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Abstract Let 1 ≤ q ≤ ∞, b be a slowly varying function and let Φ : [0,∞) −→ [0,∞) be

an increasing convex function with Φ(0) = 0 and lim
r→∞

Φ(r) = ∞. In this paper, we present

a new class of Doob’s maximal inequality on Orlicz-Lorentz-Karamata spaces LΦ,q,b. The

results are new, even for the Lorentz-Karamata spaces with Φ(t) = tp, the Orlicz-Lorentz

spaces with b ≡ 1, and weak Orlicz-Karamata spaces with q = ∞ in the framework of LΦ,q,b.

Moreover, we obtain some even stronger qualitative results that can remove the △2-condition

of Liu, Hou and Wang (Sci China Math, 2010, 53(4): 905–916).
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convex functions

2010 MR Subject Classification 46E30; 42B25; 60G42; 60G46

1 Introduction

Doob’s maximal inequality plays a central role in harmonic analysis, probability and ergodic

theory. The purpose of this paper is to study Doob’s maximal inequalities for martingales, given

a martingale f = (fn)n≥0 that is defined on the probability space (Ω,F , P). Then the well-

known Doob’s maximal inequality states that

‖Mf‖Lp ≤
p

p − 1
‖f‖Lp, p > 1,

where Mf = sup
n≥0

|fn| and ‖f‖Lp = sup
n≥0

‖fn‖Lp (see Doob [4], and also [9, 14, 29]). Doob used

this to prove the basic, almost sure convergence properties of martingales.

Over the course of the past few decades, Doob’s maximal inequality has attracted con-

siderable attention, and has been rapidly developed to various function spaces, such as weak

Orlicz spaces [21], Morrey spaces [13, 25], variable exponent spaces [15, 18] and Musielak-

Orlicz-Lorentz spaces [16]. We point out that these results need the △2-condition or analogous

behaviors. However, Doob’s maximal inequality on Orlicz spaces [22] and variable exponent

spaces [30, 31] also holds, in some sense, for no restricting △2-condition. Inspired by this, the
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main aim of this paper is to establish Doob’s maximal inequality for a new class of space with-

out the △2-condition. As applications of the main conclusion, we obtain some even stronger

qualitative results that can remove the △2-condition in [21], and we also extend Doob’s maximal

inequality to weak Orlicz-Karamata spaces and Orlicz-Lorentz spaces. Note that our approach

is based on the weights of Muckenhoupt [24], which is very different from those of [21].

Throughout this paper, we denote by C the absolute positive constant that is independent

of the main parameters involved, but whose value may differ from line to line. The symbol

f . g stands for the inequality f ≤ Cg. When we write f ≈ g, this stands for f . g . f .

2 Notations and Main Results

In this section, we state some notations and present the main results of the paper.

2.1 Orlicz Functions

Let Φ be an Orlicz function on [0,∞), i.e., a continuous increasing and convex function

satisfying that Φ(0) = 0 and lim
r→∞

Φ(r) = ∞. Recall that Φ is said to satisfy the △2-condition

if there is a constant C such that Φ(2t) ≤ CΦ(t) for all t > 0. We denote this by Φ ∈△2.

We will work with some standard indices associated with Orlicz functions. Given an Orlicz

function Φ, since Φ is monotonic, Φ(r) is defined for each r > 0, except for a countable set

of points in which we take Φ′(r) as the derivative from the right. Then, the lower and upper

Simonenko indices of Φ (see [28]) are defined, respectively, by

pΦ = inf
t>0

tΦ′(t)

Φ(t)
and qΦ = sup

t>0

tΦ′(t)

Φ(t)
.

The following properties for Simonenko indices of Φ will be used in the sequel:

(i) 1 ≤ pΦ ≤ qΦ ≤ ∞;

(ii) the following characterizations of pΦ and qΦ hold:

pΦ = sup
{

p > 0 : t−pΦ(t) is non-decreasing for all t > 0
}

,

qΦ = inf
{

q > 0 : t−qΦ(t) is non-increasing for all t > 0
}

;

(iii) Φ ∈△2 if and only if qΦ < ∞. Moreover, Φ is said to be strictly convex if pΦ > 1.

(See [8, 23, 27] for more information on Orlicz functions and the indices.)

2.2 Slowly Varying Functions

A Lebesgue measurable function b : [1,∞) −→ (0,∞) is said to be a slowly varying function

if, for any given ǫ > 0, the function tǫb(t) is equivalent to a non-decreasing function, and the

function t−ǫb(t) is equivalent to a non-increasing function on [1,∞).

