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Abstract In this paper, we mainly investigate the value distribution of meromorphic func-
tions in C™ with its partial differential and uniqueness problem on meromorphic functions
in C™ and with its k-th total derivative sharing small functions. As an application of the
value distribution result, we study the defect relation of a nonconstant solution to the partial
differential equation. In particular, we give a connection between the Picard type theorem of

Milliox-Hayman and the characterization of entire solutions of a partial differential equation.
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Introduction and Main Results

Picard’s theorem asserts that an entire function in the complex plane C, omitting two

distinct complex numbers must be constant. This also implies that a meromorphic function in

C omitting three distinct values must be constant. Picard’s theorem has played a decisive role

in the development of the theory of entire (meromorphic) functions and other applications. It is

a significant strengthening of Liouville’s Theorem, which states that a bounded entire function

must be constant. Recently, many researchers have paid much attention to Picard’s theorem
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and its applications [5, 7, 9]. Of particular interest in the connection/equivalence between
Picard’s theorem and the characterization of entire solutions of a differential equation, which
can be found in [7], and which can be stated as follows:

Theorem A Let a(z) be an entire function and let L(z) be a meromorphic function
in C with at least two distinct zeros. Then an entire solution of the differential equation
"+ a(z)L(f) = 0 must be constant.

Furthermore, in [7], it also proved the Picard type theorem for a solution of the partial
differential equation as follows:

Theorem B Let a(z) be a nonzero entire function in C™ and let L be a nonzero mero-
morphic function in C with at least two distinct zeros. Then an entire solution f in C™ to the

partial differential equation

n ool f
Iz_l aa—6a121 o T +a(z)L(f) =0
must be constant, where (a1, -+, @) € N™ is a multi-index with |a| = a1 + -+ - + am, and a,

is a constant.

Recently, a connection between the Picard type theorem of Polya-Saxer-Milliox and the
characterization of entire solutions of a differential equation was given in [8]. Motivated by the
above works, we extend Theorem B to a more general form and study the defect relation of a
nonconstant solution to the partial differential equation.

Specifically, we let F be the set of entire functions in C™ such that, for any function
f €F, fis a constant or must depend on all variables z1, - - , z,,. We consider the differential
polynomial Q(z, f) of f on C™, which is defined by

n P (9Jf Sij
Qz f) =) ailz vl B 1.1
@D =3 <>J1_I()(3ZJ) 1)

where S;;(1 < i < n,0 < j < p) are nonnegative integers, a; # 0 (1 < ¢ < n) are small

k k
meromorphic functions, and % = aza?_ﬁ, (a1, yam) EN" tag + -+ ay, =k keN.
1 m
Set
P P
d(Q) = min > Si; and 6(Q) = 1rilla<anOjSU
j= j=

We always assume that ) must contain a nonzero partial differential and that its exponent is

a positive integer. Our result is given as follows:

Theorem 1.1 Let Q(z, f) be a polynomial of a partial differential as in (1.1), and let R
be a nonconstant rational function. Then,
(i) assuming that d(Q) > 0(Q) + deg R+ 2, any solution of the algebraic partial differential
equation Q(z, f) — 1 = R(f) must be constant;
q
(ii) furthermore, if R(2) = [] (2 — ;)" is a nonconstant polynomial, a; # a; for all i # j,

i=1

and [; is positive integer (i = 1, -+ , ¢). Then, for any nonconstant entire solution of the algebraic
partial differential equation Q(z, f) — 1 = R(f), we have that

q

(0(Q) +1)0(0, f) + Z@(ai, £)<0@Q) —dQ) +q+1,
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provided that 6(Q) > d(Q) — ¢ — 1.
Note that our method of proving Theorem 1.1 is different with Theorem B. We use the

result on a value distribution of the polynomial partial differential (see Theorem 1.9). Next, we

show a Picard type theorem of Milliox-Hayman for an entire function in several variables.

Theorem 1.2 Let n,ni,---,n, be positive integers, let f be an entire function in F,

and let a be a nonzero complex number. If f # 0 and
N AR A

Note that we do not consider Theorem 1.2 for the class of functions outside of F. If

then f is a constant.

fz1,-  2m) = g(21,++ , 2), where i < m, m > 2, then Theorem 1.2 is considered auto-

matically in C’ instead of C™.
Remark 1.3 Theorem 1.2 is still true for a meromorphic function in F via Theorem 1.9.
From Theorem 1.2, we get the following result in C, due to Hayman:

Corollary 1.4 Let n,n; be positive integers, let f be an entire function in C, and let a

be a nonzero complex number. If f # 0 and f™(f’)"* # a, then f is a constant.

Theorem 1.5 Let n,nq,---,n,, be positive integers, a(z) be a nonzero entire function
in C™ without zero, and let a be a nonzero complex number. Then an entire solution f in F

to the partial differential equation

= (g—fl) (%)m o= a()f!

must be constant, where [ € Z™T.
From Theorem 1.5, we get the following result in C :

Corollary 1.6 Let n,n; be positive integers, let a(z) be a nonzero entire function in
C without zero, and let a be a nonzero complex number. Then an entire solution f to the

differential equation

must be constant, where [ € Z™T.

