

Acta Mathematica Scientia, 2023, 43B(2): 821–838 https://doi.org/10.1007/s10473-023-0218-0 c Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 2023

SOME RESULTS REGARDING PARTIAL DIFFERENTIAL POLYNOMIALS AND THE UNIQUENESS OF MEROMORPHIC FUNCTIONS IN SEVERAL VARIABLES[∗]

 M anli LIU (刘曼莉)

Department of Mathematics, South China Agricultural University, Guangzhou 510642, China E-mail : lml6641@163.com

> $\emph{Lingyun GAO}$ (高凌云) † Department of Mathematics, Jinan University, Guangzhou 510632, China E-mail : tgaoly@jnu.edu.cn

> > Shaomei FANG $(\nexists \phi)$ 梅)

Department of Mathematics, South China Agricultural University, Guangzhou 510642, China E-mail : dz90@scau.edu.cn

Abstract In this paper, we mainly investigate the value distribution of meromorphic functions in \mathbb{C}^m with its partial differential and uniqueness problem on meromorphic functions in \mathbb{C}^m and with its k-th total derivative sharing small functions. As an application of the value distribution result, we study the defect relation of a nonconstant solution to the partial differential equation. In particular, we give a connection between the Picard type theorem of Milliox-Hayman and the characterization of entire solutions of a partial differential equation.

Key words meromorphic function in several variables; Nevanlinna theory; partial differential equation; total derivative

2010 MR Subject Classification 32H25; 30D35

1 Introduction and Main Results

Picard's theorem asserts that an entire function in the complex plane C, omitting two distinct complex numbers must be constant. This also implies that a meromorphic function in C omitting three distinct values must be constant. Picard's theorem has played a decisive role in the development of the theory of entire (meromorphic) functions and other applications. It is a significant strengthening of Liouville's Theorem, which states that a bounded entire function must be constant. Recently, many researchers have paid much attention to Picard's theorem

[∗]Received October 6, 2021; revised March 1, 2022. This work was partially supported by the NSFC (11271227, 11271161), the PCSIRT (IRT1264) and the Fundamental Research Funds of Shandong University (2017JC019).

[†]Corresponding author

and its applications [5, 7, 9]. Of particular interest in the connection/equivalence between Picard's theorem and the characterization of entire solutions of a differential equation, which can be found in [7], and which can be stated as follows:

Theorem A Let $a(z)$ be an entire function and let $L(z)$ be a meromorphic function in C with at least two distinct zeros. Then an entire solution of the differential equation $f' + a(z)L(f) = 0$ must be constant.

Furthermore, in [7], it also proved the Picard type theorem for a solution of the partial differential equation as follows:

Theorem B Let $a(z)$ be a nonzero entire function in \mathbb{C}^m and let L be a nonzero meromorphic function in $\mathbb C$ with at least two distinct zeros. Then an entire solution f in $\mathbb C^m$ to the partial differential equation

$$
\sum_{|\alpha|=1}^{n} a_{\alpha} \frac{\partial^{|\alpha|} f}{\partial^{\alpha_1} z_1 \cdots \partial^{\alpha_m} z_m} + a(z)L(f) = 0
$$

must be constant, where $(\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m$ is a multi-index with $|\alpha| = \alpha_1 + \dots + \alpha_m$, and a_α is a constant.

Recently, a connection between the Picard type theorem of Polya-Saxer-Milliox and the characterization of entire solutions of a differential equation was given in [8]. Motivated by the above works, we extend Theorem B to a more general form and study the defect relation of a nonconstant solution to the partial differential equation.

Specifically, we let $\mathcal F$ be the set of entire functions in $\mathbb C^m$ such that, for any function $f \in \mathcal{F}$, f is a constant or must depend on all variables z_1, \dots, z_m . We consider the differential polynomial $Q(z, f)$ of f on \mathbb{C}^m , which is defined by

$$
Q(z,f) = \sum_{i=1}^{n} \alpha_i(z) \prod_{j=0}^{p} \left(\frac{\partial^j f}{\partial z^j}\right)^{S_{ij}},
$$
\n(1.1)

where $S_{ij} (1 \leq i \leq n, 0 \leq j \leq p)$ are nonnegative integers, $\alpha_i \neq 0$ $(1 \leq i \leq n)$ are small meromorphic functions, and $\frac{\partial^k f}{\partial z^k} = \frac{\partial^k f}{\partial z_1^{\alpha_1} \cdots z_m^{\alpha_m}}$, $(\alpha_1, \cdots, \alpha_m) \in \mathbb{N}^m : \alpha_1 + \cdots + \alpha_m = k, k \in \mathbb{N}$. Set

$$
d(Q) := \min_{1 \le i \le n} \sum_{j=0}^{p} S_{ij}
$$
 and $\theta(Q) := \max_{1 \le i \le n} \sum_{j=0}^{p} j S_{ij}$.

We always assume that Q must contain a nonzero partial differential and that its exponent is a positive integer. Our result is given as follows:

Theorem 1.1 Let $Q(z, f)$ be a polynomial of a partial differential as in (1.1), and let R be a nonconstant rational function. Then,

(i) assuming that $d(Q) > \theta(Q) + \deg R + 2$, any solution of the algebraic partial differential equation $Q(z, f) - 1 = R(f)$ must be constant;

(ii) furthermore, if $R(z) = \prod^{q}$ $\prod_{i=1}^{n} (z - a_i)^{l_i}$ is a nonconstant polynomial, $a_i \neq a_j$ for all $i \neq j$, and l_i is positive integer $(i = 1, \dots, q)$. Then, for any nonconstant entire solution of the algebraic partial differential equation $Q(z, f) - 1 = R(f)$, we have that

$$
(\theta(Q) + 1)\Theta(0, f) + \sum_{i=1}^{q} \Theta(a_i, f) \leq \theta(Q) - d(Q) + q + 1,
$$

 $\textcircled{2}$ Springer

provided that $\theta(Q) \geq d(Q) - q - 1$.

Note that our method of proving Theorem 1.1 is different with Theorem B. We use the result on a value distribution of the polynomial partial differential (see Theorem 1.9). Next, we show a Picard type theorem of Milliox-Hayman for an entire function in several variables.

Theorem 1.2 Let n, n_1, \dots, n_m be positive integers, let f be an entire function in \mathcal{F} , and let a be a nonzero complex number. If $f \neq 0$ and

$$
f^n \left(\frac{\partial f}{\partial z_1}\right)^{n_1} \cdots \left(\frac{\partial f}{\partial z_m}\right)^{n_m} \neq a,
$$

then f is a constant.

Note that we do not consider Theorem 1.2 for the class of functions outside of \mathcal{F} . If $f(z_1, \dots, z_m) = g(z_1, \dots, z_i)$, where $i < m, m \ge 2$, then Theorem 1.2 is considered automatically in \mathbb{C}^i instead of \mathbb{C}^m .

Remark 1.3 Theorem 1.2 is still true for a meromorphic function in $\mathcal F$ via Theorem 1.9. From Theorem 1.2, we get the following result in \mathbb{C} , due to Hayman:

Corollary 1.4 Let n, n_1 be positive integers, let f be an entire function in \mathbb{C} , and let a be a nonzero complex number. If $f \neq 0$ and $f^{n}(f')^{n_1} \neq a$, then f is a constant.

Theorem 1.5 Let n, n_1, \dots, n_m be positive integers, $\mathfrak{a}(z)$ be a nonzero entire function in \mathbb{C}^m without zero, and let a be a nonzero complex number. Then an entire solution f in $\mathcal F$ to the partial differential equation

$$
f^{n} \left(\frac{\partial f}{\partial z_{1}}\right)^{n_{1}} \cdots \left(\frac{\partial f}{\partial z_{m}}\right)^{n_{m}} - a = \mathfrak{a}(z)f^{l}
$$

must be constant, where $l \in \mathbb{Z}^+$.

From Theorem 1.5, we get the following result in \mathbb{C} :

Corollary 1.6 Let n, n_1 be positive integers, let $a(z)$ be a nonzero entire function in $\mathbb C$ without zero, and let a be a nonzero complex number. Then an entire solution f to the differential equation

$$
f^n(f')^{n_1} - a = \mathfrak{a}(z)f^l
$$

must be constant, where $l \in \mathbb{Z}^+$.

