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Abstract In this paper, we mainly investigate the value distribution of meromorphic func-

tions in C
m with its partial differential and uniqueness problem on meromorphic functions

in C
m and with its k-th total derivative sharing small functions. As an application of the

value distribution result, we study the defect relation of a nonconstant solution to the partial

differential equation. In particular, we give a connection between the Picard type theorem of

Milliox-Hayman and the characterization of entire solutions of a partial differential equation.
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1 Introduction and Main Results

Picard’s theorem asserts that an entire function in the complex plane C, omitting two

distinct complex numbers must be constant. This also implies that a meromorphic function in

C omitting three distinct values must be constant. Picard’s theorem has played a decisive role

in the development of the theory of entire (meromorphic) functions and other applications. It is

a significant strengthening of Liouville’s Theorem, which states that a bounded entire function

must be constant. Recently, many researchers have paid much attention to Picard’s theorem
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and its applications [5, 7, 9]. Of particular interest in the connection/equivalence between

Picard’s theorem and the characterization of entire solutions of a differential equation, which

can be found in [7], and which can be stated as follows:

Theorem A Let a(z) be an entire function and let L(z) be a meromorphic function

in C with at least two distinct zeros. Then an entire solution of the differential equation

f ′ + a(z)L(f) = 0 must be constant.

Furthermore, in [7], it also proved the Picard type theorem for a solution of the partial

differential equation as follows:

Theorem B Let a(z) be a nonzero entire function in Cm and let L be a nonzero mero-

morphic function in C with at least two distinct zeros. Then an entire solution f in Cm to the

partial differential equation

n∑

|α|=1

aα
∂|α|f

∂α1z1 · · · ∂αmzm
+ a(z)L(f) = 0

must be constant, where (α1, · · · , αm) ∈ Nm is a multi-index with |α| = α1 + · · ·+ αm, and aα

is a constant.

Recently, a connection between the Picard type theorem of Polya-Saxer-Milliox and the

characterization of entire solutions of a differential equation was given in [8]. Motivated by the

above works, we extend Theorem B to a more general form and study the defect relation of a

nonconstant solution to the partial differential equation.

Specifically, we let F be the set of entire functions in Cm such that, for any function

f ∈ F , f is a constant or must depend on all variables z1, · · · , zm. We consider the differential

polynomial Q(z, f) of f on Cm, which is defined by

Q(z, f) =
n∑

i=1

αi(z)

p∏

j=0

(
∂jf

∂zj

)Sij

, (1.1)

where Sij(1 ≤ i ≤ n, 0 ≤ j ≤ p) are nonnegative integers, αi 6≡ 0 (1 ≤ i ≤ n) are small

meromorphic functions, and ∂kf
∂zk = ∂kf

∂z
α1

1
···zαm

m
, (α1, · · · , αm) ∈ Nm : α1 + · · · + αm = k, k ∈ N.

Set

d(Q) := min
1≤i≤n

p∑

j=0

Sij and θ(Q) := max
1≤i≤n

p∑

j=0

jSij .

We always assume that Q must contain a nonzero partial differential and that its exponent is

a positive integer. Our result is given as follows:

Theorem 1.1 Let Q(z, f) be a polynomial of a partial differential as in (1.1), and let R

be a nonconstant rational function. Then,

(i) assuming that d(Q) > θ(Q)+degR+2, any solution of the algebraic partial differential

equation Q(z, f)− 1 = R(f) must be constant;

(ii) furthermore, if R(z) =
q∏
i=1

(z − ai)
li is a nonconstant polynomial, ai 6= aj for all i 6= j,

and li is positive integer (i = 1, · · · , q). Then, for any nonconstant entire solution of the algebraic

partial differential equation Q(z, f)− 1 = R(f), we have that

(θ(Q) + 1)Θ(0, f) +

q∑

i=1

Θ(ai, f) ≤ θ(Q) − d(Q) + q + 1,
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provided that θ(Q) ≥ d(Q) − q − 1.

Note that our method of proving Theorem 1.1 is different with Theorem B. We use the

result on a value distribution of the polynomial partial differential (see Theorem 1.9). Next, we

show a Picard type theorem of Milliox-Hayman for an entire function in several variables.

Theorem 1.2 Let n, n1, · · · , nm be positive integers, let f be an entire function in F ,

and let a be a nonzero complex number. If f 6= 0 and

fn
(
∂f

∂z1

)n1

· · ·

(
∂f

∂zm

)nm

6= a,

then f is a constant.

Note that we do not consider Theorem 1.2 for the class of functions outside of F . If

f(z1, · · · , zm) = g(z1, · · · , zi), where i < m, m ≥ 2, then Theorem 1.2 is considered auto-

matically in Ci instead of Cm.

Remark 1.3 Theorem 1.2 is still true for a meromorphic function in F via Theorem 1.9.

From Theorem 1.2, we get the following result in C, due to Hayman:

Corollary 1.4 Let n, n1 be positive integers, let f be an entire function in C, and let a

be a nonzero complex number. If f 6= 0 and fn(f ′)n1 6= a, then f is a constant.

Theorem 1.5 Let n, n1, · · · , nm be positive integers, a(z) be a nonzero entire function

in Cm without zero, and let a be a nonzero complex number. Then an entire solution f in F

to the partial differential equation

fn
(
∂f

∂z1

)n1

· · ·

(
∂f

∂zm

)nm

− a = a(z)f l

must be constant, where l ∈ Z+.

From Theorem 1.5, we get the following result in C :

Corollary 1.6 Let n, n1 be positive integers, let a(z) be a nonzero entire function in

C without zero, and let a be a nonzero complex number. Then an entire solution f to the

differential equation

fn(f ′)n1 − a = a(z)f l

must be constant, where l ∈ Z+.

Now, we show the equivalence between Theorem 1.2 and Theorem 1.5.

