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Ecole Centrale de Pékin, Beihang University, Beijing 100191, China;

Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310051, China

E-mail : Wei.Niu@buaa.edu.cn

Dongming WANG (�À²)

LMIB – Institute of Artificial Intelligence, Beihang University, Beijing 100191, China;

Centre National de la Recherche Scientifique, 75794 Paris Cedex 16, France

E-mail : Dongming.Wang@lip6.fr

Abstract This paper provides a survey on symbolic computational approaches for the

analysis of qualitative behaviors of systems of ordinary differential equations, focusing on

symbolic and algebraic analysis for the local stability and bifurcation of limit cycles in the

neighborhoods of equilibria and periodic orbits of the systems, with a highlight on applications

to computational biology.
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1 Introduction

Since the pioneering work of Poincaré [1] and Liapunov [2], the qualitative theory of differ-

ential equations has been developed and used as a powerful tool for analyzing the qualitative

behaviors of dynamical systems of differential equations without solving the systems. The the-

ory has played an indispensable role in the study of differential equations, as few such equations
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can be solved explicitly. The theory has also become a fundamental part of graduate and un-

dergraduate curricula in analysis, taught in most departments of mathematics as a standalone

course (see, e.g., the popular textbooks by Nemytskii and Stepanov [3], Zhang and others [4]).

The analysis of qualitative behaviors of dynamical systems involves heavy computations

with large symbolic expressions which can neither be performed numerically using limited pre-

cision, nor be done effectively by hand for the complexity in question. Fortunately, advanced

software tools, implemented along with newly developed algebraic methods on modern com-

puters, have become available for efficient symbolic computation, helping make the qualitative

theory of differential equations practically more powerful. Notably, in 1985, Qin and others [5]

initiated computer-aided derivation of stability criteria for certain cubic differential systems. In

1988, Wang [6] implemented a mechanical procedure to compute Liapunov constants for poly-

nomial differential systems of center-focus type. By using that procedure and the methods of

characteristic sets [7] and Gröbner bases [8], Jin and Wang [9] rediscovered the incompleteness

of Kukles’ center conditions of 1944. Since then, the so-called Kukles problem has stimulated

a lot of research interest in center conditions and the bifurcation of limit cycles, see [10–14] for

instance. In the past few decades, symbolic methods have been explored extensively in terms

of the qualitative analysis of dynamical systems. The problem of tedious deductions involved

in the analysis has been resolved to a large extent, and many encouraging results have been

obtained regarding the stability analysis of dynamical systems [15–17], the determination of

center conditions [6, 18, 19], the estimation of the number of limit cycles [20–22], etc.

This article reviews the recent progress on symbolic and algebraic computation methods

for the qualitative theory of differential equations. The paper is organized as follows: several

well-known algebraic methods are recalled briefly in Section 2, and then used in Section 3 to

deal with the algebraic problems formulated from stability analysis. In Section 4, we show

how bifurcation analysis may be carried out by using algebraic methods as well. In Section

5, Poincaré’s method for computing Liapunov constants and a brief account of the research

on using symbolic approaches to the center-focus problem are presented. Sections 6 and 7 are

devoted to the study of the bifurcation of limit cycles. We highlight results obtained from two

types of bifurcations: one is the well-known Hopf bifurcation of limit cycles and the other is

the bifurcation of limit cycles from the periodic orbits of period annuli. Two important and

widely used methods (the Melnikov function method and the averaging method) for studying

the number of limit cycles of nonlinear differential systems are also discussed. Section 8 presents

the application of algebraic methods to the qualitative analysis of biological systems. The paper

is concluded with a few remarks.

2 Symbolic Computation and Detection of Equilibria

Symbolic computation is a scientific area that refers to the study and development of algo-

rithms and software tools for manipulating mathematical expressions and objects. Polynomial

system solving is a fundamental problem in symbolic computation; its main objective is to

study the structures and representations of solutions for systems of polynomial equations (=),

inequations (6=) and inequalities (>) and to develop efficient methods and software tools for the

computation of such representations. Symbolic methods for solving polynomial systems can be
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divided into two categories: one dealing with systems of polynomial equations and inequations

over any field by means of variable elimination and triangular decomposition, and the other

dealing with systems of polynomial equations and inequalities over the field R of real numbers

using real quantifier elimination and real polynomial system solving.

2.1 Solving Systems of Algebraic Equations

Most of the methods for solving systems of polynomial equations and inequations symboli-

cally are based on the theories of Gröbner bases, triangular sets, and resultants. The notion of

Gröbner bases was introduced originally by Buchberger in his Ph.D. thesis [23]. Gröbner bases

of polynomial ideals are specially structured sets of generators of the ideals. They can be com-

puted from any given sets of generators of the ideals and have many nice properties. Gröbner

bases can be used to solve plenty of problems concerning polynomial ideals, such as primary

ideal decomposition, ideal membership test, and polynomial system solving. The method has

been well studied in the area of symbolic computation with important theoretical and practi-

cal improvements made by many prominent researchers. Successful use of techniques of linear

algebra for fast polynomial reductions led to highly efficient algorithms such as FGLM [24, 25],

F4 [26] and F5 [27] for the computation of zero-dimensional Gröbner bases.

Triangular sets are special sets of multivariate polynomials which may be ordered in a

certain triangular form. They have nice structures and are suitable for representing field ex-

tensions and zeros of polynomial systems of any dimension. There are various kinds of zero

decompositions that may be applied naturally to solving systems of polynomial equations and

inequations. Characteristic sets are special triangular sets. The method of characteristic sets,

developed by Wu [7, 28] on the basis of the classical work of Ritt [29], and so named after Wu

and Ritt, is another fundamental method of algorithmic polynomial algebra. Wu–Ritt’s method

and the theory of triangular sets and systems have been studied, improved, and extended by

many researchers (see, e.g., [30, 31] and references therein).

Resultants provide a simple and effective way to eliminate one or several variables simul-

taneously from a given set P of polynomials, allowing one to triangularize P or to establish

conditions for P to have zeros; see [31, Section 5.4] and [32, Section 3], and references therein,

for more information about the classical theory and modern developments on resultants.

2.2 Solving Semi-Algebraic Systems

Systems involving equations and inequalities over R are called semi-algebraic systems. Most

of the methods for solving semi-algebraic systems are based on cylindrical algebraic decompo-

sition (CAD), real solution classification (RSC) and discriminant varieties (DV).

CAD The CAD method, invented by Collins [33], is fundamental for computer algebra

and real algebraic geometry. The basic idea underlying the method is to decompose Rn into

finitely many cylindrically arranged regions, called cells, such that the input polynomials all

have constant signs over each cell. The cells are all semi-algebraic, so that they can be described

by semi-algebraic systems. The invariance of signs makes it easy to determine the signs of all

of the polynomials in each cell by computing the values of the polynomials at a sample point

in the cell, thus allowing one to eliminate the quantifiers of any quantified formula and for

classification of real solutions of semi-algebraic systems. Collins’ algorithm consists of two key

phases: projection and lifting. In the projection phase, one projects n-variate polynomials to
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(n−1)-variate ones by eliminating one variable using an appropriate projection operator, then to

(n−2)-variate ones, and finally to univariate polynomials. There have been numerous extensions

and improvements over Collins’ original CAD algorithm. One of the notable improvements was

made by Collins and Hong [34] for the lifting phase by constructing a partial CAD.