Now, we show the equivalence between Theorem 1.2 and Theorem 1.5.

Theorem 1.5 = Theorem 1.2. Since f # 0 is an entire function and

. (9f ny (9f N
SCRIC

n( of \"  (_&f \mm _
then a(z) = (azl) fl( 7)o is an entire function in C™ without zero. This implies that
. ni MNm
f is an entire solution of equation f" (aa—zjl) e (;i—{n) —a = a(z)f!. By Theorem 1.5, f is

a constant function.

Theorem 1.2 = Theorem 1.5. Suppose that f is an entire solution of the equation

= (g—{) ((,f{n)m = a()f
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Then f # 0 and f™ (621) b (6?;) " # a. Indeed, all zeroes of
—_— . —_— a
821 8Zm

are the zero of f since a has no zero in C™. Therefore, if there exists zp such that

() ()

This implies that f(z9) = 0. Then f" (—) L ( of )nm (z0) = 0, which is a contradiction.

dz1 O0zm
Similarly, f # 0. By Theorem 1.2, f is constant.

For the convenience of the reader, we recall the definition of a total derivative. Letting f
be a meromorphic function on C™, the total derivative D f of f is defined by

Z) = szfz]'(z)
j=1

where z = (21,22, ,2m) € C™, and f.; is the partial derivative of f with respect to z;(j =
1,2,---,m. The k-th order total derivative D* f of f is defined inductively by

Dkf:D(Dk_lf)vk:1527"'a

where DU f = f. If f is a nonconstant meromorphic function, then D f # 0.
A total differential polynomial P(z, f) of f on C™ is defined by

=Y a()IE, (D7 f(2))™
=1

where S;;(1 < i <n,0 <j <p) are the nonnegative integers, and a; # 0 (1 <14 < n) are small

meromorphic functions. Set

We always assume that P must contain a nonzero k-th order total derivative and that its
exponent is a positive integer. Our result on the value distribution of P(z, f) is given as

follows:

Theorem 1.7 Let ai,---,a, be distinct nonzero complex numbers. Let f be a tran-
scendental meromorphic function on C™ and let P(z, f) be a non-constant total differential
polynomial in f with d(P) > 2. Then

qd(P) +1

Tf(r) < W)_l

q
Ny (r,0) + 5 > Np(r.a;) +o(Ts(r))
j=1
for all r € [1, +00), excluding a set of finite Lebesgue measure.
Moreover, in the case where f is a transcendental entire function, we have that

q

Tfms%m (:0)+ 77y D 7 () + (T )

for all r € [1, +00), excluding a set of finite Lebesgue measure.
From Theorem 1.7, we get the following Picard-type theorem:
@ Springer
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Corollary 1.8 Let f be a transcendental meromorphic function on C™. Let n,ny - - - , ng,

k > 1 be positive integers. If f*(Df)" ---(DFf)™ is not a constant function, then assume all
k k

finite values infinitely often as n + Y ny > > tny + 3. Furthermore, if f is a transcendental
=1 t=1
k k
entire function, the conclusion holds for n + > ny > Y tn, + 2.
t=1 t=1

By the same arguments as those in Theorem 1.7, we get the following result:

Theorem 1.9 Let a1, --,a, be distinct nonzero complex numbers. Let f be a non-
constant meromorphic function on C™ and let Q(z, f) be a non-constant partial differential
polynomial in f with d(Q) > 2. Then

Q) +1— 1 a
= WNf (r,0) + Q) -1 ;NQ (r,a;) + o(Ty(r))

Ty(r)
for all r € [1,400), excluding a set of finite Lebesgue measure.
Moreover, in the case where f is a transcendental entire function, we have that

g0(Q) +1—

1
Ty(r) < Q) Ny (T’O)er;% (rya;) +o(Ty(r))

for all r € [1, +00), excluding a set of finite Lebesgue measure.

Remark 1.10 Theorem 1.9 is proven similarly as the Theorem 1.7 by using Remark 2.5
instead of Lemma 2.4.

In 2013, F. Lv considered a Picard-type theorem for a meromorphic function on several
complex variables, and obtained D f — af™ assumes all finite values infinitely often with n > 5.

With the aid of his idea, we give a Picard-type theorem below.

Theorem 1.11 Let f be a transcendental meromorphic function on C™ such that D f #
0. Let a be a finite nonzero constant and let n > k + 4 be an integer. Then D¥ f — af™ assumes

all finite values infinitely often.

One notices that our result actually provides an extension to some main results of F. Lv;
if we take that k = 1, the theorem obtained by Lv is a special case of 1.11.