Now, we show the equivalence between Theorem 1.2 and Theorem 1.5.

Theorem 1.5 \Rightarrow Theorem 1.2. Since $f \neq 0$ is an entire function and

$$
f^n\left(\frac{\partial f}{\partial z_1}\right)^{n_1}\cdots\left(\frac{\partial f}{\partial z_m}\right)^{n_m}\neq a,
$$

then $\mathfrak{a}(z) = \frac{f^n \left(\frac{\partial f}{\partial z_1}\right)^{n_1} \cdots \left(\frac{\partial f}{\partial z_m}\right)^{n_m} - a}{f^l}$ $\frac{f^{(1)}(\overline{\partial z_m})}{f^l}$ is an entire function in \mathbb{C}^m without zero. This implies that f is an entire solution of equation $f^n\left(\frac{\partial f}{\partial z_1}\right)$ $\bigg)^{n_1} \cdots \bigg(\frac{\partial f}{\partial z_m}$ $\int^{n_m} -a = \mathfrak{a}(z) f^l$. By Theorem 1.5, f is a constant function.

Theorem 1.2 \Rightarrow Theorem 1.5. Suppose that f is an entire solution of the equation

$$
f^{n}\left(\frac{\partial f}{\partial z_{1}}\right)^{n_{1}}\cdots\left(\frac{\partial f}{\partial z_{m}}\right)^{n_{m}}-a=\mathfrak{a}(z)f^{l}.
$$

 \mathcal{Q} Springer

Then $f \neq 0$ and $f^n \left(\frac{\partial f}{\partial z_1}\right)$ $\bigg)^{n_1} \cdots \bigg(\frac{\partial f}{\partial z_m}$ $\big)^{n_m} \neq a$. Indeed, all zeroes of

$$
f^{n}\left(\frac{\partial f}{\partial z_{1}}\right)^{n_{1}}\cdots\left(\frac{\partial f}{\partial z_{m}}\right)^{n_{m}}-a
$$

are the zero of f since $\mathfrak a$ has no zero in $\mathbb C^m$. Therefore, if there exists z_0 such that

$$
f^{n}\left(\frac{\partial f}{\partial z_{1}}\right)^{n_{1}}\cdots\left(\frac{\partial f}{\partial z_{m}}\right)^{n_{m}}(z_{0})=a.
$$

This implies that $f(z_0) = 0$. Then $f^n \left(\frac{\partial f}{\partial z_1} \right)$ $\bigg)^{n_1} \cdots \bigg(\frac{\partial f}{\partial z_m}$ $\int^{n_m} (z_0) = 0$, which is a contradiction. Similarly, $f \neq 0$. By Theorem 1.2, f is constant.

For the convenience of the reader, we recall the definition of a total derivative. Letting f be a meromorphic function on \mathbb{C}^m , the total derivative Df of f is defined by

$$
Df(z) = \sum_{j=1}^{n} z_j f_{z_j}(z),
$$

where $z = (z_1, z_2, \dots, z_m) \in \mathbb{C}^m$, and f_{z_j} is the partial derivative of f with respect to z_j (j = $1, 2, \dots, m$. The k-th order total derivative $D^k f$ of f is defined inductively by

$$
D^{k} f = D(D^{k-1} f), k = 1, 2, \cdots,
$$

where $D^0 f = f$. If f is a nonconstant meromorphic function, then $Df \neq 0$.

A total differential polynomial $P(z, f)$ of f on \mathbb{C}^m is defined by

$$
P(z, f) = \sum_{i=1}^{n} \alpha_i(z) \Pi_{j=0}^{p} (D^{j} f(z))^{S_{ij}},
$$

where $S_{ij} (1 \le i \le n, 0 \le j \le p)$ are the nonnegative integers, and $\alpha_i \neq 0$ $(1 \le i \le n)$ are small meromorphic functions. Set

$$
d(P) := \min_{1 \le i \le n} \sum_{j=0}^{p} S_{ij}
$$
 and $\theta(P) := \max_{1 \le i \le n} \sum_{j=0}^{p} j S_{ij}$.

We always assume that P must contain a nonzero k -th order total derivative and that its exponent is a positive integer. Our result on the value distribution of $P(z, f)$ is given as follows:

Theorem 1.7 Let a_1, \dots, a_q be distinct nonzero complex numbers. Let f be a transcendental meromorphic function on \mathbb{C}^m and let $P(z, f)$ be a non-constant total differential polynomial in f with $d(P) \geq 2$. Then

$$
T_f(r) \le \frac{q\theta(P) + 1}{qd(P) - 1}\overline{N}_f(r, 0) + \frac{1}{qd(P) - 1}\sum_{j=1}^q \overline{N}_P(r, a_j) + o(T_f(r))
$$

for all $r \in [1, +\infty)$, excluding a set of finite Lebesgue measure.

Moreover, in the case where f is a transcendental entire function, we have that

$$
T_f(r) \leq \frac{q\theta(P)+1}{qd(P)}\overline{N}_f\left(r,0\right) + \frac{1}{qd(P)}\sum_{j=1}^q\overline{N}_P\left(r,a_j\right) + o(T_f(r))
$$

for all $r \in [1, +\infty)$, excluding a set of finite Lebesgue measure.

From Theorem 1.7, we get the following Picard-type theorem:

Corollary 1.8 Let f be a transcendental meromorphic function on \mathbb{C}^m . Let $n, n_1 \cdots, n_k$, $k \geq 1$ be positive integers. If $f^n(Df)^{n_1} \cdots (D^k f)^{n_k}$ is not a constant function, then assume all finite values infinitely often as $n + \sum_{n=1}^k$ $\sum_{t=1}^{k} n_t \geq \sum_{t=1}^{k}$ $\sum_{t=1}^{n} t_n + 3$. Furthermore, if f is a transcendental entire function, the conclusion holds for $n + \sum_{k=1}^{k}$ $\sum_{t=1}^{k} n_t \geq \sum_{t=1}^{k}$ $\sum_{t=1}^{n} t_{t} + 2.$

By the same arguments as those in Theorem 1.7, we get the following result:

Theorem 1.9 Let a_1, \dots, a_q be distinct nonzero complex numbers. Let f be a nonconstant meromorphic function on \mathbb{C}^m and let $Q(z, f)$ be a non-constant partial differential polynomial in f with $d(Q) \geq 2$. Then

$$
T_f(r) \le \frac{q\theta(Q) + 1}{qd(Q) - 1}\overline{N}_f(r, 0) + \frac{1}{qd(Q) - 1}\sum_{j=1}^q \overline{N}_Q(r, a_j) + o(T_f(r))
$$

for all $r \in [1, +\infty)$, excluding a set of finite Lebesgue measure.

Moreover, in the case where f is a transcendental entire function, we have that

$$
T_f(r) \le \frac{q\theta(Q) + 1}{qd(Q)} \overline{N}_f(r,0) + \frac{1}{qd(Q)} \sum_{j=1}^q \overline{N}_Q(r,a_j) + o(T_f(r))
$$

for all $r \in [1, +\infty)$, excluding a set of finite Lebesgue measure.

Remark 1.10 Theorem 1.9 is proven similarly as the Theorem 1.7 by using Remark 2.5 instead of Lemma 2.4.

In 2013, F. Lv considered a Picard-type theorem for a meromorphic function on several complex variables, and obtained $Df - af^n$ assumes all finite values infinitely often with $n \geq 5$. With the aid of his idea, we give a Picard-type theorem below.

Theorem 1.11 Let f be a transcendental meromorphic function on \mathbb{C}^m such that $D^k f \neq$ 0. Let a be a finite nonzero constant and let $n \geq k+4$ be an integer. Then $D^k f - af^n$ assumes all finite values infinitely often.

One notices that our result actually provides an extension to some main results of F. Lv; if we take that $k = 1$, the theorem obtained by Lv is a special case of 1.11.

Let f be a meromorphic function in the complex domain. For two meromorphic functions f, g, if $f - \alpha$ and $g - \alpha$ have the same zeros, counting multiplicity (ignoring multiplicity), then f and g share the same function α CM (IM). Usually, we say that a is a small function with respect to f if $T_a(r) = o(T_f(r)) = S(r, f)$ as $r \to \infty$ outside of a possible exceptional set of finite measure.