RSC Yang and Xia [35, 36] proposed a practical method for the real solution classification

of an arbitrary semi-algebraic system S. The method works by computing a border polynomial

B in the parameters µ = (µ1, · · · , µd), which is a product of polynomials qi(µ) such that B

satisfies two conditions: the number of distinct real solutions of S is invariant in each connected

component of the complement of B = 0 in Rd, and if all of the signs of qi are the same in

two components, then the number of distinct real solutions of S remains the same in these

two components. After the polynomial B is obtained, one can obtain sample points in each

connected component of the complement of B = 0 and then isolate the distinct real solutions

of S at each sample point. Finally, the signs of the factors of B, together with the numbers

of real solutions of S at the sample points, can be obtained, and the necessary and sufficient

conditions for S to have a prescribed number of distinct real solutions can be expressed by the

signs of the factors of B.

DV The discriminant variety of a semi-algebraic system

{p1(µ, x) = 0, · · · , ps(µ, x) = 0, q1(µ, x) > 0, · · · , qe(µ, x) > 0} (2.1)

was defined by Lazard and Rouillier in [37]. Here µ = (µ1, · · · , µd) is the sequence of parameters

and x = (x1, · · · , xn) is the sequence of variables in the system. A discriminant variety V of

a semi-algebraic system of the form (2.1) is a semi-algebraic subset of the real space Rd of the

parameters µ satisfying the property: on each connected open subset of Rd not meeting V , the

number of real distinct solutions of the polynomial equations formed by the pi’s is constant and

the signs of all the qj ’s at these real solutions are invariant.

While speaking about the methods of symbolic computation in this paper, we mean, nonex-

clusively, the algebraic methods of resultants, Gröbner bases, characteristic sets, triangular

decomposition, CAD, quantifier elimination (QE), RSC, and DV, as mentioned above, which

can be used to solve algebraic and semi-algebraic systems of polynomial equations, inequations,

and inequalities, and to study the properties and relations of algebraic and geometric objects

defined by the real or complex solutions of such systems. There are a number of advanced soft-

ware packages available for computing Gröbner bases, triangular sets and zero decompositions,

resultants, and discriminant varieties, and for doing real solving, solution classification, and

quantifier elimination. The reader may consult [38] for more information about such software

packages.

2.3 Detection of Equilibria

Consider autonomous systems of ordinary differential equations of the form

ẋ1 = P1(µ, x)/Q1(µ, x), · · · , ẋn = Pn(µ, x)/Qn(µ, x), Ω(µ, x), (2.2)

where P1, · · · , Pn and Q1 6= 0, · · · , Qn 6= 0 are polynomials in µ = (µ1, · · · , µd) and x =

(x1, · · · , xn) with rational coefficients, Ω is the set of polynomial equations, inequations, and

inequalities in µ and x with rational coefficients, and µ are real parameters independent of t.
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Definition 2.1 (Equilibrium) For any given real values µ̄ of the parameters µ, a point

x̄ ∈ Rn is called an equilibrium (or a steady state, or a singular point) of system (2.2) if x̄

satisfies all the equations and inequalities in Ω|µ=µ̄ and

P1(µ̄, x̄) = · · · = Pn(µ̄, x̄) = 0, Q1(µ̄, x̄) 6= 0, · · · , Qn(µ̄, x̄) 6= 0.

Therefore, the general problem of determining the (number of) equilibria of (2.2) can be

reduced to that of finding the (number of) real solutions of the following semi-algebraic system:

Ω ∪ {P1(µ, x) = 0, · · · , Pn(µ, x) = 0} ∪ {Q1(µ, x) 6= 0, · · · , Qn(µ, x) 6= 0}.

This algebraic problem can be solved by using the algebraic methods mentioned above.

3 Symbolic Analysis of Local Stability

We recall the method of Liapunov with the technique of linearization to analyze the local

stability of equilibria of system (2.2).

3.1 Liapunov’s First Method

Consider the n × n Jacobian matrix of system (2.2),

J(µ, x) =
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∂ P1

Q1

∂xn
...

...

∂ Pn

Qn

∂x1
· · ·

∂ Pn

Qn

∂xn

















, Ω(µ, x).

For each equilibrium x̄ with parametric values µ̄, system (2.2) may be written in the matrix

form
(dx

dt

)T

= J(µ̄, x̄)(x − x̄)T + G,

where the superscript T denotes a matrix transpose, and

G =
( P1(µ̄, x)

Q1(µ̄, x)
, · · · ,

Pn(µ̄, x)

Qn(µ̄, x)

)T

− J(µ̄, x̄)(x − x̄)T

is o(|x − x̄|) as x → x̄. If J(µ̄, x̄) has no eigenvalue with zero real part, then x̄ is said to be

hyperbolic. In this case, the local stability of the equilibrium x̄ is coincident with that of the

linear part J(µ̄, x̄)(x − x̄)T, and can be determined by using the following theorem:

Theorem 3.1 ([39]) (a) If all the eigenvalues of the matrix J(µ̄, x̄) have negative real

parts, then x̄ is asymptotically stable.

(b) If the matrix J(µ̄, x̄) has at least one eigenvalue with positive real part, then x̄ is

unstable.

3.2 Criteria for Local Stability Analysis

For any high-dimensional differential system of the form (2.2) with n > 2, the two criteria

listed below may be used to determine whether all the eigenvalues of the Jacobian matrix

J(µ̄, x̄) have negative real parts. A univariate polynomial A with real coefficients is said to be

stable if the real parts of all the roots of A are negative. In particular,

A = anλn + an−1λ
n−1 + · · · + a0 (3.1)
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may take the characteristic polynomial of J(µ̄, x̄).

Routh–Hurwitz Criterion Let A be a real polynomial in λ as in (3.1), and assume

that an > 0 (if an < 0, then A may be scaled by −1, which does not change the zeros of A).

Define the n × n matrix

H =



























an−1 an−3 an−5 · · · an−(2n−1)

an an−2 an−4 · · · an−(2n−2)

0 an−1 an−3 · · · an−(2n−3)

0 an an−2 · · · an−(2n−4)

0 0 an−1 · · · an−(2n−5)

...
...

...
...



























, (3.2)

where ai = 0 for i < 0. H is called the Hurwitz matrix associated with A. Let ∆1, ∆2, · · · , ∆n

be the leading principal minors of H , known as the Hurwitz determinants of A.

Theorem 3.2 (Routh–Hurwitz Criterion [39]) The polynomial A is stable if and only if

∆1 > 0, ∆2 > 0, · · · , ∆n > 0. (3.3)

Expanding ∆n along the last column, one can easily see that ∆n = a0∆n−1. Therefore,

condition (3.3) is equivalent to

∆1 > 0, ∆2 > 0, · · · , ∆n−1 > 0, a0 > 0. (3.4)

Liénard–Chipart Criterion Liénard and Chipart [40] showed that only about half of

the Hurwitz determinants are indeed needed, and the remaining Hurwitz determinants may be

replaced by certain coefficients ai of A.

Theorem 3.3 (Liénard–Chipart Criterion [40]) The polynomial A is stable if and only if

one of the following four conditions holds:

(a) a0 > 0, a2 > 0, · · · , a2m > 0, ∆1 > 0, ∆3 > 0, · · · , ∆2m′−1 > 0;

(b) a0 > 0, a2 > 0, · · · , a2m > 0, ∆2 > 0, ∆4 > 0, · · · , ∆2m > 0;

(c) a0 > 0, a1 > 0, a3 > 0, · · · , a2m′−1 > 0, ∆1 > 0, ∆3 > 0, · · · , ∆2m′−1 > 0;

(d) a0 > 0, a1 > 0, a3 > 0, · · · , a2m′−1 > 0, ∆2 > 0, ∆4 > 0, · · · , ∆2m > 0.