Let f be a meromorphic function in the complex domain. For two meromorphic functions
fyg,1f f —a and g — a have the same zeros, counting multiplicity (ignoring multiplicity), then
f and g share the same function o CM (IM). Usually, we say that a is a small function with
respect to f if To(r) = o(Ty(r)) = S(r, f) as r — oo outside of a possible exceptional set of
finite measure.

In recent decades, uniqueness problems on meromorphic functions have been studied deeply
via Nevanlinna theory; a large number of research works on the uniqueness problem have been
undertaken in a complex plane [1, 2, 6, 12-14, 16], etc. As a very active subject, problems on the
uniqueness of entire functions sharing values with the derivatives attracted a lot of attention.
In particular, Yi [12] proved the following theorem:

Theorem C Let f and g be two nonconstant entire functions on the complex plane, and
let k be a positive integer. If f and g share 0 CM, f*) and ¢g*) share 1 CM, and 6(0, f) > %,
then f®g*) =1, unless f = g.
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In [6], Jin extended Theorem C to C™; here f and g are both entire functions. However,
it is natural to consider the following questions: in what condition can we get a similar result
for transcendental meromorphic functions on C™ and a small function a of f? In this paper,
we apply a different method to that above, and obtain the following result, which answers the

above question:

Theorem 1.12 Let k > 1, let f be a transcendental meromorphic function on C™, and
let a # 0, 0o be a small meromorphic function of f. Suppose that D f is a nonconstant function.
If f —a and D*f — a share the value 0 CM, and D* f and a do not have some common poles

of the same multiplicity, and
9
2600, f) + B3+ k)O(c0, f) > §+k, (1.2)

then f = D*f.
By arguments the same as those in Theorem 1.12, we get the following result:

Theorem 1.13 Let k > 1, f be a transcendental meromorphic function on C™, and let

a # 0,00 be a small meromorphic function of f. If f —a and O"f _ 4 share the value 0 CM,

0zk
and % and a do not have some common poles of same multiplicity, and
9
26(0, f) + (34 k)O(o0, f) > 3t k,
k
then f = gz{.

2 Some Notations and Auxiliary Lemmas of Nevanlinna Theory

) N\ 1/2
Set [|z| = (|Z1| + o 2 ) for z = (#1,...,2m) and define that

Bn(r)y={z€C™:|z]| <r},Sm(r)={z€C™: |z|]| =r} (r > 0),
vm(2) = dd°|[2]*, o (z) = d°log z|[* A (dd” log =)

for z € C™\{0}. Then o,,(z) is a positive measure on S,,(r) with the total measure one.

Let a € P! Let f : C™ — P(C) be a meromorphic function. For each a € P!(C) with

f~1(a) # C™, we denote by Z/ the a -divisor of f, and write ZJ (r) = B,,(r)NZ/. In addition,

we define that

ny(r,a) = r2_2m/ v (2).
7z (r)
Then the corresponding counting function Ny (r,a) is defined as

Ny(r,a) = /OT [nr(t,a) —ns(0,a)] % +ns(0,a)logr,

where ns(0,a) is the Lelong number of Z/ at the origin. In particular, we define the divisor

73: = min {1, 7/} ,ms(r,a) and the reduced counting function Nf(r,a). For positive integer

k, define the truncated multiplicity functions on C™ by Z/*(z) = min{Zf(z),k}, and the

corresponding truncated counting function by n,(t) = ny (¢, ﬁ if v = Z/k(2), and the

truncated valence function by N, (t) = N (t ) if v = ZI**(2). The proximity function

_1
I f_a
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1
log" | ——
/Sm(r) f(z)—a
/ log™ | f(2)|om(2), if 4 = oo
S (1)

my(r,a) is defined as

om(2), if a # o0

myg(r,a) =

and the characteristic function T (r) is
Ty(r) = ms(r,a) + N¢(r,a).

Now, we recall the quantity

. . mf(ru a) . Nf(’f‘, a)
d(a, f) =lim inf ———= =1—1lim sup ———=
o Ty (r) 2T
the defect (or deficiency) of a with respect to f. Then, 0 < d(a, f) < 1. The quantity

logT
o(f) = lim sup 28 12()
r—oo logT

is said to be the order of f.
Here, for brevity, we replace the notations ms(r,a), Ny(r,a) and N;(r,a) by m (r, ﬁ)

N (r, ﬁ) and N (r, lea , respectively. If a = oo, we write m(r, f), N(r, f) and N(r, f).

Moreover, the notation '||P’ means that the assertion P holds for all » € [0, 00) outside of a
Borel subset E of the interval [0, c0) with [}, dr < co.

From the the Logarithmic Derivative Lemma for a meromorphic function in several variables
[4, 11, 15], we obtain the following;:

Lemma 2.1 Let f be a nonconstant meromorphic function on C™. Then for any positive

integer k,

m <r, Dka) = O (log 1T (r))

holds for all large r outside a set with finite Lebesgue measure.

Lemma 2.2 ([9]) Let f be a non-constant meromorphic function on C™ and let S =
Iy N (supp Z({O)s, where A, denotes the set of singular points of an analytic set A. Supposing
that zo € S and ZL (20) =p > 1, ZD2f (20) <p+1.