Theorem 1.5 ⇒ Theorem 1.2. Since f 6= 0 is an entire function and

fn
(
∂f

∂z1

)n1

· · ·

(
∂f

∂zm

)nm

6= a,

then a(z) =
fn

(
∂f

∂z1

)n1
···( ∂f

∂zm
)

nm−a

f l is an entire function in Cm without zero. This implies that

f is an entire solution of equation fn
(
∂f
∂z1

)n1

· · ·
(
∂f
∂zm

)nm

− a = a(z)f l. By Theorem 1.5, f is

a constant function.

Theorem 1.2 ⇒ Theorem 1.5. Suppose that f is an entire solution of the equation

fn
(
∂f

∂z1

)n1

· · ·

(
∂f

∂zm

)nm

− a = a(z)f l.
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Then f 6= 0 and fn
(
∂f
∂z1

)n1

· · ·
(
∂f
∂zm

)nm

6= a. Indeed, all zeroes of

fn
(
∂f

∂z1

)n1

· · ·

(
∂f

∂zm

)nm

− a

are the zero of f since a has no zero in Cm. Therefore, if there exists z0 such that

fn
(
∂f

∂z1

)n1

· · ·

(
∂f

∂zm

)nm

(z0) = a.

This implies that f(z0) = 0. Then fn
(
∂f
∂z1

)n1

· · ·
(
∂f
∂zm

)nm

(z0) = 0, which is a contradiction.

Similarly, f 6= 0. By Theorem 1.2, f is constant.

For the convenience of the reader, we recall the definition of a total derivative. Letting f

be a meromorphic function on Cm, the total derivative Df of f is defined by

Df(z) =

n∑

j=1

zjfzj
(z),

where z = (z1, z2, · · · , zm) ∈ Cm, and fzj
is the partial derivative of f with respect to zj(j =

1, 2, · · · ,m. The k-th order total derivative Dkf of f is defined inductively by

Dkf = D(Dk−1f), k = 1, 2, · · · ,

where D0f = f. If f is a nonconstant meromorphic function, then Df 6≡ 0.

A total differential polynomial P (z, f) of f on Cm is defined by

P (z, f) =

n∑

i=1

αi(z)Π
p
j=0

(
Djf(z)

)Sij
,

where Sij(1 ≤ i ≤ n, 0 ≤ j ≤ p) are the nonnegative integers, and αi 6≡ 0 (1 ≤ i ≤ n) are small

meromorphic functions. Set

d(P ) := min
1≤i≤n

p∑

j=0

Sij and θ(P ) := max
1≤i≤n

p∑

j=0

jSij .

We always assume that P must contain a nonzero k-th order total derivative and that its

exponent is a positive integer. Our result on the value distribution of P (z, f) is given as

follows:

Theorem 1.7 Let a1, · · · , aq be distinct nonzero complex numbers. Let f be a tran-

scendental meromorphic function on Cm and let P (z, f) be a non-constant total differential

polynomial in f with d(P ) ≥ 2. Then

Tf (r) ≤
qθ(P ) + 1

qd(P ) − 1
Nf (r, 0) +

1

qd(P ) − 1

q∑

j=1

NP (r, aj) + o(Tf (r))

for all r ∈ [1,+∞), excluding a set of finite Lebesgue measure.

Moreover, in the case where f is a transcendental entire function, we have that

Tf(r) ≤
qθ(P ) + 1

qd(P )
Nf (r, 0) +

1

qd(P )

q∑

j=1

NP (r, aj) + o(Tf (r))

for all r ∈ [1,+∞), excluding a set of finite Lebesgue measure.

From Theorem 1.7, we get the following Picard-type theorem:
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Corollary 1.8 Let f be a transcendental meromorphic function on Cm. Let n, n1 · · · , nk,

k ≥ 1 be positive integers. If fn(Df)n1 · · · (Dkf)nk is not a constant function, then assume all

finite values infinitely often as n +
k∑
t=1

nt ≥
k∑
t=1

tnt + 3. Furthermore, if f is a transcendental

entire function, the conclusion holds for n+
k∑
t=1

nt ≥
k∑
t=1

tnt + 2.

By the same arguments as those in Theorem 1.7, we get the following result:

Theorem 1.9 Let a1, · · · , aq be distinct nonzero complex numbers. Let f be a non-

constant meromorphic function on Cm and let Q(z, f) be a non-constant partial differential

polynomial in f with d(Q) ≥ 2. Then

Tf (r) ≤
qθ(Q) + 1

qd(Q) − 1
Nf (r, 0) +

1

qd(Q) − 1

q∑

j=1

NQ (r, aj) + o(Tf (r))

for all r ∈ [1,+∞), excluding a set of finite Lebesgue measure.

Moreover, in the case where f is a transcendental entire function, we have that

Tf(r) ≤
qθ(Q) + 1

qd(Q)
Nf (r, 0) +

1

qd(Q)

q∑

j=1

NQ (r, aj) + o(Tf (r))

for all r ∈ [1,+∞), excluding a set of finite Lebesgue measure.

Remark 1.10 Theorem 1.9 is proven similarly as the Theorem 1.7 by using Remark 2.5

instead of Lemma 2.4.

In 2013, F. Lv considered a Picard-type theorem for a meromorphic function on several

complex variables, and obtained Df − afn assumes all finite values infinitely often with n ≥ 5.

With the aid of his idea, we give a Picard-type theorem below.

Theorem 1.11 Let f be a transcendental meromorphic function on Cm such that Dkf 6≡

0. Let a be a finite nonzero constant and let n ≥ k+ 4 be an integer. Then Dkf − afn assumes

all finite values infinitely often.

One notices that our result actually provides an extension to some main results of F. Lv;

if we take that k = 1, the theorem obtained by Lv is a special case of 1.11.

Let f be a meromorphic function in the complex domain. For two meromorphic functions

f, g, if f − α and g − α have the same zeros, counting multiplicity (ignoring multiplicity), then

f and g share the same function α CM (IM). Usually, we say that a is a small function with

respect to f if Ta(r) = o(Tf (r)) = S(r, f) as r → ∞ outside of a possible exceptional set of

finite measure.