A detailed study of Karamata Theory, and the properties and examples of slowly varying

functions, can be found in [3, 6, 26]. Given a slowly varying function b on [1,∞), we denote by

γb the positive function defined by γb(t) = b
(
max{t, 1/t}

)
, for all t > 0.

Proposition 2.1 ([5]) Let b be a slowly varying function. For any given ǫ > 0, the

function tǫγb(t) is equivalent to a non-decreasing function, and t−ǫγb(t) is equivalent to a non-

increasing function on (0, 1].

Remark 2.2 ([5, 32]) Let r > 0. Then γb(rt) ≈ γb(t) for all t > 0.
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2.3 Orlicz-Lorentz-Karamata Spaces

Now we present a class of new spaces based on the Orlicz function and the slowly varying

function. Let (Ω,F , P) be a complete probability space and let f be an F -measurable function

defined on Ω. The non-increasing rearrangement f∗ of f is defined as

f∗(t) = inf{s ≥ 0 : P
(
{|f | > s}

)
≤ t}, t ≥ 0,

with the convention that inf ∅ = ∞.

Definition 2.3 Let 0 < q ≤ ∞, b be a slowly varying function and let Φ be an Orlicz

function on [0,∞). The Orlicz-Lorentz-Karamata space, denoted by LΦ,q,b, consists of those

measurable functions f with 9f9Φ,q,b < ∞, where

9f9Φ,q,b =







(

q

∫ 1

0

( 1

Φ−1(1/t)
γb(t)f

∗(t)
)q dt

t

)1/q

if 0 < q < ∞,

sup
t>0

1

Φ−1(1/t)
γb(t)f

∗(t) if q = ∞.

(2.1)

Remark 2.4 The Orlicz-Lorentz-Karamata spaces LΦ,q,b are the generalizations of vari-

ous function spaces achieved by taking different Φ, q and b. We now list several examples.

(1) The weak Orlicz space wLΦ defined by Liu, Hou and Wang [21] is as follows:

wLΦ =
{

f : ∃ C > 0 s.t. Φ(t/C)P(|f | > t) < ∞, ∀ t > 0
}

,

equipped with the quasi-norm

‖f‖wLΦ = inf
{
C > 0 : Φ(t/C)P(|f | > t) ≤ 1, ∀ t > 0

}
.

It follows from Remark 3.1 and Proposition 3.1 in [1] that ‖f‖wLΦ = 9f 9Φ,∞,1 .

Thus LΦ,q,b can be reduced to the weak Orlicz space wLΦ when q = ∞ and b ≡ 1.

(2) The weak Orlicz-Karamata space wLΦ,b introduced by Zhou, Wu and Jiao [32] is as

follows:

wLΦ,b =
{

f : ‖f‖wLΦ,b
= sup

t>0
t‖χ{|f |>t}‖LΦγb

(
P(|f | > t)

)
< ∞

}

,

where

‖g‖LΦ = inf

{

C > 0 :

∫

Ω

Φ
( |g|

C

)

dP ≤ 1

}

.

We claim that LΦ,q,b = wLΦ,b as q = ∞. Indeed, for any F -measurable function f , there

exists a sequence of non-negative simple functions {fn}n∈N such that fn ↑ |f | a.e.. Moreover,

dfn ↑ df and f∗
n ↑ f∗. This implies that 9fn9LΦ,∞,b

→ 9f9LΦ,∞,b
and ‖fn‖wLΦ,b

→ ‖f‖wLΦ,b
,

via Remark 2.2. Therefore, it suffices to verify that LΦ,∞,b = wLΦ,b for non-negative simple

functions. Now let

f(ω) =

N∑

i=1

αiχAi(ω),

where {Ai}
N
i=1 is a family of disjoint measurable sets and {αj}

N
j=1 ⊂ R satisfies 0 ≤ αj ≤ αi as

1 ≤ i ≤ j ≤ N . For any t ≥ 0, we have that

P(|f | > t) =
N∑

j=1

βjχ[αj+1,αj)(t),
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where αN+1 = 0 and βj =
j∑

i=1

P(Ai) for 1 ≤ j ≤ N . Also, one can see that

f∗(t) =

N∑

j=1

ajχ[βj−1,βj)(t),

where β0 = 0. Since Φ−1(t) is increasing on (0,∞), then we get that

‖f‖wLΦ,b
= sup

t>0
t‖χ{|f |>t}‖LΦγb

(
P(|f | > t)

