy = 4/ ﬁ, it can be deduced from inequality (6.15) that

d
= (IO T+ 72 VW4 [13) + (1A DI + 72 | AW-3)

< Cs (18015 1V APl + (1 + 7 80l IV Aul] (IV (V2 DIl + 72 VIV 5)
+ 725 (1aoll3 IV 203 + Vol + [ VAv]3)

Note that the fact that (V,,W,,I';)|;=0 = 0. Applying Gronwall’s inequality to the above

inequality, it follows from Proposition 6.2 that

t
(IVOmTlI5 + 72 I9W4 1) (1) + / (1A DI + 72 AW, ) ds

t
< 7Coexp {Cs [ [1MIBIVAME + (14 ) ol 1V A0E] as |
0
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t
< [ (1803 19003 + V000l + [T A03) ds

< 7’205606(1+7-4)n§(t) [775(t) + n?(t)} .
This completes the proof. O

Proposition 6.4 Let T be the maximal existence time of strong solution (v, w., p;) to
system (1.4), corresponding to the boundary and initial conditions (1.5)—(1.6) and the symmetry

condition (1.7). Then, for any T' > 0, there exists a small positive constant 7(7') = 4\/%
2

such that T} > T, provided that 7 € (0,7(T")). Furthermore, system (6.1)—(6.4) has the energy

estimate
T

swp (Ve We B3 ) 0+ [ IV (Ve 7o ) fnde < 72 (RU(T) + Ka(D))
0

0<t<
where )
— 2
K(T) = CeTi™) [mm + (@) + (Jlvoll3 + llwoll3 + lloll3) ] ,

and
K2(T) = C'eC 1) [n5(T) + n2(T)] .

Here both C and C’ are positive constants that do not depend on 7.

The proof of Proposition 6.4 is similar to that given by Pu-Zhou [34, Proposition 4.1], and
so is omitted here. Based on Proposition 6.4, we give the proof of Theorem 3.3.

Proof of Theorem 3.3 For any T > 0, thanks to Proposition 6.4, there exists a small
positive constant 7(T) = —222_ such that T* > T, provided that 7 € (0, 7(T)), which implies

44/K2(T)
that system (1.4), corresponding to the boundary and initial conditions (1.5)—(1.6) and the
symmetry condition (1.7), has a unique strong solution (v,,w,, p;) on the time interval [0, T
for all 7 € (0,7(T)). Moreover, the following estimate holds

T

sup (Ve We L)) 0+ [ IV (Ve 70 T
0<t<T 0

< 72 (Ru(T) + Ka(T) ) = 7*Ka(T).

Here IE;,(t) is a nonnegative continuously increasing function that does not depend on 7. Finally,
it is clear that the strong convergences stated in Theorem 3.3 are the direct consequences of

the above estimate. The theorem is thus proven. O
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