In recent decades, uniqueness problems on meromorphic functions have been studied deeply

via Nevanlinna theory; a large number of research works on the uniqueness problem have been

undertaken in a complex plane [1, 2, 6, 12–14, 16], etc. As a very active subject, problems on the

uniqueness of entire functions sharing values with the derivatives attracted a lot of attention.

In particular, Yi [12] proved the following theorem:

Theorem C Let f and g be two nonconstant entire functions on the complex plane, and

let k be a positive integer. If f and g share 0 CM, f (k) and g(k) share 1 CM, and δ(0, f) > 1
2 ,

then f (k)g(k) ≡ 1, unless f ≡ g.
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In [6], Jin extended Theorem C to Cm; here f and g are both entire functions. However,

it is natural to consider the following questions: in what condition can we get a similar result

for transcendental meromorphic functions on Cm and a small function a of f? In this paper,

we apply a different method to that above, and obtain the following result, which answers the

above question:

Theorem 1.12 Let k ≥ 1, let f be a transcendental meromorphic function on C
m, and

let a 6≡ 0,∞ be a small meromorphic function of f. Suppose that Dkf is a nonconstant function.

If f − a and Dkf − a share the value 0 CM, and Dkf and a do not have some common poles

of the same multiplicity, and

2δ(0, f) + (3 + k)Θ(∞, f) >
9

2
+ k, (1.2)

then f ≡ Dkf .

By arguments the same as those in Theorem 1.12, we get the following result:

Theorem 1.13 Let k ≥ 1, f be a transcendental meromorphic function on C
m, and let

a 6≡ 0,∞ be a small meromorphic function of f. If f − a and ∂kf
∂zk − a share the value 0 CM,

and ∂kf
∂zk and a do not have some common poles of same multiplicity, and

2δ(0, f) + (3 + k)Θ(∞, f) >
9

2
+ k,

then f ≡ ∂kf
∂zk .

2 Some Notations and Auxiliary Lemmas of Nevanlinna Theory

Set ‖z‖ =
(
|z1|

2
+ · · · + |zm|

2
)1/2

for z = (z1, . . . , zm) and define that

Bm(r) = {z ∈ C
m : ‖z‖ < r} , Sm(r) = {z ∈ C

m : ‖z‖ = r} (r > 0),

vm(z) = ddc‖z‖2, σm(z) = dc log ‖z‖2 ∧
(
ddc log ‖z‖2

)m−1

for z ∈ Cm\{0}. Then σm(z) is a positive measure on Sm(r) with the total measure one.

Let a ∈ P 1. Let f : Cm → P1(C) be a meromorphic function. For each a ∈ P1(C) with

f−1(a) 6= Cm, we denote by Zfa the a -divisor of f , and write Zfa (r) = Bm(r)∩Zfa . In addition,

we define that

nf (r, a) = r2−2m

∫

Zf
a (r)

vm−1
m (z).

Then the corresponding counting function Nf(r, a) is defined as

Nf (r, a) =

∫ r

0

[nf (t, a) − nf (0, a)]
dt

t
+ nf (0, a) log r,

where nf(0, a) is the Lelong number of Zfa at the origin. In particular, we define the divisor

Z
f

a = min
{
1, Zfa

}
, nf (r, a) and the reduced counting function Nf (r, a). For positive integer

k, define the truncated multiplicity functions on Cm by Zf,ka (z) = min{Zfa (z), k}, and the

corresponding truncated counting function by nν(t) = nk

(
t, 1
f−a

)
if ν = Zf,ka (z), and the

truncated valence function by Nν(t) = Nk

(
t, 1
f−a

)
if ν = Zf,ka (z). The proximity function
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mf (r, a) is defined as

mf(r, a) =





∫

Sm(r)

log+

∣∣∣∣
1

f(z) − a

∣∣∣∣σm(z), if a 6= ∞

∫

Sm(r)

log+ |f(z)|σm(z), if a = ∞

and the characteristic function Tf (r) is

Tf(r) = mf (r, a) +Nf (r, a).

Now, we recall the quantity

δ(a, f) = lim inf
r→∞

mf (r, a)

Tf(r)
= 1 − lim sup

r→∞

Nf (r, a)

Tf (r)

the defect (or deficiency) of a with respect to f . Then, 0 ≤ δ(a, f) ≤ 1. The quantity

ρ(f) = lim sup
r→∞

logTf (r)

log r

is said to be the order of f .

Here, for brevity, we replace the notations mf (r, a), Nf (r, a) and Nf (r, a) by m
(
r, 1
f−a

)

N
(
r, 1
f−a

)
and N

(
r, 1
f−a

)
, respectively. If a = ∞, we write m(r, f), N(r, f) and N(r, f).

Moreover, the notation ′‖P ′ means that the assertion P holds for all r ∈ [0,∞) outside of a

Borel subset E of the interval [0,∞) with
∫
E

dr <∞.

From the the Logarithmic Derivative Lemma for a meromorphic function in several variables

[4, 11, 15], we obtain the following:

Lemma 2.1 Let f be a nonconstant meromorphic function on Cm. Then for any positive

integer k,

m

(
r,
Dkf

f

)
= O (log rTf (r))

holds for all large r outside a set with finite Lebesgue measure.

Lemma 2.2 ([9]) Let f be a non-constant meromorphic function on Cm and let S =

If ∩
(
suppZf∞

)
s
, where As denotes the set of singular points of an analytic set A. Supposing

that z0 6∈ S and Zf∞ (z0) = p ≥ 1, ZDf∞ (z0) ≤ p+ 1.

From Lemma 2.2, we get the following result for higher total derivative:

Lemma 2.3 Let f be a non-constant meromorphic function on Cm and let S = If ∩(
suppZf∞

)
s
, where As denotes the set of singular points of an analytic set A. Supposing that

z0 6∈ S and Zf∞ (z0) = p ≥ 1, ZD
kf

∞ (z0) ≤ p+ k.