)
= sup

t>0

tγb

(
P(|f | > t)

)

Φ−1
(
1/P(|f | > t)

)

= sup
t>0

N∑

j=1

tγb(βj)

Φ−1(1/βj)
χ[αj+1,αj)(t) = max

1≤j≤N

αjγb(βj)

Φ−1(1/βj)

and

9f9Φ,∞,b = sup
t>0

γb(t)

Φ−1(1/t)
f∗(t) = sup

t>0

N∑

j=1

αjγb(t)

Φ−1(1/t)
χ[βj−1,βj)(t)

= sup
t>0

N∑

j=1

αj
(1/t)pΦ−1

Φ−1(1/t)
︸ ︷︷ ︸

↑

tpΦ−1γb(t)
︸ ︷︷ ︸

↑

χ[βj−1,βj)(t) = max
1≤j≤N

αjγb(βj)

Φ−1(1/βj)
,

which implies that 9f9Φ,∞,b = ‖f‖wLΦ,b
.

(3) If Φ(t) = tp for 0 < p < ∞, then LΦ,q,b is the Lorentz-Karamata space Lp,q,b, which

was introduced in [6]. The Lorentz-Karamata spaces offer not only a more general and unified

insight into Lebesgue spaces, Lorentz spaces, Lorentz-Zygmund spaces (see [2]) and even gen-

eralized Lorentz-Zygmund spaces (see [5]), but also provide a framework in which it is easier

to appreciate the central issues pertaining to different results; see [5, 7, 10]. The study of

Lorentz-Karamata spaces has recently attracted more and more attention in martingale theory;

see [12, 17, 19, 20].

(4) If b ≡ 1, then LΦ,q,b becomes the Orlicz-Lorentz space LΦ,q, which appeared in [11]. In

this case, 9 · 9Φ,q,1 is denoted by 9 · 9Φ,q, and ‖ · ‖wLΦ,1 = ‖ · ‖wLΦ = 9 · 9Φ,∞,1 = 9 · 9Φ,∞.

2.4 Main Results

We shall now establish Doob’s maximal inequality for the Orlicz-Lorentz-Karamata space,

which is the main result of this paper.

Theorem 2.5 Let 1 ≤ q ≤ ∞, b be a slowly varying function and let Φ be an Orlicz

function with pΦ > 1. Then we have that

9f9Φ,q,b ≤ 9Mf9Φ,q,b . 9f9Φ,q,b, ∀ f = (fn)n≥0 ∈ LΦ,q,b.

As an immediate application of the last theorem and Remark 2.4, it is easy to conclude

and to improve Doob’s maximal inequality on several function spaces for martingales.

Corollary 2.6 Let Φ be an Orlicz function with pΦ > 1. Then we have that

‖Mf‖wLΦ . ‖f‖wLΦ, ∀ f = (fn)n≥0 ∈ wLΦ. (2.2)

Remark 2.7 We should mention that Liu, Wang and Hou [21] proved (2.2) for when

pΦ > 1 and Φ ∈△2. It follows from Corollary 2.6 that, in paper [21], the △2-condition can be

removed.
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Corollary 2.8 Let b be a slowly varying function and let Φ be an Orlicz function with

pΦ > 1. Then we have that

‖Mf‖wLΦ,b
. ‖f‖wLΦ,b

, ∀ f = (fn)n≥0 ∈ wLΦ,b.

Corollary 2.9 Let p > 1, 1 ≤ q < ∞ and let b be a slowly varying function. Then we

have that

‖Mf‖Lp,q,b
. ‖f‖Lp,q,b

, ∀ f = (fn)n≥0 ∈ Lp,q,b.

Corollary 2.10 Let 1 ≤ q < ∞ and let Φ be an Orlicz function with pΦ > 1. Then we

have that

9f9Φ,q ≤ 9Mf9Φ,q . 9f9Φ,q, ∀ f = (fn)n≥0 ∈ LΦ,q.

3 Proof of Main Result

In order to prove our main result, we first present another characterization of the functional

9 · 9Φ,q,b under suitable conditions.