In recent decades, uniqueness problems on meromorphic functions have been studied deeply via Nevanlinna theory; a large number of research works on the uniqueness problem have been undertaken in a complex plane [1, 2, 6, 12–14, 16], etc. As a very active subject, problems on the uniqueness of entire functions sharing values with the derivatives attracted a lot of attention. In particular, Yi [12] proved the following theorem:

Theorem C Let f and g be two nonconstant entire functions on the complex plane, and let k be a positive integer. If f and g share 0 CM, $f^{(k)}$ and $g^{(k)}$ share 1 CM, and $\delta(0, f) > \frac{1}{2}$, then $f^{(k)}g^{(k)} \equiv 1$, unless $f \equiv g$.

In [6], Jin extended Theorem C to \mathbb{C}^m ; here f and g are both entire functions. However, it is natural to consider the following questions: in what condition can we get a similar result for transcendental meromorphic functions on \mathbb{C}^m and a small function a of f? In this paper, we apply a different method to that above, and obtain the following result, which answers the above question:

Theorem 1.12 Let $k \geq 1$, let f be a transcendental meromorphic function on \mathbb{C}^m , and let $a \neq 0$, ∞ be a small meromorphic function of f. Suppose that $D^k f$ is a nonconstant function. If $f - a$ and $D^k f - a$ share the value 0 CM, and $D^k f$ and a do not have some common poles of the same multiplicity, and

$$
2\delta(0, f) + (3 + k)\Theta(\infty, f) > \frac{9}{2} + k,\tag{1.2}
$$

then $f \equiv D^k f$.

By arguments the same as those in Theorem 1.12, we get the following result:

Theorem 1.13 Let $k \geq 1$, f be a transcendental meromorphic function on \mathbb{C}^m , and let $a \neq 0, \infty$ be a small meromorphic function of f. If $f - a$ and $\frac{\partial^k f}{\partial z^k} - a$ share the value 0 CM, and $\frac{\partial^k f}{\partial z^k}$ and a do not have some common poles of same multiplicity, and

$$
2\delta(0, f) + (3 + k)\Theta(\infty, f) > \frac{9}{2} + k,
$$

then $f \equiv \frac{\partial^k f}{\partial z^k}$.

2 Some Notations and Auxiliary Lemmas of Nevanlinna Theory

Set
$$
||z|| = (|z_1|^2 + \dots + |z_m|^2)^{1/2}
$$
 for $z = (z_1, \dots, z_m)$ and define that
\n
$$
B_m(r) = \{z \in \mathbb{C}^m : ||z|| < r\}, S_m(r) = \{z \in \mathbb{C}^m : ||z|| = r\} (r > 0),
$$
\n
$$
v_m(z) = dd^c ||z||^2, \quad \sigma_m(z) = d^c \log ||z||^2 \wedge (dd^c \log ||z||^2)^{m-1}
$$

for $z \in \mathbb{C}^m \setminus \{0\}$. Then $\sigma_m(z)$ is a positive measure on $S_m(r)$ with the total measure one. Let $a \in P^1$. Let $f : \mathbb{C}^m \to \mathbb{P}^1(\mathbb{C})$ be a meromorphic function. For each $a \in \mathbb{P}^1(\mathbb{C})$ with $f^{-1}(a) \neq \mathbb{C}^m$, we denote by Z_a^f the a-divisor of f, and write $Z_a^f(r) = \overline{B}_m(r) \cap Z_a^f$. In addition, we define that

$$
n_f(r,a) = r^{2-2m} \int_{Z_a^f(r)} v_m^{m-1}(z).
$$

Then the corresponding counting function $N_f(r, a)$ is defined as

$$
N_f(r, a) = \int_0^r [n_f(t, a) - n_f(0, a)] \frac{dt}{t} + n_f(0, a) \log r,
$$

where $n_f(0, a)$ is the Lelong number of Z_a^f at the origin. In particular, we define the divisor $\overline{Z}_a^f = \min\left\{1, Z_a^f\right\}, \overline{n}_f(r, a)$ and the reduced counting function $\overline{N}_f(r, a)$. For positive integer k, define the truncated multiplicity functions on \mathbb{C}^m by $Z_q^{f,k}(z) = \min\{Z_q^f(z),k\}$, and the corresponding truncated counting function by $n_{\nu}(t) = n_k \left(t, \frac{1}{f-a}\right)$) if $\nu = Z_a^{f,k}(z)$, and the truncated valence function by $N_{\nu}(t) = N_k \left(t, \frac{1}{f-a}\right)$) if $\nu = Z_a^{f,k}(z)$. The proximity function $\underline{\mathrm{\mathfrak{\Phi}}}$ Springer

 $m_f(r, a)$ is defined as

$$
m_f(r,a) = \begin{cases} \int_{S_m(r)} \log^+ \left| \frac{1}{f(z) - a} \right| \sigma_m(z), & \text{if } a \neq \infty \\ \int_{S_m(r)} \log^+ |f(z)| \sigma_m(z), & \text{if } a = \infty \end{cases}
$$

and the characteristic function $T_f(r)$ is

$$
T_f(r) = m_f(r, a) + N_f(r, a).
$$

Now, we recall the quantity

$$
\delta(a, f) = \lim_{r \to \infty} \frac{m_f(r, a)}{T_f(r)} = 1 - \limsup_{r \to \infty} \frac{N_f(r, a)}{T_f(r)}
$$

the defect (or deficiency) of a with respect to f. Then, $0 \leq \delta(a, f) \leq 1$. The quantity

$$
\rho(f) = \lim \sup_{r \to \infty} \frac{\log T_f(r)}{\log r}
$$

is said to be the order of f .

Here, for brevity, we replace the notations $m_f(r, a)$, $N_f(r, a)$ and $\overline{N}_f(r, a)$ by $m\left(r, \frac{1}{f-a}\right)$ \setminus $N\left(r,\frac{1}{f-a}\right)$) and $\overline{N}\left(r, \frac{1}{f-a}\right)$), respectively. If $a = \infty$, we write $m(r, f)$, $N(r, f)$ and $\overline{N}(r, f)$. Moreover, the notation '|| \dot{P}' means that the assertion P holds for all $r \in [0,\infty)$ outside of a Borel subset E of the interval $[0, \infty)$ with $\int_E dr < \infty$.

From the the Logarithmic Derivative Lemma for a meromorphic function in several variables [4, 11, 15], we obtain the following:

Lemma 2.1 Let f be a nonconstant meromorphic function on \mathbb{C}^m . Then for any positive integer k,

$$
m\left(r, \frac{D^k f}{f}\right) = O\left(\log rT_f(r)\right)
$$

holds for all large r outside a set with finite Lebesgue measure.

Lemma 2.2 ([9]) Let f be a non-constant meromorphic function on \mathbb{C}^m and let $S =$ $I_f \cap (\text{supp } Z_{\infty}^f)_s$, where A_s denotes the set of singular points of an analytic set A. Supposing that $z_0 \notin S$ and $Z_{\infty}^f(z_0) = p \ge 1$, $Z_{\infty}^{Df}(z_0) \le p + 1$.

From Lemma 2.2, we get the following result for higher total derivative:

Lemma 2.3 Let f be a non-constant meromorphic function on \mathbb{C}^m and let $S = I_f \cap$ $(\text{supp }Z_{\infty}^{f})_{s}$, where A_{s} denotes the set of singular points of an analytic set A. Supposing that $z_0 \notin S$ and $Z_{\infty}^f(z_0) = p \ge 1, Z_{\infty}^{D^k f}(z_0) \le p + k.$

Proof First, we see that all poles of $D^k f$ come from the poles of f. If $k = 2$, we apply above lemma for Df and note that $D^2 f = D(Df)$, so we get that $Z_{\infty}^{D^2 f}(z_0) \leq p+2$ for $z_0 \notin S$ and $Z_{\infty}^{f}(z_0) = p \ge 1$. Similarly, for $k \ge 2$, we can get that

$$
Z_{\infty}^{D^k f}(z_0) \le p + k.
$$

From Lemma 2.3, we get that

$$
N_{D^{k}f}(r,\infty)) \leq N_f(r,\infty) + k\overline{N}_f(r,\infty),
$$

where f is a nonconstant meromorphic function such that $D^k f \neq 0$.