Proof First, we see that all poles of Dkf come from the poles of f. If k = 2, we apply

above lemma for Df and note that D2f = D(Df), so we get that ZD
2f

∞ (z0) ≤ p+ 2 for z0 6∈ S

and Zf∞ (z0) = p ≥ 1. Similarly, for k ≥ 2, we can get that

ZD
kf

∞ (z0) ≤ p+ k.

From Lemma 2.3, we get that

NDkf (r,∞)) ≤ Nf (r,∞) + kNf (r,∞),

where f is a nonconstant meromorphic function such that Dkf 6≡ 0. �
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Lemma 2.4 Let f be a non-constant meromorphic function on Cn such that Dkf 6≡ 0.

Then we have that

Nf (r, 0) −NDkf (r, 0) ≤ kNf (r, 0) . (2.1)

Proof Suppose that z0 = (z0
1 , z

0
2 , · · · , z

0
n) 6∈ S is a zero of f with the multiplicity p. Now,

we distinguish the following two cases:

Case I If z0 is a zero of f with the multiple p ≤ k, then z0 is a zero of Dkf , or not.

Thus, z0 is a zero counted on the left hand side with a multiple of at most p, and z0 is a zero

counted on the right side hand with a multiple k. Since p ≤ k, one observes that (2.1) holds.

Case II If z0 is a zero of f with the multiple p > k, then z0 is a zero of Dkf with a

multiple of at most p− k. Indeed, one can deduce that

Df = −f2D
1

f
. (2.2)

Since z0 is a zero of f with a multiple p, then z0 is a pole of 1
f with a multiple p, and by

applying Lemma 2.2, we can get that z0 is a pole of D 1
f with a multiple p1 ≤ p+ 1. By (2.2),

we have that z0 is a zero of Df with a multiple p̃ ≥ p− 1. Set that Df = g. Immediately, we

have that

Dg = −g2D
1

g
=⇒ D(Df) = −(Df)2D

1

Df
.

From the above equation, we have that z0 is a zero of Df with a multiple p̃, and that z0 is

a pole of 1
Df with a multiple p̃. Furthermore, by simple computing, we get that z0 is a zero of

D2f with a multiple of at least of p̃− 1 ≥ p− 2.

By repeating the proof of above, we can obtain that Dkf = D(Dk−1f), and that z0 is a

zero of Dkf with a multiple of at least p−k. In this case, z0 is counted in Nf (r, 0)−NDkf (r, 0)

at most k times.

Combining Case I and Case II, we get that

Nf (r, 0) −NDkf (r, 0) ≤ kNf (r, 0) ,

so (2.1) is proved. �

Remark 2.5 Let f be a non-constant meromorphic function on Cn such that ∂kf
∂zk 6≡ 0.

Then we have that

Nf (r, 0) −N ∂kf

∂zk

(r, 0) ≤ kNf (r, 0)

for any multiple index (α1, · · · , αm) ∈ Nm : α1 + · · · + αm = k, where ∂zk = ∂zα1

1 · · · ∂zαm
m .

Proof Remark 2.5 is proved similarly as for Lemma 2.4, by using a result similar as of

the Lemma 2.2 for the partial differential ([4], page 105). �

By using Lemma 2.1, and computing similarly as for [6], we get the following:

Lemma 2.6 Let f be a non-constant meromorphic function on Cm such that Dkf 6≡ 0.

Then, for any positive integer k,

‖NDkf (r, 0) ≤ TDkf (r) − Tf (r) +Nf(r, 0) +O(log rTf (r)).

By using the Logarithmic Derivative Lemma for a meromorphic function in several variables

[4], we get the following:
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Lemma 2.7 Let f be a non-constant meromorphic function on Cm such that ∂kf
∂zk 6≡ 0.

Then, for any positive integer k,

‖N ∂kf

∂zk

(r, 0) ≤ T ∂kf

∂zk

(r) − Tf (r) +Nf (r, 0) +O(log rTf (r)).

Lemma 2.8 ([4]) Let fj(6≡ 0), 1, 2, · · · , n(≥ 2) be linearly independent meromorphic

functions on Cm such that
n∑
j=1

fj ≡ 1. Take multi-indices νi ∈ Zm+ (i = 1, · · · , n− 1) such that

0 < |νi| ≤ i(i = 1, · · · , n− 1), |ν1| ≤ |ν2| ≤ · · · ≤ |νn−1| := ω,

and

W = Wν1···νn−1
(f1, · · · , fn) 6≡ 0.

Define l = |ν1|+ |ν2|+ · · ·+ |νn−1| and set Bn = max
2≤s≤n

{
1
s−1

s−1∑
i=1

|νn−i|
}

. Then, for j = 1, · · · , n,

the inequality

Tfj
(r) <

n∑

i=1

Nω

(
r,

1

fi

)
+Bn

∑

i6=j

Nfi
(r,∞) + S(r)

holds for r0 < r < ρ < R, where Bn ≤ n− 1 and S(r) = o( max
1≤j≤n

{Tfj
(r)}).

Lemma 2.9 Let f1, f2, f3 be meromorphic function on C
m such that

‖

3∑

j=1

Nfj
(r, 0) +

3∑

j=1

Nfj
(r,∞) ≤ (λ+ o(1))T (r),

where T (r) = max
1≤j≤3

{Tfj
(r)} and one has the constant λ < 1

2 . Then f1, f2, f3 are linearly

dependent.

Proof Assume that fj(j = 1, 2, 3) are linearly independent. Then, by applying Lemma

2.8, we have that

‖Tfi
(r) ≤

3∑

j=1

N2

(
r,

1

fj

)
+ 2

∑

i6=j

Nfj
(r,∞) ≤

3∑

j=1

N2

(
r,

1

fj

)
+ 2

3∑

j=1

Nfj
(r,∞) .