Here m and m′ are the integer parts of n/2 and (n + 1)/2, respectively, and ∆1, ∆2, · · · , ∆n

are the Hurwitz determinants of A.

3.3 Stability Analysis by Solving Semi-Algebraic Systems

Let H1, · · · , Hr be polynomials in µ and x with rational coefficients. In practice, Hi may

take some of the ai and ∆j mentioned above. For the problem of local stability analysis, Wang

and Xia [16] formulated it as an algebraic problem and proposed a general method to solve the

problem via symbolic computation. The method, extended later by Niu and Wang [41], applies

to any differential system of the form (2.2), though its target application was for biological

systems.

The algebraic problem of stability analysis can be further reduced to the problem of solving

the semi-algebraic system

Ω ∪ Υ ∪ {P1(µ, x) = 0, · · · , Pn(µ, x) = 0} ∪ {Q1(µ, x) 6= 0, · · · , Qn(µ, x) 6= 0},
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where Υ is a set of inequalities involving H1, · · · , Hr. For example, if one needs to determine

the conditions for system (2.2) to have a given number of stable equilibria, then Υ should be

{H1 > 0, · · · , Hr > 0}.

The method of quantifier elimination has also been applied to the problem of stability anal-

ysis. Hong and others [15] showed that the stability analysis for continuum and discrete initial

boundary-value problems can be stated in terms of QE problems and then be solved by using

the method of partial CAD. Moreover, Jirstrand [42] applied the method of partial CAD to

nonlinear control system design. However, Liapunov’s first method of linearization does not

work at the bifurcation points where the Jacobian matrix has eigenvalues with zero real parts.

In this case, local stability is usually analyzed by checking the existence of a local Liapunov

function. She and others proposed methods for automatically discovering local Liapunov func-

tions in quadratic forms [43] and beyond quadratic forms [44], based on the method of real

solution classification.

4 Symbolic Analysis of Bifurcations

Stability analysis based on the technique of linearization presented in Section 3 fails at

bifurcation points because near such points the behavior of system (2.2) may differ qualitatively

from that of its linearized system, and bifurcation may occur (see, e.g., [4, 39, 54]). Even for

autonomous systems there may be many different bifurcating situations whose study is a highly

nontrivial task and requires sophisticated mathematical methods and effective computational

tools.

4.1 Planar Differential Systems

We start with planar polynomial differential systems, i.e., systems of the form (2.2) with

n = 2 and Q1 = Q2 = 1, which can be written as follows:

ẋ1 = P1(µ, x1, x2), ẋ2 = P2(µ, x1, x2), Ω(µ, x1, x2). (4.1)

Hopf Bifurcation There are different situations in which bifurcations at an equilibrium

of the dynamical system (4.1) may occur. In one of the most important situations, the Jacobian

matrix J(µ, x) of (4.1) at the equilibrium has a pair of purely imaginary eigenvalues but no

other eigenvalue with zero real part. The bifurcation in this situation is called a Hopf bifurcation

or an Andronov–Hopf bifurcation (see [133], for example). Hopf bifurcation leads to the birth

of limit cycles from equilibria of dynamical systems, when the equilibria change their stability

via the movements of the imaginary eigenvalues away from the imaginary axis.

Let the characteristic polynomial of J(µ, x) be λ2 + pλ + q. Then Hopf bifurcation may

occur when p = 0 and q > 0. To determine conditions on µ for the existence of Hopf bifurcation

points, one may consider the quantified formula

∃(x1, x2)[P1(µ, x1, x2) = 0 ∧ P2(µ, x1, x2) = 0 ∧ p(µ, x1, x2) = 0 ∧ q(µ, x1, x2) > 0 ∧ Ω],

where the logical conjunction P ∧ Q is equivalent to P and Q. From the above formula, the

conditions may be obtained as a quantifier-free formula by eliminating the quantifiers. More

discussions of Hopf bifurcation can be found in Section 6.
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Saddle-Node Bifurcation When J(µ, x) has one zero eigenvalue and one negative real

eigenvalue, i.e., p > 0 and q = 0, saddle-node bifurcation occurs. This bifurcation may be of

several kinds, according to the different changes of equilibria and stable equilibria, and it occurs

most often.

The problem of checking whether the equilibria of system (4.1) are saddle-node bifurcation

points (when no parameter is involved), or of determining the conditions on µ (when they

are present) for the equilibria to satisfy the conditions p > 0 and q = 0, can be obtained by

eliminating the quantifiers from the following formula

∃(x1, x2)[P1(µ, x1, x2) = 0 ∧ P2(µ, x1, x2) = 0 ∧ q(µ, x1, x2) = 0 ∧ p(µ, x1, x2) > 0 ∧ Ω].

Then one can determine the stability and types of the bifurcation points by using the classical

theorem of bifurcation (see [4] for example). Based on the theorem, Niu and Wang [45] proposed

a method for analyzing saddle-node bifurcation by using symbolic computation.

Bogdanov-Takens Bifurcation Now consider the case of Bogdanov–Takens bifurcation

(see [4] for example), for which the Jacobian matrix J(µ, x) has two zero eigenvalues, but where

not all of the elements in the Jacobian matrix are zero, i.e., p = 0, q = 0, but |a|+|b|+|c|+|d| 6= 0,

where a, b, c, and d are the elements of J(µ, x). By means of quantifier elimination or by solving

the algebraic or semi-algebraic system

{P1(µ, x1, x2) = 0, P2(µ, x1, x2) = 0, q(µ, x1, x2) = 0, p(µ, x1, x2) = 0} ∪ Ω,

one can decide whether an equilibrium of system (4.1) is a Bogdanov–Takens bifurcation point

(when no parameter is involved) or determine the conditions on µ (when they are present) for

the equilibrium of (4.1) to satisfy the conditions p = 0 and q = 0. Similarly to the case of

saddle-node bifurcation, the stability and types of bifurcation points may be further analyzed

by using algebraic methods.

The analysis of these three bifurcations for a model of a self-assembling micelle system by

using symbolic computation was performed in [45].

4.2 High-Dimensional Systems

For high-dimensional differential systems of the form (2.2), the analysis of bifurcations

becomes complicated. Most studies are concerned with Hopf bifurcation, where the Jacobian

matrix J(µ, x) has a pair of complex conjugate eigenvalues and no other eigenvalue with zero

real part.

Different algorithms for detection of Hopf bifurcation points based on algebraic techniques

have been proposed in the literature (see [46, 47, 52]). For example, an efficient algorithm

is described in [47] for detecting Hopf bifurcation points based on the algebraic properties of

polynomial resultants and matrix-symmetric products. An implementation of the algorithm

together with applications to three examples from neurophysiology can be found in [48]. On

the other hand, numerical methods for computing such points have also been proposed and

implemented (see, e.g., [49, 50]).

Algebraic criteria for simple Hopf bifurcations were established by Liu [51] and by El Kahoui

and Weber [52] independently, using different methods of proof. By simple Hopf bifurcations,

we mean that the Jacobian matrix has a pair of complex conjugate eigenvalues and that all of
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the other eigenvalues have negative real parts. Such criteria are given in terms of the Hurwitz

determinants and the constant term of the characteristic polynomial of the Jacobian matrix.

Theorem 4.1 ([51]) Let A = anλn + an−1λ
n−1 + · · · + a0 with an > 0 and ∆1, · · · , ∆n

be the Hurwitz determinants of A. Then Hopf bifurcation occurs when the following conditions

are satisfied:

(a) Eigenvalue conditions: a0 > 0, ∆n−1 = 0, ∆n−2 > 0, · · · , ∆1 > 0.