Lemma 2.4 Let f be a non-constant meromorphic function on \mathbb{C}^n such that $D^k f \neq 0$. Then we have that

$$
N_f(r,0) - N_{D^k f}(r,0) \le k \overline{N}_f(r,0).
$$
\n(2.1)

Proof Suppose that $z^0 = (z_1^0, z_2^0, \dots, z_n^0) \notin S$ is a zero of f with the multiplicity p. Now, we distinguish the following two cases:

Case I If z^0 is a zero of f with the multiple $p \leq k$, then z^0 is a zero of $D^k f$, or not. Thus, z^0 is a zero counted on the left hand side with a multiple of at most p, and z^0 is a zero counted on the right side hand with a multiple k. Since $p \leq k$, one observes that (2.1) holds.

Case II If z^0 is a zero of f with the multiple $p > k$, then z^0 is a zero of $D^k f$ with a multiple of at most $p - k$. Indeed, one can deduce that

$$
Df = -f^2 D \frac{1}{f}.\tag{2.2}
$$

Since z^0 is a zero of f with a multiple p, then z^0 is a pole of $\frac{1}{f}$ with a multiple p, and by applying Lemma 2.2, we can get that z^0 is a pole of $D^{\frac{1}{f}}$ with a multiple $p_1 \leq p+1$. By (2.2), we have that z^0 is a zero of Df with a multiple $\tilde{p} \ge p - 1$. Set that $Df = g$. Immediately, we have that

$$
Dg = -g^2 D \frac{1}{g} \Longrightarrow D(Df) = -(Df)^2 D \frac{1}{Df}.
$$

From the above equation, we have that z^0 is a zero of Df with a multiple \tilde{p} , and that z^0 is a pole of $\frac{1}{Df}$ with a multiple \tilde{p} . Furthermore, by simple computing, we get that z^0 is a zero of $D^2 f$ with a multiple of at least of $\widetilde{p} - 1 \ge p - 2$.

By repeating the proof of above, we can obtain that $D^k f = D(D^{k-1}f)$, and that z^0 is a zero of $D^k f$ with a multiple of at least $p-k$. In this case, z^0 is counted in $N_f(r, 0) - N_{D^k f}(r, 0)$ at most k times.

Combining Case I and Case II, we get that

$$
N_f(r,0) - N_{D^k f}(r,0) \leq k \overline{N}_f(r,0),
$$

so (2.1) is proved.

Remark 2.5 Let f be a non-constant meromorphic function on \mathbb{C}^n such that $\frac{\partial^k f}{\partial z^k} \neq 0$. Then we have that

$$
N_f\left(r,0\right) - N_{\frac{\partial^k f}{\partial z^k}}\left(r,0\right) \le k \overline{N}_f\left(r,0\right)
$$

for any multiple index $(\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m : \alpha_1 + \dots + \alpha_m = k$, where $\partial z^k = \partial z_1^{\alpha_1} \cdots \partial z_m^{\alpha_m}$.

Proof Remark 2.5 is proved similarly as for Lemma 2.4, by using a result similar as of the Lemma 2.2 for the partial differential $([4], \text{ page } 105)$.

By using Lemma 2.1, and computing similarly as for [6], we get the following:

Lemma 2.6 Let f be a non-constant meromorphic function on \mathbb{C}^m such that $D^k f \neq 0$. Then, for any positive integer k ,

$$
||N_{D^{k}f}(r,0) \leq T_{D^{k}f}(r) - T_{f}(r) + N_{f}(r,0) + O(\log rT_{f}(r)).
$$

By using the Logarithmic Derivative Lemma for a meromorphic function in several variables [4], we get the following:

 \mathcal{Q} Springer

Lemma 2.7 Let f be a non-constant meromorphic function on \mathbb{C}^m such that $\frac{\partial^k f}{\partial z^k} \neq 0$. Then, for any positive integer k ,

$$
\|N_{\frac{\partial^k f}{\partial z^k}}\left(r,0\right)\leq T_{\frac{\partial^k f}{\partial z^k}}(r)-T_f(r)+N_f(r,0)+O(\log rT_f(r)).
$$

Lemma 2.8 ([4]) Let $f_j (\neq 0), 1, 2, \dots, n(\geq 2)$ be linearly independent meromorphic functions on \mathbb{C}^m such that $\sum_{n=1}^{\infty}$ $\sum_{j=1}^{n} f_j \equiv 1$. Take multi-indices $\nu_i \in \mathbb{Z}_{+}^m$ $(i = 1, \dots, n-1)$ such that

$$
0 < |\nu_i| \leq i(i = 1, \cdots, n-1), |\nu_1| \leq |\nu_2| \leq \cdots \leq |\nu_{n-1}| := \omega,
$$

and

$$
\mathbf{W} = \mathbf{W}_{\nu_1 \cdots \nu_{n-1}}(f_1, \cdots, f_n) \not\equiv 0.
$$

Define $l = |\nu_1| + |\nu_2| + \cdots + |\nu_{n-1}|$ and set $B_n = \max_{2 \le s \le n}$ $\left\{\frac{1}{s-1}\sum_{i=1}^{s-1}$ $\sum_{i=1}^{s-1} |\nu_{n-i}|$. Then, for $j = 1, \dots, n$, the inequality

$$
T_{f_j}(r) < \sum_{i=1}^n N_\omega \left(r, \frac{1}{f_i} \right) + B_n \sum_{i \neq j} \overline{N}_{f_i} \left(r, \infty \right) + S(r)
$$

holds for $r_0 < r < \rho < R$, where $B_n \le n - 1$ and $S(r) = o(\max_{1 \le j \le n} \{T_{f_j}(r)\})$.

Lemma 2.9 Let f_1, f_2, f_3 be meromorphic function on \mathbb{C}^m such that

$$
\|\sum_{j=1}^3 \overline{N}_{f_j}(r,0)+\sum_{j=1}^3 \overline{N}_{f_j}(r,\infty)\leq (\lambda+o(1))T(r),
$$

where $T(r) = \max_{1 \leq j \leq 3} \{T_{f_j}(r)\}\$ and one has the constant $\lambda < \frac{1}{2}$. Then f_1, f_2, f_3 are linearly dependent.

Proof Assume that f_j ($j = 1, 2, 3$) are linearly independent. Then, by applying Lemma 2.8, we have that

$$
||T_{f_i}(r)| \leq \sum_{j=1}^3 N_2 \left(r, \frac{1}{f_j} \right) + 2 \sum_{i \neq j} \overline{N}_{f_j} (r, \infty) \leq \sum_{j=1}^3 N_2 \left(r, \frac{1}{f_j} \right) + 2 \sum_{j=1}^3 \overline{N}_{f_j} (r, \infty).
$$

Noting that $T(r) = \max\{T_{f_j}(r)\}(j = 1, 2, 3),$

$$
||T(r) \leq \sum_{j=1}^{3} N_2 \left(r, \frac{1}{f_j} \right) + 2 \sum_{j=1}^{3} \overline{N}_{f_j} (r, \infty) \leq \sum_{j=1}^{3} 2 \overline{N}_{f_j} (r, 0) + 2 \sum_{j=1}^{3} \overline{N}_{f_j} (r, \infty)
$$

$$
\leq 2(\lambda + o(1))T(r) < T(r),
$$

which gives a contradiction, and the conclusion obtained.

Lemma 2.10 Let f_1, f_2 be two non-constant meromorphic functions on \mathbb{C}^m , and let c_1, c_2, c_3 be three nonzero constants. If $c_1f_1+c_2f_2=c_3$ holds, then

$$
||T_{f_1}(r) \le \overline{N}_{f_1}(r,0) + \overline{N}_{f_1}(r,\infty) + \overline{N}_{f_2}(r,0) + S(r,f).
$$

Proof By the second main theorem [3, 10], we have that

$$
||T_{f_1}(r) \le \overline{N}_{f_1}(r,0) + \overline{N}_{f_1}(r,\infty) + \overline{N}_{f_1}(r,c_3/c_1) + S(r,f).
$$

Noting that $N_{f_1}(r, c_3/c_1) = N_{f_2}(r, 0)$, we have that

$$
||T_{f_1}(r) \le \overline{N}_{f_1}(r,0) + \overline{N}_{f_1}(r,\infty) + \overline{N}_{f_2}(r,0) + S(r,f).
$$

Hence, we obtain the conclusion. \Box

Remark 2.11 Lemma 2.10 is still true when c_1, c_2, c_3 are three nonzero small functions of f_1 (see [3]).