Noting that T (r) = max{Tfj
(r)}(j = 1, 2, 3),

‖T (r) ≤

3∑

j=1

N2

(
r,

1

fj

)
+ 2

3∑

j=1

Nfj
(r,∞) ≤

3∑

j=1

2Nfj
(r, 0) + 2

3∑

j=1

Nfj
(r,∞)

≤ 2(λ+ o(1))T (r) < T (r),

which gives a contradiction, and the conclusion obtained. �

Lemma 2.10 Let f1, f2 be two non-constant meromorphic functions on Cm, and let

c1, c2, c3 be three nonzero constants. If c1f1 + c2f2 = c3 holds, then

‖Tf1(r) ≤ Nf1(r, 0) +Nf1(r,∞) +Nf2(r, 0) + S(r, f).

Proof By the second main theorem [3, 10], we have that

‖Tf1 (r) ≤ Nf1(r, 0) +Nf1(r,∞) +Nf1(r, c3/c1) + S(r, f).

Noting that Nf1(r, c3/c1) = Nf2(r, 0), we have that

‖Tf1 (r) ≤ Nf1(r, 0) +Nf1(r,∞) +Nf2(r, 0) + S(r, f).
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Hence, we obtain the conclusion. �

Remark 2.11 Lemma 2.10 is still true when c1, c2, c3 are three nonzero small functions

of f1 (see [3]).

3 The Proof of Theorem 1.2

Proof If f is not constant, then fn
(
∂f
∂z1

)n1

· · ·
(
∂f
∂zm

)nm

is not constant. Indeed, we see

that fn
(
∂f
∂z1

)n1

· · ·
(
∂f
∂zm

)nm

6≡ 0, since f ∈ F . Suppose that

fn
(
∂f

∂z1

)n1

· · ·

(
∂f

∂zm

)nm

≡ c, (3.1)

where c 6= 0 is a constant. Then f does not have any zero. From (3.1), we get
(
∂f

∂z1
/f

)n1

· · ·

(
∂f

∂zm
/f

)nm

=
c

fn+n1+···+nm
.

By the Logarithmic Derivative Lemma for a meromorphic function in several variables [4], we

deduce that m(r, 1
f ) = S(r, f). Since f has no zero, then N(r, 1

f ) = 0. This implies that

Tf(r) = T (r,
1

f
) +O(1) = S(r, f).

This is a contradiction, since f is not constant. Therefore, applying Theorem 1.9, we get that

Tf (r) = S(r, f). This is again a contradiction . Hence, Theorem 1.2 is proven. �

4 The Proof of Theorem 1.7

Proof of Theorem 1.7 For any z such that |f(z)| ≤ 1, since
p∑
j=0

Sij ≥ d(P )(1 ≤ i ≤ n),

we have that

1

|f(z)|d(P )
=

1

|P (z, f)|
·
|P (z, f)|

|f(z)|d(P )
≤

1

|P (z, f)|
·

n∑

i=1


|αi(z)|

p∏

j=0

∣∣∣∣
Djf

f

∣∣∣∣
Sij


 .

The above inequality implies that, for all z ∈ Cm,

log+ 1

|f(z)|d(P )
≤ log+


 1

|P (z, f)|
·
n∑

i=1


|αi(z)|

p∏

j=0

∣∣∣∣
Djf

f

∣∣∣∣
Sij





 .

On the one hand, by the lemma on the logarithmic derivative and the first main theorem,

we have that

d(P )mf (r, 0) ≤ mP (r, 0) + o(Tf (r)) = TP (r) −NP (r, 0) + o(Tf (r)).

On the other hand, by the second main theorem (used with the q + 1 different values

0, a1, · · · , aq), we have that

qTP (r) ≤ NP (r,∞) +NP (r, 0) +

q∑

j=1

NP (r, aj) + o(Tf (r)).
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Hence,

d(P )mf (r, 0) ≤
1

q


NP (r,∞) +NP (r, 0) +

q∑

j=1

NP (r, aj)


 −NP (r, 0) + o(Tf (r)).

Using the first main theorem again, one deduces that

d(P )Tf (r) = d(P )Tf (r, 0) +O(1)

= d(P )mf (r, 0) + d(P )Nf (r, 0) +O(1)

≤
1

q


NP (r,∞) +NP (r, 0) +

q∑

j=1

NP (r, aj)




+ d(P )Nf (r, 0) −NP (r, 0) + o(Tf (r)). (4.1)

We have that

1

fd(P )
=

1

P

n∑

i=1


αif

(
p∑

j=0

Sij)−d(P )
p∏

j=0

(
Djf

f

)Sij


 ,

and note that (
p∑
j=0

Sij) − d(P ) ≥ 0. Immediately, we get that

d(P )Zf0 (z) ≤ ZP0 (z) + max
1≤i≤n

{Zαi
∞ (z) +

p∑
j=0

SijZ
Djf

f
∞ (z)}

≤ ZP0 (z) +
∑

1≤i≤n

Zαi
∞ (z) + max

{
p∑
j=0

SijZ
Dj f

f
∞ (z)

}

≤ ZP0 (z) +
∑

1≤i≤n

Zαi
∞ (z) + max

{
p∑
j=0

Sij

(
Zf0 (z) − ZD

jf
0 (z)

)}
,

by the definition Z
f

a := min{Zfa , 1}. From the above inequality, we can see that

d(P )Zf0 (z) − ZP0 (z) +
1

q
Z
P

0 ≤
1

q
Z
f

0 +
∑

1≤i≤n

Zαi
∞ (z) + max






p∑

j=0

Sij

(
Zf0 (z) − ZD

jf
0 (z)

)



 .

Furthermore, applying Lemma 2.4 to the above inequality, one observes that

d(P )Nf (r, 0) −NP (r, 0) +
1

q
NP (r, 0)

≤

n∑

i=1

Nαi
(r,∞) +

1

q
Nf (r, 0) + max





p∑

j=0

jSij



Nf (r, 0) + S(r, f)

≤

n∑

i=1

Nαi
(r,∞) +

(
1

q
+ θ(P )

)
Nf (r, 0) + S(r, f)

=

(
1

q
+ θ(P )

)
Nf (r, 0) + S(r, f).