(b) Nondegeneration condition: ∂∆n−1/∂µi 6= 0, where µi is one of the parameters.

To derive conditions for the occurrence of Hopf bifurcation, one may form the quantified

formula

∃(x1, · · · , xn)[ P1(µ, x) = 0 ∧ · · · ∧ Pn(µ, x) = 0 ∧ Q1(µ, x) 6= 0

∧ · · · ∧ Qn(µ, x) 6= 0 ∧ Ω ∧ ∂∆n−1/∂µi 6= 0 ∧ ∆n−1(µ, x) = 0

∧ ∆n−2(µ, x) > 0 ∧ · · · ∧ ∆1(µ, x) > 0 ∧ a0 > 0],

and find the conditions on µ by eliminating the quantifiers using QE methods.

After the conditions are obtained, one can analyze the bifurcation and consider the prob-

lem of limit cycles. There are two main kinds of strategies for the bifurcation analysis of

high-dimensional systems: generalizing the methods and theorems for planar systems to high-

dimensional ones, and reducing the problem of bifurcation analysis of systems of dimension

n > 2 to those of planar systems. The former, based on the generalized Poincaré–Bendixon the-

orem and the describing function method (see [53] for example), are applicable to certain types

of high-dimensional systems. For the reduction of bifurcation analysis of a high-dimensional

system to a planar one, the key is to keep significant aspects of the dynamical characters un-

changed. Using the methods of center manifold [54] and Liapunov–Schmidt reduction [55],

around an equilibrium, one may be able to reduce any system of dimension n > 2 whose Jaco-

bian matrix has no positive real part to a planar system without losing any significant aspect

of the dynamical characters. These methods, in combination with the approach for planar sys-

tems presented in Section 6, may be used for algebraic analysis of bifurcation and limit cycles

in high-dimensional systems.

In the high-dimensional case, there may exist several kinds of bifurcations of a codimension

greater than 1, and the situations of bifurcations may become more and more complex as their

codimensions increase. For example, for systems of dimension 3 or higher, there may exist

saddle-node Hopf bifurcation (also called fold-Hopf bifurcation), which is a local bifurcation of

codimension 2, and at which the Jacobian matrix of the system at the equilibrium has a zero

eigenvalue and a pair of purely imaginary eigenvalues. Another example of local bifurcation for

systems of dimension 4 or higher is Hopf-Hopf bifurcation (also called double-Hopf bifurcation),

at which the Jacobian matrix of the system at the equilibrium has two pairs of purely imaginary

eigenvalues (see [56], for example). Such kinds of bifurcations are not simple combinations of

two bifurcations. One needs to consider the actions of the two bifurcations and the interactions

between them. So far there has been little work on the analysis of codimension 2 bifurcations

for continuous systems using symbolic computation.
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5 The Center-Focus Problem

Now we consider planar differential systems of center-focus type. In canonical coordinates,

such systems are of the form

ẋ = λx + y + P2(x, y) + · · · + Pn(x, y),

ẏ = −x + λy + Q2(x, y) + · · · + Qn(x, y),
(5.1)

where Pi and Qi are homogeneous polynomials of degree i (i = 1, 2, · · · , n). The main analytic

technique to determine whether or not the origin is a center of system (5.1) was introduced by

Poincaré [1] and developed by Liapunov [57]. It consists of looking for a formal power series of

x and y of the form

F (x, y) =

∞
∑

n=2

Fn(x, y), F2(x, y) =
x2 + y2

2
, (5.2)

where each Fn(x, y) is a homogeneous polynomial of degree n. Let us require that dF/dt along

the orbits of (5.2) is of the form

Ḟ = V2(x
2 + y2) + V4(x

2 + y2)2 + V6(x
2 + y2)3 + · · · , (5.3)

or

Ḟ = υ1y
2 + υ3y

4 + υ5y
6 + · · · , (5.4)

where each V2k or υ2k−1 is a polynomial in the coefficients of system (5.1), which is called the

kth Liapunov constant or focal value for k ≥ 1. The origin is said to be a fine focus if λ = 0.

The origin is said to be a fine focus of order k if V2 = V4 = · · · = V2k = 0 but V2k+2 6= 0 or

υ1 = υ3 = · · · = υ2k−1 = 0 but υ2k+1 6= 0. Clearly, the stability of the origin is determined by

the sign of the first nonvanishing Liapunov constant, and the origin is a center if and only if all

the Liapunov constants are zero.

It is possible to calculate the Liapunov constants by hand only in the simplest situations.

Several algorithms have therefore been developed and implemented in computer algebra systems

for the computation of Liapunov constants (see, e.g., [6, 18, 58–60]). For polynomial systems

of the form

ẋ = −y +

n
∑

i=2

i
∑

j=0

aijx
i−jyj, ẏ = x +

n
∑

i=2

i
∑

j=0

bijx
i−jyj , (5.5)

we have uniqueness for the Liapunov constants in the sense of the following theorem, due to

Shi [61]:

Theorem 5.1 Let A be the ring Q[aij , bij ], i = 2, 3, · · · , n, j = 0, 1, · · · , i. Given a set of

Liapunov constants Vi1 , Vi2 , · · · , Vip
, let Jk−1 be the ideal of A generated by Vi1 , Vi2 , · · · , Vik−1

,

k ≤ p. If {V ′
i1

, V ′
i2

, · · · , V ′
ip
} is another set of Liapunov constants, then Vik

≡ V ′
ik

mod (Jk−1).

Let J be the ideal of A generated by all the Liapunov constants. According to Hilbert’s

basis theorem, J is finitely generated, that is, there exist W1, · · · , Wq such that J is generated

by W1, · · · , Wq. Such a set of generators is called a basis for J . The vanishing of these

generators implies the vanishing of all the Liapunov constants. Notice that Hilbert’s basis

theorem assures us of the existence of a finite basis of generators, but it does not provide us
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with a constructive method to find the basis. One of the main difficulties is that the Liapunov

constant Vik
becomes larger and larger in terms of size as k increases, and there is no efficient

algorithm to find simple sets of generators for the ideal J . The following problem has been

longstanding (see, e.g., [19, 62]):

Open Problem Find a finite basis of generators for the ideal generated by all the Lia-

punov constants of a given system of the form (5.5).

A number of results on the problem of centers for polynomial systems were obtained by

using the Poincaré–Liapunov method (see e.g., [11, 63, 64]). The center conditions for the

quadratic system (n = 2 in (5.5)) were established by Dulac [65] and Bautin [66]. It is well

known that, for the quadratic system, the so-called Bautin ideal B is generated by the first three

Liapunov constants of the system (see, e.g., [19, 66]). Moreover, the center variety V (B) ⊂ R6

decomposes into four irreducible components,

V (B) = V (Isym) ∪ V (IHam) ∪ V (Icon) ∪ V (I∆),

corresponding to reversible systems, Hamiltonian systems, the Zariski closure of systems having

an invariant conic and an invariant cubic, and the Zariski closure of systems having three

invariant lines, respectively.

In the cubic case with homogeneous nonlinearities, thanks to Sibirskii [67] and Żoladek

[63], it is known that there are five independent Liapunov constants. There are many partial

results for the centers of cubic systems. Unfortunately, at present, we are still very far from a

complete classification of all the centers of cubic polynomial differential systems. In general, it

is difficult to obtain the complete classification of centers from Liapunov constants because the

amount of computation required is huge (see [58] and references therein).