3 The Proof of Theorem 1.2

Proof If f is not constant, then $f^n \left(\frac{\partial f}{\partial z_1} \right)$ $\bigg)^{n_1} \cdots \bigg(\frac{\partial f}{\partial z_m}$ $\int_{0}^{n_m}$ is not constant. Indeed, we see that $f^n\left(\frac{\partial f}{\partial z_1}\right)$ $\bigg)^{n_1} \cdots \bigg(\frac{\partial f}{\partial z_m}$ $\big)^{n_m} \not\equiv 0$, since $f \in \mathcal{F}$. Suppose that

$$
f^{n}\left(\frac{\partial f}{\partial z_{1}}\right)^{n_{1}}\cdots\left(\frac{\partial f}{\partial z_{m}}\right)^{n_{m}}\equiv c,
$$
\n(3.1)

where $c \neq 0$ is a constant. Then f does not have any zero. From (3.1), we get

$$
\left(\frac{\partial f}{\partial z_1}/f\right)^{n_1}\cdots \left(\frac{\partial f}{\partial z_m}/f\right)^{n_m} = \frac{c}{f^{n+n_1+\cdots+n_m}}.
$$

By the Logarithmic Derivative Lemma for a meromorphic function in several variables [4], we deduce that $m(r, \frac{1}{f}) = S(r, f)$. Since f has no zero, then $N(r, \frac{1}{f}) = 0$. This implies that

$$
T_f(r) = T(r, \frac{1}{f}) + O(1) = S(r, f).
$$

This is a contradiction, since f is not constant. Therefore, applying Theorem 1.9, we get that $T_f(r) = S(r, f)$. This is again a contradiction. Hence, Theorem 1.2 is proven.

4 The Proof of Theorem 1.7

Proof of Theorem 1.7 For any z such that $|f(z)| \leq 1$, since $\sum_{i=1}^{p}$ $\sum_{j=0} S_{ij} \geq d(P)(1 \leq i \leq n),$ we have that

$$
\frac{1}{|f(z)|^{d(P)}} = \frac{1}{|P(z,f)|} \cdot \frac{|P(z,f)|}{|f(z)|^{d(P)}} \le \frac{1}{|P(z,f)|} \cdot \sum_{i=1}^n \left(|\alpha_i(z)| \prod_{j=0}^p \left| \frac{D^j f}{f} \right|^{S_{ij}} \right).
$$

The above inequality implies that, for all $z \in \mathbb{C}^m$,

$$
\log^+\frac{1}{|f(z)|^{d(P)}}\leq \log^+\left(\frac{1}{|P(z,f)|}\cdot\sum_{i=1}^n\left(|\alpha_i(z)|\prod_{j=0}^p\left|\frac{D^jf}{f}\right|^{S_{ij}}\right)\right).
$$

On the one hand, by the lemma on the logarithmic derivative and the first main theorem, we have that

$$
d(P)m_f(r,0) \le m_P(r,0) + o(T_f(r)) = T_P(r) - N_P(r,0) + o(T_f(r)).
$$

On the other hand, by the second main theorem (used with the $q + 1$ different values $(0, a_1, \dots, a_q)$, we have that

$$
qT_P(r) \leq \overline{N}_P(r,\infty) + \overline{N}_P(r,0) + \sum_{j=1}^q \overline{N}_P(r,a_j) + o(T_f(r)).
$$

 $\underline{\mathrm{\mathfrak{\Phi}}}$ Springer

Hence,

$$
d(P)m_f(r,0) \leq \frac{1}{q} \left(\overline{N}_P(r,\infty) + \overline{N}_P(r,0) + \sum_{j=1}^q \overline{N}_P(r,a_j) \right) - N_P(r,0) + o(T_f(r)).
$$

Using the first main theorem again, one deduces that

$$
d(P)T_f(r) = d(P)T_f(r, 0) + O(1)
$$

= $d(P)m_f(r, 0) + d(P)N_f(r, 0) + O(1)$

$$
\leq \frac{1}{q} \left(\overline{N}_P(r, \infty) + \overline{N}_P(r, 0) + \sum_{j=1}^q \overline{N}_P(r, a_j) \right)
$$

+ $d(P)N_f(r, 0) - N_P(r, 0) + o(T_f(r)).$ (4.1)

We have that

$$
\frac{1}{f^{d(P)}} = \frac{1}{P} \sum_{i=1}^{n} \left(\alpha_i f^{(\sum_{j=0}^{p} S_{ij}) - d(P)} \prod_{j=0}^{p} \left(\frac{D^j f}{f} \right)^{S_{ij}} \right),
$$

and note that $\left(\frac{p}{\sum_{i=1}^{p}}\right)$ $\sum_{j=0} S_{ij}$) – $d(P) \geq 0$. Immediately, we get that

$$
d(P)Z_0^f(z) \le Z_0^P(z) + \max_{1 \le i \le n} \{ Z_\infty^{\alpha_i}(z) + \sum_{j=0}^p S_{ij} Z_\infty^{\frac{D^j f}{J}}(z) \}
$$

\n
$$
\le Z_0^P(z) + \sum_{1 \le i \le n} Z_\infty^{\alpha_i}(z) + \max \{ \sum_{j=0}^p S_{ij} Z_\infty^{\frac{D^j f}{J}}(z) \}
$$

\n
$$
\le Z_0^P(z) + \sum_{1 \le i \le n} Z_\infty^{\alpha_i}(z) + \max \{ \sum_{j=0}^p S_{ij} (Z_0^f(z) - Z_0^{D^j f}(z)) \},
$$

by the definition \overline{Z}_a^f $a_i^j := \min\{Z_a^f, 1\}.$ From the above inequality, we can see that

$$
d(P)Z_0^f(z) - Z_0^P(z) + \frac{1}{q}\overline{Z}_0^P \le \frac{1}{q}\overline{Z}_0^f + \sum_{1 \le i \le n} Z_\infty^{\alpha_i}(z) + \max\left\{ \sum_{j=0}^p S_{ij} \left(Z_0^f(z) - Z_0^{D^jf}(z) \right) \right\}.
$$

Furthermore, applying Lemma 2.4 to the above inequality, one observes that

$$
d(P)N_f(r,0) - N_P(r,0) + \frac{1}{q}\overline{N}_P(r,0)
$$

\n
$$
\leq \sum_{i=1}^n N_{\alpha_i}(r,\infty) + \frac{1}{q}\overline{N}_f(r,0) + \max\left\{\sum_{j=0}^p jS_{ij}\right\}\overline{N}_f(r,0) + S(r,f)
$$

\n
$$
\leq \sum_{i=1}^n N_{\alpha_i}(r,\infty) + \left(\frac{1}{q} + \theta(P)\right)\overline{N}_f(r,0) + S(r,f)
$$

\n
$$
= \left(\frac{1}{q} + \theta(P)\right)\overline{N}_f(r,0) + S(r,f).
$$

Combining this with (4.1), we have that

$$
d(P)T_f(r) \leq \frac{1}{q} \left(\overline{N}_P(r,\infty) + \sum_{j=1}^q \overline{N}_P(r,a_j) \right) + \left(\theta(P) + \frac{1}{q} \right) \overline{N}_f(r,0) + o(T_f(r)).
$$