Theorem 3.1 Let 1 ≤ q ≤ ∞ and let Φ be an Orlicz function with pΦ > 1. Then

9f9Φ,q,b and

∥
∥f

∥
∥

Φ,q,b,∗
=







(

q

∫ 1

0

( γb(t)

Φ−1(1/t)
f∗∗(t)

)q dt

t

)1/q

if 0 < q < ∞,

sup
t>0

γb(t)

Φ−1(1/t)
f∗∗(t) if q = ∞

are equivalent (quasi)-norms. Here f∗∗ denotes the maximal non-increasing rearrangement of

f , which is defined as

f∗∗(t) =
1

t

∫ t

0

f∗(x)dx, t > 0.

Proof Obviously, f∗(t) ≤ f∗∗(t) for t > 0. Thus it is sufficient to prove that

‖f‖Φ,q,b,∗ . 9f 9Φ,q,b . (3.1)

From the definition of ‖ · ‖Φ,q,b,∗ and 9 · 9Φ,q,b, we see that

∥
∥f

∥
∥

Φ,q,b,∗
=

(

q

∫ ∞

0

[
γb(t)

Φ−1(1/t)

1

t

∫ t

0

f∗(x)dx

]q
dt

t

)1/q

= q1/q

( ∫ ∞

0

[

U(t)

∫ t

0

g(x)dx

]q

dt

)1/q

and

9f9Φ,q,b =

(

q

∫ 1

0

( γb(t)

Φ−1(1/t)
f∗(t)

)q dt

t

)1/q

= q1/q

( ∫ ∞

0

(

V (t)g(t)
)q

dt

)1/q

,

where

U(t) :=
γb(t)

Φ−1
(
1/t

)t−1−1/q, V (t) :=
γb(t)

Φ−1
(
1/t

)t−1/q and g(t) := f∗(t).

Applying Theorem 1.1 in [24], we know that, if the estimation

sup
r>0

[ ∫ ∞

r

∣
∣U(t)

∣
∣
q
dt

]1/q[ ∫ r

0

∣
∣V (t)

∣
∣
−q′

dt

]1/q′

(3.2)
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is finite, then one can get that

[ ∫ ∞

0

∣
∣
∣U(t)

∫ t

0

g(x)dx
∣
∣
∣

q

dt

]1/q

≤ C

[ ∫ ∞

0

∣
∣V (t)g(t)

∣
∣
q
dt

]1/q

,

where q′ = q/(q − 1).

Hence, in order to get Inequality (3.1), we just compute the formula (3.2). Now let us

estimate
[ ∫ ∞

r

∣
∣U(t)

∣
∣
q
dt

]1/q

and

[∫ r

0

∣
∣V (t)

∣
∣
−q′

dt

]1/q′

.

The estimations above are divided into the following three cases:

Case 1 We first consider the case of 1 < q < ∞. Since Φ(t)
tpΦ

is non-increasing on (0,∞),

then (1/t)1/pΦ

Φ−1(1/t) is non-increasing on (0,∞). Hence we obtain that

[ ∫ ∞

r

∣
∣U(t)

∣
∣
q
dt

]1/q

=

[ ∫ ∞

r

[ γb(t)

Φ−1
(
1/t

)t−1−1/q
]q

dt

]1/q

=

[ ∫ ∞

r

( (1/t)1/pΦ

Φ−1
(
1/t

)

︸ ︷︷ ︸

↓

)q(
t

1−pΦ
2pΦ γb(t)

︸ ︷︷ ︸

↓

)q
t

q(1−pΦ)

2pΦ
−1

dt

]1/q

≤
(1/r)1/pΦ

Φ−1
(
1/r

)r
1−pΦ
2pΦ γb(r)

[ ∫ ∞

r

t
q(1−pΦ)

2pΦ
−1

dt

]1/q

=
( 2pΦ

q(pΦ − 1)

)1/q γb(r)

Φ−1
(
1/r

)
1

r

and
[ ∫ r

0

∣
∣V (t)

∣
∣
−q′

dt

]1/q′

=

[ ∫ r

0

(Φ−1(1/t)

γb(t)

) q
q−1

t
1

q−1 dt

](q−1)/q

=

[ ∫ r

0

( Φ−1(1/t)

(1/t)1/pΦ

︸ ︷︷ ︸

↑

) q
q−1

(

t
1−pΦ
2pΦ γb(t)

)− q
q−1

︸ ︷︷ ︸

↑

t
q(pΦ−1)

2pΦ(q−1)−1
dt

](q−1)/q

≤
Φ−1(1/r)

(1/r)1/pΦ

(

r
1−pΦ
2pΦ γb(r)

)−1
[∫ r

0

t
q(pΦ−1)

2pΦ(q−1)
−1

dt

](q−1)/q

=
(2pΦ(q − 1)

q(pΦ − 1)

) q−1
q Φ−1(1/r)

(1/r)1/pΦ

(

r
1−pΦ
2pΦ γb(r)

)−1

r
pΦ−1

2pΦ

=
(2pΦ(q − 1)

q(pΦ − 1)

) q−1
q Φ−1(1/r)

γb(r)
r.