Let us consider a special family of cubic systems which is equivalent to a class of second-

order differential equations and can be written in the following form:

ẋ = y, ẏ = −x + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy2 + a7y
3. (5.6)

This system was first studied by Kukles [68], who claimed that the origin is a center if and only

if one of the following conditions holds:

(K1) : M1 = M2 = M3 = M4 = 0, (K2) : a7 = M1 = M2 = M3 = 0,

(K3) : a7 = a5 = a2 = 0, (K4) : a7 = a5 = a3 = a1 = 0,

where

M1 = a4a
2
2 + a5ξ, M2 = (3a7ξ + ξ2 + a6a

2
2)a5 − 3a7ξ

2 − a6a
2
2ξ,

M3 = ξ + a1a2 + a5, M4 = 9a6a
2
2 + 2a4

2 + 9ξ2 + 27a7ξ

and ξ = 3a7+a2a3. The above conditions were accepted widely and included in classic textbooks

(see, e.g., [3, p. 124]). In 1978, Cherkas [69] found the incompleteness of Kukles’ conditions and

gave a set of conditions (C1) instead of (K1). He also proved that, for a7 = 0, his conditions

coincide with Kukles’. Research interest in Kukles’ system (5.6) was revitalized in 1988, when

Jin and Wang [9] rediscovered the incompleteness of Kukles’ conditions with the following

example:

(JW) : a1 6= 0, a2 = 0, a3 = −2a1, a4 = −a2
1/3, a2

5 = a4
1/2, a6 = 0, a7 = −a5/3.
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Christopher and Lloyd [10] immediately confirmed the computations of Jin and Wang using the

computer program FINDETA. They also considered a subclass of the Kukles system, in which

the coefficient a7 is zero, and proved that the order of a fine focus is at most 5. Later on, other

center conditions (denoted (CLP)) which are not covered by Kukles’ conditions were found by

Christopher [12] and Lloyd and Pearson [11].

Wang [70] studied the relations among the above-mentioned conditions by applying com-

bined elimination methods based on characteristic sets [7], Gröbner bases [8] and triangular

systems [72]. He proved that the center conditions (CLP) discovered by Lloyd and others for

Kukles’ system are already covered by the conditions of Cherkas. Based on this and the work

of Lloyd and others [11, 14], and Sadovskii [71], we have the following conclusion for a complete

solution to the center-focus problem for Kukles’ system:

Theorem 5.2 ([9–11, 14, 68–71]) The origin is a center of the Kukles system if and only

if one of (C1), (K2), (K4) holds if and only if one of (K1), (CLP), (JW), (K2), (K4) holds.

Moreover, Pearson and Lloyd [14] proved that at most 7 small-amplitude limit cycles can

bifurcate from the origin for the general Kukles system and that there is no nonpersistent center

for the Kukles system. The Kukles problem has motivated a lot of interest and research on

center conditions and the bifurcation of limit cycles, and in particular, on the extensive work

done by the school of Lloyd. We refer the reader to [14, 70, 73, 74] and the book [31, Chapter

7.6] for an exposition of the subject of using symbolic approaches to tackle the center problem

for the (generalized) Kukles system.

Note that subclasses of system (5.1), for instance, of the form

ẋ = −y + Pm(x, y), ẏ = x + Qm(x, y),

are known to be of center type, where Pm and Qm are homogeneous polynomials of degree m

(see [75, 76]). There are very few results on the problem of the characterization of centers for

polynomial systems of arbitrary degree (see [77, 78] for Kukles homogeneous systems). Finally,

we remark that the existence of invariant algebraic curves is closely related to whether center

conditions for system (5.1) are verified, as is explained in [12, 79]. The center-focus problem

has also been studied for three or higher dimensional systems by using symbolic or symbolic-

numeric methods (see, e.g., [80–82]). The classical result of Poincaré and Liapunov introduced

above has been recently extended to any finite dimensional integrable differential systems by

Romanovski and others [83]. For a comprehensive presentation of the results on the center-focus

problem, the reader is referred to the review articles [84, 85].

6 Hopf Bifurcation of Small-Amplitude Limit Cycles

Consider planar differential systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (6.1)

where P and Q are real polynomials of degree at most n in x and y. Recall that a limit cycle

of system (6.1) is an isolated periodic orbit of the system. The second part of Hilbert’s 16th

problem [86] is concerned with the maximum number H(n) of limit cycles that system (6.1)

can have. This problem is still open, even for the case n = 2. Due to the work and effort of
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numerous researchers (see, e.g., [66, 87–96]), the lower and upper bounds on H(n) have been

improved continuously. The following theorem exhibits some of the best results established in

the literature:

Theorem 6.1 ([92–94, 96–100]) For planar differential systems of the form (6.1), the

maximum number H(n) of limit cycles is ≥ 4 and is individually finite for n = 2. Moreover,

H(3) ≥ 13, H(4) ≥ 20, H(5) ≥ 28, H(6) ≥ 35, and H(n) ≥ 1
2 ln 2 (n + 2)2 ln(n + 2) for all n ≥ 7.

For other developments related to H(n), we refer the reader to Li [101] and Han and Li

[96].

The bifurcations of limit cycles may generally be placed into three categories: (1) Hopf

bifurcation from a center or a focus; (2) Poincaré bifurcation from closed orbits; (3) separatrix

cycle bifurcations from a homoclinic or a heteroclinic loop. Selected results are presented here

mainly for the first two categories of bifurcations, while the third category is comparatively

more difficult, so far fewer techniques are available.

6.1 Bifurcation Methods

When the problem of studying limit cycles is restricted to the neighborhood of an isolated

equilibrium, it reduces to the problem of studying Hopf bifurcations, which gives rise to the

study of fine foci. The basic idea of constructing multiple limit cycles around an equilibrium is

to compute the Liapunov constants and solve the coupled polynomial equations to find the con-

ditions under which multiple limit cycles can bifurcate from the equilibrium. See [115, Chapter

3] for discussions on the efficiency of existing methods for computing Liapunov constants.

In addition to those based on Liapunov constants, there are several other methods that have

been developed for studying the problem of Hopf bifurcations. These methods are based on the

theories of normal forms [54, 115], Melnikov functions [115, 116] and time averaging [117–119].

Various algorithms have been devised for the computation of normal forms [120, 121, 123] and

the expansion of Melnikov functions near centers [116], but they give no qualitative information

about the limit cycles bifurcated. In contrast, using averaged functions, one can determine the

shape of the bifurcated limit cycles up to any order in the parameter ε (see, e.g., [117, 124]).

On the other hand, it has been shown in [122] that the averaging method may be unable to

detect possible limit cycles bifurcating from a Hopf bifurcation point, while the normal form

theory can be used to overcome the difficulty.

6.2 Planar Differential Systems

When the origin of (5.1) is a fine focus of order k, one may construct k limit cycles in the

neighborhood of the origin by small perturbation. One may obtain conditions on the parameters

for (5.1) to have a fine focus of order k by solving the semi-algebraic system

{υ3 = · · · = υ2k−1 = 0, υ2k+1 6= 0}.