Combining this with (4.1), we have that

d(P )Tf (r) ≤
1

q


NP (r,∞) +

q∑

j=1

NP (r, aj)


 +

(
θ(P ) +

1

q

)
Nf (r, 0) + o(Tf (r)).
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On the other hand, by the definition of the differential polynomial P , we have Pole(P ) ⊂
n⋃
i=1

Pole (αi)
⋃

Pole f . Since Nαi
(r,∞) ≤ Tαi

(r) = o(Tf (r)) for i = 1, · · · , n, we get that

d(P )Tf (r) ≤
1

q



NP (r,∞) +

q∑

j=1

NP (r, aj)



 +

(
θ(P ) +

1

q

)
Nf (r, 0) + o(Tf (r))

≤
1

q



Tf(r) +

q∑

j=1

NP (r, aj)



 +

(
θ(P ) +

1

q

)
Nf (r, 0) + o(Tf (r)). (4.2)

Therefore,

Tf (r) ≤
qθ(P ) + 1

qd(P ) − 1
Nf (r, 0) +

1

qd(P ) − 1

q∑

j=1

NP (r, aj) + o(Tf (r)).

In the case where f is a transcendental entire function, the first inequality in (4.2) becomes

d(P )Tf (r) ≤
1

q

q∑

j=1

NP (r, aj) +

(
θ(P ) +

1

q

)
Nf (r, 0) + o(Tf (r)).

This implies that

Tf (r) ≤
qθ(P ) + 1

qd(P )
Nf (r, 0) +

1

qd(P )

q∑

j=1

NP (r, aj) + o(Tf (r)).

We have completed our proof. �

5 Proof of Theorem 1.1

Proof of Theorem 1.1 First, we prove (i). Suppose that there exists a nonconstant

meromorphic solution f of

Q(z, f)− 1 = R(f).

Then Q(z, f) = R(f) + 1 is a nonconstant function. Indeed, if Q(z, f) is a constant, then R(f)

is a constant, which implies that f is a constant. This is impossible. Applying Theorem 1.9,

we have that

‖Tf(r) ≤
θ(Q) + 1

d(Q) − 1
Nf (r, 0) +

1

d(Q) − 1
NQ (r, 1) + o(Tf (r))

≤
θ(Q) + 1

d(Q) − 1
Nf (r, 0) +

1

d(Q) − 1
TR(f)(r) + o(Tf (r))

≤
θ(Q) + degR + 1

d(Q) − 1
Tf (r) + o(Tf (r)).

Since d(Q) > θ(Q) + degR + 2, then f is a constant. This is a contradiction, and so (i) is

proven.

Next, we prove (ii). Suppose that f is a nonconstant entire solution of equation

Q(z, f)− 1 = R(f).

By the same argument as before, Q(z, f) is a nonconstant function. Applying Theorem 1.9 for

the case of the entire function, we get that

‖Tf(r) ≤
θ(Q) + 1

d(Q)
Nf (r, 0) +

1

d(Q)
NQ (r, 1) + o(Tf (r))
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≤
θ(Q) + 1

d(Q)
Nf (r, 0) +

1

d(Q)
NR(f) (r, 0) + o(Tf (r))

≤
θ(Q) + 1

d(Q)
Nf (r, 0) +

1

d(Q)

q∑

i=1

Nf (r, ai) + o(Tf (r)).

This implies that

(θ(Q) + 1)Θ(0, f) +

q∑

i=1

Θ(ai, f) ≤ θ(Q) − d(Q) + q + 1,

provided that θ(Q) ≥ d(Q) − q − 1. �

6 The Proof of Theorem 1.11

Proof of Theorem 1.11 With the idea of Hayman [3], we will present our proof as

follows:

For each b ∈ C, set

ψ =
Dkf − b

afn
. (6.1)

If Dkf is a nonzero constant, then the conclusion is trivial from n ≥ 5. Now, we consider

that Dkf is not a constant, and we obtain that ψ 6≡ 0. Now, we define some divisors:

v0(z) =





ZD

kf
b (z), if Zf0 (z) = 0;

0, or else.

v1(z) =




ZD

kf
b (z), if Zf0 (z) > 0 and Zψ∞(z) > 0;

0, or else.

v2(z) =




ZD

kf
b (z), if Zf0 (z) > 0, Zψ0 (z) = 0 and Zψ∞(z) = 0;

0, or else.

v3(z) =




ZD

kf
b (z), if Zf0 (z) > 0 and Zψ0 (z) > 0;

0, or else.

Meanwhile, we define the notations N0(r), N1(r), N2(r) and N3(r) as the corresponding

counting functions of the divisors v0(z), v1(z), v2(z) and v3(z), respectively.

We claim that

(i) nZ
ψ

∞(z) ≤ Zψ∞(z) + v1(z);

(ii) (n− k − 1)Z
ψ

0 (z) ≤ Zψ0 (z) + (n− k − 2)v0(z) + n−k−1
n v3(z).

First, we prove (i).

If Zψ∞(z) = 0, then the proof of claim (i) is trivial. Thus, we assume that Zψ∞(z) > 0. Since

n > k + 2, combining this with (6.1) yields that Zf0 (z) > 0. Without loss of generality, set

Zf0 (z) = q > 0. Obviously,

nZ
ψ

∞(z) = n. (6.2)

Suppose that ZD
kf

b (z) = p.

If p = 0, it follows from (6.1) that Zψ∞(z) ≥ n. Thus, (i) is right.
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If p > 0, by (6.1) and the definition of v1(z), it is easy to deduce v1(z) = p and Zψ∞(z) =

nq− p. Then Zψ∞(z) + v1(z) = nq ≥ n. Combining this and (6.2), that yields that the claim (i)

holds.