On the other hand, by the definition of the differential polynomial P, we have $Pole(P) \subset \bigcup^{n}$ $i=1$ Pole $(\alpha_i) \bigcup$ Pole f. Since $\overline{N}_{\alpha_i}(r, \infty) \leq T_{\alpha_i}(r) = o(T_f(r))$ for $i = 1, \dots, n$, we get that

$$
d(P)T_f(r) \leq \frac{1}{q} \left(\overline{N}_P(r,\infty) + \sum_{j=1}^q \overline{N}_P(r,a_j) \right) + \left(\theta(P) + \frac{1}{q} \right) \overline{N}_f(r,0) + o(T_f(r))
$$

$$
\leq \frac{1}{q} \left(T_f(r) + \sum_{j=1}^q \overline{N}_P(r,a_j) \right) + \left(\theta(P) + \frac{1}{q} \right) \overline{N}_f(r,0) + o(T_f(r)). \tag{4.2}
$$

Therefore,

$$
T_f(r) \le \frac{q\theta(P) + 1}{qd(P) - 1}\overline{N}_f(r, 0) + \frac{1}{qd(P) - 1}\sum_{j=1}^q \overline{N}_P(r, a_j) + o(T_f(r)).
$$

In the case where f is a transcendental entire function, the first inequality in (4.2) becomes

$$
d(P)T_f(r) \leq \frac{1}{q} \sum_{j=1}^q \overline{N}_P(r, a_j) + \left(\theta(P) + \frac{1}{q}\right) \overline{N}_f(r, 0) + o(T_f(r)).
$$

This implies that

$$
T_f(r) \le \frac{q\theta(P) + 1}{qd(P)} \overline{N}_f(r,0) + \frac{1}{qd(P)} \sum_{j=1}^q \overline{N}_P(r,a_j) + o(T_f(r)).
$$

We have completed our proof.

5 Proof of Theorem 1.1

Proof of Theorem 1.1 First, we prove (i). Suppose that there exists a nonconstant meromorphic solution f of

$$
Q(z, f) - 1 = R(f).
$$

Then $Q(z, f) = R(f) + 1$ is a nonconstant function. Indeed, if $Q(z, f)$ is a constant, then $R(f)$ is a constant, which implies that f is a constant. This is impossible. Applying Theorem 1.9, we have that

$$
||T_f(r) \leq \frac{\theta(Q) + 1}{d(Q) - 1} \overline{N}_f(r, 0) + \frac{1}{d(Q) - 1} \overline{N}_Q(r, 1) + o(T_f(r))
$$

$$
\leq \frac{\theta(Q) + 1}{d(Q) - 1} \overline{N}_f(r, 0) + \frac{1}{d(Q) - 1} T_{R(f)}(r) + o(T_f(r))
$$

$$
\leq \frac{\theta(Q) + \deg R + 1}{d(Q) - 1} T_f(r) + o(T_f(r)).
$$

Since $d(Q) > \theta(Q) + \deg R + 2$, then f is a constant. This is a contradiction, and so (i) is proven.

Next, we prove (ii). Suppose that f is a nonconstant entire solution of equation

$$
Q(z, f) - 1 = R(f).
$$

By the same argument as before, $Q(z, f)$ is a nonconstant function. Applying Theorem 1.9 for the case of the entire function, we get that

$$
||T_f(r) \le \frac{\theta(Q) + 1}{d(Q)} \overline{N}_f(r, 0) + \frac{1}{d(Q)} \overline{N}_Q(r, 1) + o(T_f(r))
$$

This implies that

$$
(\theta(Q)+1)\Theta(0,f)+\sum_{i=1}^q\Theta(a_i,f)\leq\theta(Q)-d(Q)+q+1,
$$

provided that $\theta(Q)\geq d(Q)-q-1$.

6 The Proof of Theorem 1.11

Proof of Theorem 1.11 With the idea of Hayman [3], we will present our proof as follows:

For each $b \in \mathbb{C}$, set

$$
\psi = \frac{D^k f - b}{af^n}.\tag{6.1}
$$

If $D^k f$ is a nonzero constant, then the conclusion is trivial from $n \geq 5$. Now, we consider that $D^k f$ is not a constant, and we obtain that $\psi \neq 0$. Now, we define some divisors:

$$
v_0(z) = \begin{cases} Z_b^{D^k f}(z), & \text{if } Z_0^f(z) = 0; \\ 0, & \text{or else.} \end{cases}
$$

\n
$$
v_1(z) = \begin{cases} Z_b^{D^k f}(z), & \text{if } Z_0^f(z) > 0 \text{ and } Z_\infty^{\psi}(z) > 0; \\ 0, & \text{or else.} \end{cases}
$$

\n
$$
v_2(z) = \begin{cases} Z_b^{D^k f}(z), & \text{if } Z_0^f(z) > 0, Z_0^{\psi}(z) = 0 \text{ and } Z_\infty^{\psi}(z) = 0; \\ 0, & \text{or else.} \end{cases}
$$

\n
$$
v_3(z) = \begin{cases} Z_b^{D^k f}(z), & \text{if } Z_0^f(z) > 0 \text{ and } Z_0^{\psi}(z) > 0; \\ 0, & \text{or else.} \end{cases}
$$

Meanwhile, we define the notations $N_0(r)$, $N_1(r)$, $N_2(r)$ and $N_3(r)$ as the corresponding counting functions of the divisors $v_0(z)$, $v_1(z)$, $v_2(z)$ and $v_3(z)$, respectively.

We claim that

(i) $n\overline{Z}_{\infty}^{\psi}(z) \leq Z_{\infty}^{\psi}(z) + v_1(z);$ (ii) $(n-k-1)\overline{Z}_0^{\psi}$ $\frac{\psi}{0}(z) \leq Z_0^{\psi}(z) + (n - k - 2)v_0(z) + \frac{n - k - 1}{n}v_3(z).$

First, we prove (i).

If $Z^{\psi}_{\infty}(z) = 0$, then the proof of claim (i) is trivial. Thus, we assume that $Z^{\psi}_{\infty}(z) > 0$. Since $n > k + 2$, combining this with (6.1) yields that $Z_0^f(z) > 0$. Without loss of generality, set $Z_0^f(z) = q > 0$. Obviously,

$$
n\overline{Z}^{\psi}_{\infty}(z) = n. \tag{6.2}
$$

Suppose that $Z_b^{D^k f}(z) = p$. If $p = 0$, it follows from (6.1) that $Z_{\infty}^{\psi}(z) \geq n$. Thus, (i) is right.

If $p > 0$, by (6.1) and the definition of $v_1(z)$, it is easy to deduce $v_1(z) = p$ and $Z^{\psi}_{\infty}(z) =$ $nq - p$. Then $Z^{\psi}_{\infty}(z) + v_1(z) = nq \ge n$. Combining this and (6.2), that yields that the claim (i) holds.

Now, we prove (ii).

If $Z_0^{\psi}(z) = 0$, then the proof of claim (ii) is also trivial, so we assume that $Z_0^{\psi}(z) > 0$. Then, with (6.1), we deduce that $Z_b^{D^k f}(z) > 0$ or $Z_{\infty}^f(z) > 0$. Of course, $(n-k-1)\overline{Z}_0^{\psi}$ $0^{\varphi}(z) = n - k - 1.$ We will prove the claim by distinguishing three cases.

Case (1) $Z_b^{D^k f}(z) > 0$ and $Z_0^f(z) = 0$. With the definition of $v_0(z)$, we have that $(n - k - 2)v_0(z) \ge n - k - 2$. Thus, (ii) is right.

Case (2) $Z_b^{Df}(z) > 0$ and $Z_0^f(z) > 0$. Since $Z_0^{\psi}(z) > 0$, we deduce that $Z_b^{D^k f}(z) > 0$ $nZ_0^f(z) \geq n$. Noting the definition of $v_3(z)$, we obtain that $v_3(z) = Z_b^{D^k f}(z) > n$. Furthermore, $\frac{n-k-1}{n}v_3(z) > n-k-1$, which indicates that (ii) is right.

Case (3) $Z_{\infty}^{f}(z) > 0$. Then $Z_{\infty}^{f}(z) = nZ_{\infty}^{f}(z) \geq n$. From Lemma 2.2, we derive that $Z_{\infty}^{D^k f - b}(z) \leq Z_{\infty}^f(z) + k$. It follows from (6.1) that

$$
Z_0^{\psi}(z) = Z_{\infty}^{f^n}(z) - Z_{\infty}^{D^k f - b}(z) \ge (n - 1)Z_{\infty}^f(z) - k \ge n - (k + 1).
$$

Thus, the claim (ii) holds.