This means that

sup
r>0

[∫ ∞

r

∣
∣U(t)

∣
∣
q
dt

]1/q[∫ r

0

∣
∣V (t)

∣
∣
−q′

dt

]1/q′

≤
2pΦ

q(pΦ − 1)
(q − 1)

q−1
q .

Thus we see that Inequality (3.1) holds for q > 1.

Case 2 The case of q = 1 will now be considered. In this situation,

U(t) :=
γb(t)

Φ−1
(
1/t

)t−2, V (t) :=
γb(t)

Φ−1
(
1/t

)t−1 and g(t) := f∗(t).
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In a similar manner as to Case 1, we can obtain that
∫ ∞

r

∣
∣U(t)

∣
∣dt =

∫ ∞

r

γb(t)

Φ−1
(
1/t

)t−2dt ≤
2pΦ

pΦ − 1

γb(r)

Φ−1
(
1/r

)
1

r

and

sup
0<t<r

∣
∣V (t)

∣
∣
−1

= sup
0<t<r

[
Φ−1

(
1/t

)

γb(t)
t

]

=
Φ−1

(
1/r

)

γb(r)
r.

Thus we have that

sup
r>0

{∫ ∞

r

∣
∣U(t)

∣
∣dt · sup

0<t<r

∣
∣V (t)

∣
∣
−1

}

≤
2pΦ

pΦ − 1
,

which implies that Inequality (3.1) holds for q = 1.

Case 3 Now we consider the situation where q = ∞. In this setting, we have that

U(t) :=
γb(t)

Φ−1
(
1/t

)t−1, V (t) :=
γb(t)

Φ−1
(
1/t

) and g(t) := f∗(t).

In a similar manner as to Case 1, we can get that

sup
r<t<∞

∣
∣U(t)

∣
∣ ≤

γb(r)

Φ−1
(
1/r

)
1

r

and
∫ r

0

∣
∣V (t)

∣
∣
−1

dt =

∫ r

0

Φ−1
(
1/t

)

γb(t)
dt =

∫ r

0

Φ−1
(
1/t

)

(
1/t

)1/pΦ

1

t−
p−1
2p γb(t)

t−
p+1
2p dt

≤
Φ−1

(
1/r

)

(
1/r

)1/pΦ

1

r−
p−1
2p γb(r)

∫ r

0

t−
p+1
2p dt =

2pΦ

pΦ − 1

Φ−1
(
1/r

)

γb(r)
r.

Then we obtain that

sup
r>0

{(

sup
r<t<∞

∣
∣U(t)

∣
∣

)

·

∫ r

0

∣
∣V (t)

∣
∣
−1

dt

}

≤
2pΦ

pΦ − 1
.

This completes the proof. �

Lemma 3.2 ([22, Theorem 3.6.3]) Let f = (fn)n≥0 ∈ L1. Then (Mf)∗(t) ≤ f∗∗(t), t > 0.

Now we prove Theorem 2.5.

Proof Obviously, 9f9Φ,q,b ≤ 9Mf9Φ,q,b. We consider the case where 1 ≤ q < ∞. It

follows from Theorem 3.1 and Lemma 3.2 that

9Mf9Φ,q,b =

(

q

∫ 1

0

( 1

Φ−1(1/t)
γb(t)(Mf)∗(t)

)q dt

t

)1/q

≤

(

q

∫ 1

0

( 1

Φ−1(1/t)
γb(t)f

∗∗(t)
)q dt

t

)1/q

=
∥
∥f

∥
∥

Φ,q,b,∗
. 9f 9Φ,q,b .

When q = ∞, we have that

9Mf9Φ,∞,b = sup
t>0

1

Φ−1(1/t)
γb(t)(Mf)∗(t) ≤ sup

t>0

1

Φ−1(1/t)
γb(t)f

∗∗(t)

=
∥
∥f

∥
∥

Φ,∞,b,∗
. 9f 9Φ,∞,b .

This completes the proof of the theorem. �
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