From Lemma 2.2, we get the following result for higher total derivative:

Lemma 2.3 Let f be a non-constant meromorphic function on C™ and let S = Iy N
(supp Z({O)s, where A; denotes the set of singular points of an analytic set A. Supposing that
20 ¢ S and ZL (z0) =p > 1, Z2°F (z9) < p+ k.

Proof First, we see that all poles of D* f come from the poles of f. If k = 2, we apply
above lemma for Df and note that D?f = D(Df), so we get that ZODo2f (z0) <p+2forzg &S
and ZZ1 (z9) = p > 1. Similarly, for k£ > 2, we can get that

ZR" (z) <p+k.
From Lemma 2.3, we get that
Nprg(r,00)) < Ny (r,00) + kN y(r,00),
where f is a nonconstant meromorphic function such that D* f # 0. O
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Lemma 2.4 Let f be a non-constant meromorphic function on C" such that D*f # 0.
Then we have that

Ny (r,0) = Npr g (r,0) < kN (r,0). (2.1)
Proof Suppose that 29 = (29,29, .. 29) & S is a zero of f with the multiplicity p. Now,

we distinguish the following two cases:

Case I If 2¥ is a zero of f with the multiple p < k, then 2° is a zero of D*f, or not.
Thus, 2° is a zero counted on the left hand side with a multiple of at most p, and 2° is a zero
counted on the right side hand with a multiple k. Since p < k, one observes that (2.1) holds.

Case IT If 20 is a zero of f with the multiple p > k, then 2° is a zero of D*f with a
multiple of at most p — k. Indeed, one can deduce that

1

_ _ 2=
Df ==f*D. (2.2)

0 is a zero of f with a multiple p, then 2° is a pole of % with a multiple p, and by

Since z
applying Lemma 2.2, we can get that 2° is a pole of D% with a multiple p; < p+ 1. By (2.2),
we have that 20 is a zero of Df with a multiple p > p — 1. Set that Df = g. Immediately, we
have that ) )
2 2
Dg=—g Dg = D(Df)=—(Df) DDf'

From the above equation, we have that z° is a zero of D f with a multiple p, and that 20 is
a pole of Dif with a multiple p. Furthermore, by simple computing, we get that 2° is a zero of
D?f with a multiple of at least of p— 1 > p — 2.

By repeating the proof of above, we can obtain that D¥f = D(D*~1f), and that z° is a
zero of D¥ f with a multiple of at least p— k. In this case, 20 is counted in Ny (r,0) — Npr¢(r,0)
at most k times.

Combining Case I and Case II, we get that
Nf (7‘, 0) — NDkf (T‘, 0) < kﬁf (T‘, 0) ,
so (2.1) is proved. O

Remark 2.5 Let f be a non-constant meromorphic function on C™ such that % £ 0.
Then we have that

Ny (7‘, 0) — Nk; (7‘, 0) < kﬁf (T‘, 0)

azk

for any multiple index (ay,--+ , ) € N™ :ag + -+ + a,, = k, where 92F = 920" -+ 928m.

Proof Remark 2.5 is proved similarly as for Lemma 2.4, by using a result similar as of
the Lemma 2.2 for the partial differential ([4], page 105). O

By using Lemma 2.1, and computing similarly as for [6], we get the following:
Lemma 2.6 Let f be a non-constant meromorphic function on C™ such that D* f # 0.
Then, for any positive integer k,
|Npw s (r,0) < Tpwg(r) = Ts(r) + Ng(r,0) + O(log rT¢ ().
By using the Logarithmic Derivative Lemma for a meromorphic function in several variables
[4], we get the following:
@ Springer
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Lemma 2.7 Let f be a non-constant meromorphic function on C™ such that % Z 0.
Then, for any positive integer k,
HN% (r,0) < Tﬂ (r) = T¢(r) + Ng(r,0) + O(log Ty (r)).
Lemma 2.8 ([4]) Let fJ(§é 0),1,2,---,n(> 2) be linearly independent meromorphic
functions on C™ such that Z:l fj = 1. Take multi-indices v; € Z7]'(i = 1,--- ,n — 1) such that
j=
O<|v| <i(i=1,---,n—=1),|nn| <|va| < - <|vp_1] = w,

and
W = WVI"'anl(f]J e 7f7l) ?_é 0'

Define | = |v1|+|ve|+- -+ |Vn-1] and set B, = wax {S

s—1

. 231 |I/’n,—i|}. Then, for j =1,--- ,n,
1=

the inequality

Ty, (r <ZN< >+B > Ny, (r,00) + 5(r)

i#j
holds for 7y < r < p < R, where B, <n —1 and S(r) = 0(1rila<x {Ty,(r)})-
<j<n

Lemma 2.9 Let fl, f2, f3 be meromorphic function on C™ such that

||ZN,] (r,0) +ZN, r,00) < (A4 0(1))T(r),

where T'(r) = 1121;2(3{Tfj (r)} and one has the constant A < 3. Then fi, fo, f3 are linearly
<<
dependent.