Now, we prove (ii).

If Zψ0 (z) = 0, then the proof of claim (ii) is also trivial, so we assume that Zψ0 (z) > 0. Then,

with (6.1), we deduce that ZD
kf

b (z) > 0 or Zf∞(z) > 0. Of course, (n−k−1)Z
ψ

0 (z) = n−k−1.

We will prove the claim by distinguishing three cases.

Case (1) ZD
kf

b (z) > 0 and Zf0 (z) = 0. With the definition of v0(z), we have that

(n− k − 2)v0(z) ≥ n− k − 2. Thus, (ii) is right.

Case (2) ZDfb (z) > 0 and Zf0 (z) > 0. Since Zψ0 (z) > 0, we deduce that ZD
kf

b (z) >

nZf0 (z) ≥ n. Noting the definition of v3(z), we obtain that v3(z) = ZD
kf

b (z) > n. Furthermore,
n−k−1
n v3(z) > n− k − 1, which indicates that (ii) is right.

Case (3) Zf∞(z) > 0. Then Zf
n

∞ (z) = nZf∞(z) ≥ n. From Lemma 2.2, we derive that

ZD
kf−b

∞ (z) ≤ Zf∞(z) + k. It follows from (6.1) that

Zψ0 (z) = Zf
n

∞ (z) − ZD
kf−b

∞ (z) ≥ (n− 1)Zf∞(z) − k ≥ n− (k + 1).

Thus, the claim (ii) holds.

Therefore, we have completed the proof of the claims.

From the claims, the following two inequalities are immediately derived:

nNψ(r,∞) ≤ Nψ(r,∞) +N1(r);

(n− k − 1)Nψ (r, 0) ≤ Nψ (r, 0) + (n− k − 2)N0(r) +
n− k − 1

n
N3(r).

By the above two inequalities and Nevanlinna’s second fundamental theorem, we have that

‖Tψ(r) ≤ Nψ(r,∞) +Nψ (r, 0) +Nψ (r, 1) + S(r, f)

≤
1

n
Nψ(r,∞) +

1

n− k − 1
Nψ (r, 0) +Nψ (r, 1)

+
n− k − 2

n− k − 1
N0(r) +

1

n
[N1(r) +N3(r)] + S(r, f).

Furthermore, we have that

‖

[
1 −

1

n
−

1

n− k − 1

]
Tψ(r) ≤

n− k − 2

n− k − 1
N0(r) +

1

n
[N1(r) +N3(r)] +Nψ (r, 1) + S(r, f).

(6.3)

Next, we will prove the inequality

v0(z) + (n− k − 1)Zf∞(z) ≤ Zψ0 (z). (6.4)

If Zf∞(z) = 0 and v0(z) = 0, the inequality holds.

If Zf∞(z) > 0, then v0(z) = 0. By Case (3), it is easy to deduce that Zψ0 (z) ≥ (n−1)Zf∞(z)−

k ≥ (n− k − 1)Zf∞(z). Thus, the inequality is right.

If v0(z) > 0, then Zf∞(z) = 0. With (6.1), we obtain that Zψ0 (z) = v0(z), which also implies

that the inequality holds.

All of the above discussion shows that the inequality (6.4) holds, which leads to

N0(r) + (n− k − 1)Nf (r,∞) ≤ Nψ (r, 0) . (6.5)
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On the other hand, we deduce that

nmf (r,∞) = mfn(r,∞) ≤ m fn

Dkf−b

(r,∞) +mDkf−b(r,∞)

≤ mψ (r, 0) +mDkf (r,∞) +O(1)

≤ mψ (r, 0) +mDkf
f

(r,∞) +mf (r,∞) +O(1)

≤ mψ (r, 0) +mf (r,∞) + S(r, f).

Thus,

(n− k − 1)mf (r,∞) ≤ (n− 1)mf (r,∞) ≤ mψ (r, 0) + S(r, f).

Combining this and (6.5) yields that

‖(n− k − 1)Tf(r) ≤ Tψ(r) −N0(r) + S(r, f). (6.6)

By (6.3) and (6.6), we deduce that

‖

(
n− k − 3 +

k + 1

n

)
Tf (r) ≤ Nψ (r, 1) +

1

n
[N0(r) +N1(r) +N3(r)] + S(r, f)

≤ Nψ (r, 1) +
1

n
NDkf (r, b) + S(r, f). (6.7)

It follows from Lemma 2.2 that

‖NDkf (r, b) ≤ TDkf (r) +O(1) = mDkf (r,∞) +NDkf (r,∞) +O(1)

≤ mDkf
f

(r,∞) +mf(r,∞) + (k + 1)Nf (r,∞) +O(1)

≤ (k + 1)Tf(r) + S(r, f). (6.8)

Combining (6.7) and (6.8) leads to

‖(n− k − 3)Tf (r) ≤ Nψ (r, 1) + S(r, f). (6.9)

From the condition n ≥ k+4 and (6.9), we obtain that ψ−1, assuming 0 infinitely often, which

implies that Dkf + a(f)n − b assumes zero infinitely often as well.

Hence, we have completed the proof of the result. �

7 The Proof of Theorem 1.12

Proof of Theorem 1.12 On the contrary, suppose that f 6≡ Dkf . We set

Dkf − a

f − a
= h. (7.1)

Now, we distinguish the following two cases:

Case 1 h ≡ c (c 6= 1) is a constant. From (7.1), we have that

Dkf

a
−
cf

a
= 1 − c

and hence, by Lemma 2.6 and Lemma 2.10, we get that

TDkf (r) ≤ TDkf

a

(r) + S(r, f)

≤ N a

Dkf
(r,∞) +N cf

a
(r, 0) +N a

Dkf
(r, 0) + S(r, f)

≤ TDkf (r) − Tf (r) + 2Nf (r, 0) +Nf (r,∞) + S(r, f),
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and thus,

Tf(r) ≤ 2Nf (r, 0) +Nf (r,∞) + S(r, f),

from which we get that

2δ(0, f) + Θ(∞, f) ≤ 2.