The investigation of Hopf bifurcations was one of the early research directions exploring the

applications of symbolic computation, and there is extensive work on it in the literature. Wang

[102] first introduced symbolic-computational methods to studying the problem of limit cycles

by constructing high-order fine foci, and provided a class of cubic differential systems with the

origin as a fine focus of order 6 from which 6 limit cycles were constructed. Since then, a great

amount of work on the interactions of differential equations with symbolic-computation has
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been carried out (see [11, 16, 103, 107–110]). Li and Bai [103] and James and Lloyd [104] found

particular classes of cubic systems with 7 or 8 small-amplitude limit cycles bifurcating from one

fine focus. James and Lloyd’s systems were reinvestigated by Ning and others [105] to derive

another condition under which 8 small-amplitude limit cycles may bifurcate. Yu and Corless

[106] constructed a cubic system with 9 small-amplitude limit cycles by combining symbolic

and numeric techniques. Later on, Lloyd and Pearson [111] reported more recent developments

in handling very large computations involving resultants, and presented an example of a cu-

bic planar polynomial system with 9 small-amplitude limit cycles surrounding a focus. Their

example appears to be the first for which all the involved computations are performed sym-

bolically (i.e., exactly without numerical error). Chen and others [21] analyzed a cubic planar

polynomial system based on the Liapunov constants for dynamical systems obtained by using

normal form theory. In particular, they applied the methods of regular chains and triangular

decomposition to the system and showed the computational efficiency of the methods. More

recently, Yu and Tian [112] proved that planar cubic differential systems may have at least 12

small-amplitude limit cycles around an equilibrium; this is the best result known so far on the

number of limit cycles around an equilibrium of cubic systems. Summarizing these results, we

have the following theorem:

Theorem 6.2 ([21, 102–104, 112]) There are families of cubic differential systems of the

form (6.1) for which 6, 7, 8, 9, 12 small-amplitude limit cycles can bifurcate from an equilibrium.

Recall that an equilibrium x̄ of a differential system S is said to have cyclicity ℓ if and

only if any sufficiently small perturbation of S has at most ℓ limit cycles in a sufficiently small

neighborhood of x̄, and ℓ is the smallest number with this property. It was shown in [20] that,

based on Bautin’s approach, the cyclicity problem can be solved by using algorithms of modern

computer algebra in the case where the ideal generated by the initial k Liapunov constants

that determine the center variety is a radical ideal. Romanovski and others [113] proposed

a method to investigate the cyclicity of an elementary focus or the center of a polynomial

differential system by means of complexification of the system and the application of algorithms

of computational algebra, providing an approach to treat the case where the Bautin ideal

generated by the Liapunov constants is not radical. They illustrated the method using a family

of cubic systems. Han and Romanovski [114] described a method that can be used to obtain an

upper bound for the number of limit cycles bifurcating from a center or a focus of polynomial

systems. They applied the method to a cubic system with 6 parameters and proved that the

cyclicity of the center at the origin of the system is at most 6.

More discussions on the Hopf bifurcation, as well as applications to practical problems from

engineering and biological systems, can be found in [115, Chapters 4 and 5].

6.3 High-Dimensional Systems

In studying Hopf bifurcation of limit cycles for higher-dimensional systems, center manifold

theory and normal form theory are two of the main tools (see, e.g., [54, 115, 133]). Recently,

the averaging method has been widely applied in the study of local dynamical behaviors of

differential systems such as limit-cycle bifurcation and other more complex bifurcation analysis

(see, e.g., [117, 118, 124]). It turns out that the averaging method can not only determine the

shape of the bifurcated limit cycles but also provide information on the stability of the limit
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cycles.

In what follows, we briefly explain the averaging method described in [126]; it is used to

deal with differential systems of the standard form

dx

dt
=

k
∑

i=0

εiFi(t, x) + εk+1R(t, x, ε), (6.2)

where Fi : R × D → Rn for i = 0, 1, · · · , k and R : R × D × (−ε0, ε0) → Rn are continuous

functions and are T -periodic in the variable t, with D being an open subset of Rn, and where

0 < ε0 ≪ 1 is a sufficiently small parameter. The averaging method works by defining a

collection of functions fi : D → Rn, each fi being called the ith-order averaged function, for

i = 1, 2, · · · , k, whose simple zeros control, for |ε| > 0 sufficiently small, the limit cycles of

system (6.2).

The process of using the averaging method to study limit cycles of differential systems

consists essentially of three steps [119, Section 4]: (1) transform the considered differential

system into the standard form of averaging (6.2) up to the kth order in ε; (2) derive the

symbolic expression of the kth-order averaged function fk(z); (3) determine the exact upper

bound for the number of real isolated solutions of fk(z). More details about the averaging

method can be found in [126, 128, 129].

Now we recall some of the existing results that are particularly relevant to Hopf bifurcations.

Llibre and Zhang [117] proved that, up to the first order in ε (i.e., k = 1), ℓ = 2n−3 limit cycles

can bifurcate from the origin of a perturbed differential system in which the functions on the

right-hand side are differentiable up to the third order, and that their Jacobian matrix at the

origin has eigenvalues εa ± bi and εcs for s = 3, · · · , n. They showed for the first time that

the number of bifurcated limit cycles can grow exponentially with the dimension n. Later on,

Pi and Zhang [130] extended the result of [117] for differential systems with the functions on

the right-hand side being differentiable from the third order to the (m + 1)th order for m > 2,

showing that ℓ limit cycles can bifurcate from the origin with either ℓ ≥ mn−2/2 for m even or

ℓ ≥ mn−2 for m odd. This is the first result showing that the number of limit cycles from a

Hopf bifurcation is a power function in the degree of the system. Recently, Barreira and others

[131] proved that ℓ limit cycles can bifurcate from the origin with ℓ = 3n−2 for m = 3, ℓ ≤ 6n−2

for m = 4, and ℓ ≤ 4 · 5n−2 for m = 5. Other results on Hopf bifurcation of differential systems

using the averaging method may be found in [118, 124, 125].

Huang and Yap [119] provided an algorithmic approach to analyze the bifurcation of small-

amplitude limit cycles for planar differential systems of the form

ẋ = −y +

n1
∑

m=2

Pm(x, y) +

k
∑

j=1

εj p̃j(x, y),

ẏ = x +

n1
∑

m=2

Qm(x, y) +
k

∑

j=1

εj q̃j(x, y),

(6.3)

where Pm, Qm are homogeneous polynomials of degree m in x and y, p̃j , q̃j are polynomials of

degree at most n2 in x and y (usually n2 ≥ n1 ≥ 2), and where ε is a small parameter. Assume

that the unperturbed system (6.3) (i.e., when ε = 0) has a center at the origin. Using the

kth-order averaging method, Huang and Yap gave an upper bound on the number of zeros of
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the averaged functions for the perturbed system (6.3) (see [119, Theorem 3.1]). More recently,

Huang and Wang [127] studied perturbations of the n-dimensional differential system

ẋ1 = −bx2 + P1,m(x1, · · · , xn) + Q1(x1, · · · , xn),

ẋ2 = bx1 + P2,m(x1, · · · , xn) + Q2(x1, · · · , xn),

ẋs = Ps,m(x1, · · · , xn) + Qs(x1, · · · , xn), s = 3, · · · , n,

(6.4)

where

Ps,m =
∑

i1+···+in=m

ps,i1,i2,··· ,in
xi1

1 xi2
2 · · ·xin

n , s = 1, · · · , n,

ps,i1,i2,··· ,in
are real parameters, b 6= 0, and Qs is a Taylor series starting with terms of order >

m. Using the averaging method of order k, Huang and Wang showed that the perturbed system

has no more than (km)n−1 limit cycles that can bifurcate from the origin. The exact numbers

of limit cycles, as well as tight bounds on the numbers, are determined by computing the mixed

volumes [32] of some polynomial systems obtained from the averaged functions. Moreover,

based on the method of real solution classification, a general and algorithmic approach was

proposed to derive sufficient conditions for a given differential system to have a prescribed

number of limit cycles.

7 Bifurcation of Limit Cycles from Period Annuli

Consider planar differential systems of the form (6.1) with an equilibrium of center type.

The set of periodic orbits surrounding the center is called its period annulus. A perturbation of

the system usually breaks these periodic orbits but some of them might be maintained as limit

cycles of the perturbed system. In this case, we say that limit cycles have bifurcated from the

period annulus.