Proof Assume that f;(j = 1,2,3) are linearly independent. Then, by applying Lemma
2.8, we have that

I175.(7) z 2 (n ) 2 (o) < iNQ(T,ﬂHiWMW)

j=1 i#£j j=1 J j=1
Noting that T'(r) = max{T},(r)}(j = 1,2, 3),

3

|7 (r) <ZN2( >+22ij T, 00 <22Nf r,0)+2> Ny (r,00)

j=1

<2A+0(1))T(r) < T(r),
which gives a contradiction, and the conclusion obtained. O

Lemma 2.10 Let fi, fo be two non-constant meromorphic functions on C™, and let
1, C2, c3 be three nonzero constants. If ¢ f1 + c2 fo = ¢3 holds, then

HTfl (T‘) < Nfl (T‘, O) + Nfl (T‘, 00) + Nfz (T‘, O) +S(r, f)-
Proof By the second main theorem [3, 10], we have that
HTfl (T‘) < N.ﬁ (r,0) + Nfl (T‘, 00) + N.ﬁ (r, 03/01) +S(r, f)-
Noting that N, (r,c3/c1) = Ny, (r,0), we have that

”Tfl (T) < Nfl (Ta O) +Nf1 (Tv OO) +Nf2 (Tv O) + S(Ta f)
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Hence, we obtain the conclusion. 0

Remark 2.11 Lemma 2.10 is still true when ¢y, ¢o, c3 are three nonzero small functions

of f1 (see [3]).

3 The Proof of Theorem 1.2

1 MNm
Proof If f is not constant, then f" (871) e (aazf ) is not constant. Indeed, we see

that " (621) L (aif ) # 0, since f € F. Suppose that

n( 9OF\" of \"" _

where ¢ # 0 is a constant. Then f does not have any zero. From (3.1), we get

of m fm B c

By the Logarithmic Derivative Lemma for a meromorphic function in several variables [4], we
deduce that m(r, %) = S(r, f). Since f has no zero, then N(r, —) = 0. This implies that
1
Ty(r) =T(r, ?) +0(1) = S(r, f).

This is a contradiction, since f is not constant. Therefore, applying Theorem 1.9, we get that
Ty(r) = S(r, f). This is again a contradiction . Hence, Theorem 1.2 is proven. O

4 The Proof of Theorem 1.7

P
Proof of Theorem 1.7 For any z such that |f(z)] < 1, since ) S;; > d(P)(1 <1i < n),
j=0

we have that
Dif|%
f

1L 1 PG ) RN I
F@AD ~ PG T = [P f)] > |l ]

i=1 j=0
The above inequality implies that, for all z € C™,

n

1 1 P
log™ ey <log” | p Ty 2 |l 1

i=1 §=0

Dif|®

f

On the one hand, by the lemma on the logarithmic derivative and the first main theorem,

we have that
d(P)mj (T, O) S mp (T’, 0) + O(Tf(T)) = Tp (’I”) — Np (T, 0) + O(Tf(T)).

On the other hand, by the second main theorem (used with the ¢ + 1 different values

0,a1,--- ,aq), we have that

qTp (r) < Np(r,00) + Np (r,0) + Z (r,a;) + o(Ty(r)).
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Hence,

d(P)ymy (r,0) <

| =

Np(r,00) + Np(r,0) Z (rya;) | = Np(r,0) 4+ o(Ty(r)).

Using the first main theorem again, one deduces that
d(P)Ty (r) = d(P)Ty (r,0) + O(1)
= d(P)my (r,0) + d(P)Ny (r,0) + O(1)

IN

1 [—= — 7 _
7 Np(T,OO)+NP(T,O)+ZNP(T,CLj)
j=

+ d(P)Ny (r,0) — Np (r,0) 4+ o(Ts(r)). (4.1)
We have that

1 18 2 Sij)—d(P) £/ DI 5
7R TP Z aif = H (—f ) ;
=1 7=0
and note that (> S;;) — d(P) > 0. Immediately, we get that
7=0
. Dif
d(P)Z3(2) < Z§ (=) + max {Z%(=) + Z SijZos (2)}

1<i<n

<ZE()+ ¥ Z9(s) +max zs” ﬂ@}

1<i<n

1<i<n

<2+ Y zeG) rmaxd Y Sy (7)) - 20 (z))} ,
§=0
by the definition 7£ :=min{Z7, 1}. From the above inequality, we can see that

d(P)zg(z)_zg(z)JréZ’fg% Zo+ Y Z%(2) + max st (28) - 257 (=)

1<i<n 7=0

Furthermore, applying Lemma 2.4 to the above inequality, one observes that

d(P)Ny (r,0) — Np (r,0) + ENP (r,0)

N, (roo)+1Nj(rO)+max Z]S” Ny (r,0) + S(r, f)
1 7=0

_M3

K2

-

N, (r,00) + <é + H(P)) Ny (r,0) + S(r, f)

=1

_ (% + 9(p)> Ny (r,0)+ S(r, f).