This contradicts (1.2).

Case 2 h is a non-constant function. From (7.1), we have that

Dkf

a
−
hf

a
+ h = 1.

Set f1 = Dkf
a , f2 = −hf

a , f3 = h. Then

3∑

i=1

fi ≡ 1. (7.2)

Since f−a and Dkf −a share the value 0 CM, Dkf and a do not have some common poles

of the same multiplicity, and we know that h 6= 0 and h have no zeros. On the other hand, the

poles of h must be poles of f or a. Thus,

N a
hf

(r, 0) ≤ Nf (r,∞) + S(r, f), Nh (r,∞) ≤ Nf (r,∞) + S(r, f). (7.3)

From (7.3), Lemma 2.6 and NDkf (r,∞) ≤ Nf (r,∞) + kNf (r,∞), we have that

N Dkf
a

(r, 0) +N hf
a

(r, 0) +Nh (r, 0) +N a

Dkf
(r, 0) +N a

hf
(r, 0) +Nh(r,∞)

≤ NDkf (r, 0) +Nf (r, 0) + 2Nf (r,∞) +Nh(r,∞) + S(r, f)

≤ TDkf (r) − Tf(r) +Nf (r, 0) +Nf (r, 0) + 3Nf (r,∞) + S(r, f)

≤ TDkf (r) − Tf(r) + 2Nf (r, 0) + 3Nf (r,∞) + S(r, f). (7.4)

By the definition δ(0, f) = 1 − lim sup
r→∞

Nf (r,0)
Tf (r) and Θ(∞, f) = 1 − lim sup

r→∞

Nf (r,∞)
Tf (r) , from (7.4),

we can obtain that

N Dkf

a

(r, 0) +N hf
a

(r, 0) +Nh (r, 0) +N a

Dkf
(r, 0) +N a

hf
(r, 0) +Nh(r,∞)

≤ TDkf (r) − Tf (r) + [2 (1 − δ(0, f)) + 3 (1 − Θ(∞, f)) + o(1)]Tf (r) + S(r, f)

= TDkf (r) − {2δ(0, f) + 3Θ(∞, f) − 4 + o(1)}Tf(r)

≤
(k + 5 − 2δ(0, f)− (3 + k)Θ(∞, f) + o(1))

k + 1 − kΘ(∞, f)
TDkf

a

(r).

Immediately, by Lemma 2.9, and from the above inequality, we can derive that

(λ+ o(1))T (r) ≥ N Dkf

a

(r, 0) +N hf
a

(r, 0) +Nh (r, 0)

+N Dkf

a

(r,∞) +N hf
a

(r,∞) +Nh(r,∞),

where T (r) = max
1≤j≤3

Tfj
(r) and

λ =
(k + 5 − 2δ(0, f) − (3 + k)Θ(∞, f) + o(1))

k + 1 − kΘ(∞, f)

≤ k + 5 − 2δ(0, f) − (3 + k)Θ(∞, f) + o(1) <
1

2
.
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Hence, from Lemma 2.9, we know that f1, f2, f3 are linearly dependent, so there exist three

constants, not all zero, such that

c1f1 + c2f2 + c3f3 = 0. (7.5)

It is obvious that c1 6= 0. Indeed, if c1 = 0, then c2 6= 0, c3 6= 0, and by (7.5), we can obtain

h
(
c2(

f
a ) − c3

)
= 0, and since h is non-constant, we get that f = a c3c2 . Hence, we deduce that

T (r, f) = T
(
r, ac3c2

)
= S(r, f), which is impossible. By (7.2) and (7.5), we have that

(c2 − c1)
hf

a
+ (c1 − c3)h = c1. (7.6)

If c2 − c1 6= 0, c1 − c3 6= 0, from (7.6) and by Lemma 2.10, we deduce that

T (r, f) ≤ T f
a

(r) + S(r, f)

≤ N a
f

(r,∞) +Nh(r,∞) +N f
a

(r,∞) + S(r, f)

≤ Nf (r, 0) + 2Nf (r,∞) + S(r, f).

Similarly, this is impossible, because of the condition (1.2).

If c2 − c1 = 0, c1 − c3 6= 0, we obtain from (7.6) that h = c1
c1−c3

, which is a contradiction,

because of h is not a constant.

If c2 − c1 6= 0, c1 − c3 = 0, we obtain from (7.6) that

fh =
ac1

c2 − c1
, (7.7)

and by (7.2) and (7.7), we get that

Dkf

a
+ h =

c2
c2 − c1

.

If c2 6= 0, then, by Lemma 2.10 and Lemma 2.6, we have that

TDkf (r) ≤ TDkf
a

(r) + S(r, f)

≤ N a

Dkf
(r,∞) +Nh(r, 0) +N Dkf

a

(r,∞) + S(r, f)

≤ TDkf (r) − T (r, f) +Nf (r, 0) +Nf (r,∞) + S(r, f).

Therefore,

Tf (r) ≤ Nf (r, 0) +Nf (r,∞) + S(r, f),

and similarly, this is impossible, because of the condition (1.2).

If c2 = 0, then we have that

Dkf + ah = 0 and fh = −a,

so we can deduce from the above two equations that

Dkf · f = a2. (7.8)

We note that

Nf (r, 0) ≤ NfDkf (r, 0)

and

2mf (r, 0) = mf2 (r, 0) ≤ m fDkf

f2

(r,∞) +mfDkf (r, 0) = mfDkf (r, 0) + S(r, f),
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so that

Tf (r, 0) ≤ TfDkf (r) + S(r, f). (7.9)

Therefore we can get, from (7.8) and (7.9), that

Tf (r) ≤ TfDkf (r) + S(r, f) = T (r, a2) + S(r, f) = S(r, f),

which is impossible. This proves Theorem 1.12. �
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