There are several methods for studying limit cycles bifurcating from the periodic orbits of

a period annulus. These methods use different analytical tools: the Poincaré return map [132],

the Melnikov function [133], the averaging method [128, 129] and the inverse integrating factor

[134]. Recently, some relationship between the method of Melnikov functions and the averaging

method for studying the number of limit cycles bifurcating from the periodic orbits of planar

analytical near-Hamiltonian differential systems was given in [135].

Now consider differential systems of the form

ẋ = Hy + εf(x, y, ε), ẏ = −Hx + εg(x, y, ε), (x, y) ∈ R2, (7.1)

where ε > 0 is a small parameter, and H , f and g are infinitely differentiable functions. When

ε = 0, system (7.1) becomes a Hamiltonian system; thus it is called a near-Hamiltonian system.

To introduce the Melnikov functions of arbitrary order, one must assume that the unperturbed

system (7.1)ε=0 has a family of periodic orbits, denoted by Lh, which are defined by the level

curve H(x, y) = h for h ∈ J with J being an open interval. We first take a cross section, say ∐,

which is transverse to all of the periodic orbits inside the period annulus. Such a cross section

can be constructed as follows: for any given h0 ∈ J , take a point A0 ∈ Lh0
; then there exists

a curve ∐ passing through A0 and transverse to the periodic orbits of the unperturbed system

(7.1)ε=0.
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For any h near h0, the periodic orbit Lh intersects the curve ∐ at a unique point A(h) such

that H(A(h)) = h. Note that A(h0) = A0. Hence, we get a function A(h) : J → ∐, which has

the same regularity as system (7.1). Consequently we can write ∐ as

∐ = {A(h)|h ∈ J}.

Now consider the positive orbit of (7.1) starting at A(h). Let B(h, ε) denote the first intersection

point of the orbit with ∐. It follows from (7.1) that

H(B) − H(A) = ε

∫ τ̃

0

(Hxf + Hyg)dt = εF (h, ε), (7.2)

where τ̃ = τ̃ (h, ε) denotes the time of the orbit running from A = A(h) to B = B(h, ε) in the

positive direction. Since the functions in (7.1) are infinitely differentiable, we have

εF (h, ε) =
k

∑

i=1

εiMi(h) + O(εk+1) (7.3)

for any integer k ≥ 1. The function Mi in (7.3) is usually called the ith-order Melnikov function.

It follows from (7.2) that

M1(h) =

∮

Lh

gdx − fdy|ε=0, h ∈ J. (7.4)

The following result gives a criterion for the existence of limit cycles of system (7.1):

Lemma 7.1 ([135]) Assume that Mk(h) 6≡ 0 for some k ≥ 1, and that Mj(h) ≡ 0 for

j = 1, · · · , k − 1. If Mk has at most m zeros on J , taking multiplicity into account, then for

ε > 0, a sufficiently small parameter system (7.1) has no more than m limit cycles bifurcating

from the period annulus {Lh|h ∈ J}.

It is known that Arnold’s version of Hilbert’s 16th problem [136] is to study the maximum

number of zeros of the Melnikov function M1(h). The zeros of M1(h) provide information on

the persisting limit cycles of system (7.1) in the sense of the first-order Poincaré bifurcation

for ε sufficiently small (see [137]). In the context of the weak Hilbert’s problem, the Liénard

system

ẋ = y, ẏ = −ḡ(x, µ) + εf̄(x)y (7.5)

of type (m, n) is of special interest, where ḡ and f̄ are polynomials of degrees m and n in x,

respectively, and µ represents the parameters. System (7.5) is a special form of (7.1), with

f(x, y, ε) = 0, g(x, y, ε) = f̄(x)y and the Hamiltonian H(x, y) = y2/2 +
∫

ḡ(x, µ)dx; it can be

applied to model real-world oscillating phenomena (see [138]).

There are many interesting results on the bifurcation of limit cycles for Liénard systems of

the form (7.5) (see [22, 139–142, 145–147, 152] and references therein). In the case when the

degree of the Hamiltonian H(x, y) is 4, Dumortier and Li [139] studied the Liénard systems

of type (3, 2) profoundly, and obtained sharp upper bounds on the number of zeros of the

corresponding Melnikov functions for 5 different cases. The main technique used in their study

was to reduce the problem of bounding the number of limit cycles to that of studying the

number of intersections of the related line with a curve by means of Picard–Fuchs equations

and Riccati equations. For Liénard systems of type (5, 4) with symmetry, it has been shown
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that the dimension of the resulting Picard–Fuchs equations is the same as that of type (3, 2)

(see, e.g., [140, 141]). However, there may exist more than 3 generating elements of Melnikov

functions when the Hamiltonian has a degree more than 4 without symmetry. In this case,

the Picard–Fuchs equations and Riccati equations have higher dimensions, which increases the

difficulty of investigating the intersections of the related plane and surface. There had been no

result for type (4, 3) until the Chebyshev criterion was introduced in [143, 144]. This algebraic

criterion can deal with Melnikov functions with more than 3 generating elements for Liénard

differential systems (see, e.g., [145, 146]). In particular, Sun and Huang [22] proved that, by

combining the regular chain theory and the Chevbyshev criterion, the perturbed system

ẋ = y, ẏ = x(x3 − 1) + ε(a0 + a1x + a2x
2 + a3x

3)y

has at most 6 limit cycles bifurcating from the period annulus of the unperturbed system. Wang

[147] showed that, by using interval analysis, the perturbed differential system

ẋ = y, ẏ = −x
(

x2 − x +
1

2

)

+ ε(a + bx + cx2 + dx3)y

has at most 6 limit cycles bifurcating from the period annulus of the unperturbed one. These re-

sults have demonstrated again the feasibility and efficiency of symbolic-computational methods

in studying the problems of limit cycles. However, in such studies, many manual interactions

are still needed in the process of computation with algebraic systems.

Hu and others [148] proposed an algorithmic approach to automate the process of com-

putational studies on the number of limit cycles that may bifurcate from a period annulus for

Liénard systems of the form (7.5). More precisely, they gave an algebraic criterion for the prob-

lem of determining whether the Melnikov function of the considered system has the Chebyshev

property. This criterion has been reformulated as a problem of semi-algebraic system solving

[36, 37], to which available methods from polynomial algebra can be applied.

There is an interesting series of works on the number of zeros of Melnikov functions by the

Chebyshev criterion (see [142, 149] for type (5, 4) and [150, 151] for type (7, 6)). However, the

upper bounds obtained in almost all of the above-mentioned results are not the exact upper

bounds (or sharp bounds). The sharp bounds are still open, even for Melnikov functions of

Liénard systems of type (4, 3) (see two case studies in [152]). Exploring symbolic approaches

to determine the sharp upper bounds on the number of zeros of Melnikov functions for certain

types of Liénard systems is a subject worthy of further study.

8 Symbolic Analysis of Biological Systems

Many biological networks are modeled mathematically as dynamical systems in the form

of polynomial or rational differential equations. To understand biological phenomena described

by complex dynamical systems, it is necessary to study their behaviors, such as stability, bi-

furcation, and limit cycles, qualitatively. Dynamical systems have significant applications to

biology, as shown by the pioneering application of game theory to evolution [153, 154], and the

introduction of deterministic chaos into ecology [155].