Combining this with (4.1), we have that

[

d(P)Ts(r) < = | Np(r,00) Z (r,a;) | + (9(P) + %) Ny (r,0) + o(Ts(r)).

(=

@ Springer



832 ACTA MATHEMATICA SCIENTIA Vol.43 Ser.B

On the other hand, by the definition of the differential polynomial P, we have Pole(P) C |J
i=1
Pole (a;)|J Pole f. Since N, (r,00) < Ty, (r) = o(Ty(r)) for i = 1,--- ,n, we get that

d(P)Ty(r) < % Np(r, 00) Zq: (r,ay) <9(P) + é) Ny (1,0) + o(T;(r))
< % To(r) + zq:m (ra;) | + (9(P) 4 %) Ni(rn0)+o(Ts(r).  (4:2)
Therefore, .
T, (r) < ‘q’flg i ﬁf (r,0) + zq: (r,a;) + o(Ty(r)).

In the case where f is a transcendental entire function, the first inequality in (4.2) becomes
- 1\ —
d(P)Tf (T) < a Z NP (T, aj) + (Q(P) + a) Nf (T, O) + O(Tf(T)).
j=1

This implies that

T (T)<L)+1N (r,0 )—i—LiW (ryaj) + o(T¢(r))
T =Tgapy qd(P) &= o
We have completed our proof. O

5 Proof of Theorem 1.1

Proof of Theorem 1.1 First, we prove (i). Suppose that there exists a nonconstant
meromorphic solution f of
Q(z, f) =1 = R(J).
Then Q(z, f) = R(f) + 1 is a nonconstant function. Indeed, if Q(z, f) is a constant, then R(f)
is a constant, which implies that f is a constant. This is impossible. Applying Theorem 1.9,

we have that

e(Q)+1 1
I1T5(r) < gy =7 s (n0) + d(Q)—lN (r.1) + o(Ty(r)
9(Q)+1 1
H(Q)—l—degR—i-l
< o D) +elTi()

Since d(Q) > 6(Q) + deg R + 2, then f is a constant. This is a contradiction, and so (i) is
proven.
Next, we prove (ii). Suppose that f is a nonconstant entire solution of equation

By the same argument as before, Q(z, f) is a nonconstant function. Applying Theorem 1.9 for

the case of the entire function, we get that

iy < QD 1y

aq O

1
mNQ (r, 1) +o(Ty(r))
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0(Q) +1— 1 —
< WNf (r,0) + mNR(f) (r,0) + o(T¥(r))
< 6(Q)+1

~ 1
S WNf (7', O) + m ;N.f (7‘, ai) + O(Tf(T)).

This implies that

q

(0(Q) +1)O(0,£) + > O(as, f) < 0(Q) — d(Q) +q +1,

i=1

provided that 6(Q) > d(Q) — ¢ — 1. O

6 The Proof of Theorem 1.11

Proof of Theorem 1.11 With the idea of Hayman [3], we will present our proof as
follows:
For each b € C, set
DFf—b
afr

If D¥f is a nonzero constant, then the conclusion is trivial from n > 5. Now, we consider

Y= (6.1)

that DF f is not a constant, and we obtain that ¢ Z 0. Now, we define some divisors:

Zlf)kf(z), if Z1(z) =0;

vo(z) =
0, or else.
Zlf)kf(z), if ZI(z)>0and Z¥(z) > 0;
v1(z) =
0, or else.
Zlf)kf(z), if ZI(2)>0,2¢(z) =0 and Z¥,(z) = 0;
v2(2) =
0, or else.
Zlf)kf(z), i Zg(z) >0 and ZJ(2) > 0;
v3(2) =

0, or else.

Meanwhile, we define the notations Ny(r), N1(r), N2(r) and N5(r) as the corresponding
counting functions of the divisors vy(2), v1(z),v2(2) and v3(z), respectively.

We claim that

() nZi(2) < 2L (2) +ui(2);

(i) (n—k—1)Z5(2) < ZV(2) + (n — k — 2)vo(2) + ==Ly (2).

First, we prove (i).

If Z¥ (z) = 0, then the proof of claim (i) is trivial. Thus, we assume that Z¥ (z) > 0. Since
n > k + 2, combining this with (6.1) yields that Zg(z) > 0. Without loss of generality, set
Z!(z) = ¢ > 0. Obviously,

nZ" (2) = n. (6.2)

Suppose that Zkaf(z) =p.
If p = 0, it follows from (6.1) that Z¥ (z) > n. Thus, (i) is right.
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If p> 0, by (6.1) and the definition of vy (z), it is easy to deduce v1(z) = p and Z%(z) =
ng —p. Then Z¥ () + v1(2) = ng > n. Combining this and (6.2), that yields that the claim (i)
holds.

Now, we prove (ii).