Therefore, we have completed the proof of the claims.

From the claims, the following two inequalities are immediately derived:

$$
n\overline{N}_{\psi}(r,\infty) \le N_{\psi}(r,\infty) + N_1(r);
$$

$$
(n-k-1)\overline{N}_{\psi}(r,0) \le N_{\psi}(r,0) + (n-k-2)N_0(r) + \frac{n-k-1}{n}N_3(r).
$$

By the above two inequalities and Nevanlinna's second fundamental theorem, we have that

$$
\|T_{\psi}(r) \leq \overline{N}_{\psi}(r,\infty) + \overline{N}_{\psi}(r,0) + \overline{N}_{\psi}(r,1) + S(r,f)
$$

$$
\leq \frac{1}{n}N_{\psi}(r,\infty) + \frac{1}{n-k-1}N_{\psi}(r,0) + \overline{N}_{\psi}(r,1)
$$

$$
+ \frac{n-k-2}{n-k-1}N_{0}(r) + \frac{1}{n}[N_{1}(r) + N_{3}(r)] + S(r,f).
$$

Furthermore, we have that

$$
\| \left[1 - \frac{1}{n} - \frac{1}{n - k - 1} \right] T_{\psi}(r) \leq \frac{n - k - 2}{n - k - 1} N_0(r) + \frac{1}{n} \left[N_1(r) + N_3(r) \right] + \overline{N}_{\psi}(r, 1) + S(r, f). \tag{6.3}
$$

Next, we will prove the inequality

$$
v_0(z) + (n - k - 1)Z_{\infty}^f(z) \le Z_0^{\psi}(z). \tag{6.4}
$$

If $Z_{\infty}^{f}(z) = 0$ and $v_0(z) = 0$, the inequality holds.

If $Z_{\infty}^f(z) > 0$, then $v_0(z) = 0$. By Case (3), it is easy to deduce that $Z_0^{\psi}(z) \ge (n-1)Z_{\infty}^f(z)$ $k \geq (n - k - 1)Z_{\infty}^{f}(z)$. Thus, the inequality is right.

If $v_0(z) > 0$, then $Z_{\infty}^f(z) = 0$. With (6.1), we obtain that $Z_0^{\psi}(z) = v_0(z)$, which also implies that the inequality holds.

All of the above discussion shows that the inequality (6.4) holds, which leads to

$$
N_0(r) + (n - k - 1)N_f(r, \infty) \le N_\psi(r, 0).
$$
\n(6.5)

 $\underline{\mathrm{\mathfrak{\Phi}}}$ Springer

On the other hand, we deduce that

$$
nm_f(r,\infty) = m_{f^n}(r,\infty) \le m_{\frac{f^n}{D^k f - b}}(r,\infty) + m_{D^k f - b}(r,\infty)
$$

$$
\le m_{\psi}(r,0) + m_{D^k f}(r,\infty) + O(1)
$$

$$
\le m_{\psi}(r,0) + m_{\frac{D^k f}{f}}(r,\infty) + m_f(r,\infty) + O(1)
$$

$$
\le m_{\psi}(r,0) + m_f(r,\infty) + S(r,f).
$$

Thus,

$$
(n-k-1)m_f(r,\infty) \le (n-1)m_f(r,\infty) \le m_\psi(r,0) + S(r,f).
$$

Combining this and (6.5) yields that

$$
||(n - k - 1)T_f(r) \le T_\psi(r) - N_0(r) + S(r, f).
$$
\n(6.6)

By (6.3) and (6.6) , we deduce that

$$
\| \left(n - k - 3 + \frac{k+1}{n} \right) T_f(r) \le \overline{N}_{\psi}(r, 1) + \frac{1}{n} \left[N_0(r) + N_1(r) + N_3(r) \right] + S(r, f)
$$

$$
\le \overline{N}_{\psi}(r, 1) + \frac{1}{n} N_{D^k f}(r, b) + S(r, f). \tag{6.7}
$$

It follows from Lemma 2.2 that

$$
||N_{D^{k}f}(r,b) \leq T_{D^{k}f}(r) + O(1) = m_{D^{k}f}(r,\infty) + N_{D^{k}f}(r,\infty) + O(1)
$$

\n
$$
\leq m_{\frac{D^{k}f}{f}}(r,\infty) + m_{f}(r,\infty) + (k+1)N_{f}(r,\infty) + O(1)
$$

\n
$$
\leq (k+1)T_{f}(r) + S(r,f).
$$
 (6.8)

Combining (6.7) and (6.8) leads to

$$
\|(n-k-3)T_f(r)\leq \overline{N}_{\psi}(r,1)+S(r,f). \tag{6.9}
$$

From the condition $n \geq k+4$ and (6.9), we obtain that $\psi - 1$, assuming 0 infinitely often, which implies that $D^k f + a(f)^n - b$ assumes zero infinitely often as well.

Hence, we have completed the proof of the result. \Box

7 The Proof of Theorem 1.12

Proof of Theorem 1.12 On the contrary, suppose that $f \neq D^k f$. We set

$$
\frac{D^k f - a}{f - a} = h.\tag{7.1}
$$

Now, we distinguish the following two cases:

Case 1 $h \equiv c \ (c \neq 1)$ is a constant. From (7.1), we have that

$$
\frac{D^k f}{a} - \frac{cf}{a} = 1 - c
$$

and hence, by Lemma 2.6 and Lemma 2.10, we get that

$$
T_{D^{k}f}(r) \leq T_{\frac{D^{k}f}{a}}(r) + S(r, f)
$$

\n
$$
\leq \overline{N}_{\frac{a}{D^{k}f}}(r, \infty) + \overline{N}_{\frac{cf}{a}}(r, 0) + \overline{N}_{\frac{a}{D^{k}f}}(r, 0) + S(r, f)
$$

\n
$$
\leq T_{D^{k}f}(r) - T_{f}(r) + 2N_{f}(r, 0) + \overline{N}_{f}(r, \infty) + S(r, f),
$$

and thus,

$$
T_f(r) \le 2N_f(r,0) + N_f(r,\infty) + S(r,f),
$$

from which we get that

$$
2\delta(0, f) + \Theta(\infty, f) \le 2.
$$

This contradicts (1.2).

Case 2 h is a non-constant function. From (7.1) , we have that

$$
\frac{D^k f}{a} - \frac{hf}{a} + h = 1.
$$

Set $f_1 = \frac{D^k f}{a}$, $f_2 = \frac{-hf}{a}$, $f_3 = h$. Then

$$
\sum_{i=1}^{3} f_i \equiv 1. \tag{7.2}
$$

Since $f - a$ and $D^k f - a$ share the value 0 CM, $D^k f$ and a do not have some common poles of the same multiplicity, and we know that $h \neq 0$ and h have no zeros. On the other hand, the poles of h must be poles of f or a . Thus,

$$
\overline{N}_{\frac{a}{hf}}(r,0) \le \overline{N}_f(r,\infty) + S(r,f), \quad \overline{N}_h(r,\infty) \le \overline{N}_f(r,\infty) + S(r,f). \tag{7.3}
$$

From (7.3), Lemma 2.6 and $N_{D^k f}(r, \infty) \le N_f(r, \infty) + kN_f(r, \infty)$, we have that

$$
\overline{N}_{\frac{D^k f}{a}}(r,0) + \overline{N}_{\frac{hf}{a}}(r,0) + \overline{N}_h(r,0) + \overline{N}_{\frac{a}{D^k f}}(r,0) + \overline{N}_{\frac{a}{hf}}(r,0) + \overline{N}_h(r,\infty)
$$
\n
$$
\leq \overline{N}_{D^k f}(r,0) + \overline{N}_f(r,0) + 2\overline{N}_f(r,\infty) + \overline{N}_h(r,\infty) + S(r,f)
$$
\n
$$
\leq T_{D^k f}(r) - T_f(r) + N_f(r,0) + \overline{N}_f(r,0) + 3\overline{N}_f(r,\infty) + S(r,f)
$$
\n
$$
\leq T_{D^k f}(r) - T_f(r) + 2N_f(r,0) + 3\overline{N}_f(r,\infty) + S(r,f).
$$
\n(7.4)