If Z¥(z) = 0, then the proof of claim (ii) is also trivial, so we assume that Z (z) > 0. Then,
with (6.1), we deduce that Zl?kf(z) > 0or ZL (2) > 0. Of course, (n—k— 1)73’(2) =n—k-1.
We will prove the claim by distinguishing three cases.

Case (1) Zl?kf(z) > 0 and Z{(z) = 0. With the definition of vy(z), we have that
(n—k—2)vg(z) > n—k—2. Thus, (ii) is right.

Case (2) Zl?f(z) > 0 and ZJ(z) > 0. Since ZY(z) > 0, we deduce that Zlf)kf(z) >
nZ{(z) > n. Noting the definition of v3(z), we obtain that vs(z) = Zlf)kf (2) > n. Furthermore,
n=k=1lys(z) > n — k — 1, which indicates that (ii) is right.

Case (3) Z/ (z) > 0. Then ZL'(2) = nZf () > n. From Lemma 2.2, we derive that
ZD*F=b(2) < 7L (2) + k. Tt follows from (6.1) that

Z0(z) = 2L (2) - 22T (2) > (n = 1)ZL(2) —k > n — (k+1).
Thus, the claim (ii) holds.

Therefore, we have completed the proof of the claims.

From the claims, the following two inequalities are immediately derived:

nN¢(r, 00) < Ny(r, 00) + Ni(1);

(n—k — 1), (r,0) < Ny (r,0) + (n — k — 2)No(r) + ”‘T’HA@(T).

By the above two inequalities and Nevanlinna’s second fundamental theorem, we have that

1Ty (r) < Ny(r,00) + Ny (r,0) + Ny (r, 1) + S(r, f)
1

1 1 —
< an(r,oo) + —— 1Nw (r,0)+ Ny (r,1)
n—k—2 1
mNO(T) T [N1(r) + N3(r)] + S(r, f).
Furthermore, we have that
1 1 n—=k—2 1 —
e <" = - .
1|1 = s | Tur) € ST No(r) + [N () + Na()] + Wy (1) + S, )
(6.3)
Next, we will prove the inequality
vo(2) + (n—k—1)2L (2) < 2V (). (6.4)

If Z{ () = 0 and vg(z) = 0, the inequality holds.

If Z1 (2) > 0, then vo(z) = 0. By Case (3), it is easy to deduce that Z () > (n—1)ZL (2)—
k> (n—k—1)Zf (). Thus, the inequality is right.

If vo(2) > 0, then ZZ£ (z) = 0. With (6.1), we obtain that Z'(z) = vo(z), which also implies
that the inequality holds.

All of the above discussion shows that the inequality (6.4) holds, which leads to

No(r)+ (n—k —1)Ny(r,00) < Ny (r,0). (6.5)
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On the other hand, we deduce that
nmyg(r,00) = mygn(r,00) <m_ g (r,00) +mpks_p(r,00)

< muy (7,0) +mpr ¢(r,00) + O(1)
< my (r,0) + mpr, (r,00) + my(r,00) + O(1)

<
s

< my (r,0) +my

—~

r,00) + S(r, f).

Thus,
(n—k—1)my(r,00) < (n—1)my(r,00) < my (r,0) + S(r, f).

Combining this and (6.5) yields that
(= k= VTy(r) < To(r) — No(r) + S(r, ). (6.6)
By (6.3) and (6.6), we deduce that
I (n= k=34 D) T30 < T 20 4 2 [N0lr) 4 M)+ Nal0)] + 500,)

— 1
S N'L/J (T‘,l)+ ENDkf (T,b)+s(7’, f) (67)
It follows from Lemma 2.2 that
[Nprg (r,0) < Tprs(r) + O(1) = mprs(r,00) + Nprs(r,00) + O(1)
< iy (,00) + my(r, 00) + (k + 1)N(r, 50) + O(1)
7

< (k+1)T¢(r)+ S(r, f). (6.8)
Combining (6.7) and (6.8) leads to
l(n =k = 3)T¢(r) < Ny (r,1) + S(r, f). (6.9)

From the condition n > k+4 and (6.9), we obtain that ¢ — 1, assuming 0 infinitely often, which
implies that D¥ f + a(f)™ — b assumes zero infinitely often as well.
Hence, we have completed the proof of the result. 0

7 The Proof of Theorem 1.12

Proof of Theorem 1.12  On the contrary, suppose that f #Z D* f. We set

Now, we distinguish the following two cases:
Case 1l h=c(c#1)isa constant. From (7.1), we have that

DEf cf _
a a
and hence, by Lemma 2.6 and Lemma 2.10, we get that

Tony (1) < Tpr, (1) + S(0.5)
<N _ o (r,00) +N% (r,0) —i—WDka (r,0)+ S(r, f)

Dk

< Tpry(r) = Ts(r) + 2Ny (r,0) + Ny (r,00) + S(r, f),

1—c
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and thus,
Tf(r) < 2‘Nf (Tv 0) +N.f (Tv OO) + S(T‘, f)7

from which we get that
2600, f) +O(o0, f) <2

This contradicts (1.2).
Case 2 h is a non-constant function. From (7.1), we have that

D¥ h
DL e
a a

Set fy = 220 f, = =B £ — . Then

Zfi =1. (7.2)

Since f —a and D* f — a share the value 0 CM, D* f and a do not have some common poles
of the same multiplicity, and we know that h # 0 and h have no zeros. On the other hand, the
poles of h must be poles of f or a. Thus,

Nz (r,0) < Ny (r,00) + S(r, ), Np(r,00) <Ny (r,00) + S(r, f). (7.3)
From (7.3), Lemma 2.6 and Npu ;(r,00) < Ng(r,00) + kN f(r,00), we have that
(r, 0) + Nus (r,0) + Np, (r,0)

i (r,0) + Nﬁ (r,0) + Np(r,00)

N #(r,0) + N (r,0) + 2N f(r,00) + Np(r,00) + S(r, f)
< Tprg(r) —Ty(r) + Ny (r,0) + N¢ (r,0) + 3N f(r,00) + S(r, f)
< Tprp(r) — Ty(r) + 2Ny (1,0) + 3N f(r,00) + S(r, f). (7.4)

By the definition 6(0, f) = 1 — limsup f((r ')3) and ©(oo, f) = 1 — limsup N%(ZT(;O) from (7.4),

T—00 T— 00

we can obtain that

NDkf (T O) N s (T, 0) +Nh (T, 0) +NDka (T, O) “rNhLlf (’r’, 0) —I—Nh(’l”, OO)

S Tprg(r) =Tp(r) +[2(1 =600, 1)) +3 (1 = O(00, f)) + o(1)|T¢(r) + S(r, f)
= Tpry(r) —{26(0, f) +36(c0, f) =4+ o(1)}T¢(r)

o (45250, ) = 3+ K)O(o0, f) + (1)) . -
k+1— kO(co, f) e

Immediately, by Lemma 2.9, and from the above inequality, we can derive that

(A +o())T(r) = N pe
+

; (r O)+NTf( 7,0) + Np, (r,0)

N ;s (r,00 )+Nh,Tf (r,00) + Np(r,00),

where T'(r) = max Tfj( r) and
1<5<

(k+5—20(0, f) — (34 k)O(co, ) + o(1))
k+1—kO(co, f)

<k+5-2600,f) — (3+k)O(c0, f) + o(1) <

A=

1
5"
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Hence, from Lemma 2.9, we know that fi, fo, f3 are linearly dependent, so there exist three

constants, not all zero, such that
cifi +cafatesfs=0. (7.5)

It is obvious that ¢; # 0. Indeed, if ¢; = 0, then co # 0,c3 # 0, and by (7.5), we can obtain
h (Cg(%) — 03) = 0, and since h is non-constant, we get that f = ai—z. Hence, we deduce that

T(r,f)=T (r %) = S(r, f), which is impossible. By (7.2) and (7.5), we have that

(ca —c1) % + (c1 —c3)h=c1. (7.6)
If cg —c1 #0,¢1 — c3 # 0, from (7.6) and by Lemma 2.10, we deduce that
T(r.J) < Ty (r) + S(r.f)
< N% (r,00) + Np(r, 00) +N§ (ry00) + S(r, f)
< Ny (r,0) + 2N ¢(r,00) + S(r, f).

Similarly, this is impossible, because of the condition (1.2).

If o —¢1 = 0,¢1 — c3 # 0, we obtain from (7.6) that h = 016—103’ which is a contradiction,

because of h is not a constant.
If co —c1 #0,¢1 — c3 = 0, we obtain from (7.6) that
acy

h = 7.7
fh="—r (7.7)
and by (7.2) and (7.7), we get that
Dk
_f + h = 2 .
a Cy — C1
If ¢o # 0, then, by Lemma 2.10 and Lemma 2.6, we have that
Tpry(r) < Tprs (r) +S(r, f)
SN o (1r,00) + Na(r,0) + N iy (r,00) + 5(r, f)
< Tprs(r) =T(r, f) 4+ Nf (r,0) + Ns(r,00) + S(r, f).
Therefore,
Ty(r) < Ny (r,0) + Ny(r,00) + S(r, f),
and similarly, this is impossible, because of the condition (1.2).
If co = 0, then we have that
D¥f+ah=0 and fh= —a,
so we can deduce from the above two equations that
DFf. f=d% (7.8)

We note that
Nf (T, 0) S Nkaj (’f', O)
and
2mf (Tv O) = Myg2 (Ta O) < M gpky (T5 OO) + Mepkyr (Ta O) = Mygpkyr (Ta O) + S(Tv f)a
+2
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so that

Therefore we can get, from (7.8) and (7.9), that

Ty(r) < Typrs(r) + S(r, f) = T(r,a®) + S(r, f) = S(r, f),

which is impossible. This proves Theorem 1.12. O
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