By the definition $\delta(0, f) = 1 - \limsup_{r \to \infty}$ $N_f(r,0)$ $\frac{\nabla f(r,0)}{T_f(r)}$ and $\Theta(\infty, f) = 1 - \limsup_{r \to \infty}$ $N_f(r,\infty)$ $\frac{f(T,\infty)}{T_f(r)}$, from (7.4) , we can obtain that

$$
\overline{N}_{\frac{D^{k}f}{a}}(r,0) + \overline{N}_{\frac{hf}{a}}(r,0) + \overline{N}_{h}(r,0) + \overline{N}_{\frac{a}{D^{k}f}}(r,0) + \overline{N}_{\frac{a}{hf}}(r,0) + \overline{N}_{h}(r,\infty)
$$
\n
$$
\leq T_{D^{k}f}(r) - T_{f}(r) + [2(1 - \delta(0, f)) + 3(1 - \Theta(\infty, f)) + o(1)]T_{f}(r) + S(r, f)
$$
\n
$$
= T_{D^{k}f}(r) - \{2\delta(0, f) + 3\Theta(\infty, f) - 4 + o(1)\}T_{f}(r)
$$
\n
$$
\leq \frac{(k + 5 - 2\delta(0, f) - (3 + k)\Theta(\infty, f) + o(1))}{k + 1 - k\Theta(\infty, f)}T_{\frac{D^{k}f}{a}}(r).
$$

Immediately, by Lemma 2.9, and from the above inequality, we can derive that

$$
(\lambda + o(1))T(r) \ge \overline{N}_{\frac{D^k f}{a}}(r, 0) + \overline{N}_{\frac{h f}{a}}(r, 0) + \overline{N}_h(r, 0) + \overline{N}_{\frac{D^k f}{a}}(r, \infty) + \overline{N}_{\frac{h f}{a}}(r, \infty) + \overline{N}_h(r, \infty),
$$

where $T(r) = \max_{1 \leq j \leq 3} T_{f_j}(r)$ and

$$
\lambda = \frac{(k+5-2\delta(0, f) - (3+k)\Theta(\infty, f) + o(1))}{k+1 - k\Theta(\infty, f)} \leq k+5-2\delta(0, f) - (3+k)\Theta(\infty, f) + o(1) < \frac{1}{2}.
$$

Hence, from Lemma 2.9, we know that f_1, f_2, f_3 are linearly dependent, so there exist three constants, not all zero, such that

$$
c_1 f_1 + c_2 f_2 + c_3 f_3 = 0. \tag{7.5}
$$

It is obvious that $c_1 \neq 0$. Indeed, if $c_1 = 0$, then $c_2 \neq 0, c_3 \neq 0$, and by (7.5), we can obtain $h\left(c_2(\frac{f}{a})-c_3\right)=0$, and since h is non-constant, we get that $f=a\frac{c_3}{c_2}$. Hence, we deduce that $T(r, f) = T\left(r, \frac{ac_3}{c_2}\right)$ $= S(r, f)$, which is impossible. By (7.2) and (7.5), we have that

$$
(c_2 - c_1) \frac{hf}{a} + (c_1 - c_3) h = c_1.
$$
\n(7.6)

If $c_2 - c_1 \neq 0, c_1 - c_3 \neq 0$, from (7.6) and by Lemma 2.10, we deduce that

$$
T(r, f) \leq T_{\frac{f}{a}}(r) + S(r, f)
$$

\n
$$
\leq \overline{N}_{\frac{a}{f}}(r, \infty) + \overline{N}_h(r, \infty) + \overline{N}_{\frac{f}{a}}(r, \infty) + S(r, f)
$$

\n
$$
\leq N_f(r, 0) + 2\overline{N}_f(r, \infty) + S(r, f).
$$

Similarly, this is impossible, because of the condition (1.2).

If $c_2 - c_1 = 0, c_1 - c_3 \neq 0$, we obtain from (7.6) that $h = \frac{c_1}{c_1 - c_3}$, which is a contradiction, because of h is not a constant.

If $c_2 - c_1 \neq 0, c_1 - c_3 = 0$, we obtain from (7.6) that

$$
fh = \frac{ac_1}{c_2 - c_1},\tag{7.7}
$$

and by (7.2) and (7.7) , we get that

$$
\frac{D^k f}{a} + h = \frac{c_2}{c_2 - c_1}.
$$

If $c_2 \neq 0$, then, by Lemma 2.10 and Lemma 2.6, we have that

$$
T_{D^{k}f}(r) \leq T_{\frac{D^{k}f}{a}}(r) + S(r, f)
$$

\n
$$
\leq \overline{N}_{\frac{a}{D^{k}f}}(r, \infty) + \overline{N}_{h}(r, 0) + \overline{N}_{\frac{D^{k}f}{a}}(r, \infty) + S(r, f)
$$

\n
$$
\leq T_{D^{k}f}(r) - T(r, f) + N_{f}(r, 0) + \overline{N}_{f}(r, \infty) + S(r, f).
$$

Therefore,

$$
T_f(r) \le N_f(r, 0) + \overline{N}_f(r, \infty) + S(r, f),
$$

and similarly, this is impossible, because of the condition (1.2).

If $c_2 = 0$, then we have that

$$
D^k f + ah = 0 \text{ and } fh = -a,
$$

so we can deduce from the above two equations that

$$
D^k f \cdot f = a^2. \tag{7.8}
$$

We note that

$$
N_f\left(r,0\right) \le N_{fD^kf}\left(r,0\right)
$$

and

$$
2m_f(r,0) = m_{f^2}(r,0) \le m_{\frac{f D^k f}{f^2}}(r,\infty) + m_{f D^k f}(r,0) = m_{f D^k f}(r,0) + S(r,f),
$$

so that

$$
T_f(r,0) \le T_{f D^k f}(r) + S(r,f). \tag{7.9}
$$

Therefore we can get, from (7.8) and (7.9), that

$$
T_f(r) \le T_{f D^k f}(r) + S(r, f) = T(r, a^2) + S(r, f) = S(r, f),
$$

which is impossible. This proves Theorem 1.12. \Box

References

- [1] Brück R. On entire functions which share one value CM with their derivates. Result in Math, 1996, 30: 21–24
- [2] Gundersen G G, Yang L Z. Entire functions that share one value with one or two of their derivates. J Math Anal Appl, 1998, 223: 245–260
- [3] Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964
- [4] Hu P C, Li P, Yang C C. Unicity of Meromorphic Mappings. Berlin: Springer Science and Bussiness Media, 2013
- [5] Jin L. Theorems of Picard type for entire functions of several complex variables. Kodai Math J, 2003, 26: 221–229
- [6] Jin L. A unicity theorem for entire functions of several complex variables. Chin Ann Math, 2004, 25B: 483–492
- [7] Li B Q. On Picard's theorem. J Math Anal Appl, 2018, 460: 561–564
- [8] Li B Q, Yang L. On Picard type theorems and entire solutions of differential equations. arXiv: 1809.05553v1
- [9] Lü F. Theorems of Picard type for meromorphic function of several complex variables. Complex Variables and Elliptic Equations, 2013, 58: 1085–1092
- [10] Ru M. Nevanlinna Theory and Its Relation to Diophantine Approxmation. Singapore: World Sci Publishing, 2001
- [11] Vitter A. The lemma of the logarithmic derivative in several complex variables. Duke Math J, 1977, 44: 89–104
- [12] Yi H X. A question of C.C. Yang on the uniqueness of entire functions. Kodai Math J, 1990, 13: 39–46
- [13] Yi H X. Uniqueness theorems for meromorphic functions whose N-th derivatives share the same 1-points. Complex Variables and Elliptic Equations, 1997, 34: 421–436
- [14] Yang L Z. Further results on entire functions that share one value with their derivates. J Math Anal Appl, 1997, 212: 529–536
- [15] Ye Z. A sharp form of Nevanlinna's second main theorem of several complex variables. Math Z, 1996, 222: 81–95
- [16] Yu K W. On entire and meromorphic functions that share small functions with thire derivatives. J Inequal Pure Appl Math, 2003, 4(1): Art 21