The general method outlined in Section 3 for equilibrium detection and stability analysis

based on semi-algebraic system solving was proposed by Wang, Xia and Niu [16, 41, 156]
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initially for biological systems. It has been applied to the analysis of local stability and the

bifurcation of limit cycles for several classes of systems of biochemical reactions [45, 157]. Niu

and Wang [45] analyzed a cubic self-assembling micelle system with chemical sinks modeled by

the dissipative dynamical system

ẋ = µ − xy2 − x(r + α), ẏ = rx + xy2 − η,

where x and y are dimensionless concentrations of active free amphiphile and micelles, respec-

tively. The rate coefficients α and η represent chemical sinks for each species, and µ and r

are intrinsic parameters. All of the variables and parameters are positive. For such a concrete

system, a complete classification of the stability and types of equilibria in the hyperbolic case

have been provided. Niu and Wang also obtained algebraic conditions on parameters for the

occurrence of the three kinds of bifurcations (Hopf bifurcation, saddle-node bifurcation and

Bogdanov-Takens bifurcation), and the stability and types of the bifurcation points. In partic-

ular, they demonstrated that 3 limit cycles can be constructed from a Hopf bifurcation point

by small perturbation and the perturbed differential system remains polynomial.

Following the work of Wang and coauthors, many researchers have studied the problem

of stability and bifurcation analysis with specialized techniques for efficient computation by

taking the structures of the systems into account. The work of Shiu and Tang, with coauthors,

was devoted to detecting equilibria of large-size biological networks with a special structure

by using symbolic computation (see [160] for example). Hong and others [17] worked out a

special algorithm for the stability analysis of a class of biological regulation systems MSRS,

by exploiting the interesting structure of the differential equations. Sparsity is a common

characteristic of many biochemical reaction networks. For a family of sparse polynomial systems

arising in chemical reaction networks, Gatermann and others [162, 163] formulated the systems

by graphs and showed that the solution structure of such systems is highly determined by

the properties of the graphs. A considerable amount of work for sparse polynomial systems

has been done (e.g., on the number of real positive equilibria [162], the number of stable

equilibria [163], and analysis of Hopf bifurcation [164]) by considering the structure of the

graphs based on toric variety and using the method of Gröbner bases. Mou and Ju [161] applied

sparse triangular decomposition to analyze the equilibria of biological networks by exploiting

the inherent sparsity of parameter-free systems via the chordal graph and by constructing

suitable elimination orderings for parametric systems using the newly introduced block chordal

graph. Sturm and Weber, with coworkers, used the QE method to detect the occurrence of

Hopf bifurcations using reaction coordinates [158], and studied equilibria for some networks of

large scale. In a more recent 11 author paper [159], the methods of virtual substitution, lazy

real triangularization and CAD were used to analyze the equilibria and stability of two models

of the mitogen-activated protein kinases (MAPK) cascade with 11 variables and 16 variables,

respectively, and the conditions on the two unknown parameters for the systems to have 3

equilibria were established. More information about MAPK, as well as symbolic analysis of its

multiple equilibria and bistability, can be found in [16, 165, 166].

In enzyme kinetics, a fundamental assumption is the so-called Quasi-Steady-State Assump-

tion or Quasi-Steady-State Approximation (QSSA), which has a history of more than 90 years,

and has proven to be very useful in analyzing the equations of enzyme kinetics. The idea of



No.6 B. Huang et al: SYMBOLIC ANALYSIS OF DIFFERENTIAL EQUATIONS 2497

QSSA is simple: study the dynamics of the slow reactions, assuming that the fast ones are at

a quasi-equilibrium, thereby removing such differential equations that describe the evolution of

the variables at the quasi-equilibrium from the system. Li and others [169] proved, by using

the qualitative theory of dynamical systems, that QSSA is always true in the simplest model

with the second elementary reaction being irreversible, and that it may thus be called the

Quasi-Steady-State Law (QSSL). Therefore, all conclusions based on QSSA now have a solid

foundation in the irreversible case. Later on, Li [170] extended the application of QSSA in a

more general model: the reversible one-substrate-one-product model. The application of QSSA

in biochemical kinetics allows one to employ symbolic methods to simplify complex biochemical

systems for the purpose of qualitative analysis. This kind of simplification has been used in the

study of metabolic processes and genetic regulation processes in system biology, which involves

enzyme catalysis. For example, Boulier and coauthors applied differential elimination meth-

ods to deal with QSSA in order to perform reductions for biological models [172, 173]. They

combined their method with reparameterization techniques to automate the reduction of a fam-

ily of models of genetic circuits and obtained conditions for the existence of Hopf bifurcation

[171, 174].

For the analysis of stability and limit cycles for population and epidemic models, especially

Lotka–Volterra systems, Lu and coworkers performed an impressive amount of work by using

methods of real solution isolation (see [108] for example). They also studied the problems of

global stability analysis for several types of Lotka–Volterra systems [167, 168] using Liapunov

functions and the structure of Lasalle’s invariant set, together with Wu’s method of charac-

teristic sets. Symbolic-computational methods have also been applied to qualitative analysis

of dynamical systems in economy, control theory, systems science and other fields (see, e.g.,

[175–178]).

9 Concluding Remarks

In view of the outcome of the research over the last three decades and the current state

of the art, this survey has provided a brief account on how symbolic-computational methods

have helped advance modern research on the problem of the qualitative analysis of stability and

bifurcations for systems of differential equations. The methods of symbolic computation have

proven to be powerful in terms of their capability to solve algebraic and semi-algebraic systems

and other related problems involving polynomial expressions of many thousands of terms. As

the problems to be solved are posed usually with a theoretical or practical background, the

solutions that may be found at the end of such large-scale computations are often concise and

beautiful. Such computationally complex problems with conceptually simple solutions can be

taken as ideal examples for illustrating and testing the applicability, efficiency, and limitation

of sophisticated algorithms being developed to automate the process of mathematical problem

solving.

Differential equations appear almost everywhere in science and engineering. They have been

used broadly to describe scientific phenomena in biology, economics, control theory and complex

networks. There are plenty of problems regarding the interaction between differential equations

and symbolic computation that remain for further research and investigation. It is believed
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that symbolic and algebraic computation will continue playing an extremely important role in

the development of the classical qualitative theory of differential equations. With Hilbert’s 16th

problem underlined as an open challenge, advanced research supported with powerful methods

of symbolic computation will certainly make the qualitative theory one of the most useful tools

for automated problem solving in the field of differential equations and beyond. The reader is

encouraged to make use of the tool to solve interesting practical problems on hand, or to extend

the tool significantly to tackle those problems which are currently intractable.
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1–22

[60] Yu P, Chen G. Computation of focus values with applications. Nonlinear Dyn, 2008, 51: 409–427

[61] Shi S. A method of constructing cycles without contact around a weak focus. J Differential Equations,

1981, 41: 301–312
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VI, 2011

[157] Niu W, Wang D. Algebraic analysis of bifurcation and limit cycles for biological systems//Horimoto K,

Regensburger G, Rosenkranz M, et al, Ed. Proceedings of the Third International Conference on Algebraic

Biology. Heidelberg: Springer-Verlag, 2008: 156–171

[158] Errami H, Eiswirth M, Grigoriev D, et al. Efficient methods to compute Hopf bifurcations in chemical

reaction networks using reaction coordinates//Gerdt V, Koepf W, Mayr E, et al, Ed. Computer Algebra

in Scientific Computing. Heidelberg: Springer-Verlag, 2013: 88–99

[159] Bradford R, Davenport J, England M, et al. Identifying the parametric occurrence of multiple steady

states for some biological networks. J Symbolic Comput, 2020, 98: 84–119

[160] Dickenstein A, Millán M, Shiu A, et al. Multistationarity in structured reaction networks. B Math Biol,



2504 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

2019, 81: 1527–1581

[161] Mou C, Ju W. Sparse triangular decomposition for computing equilibria of biological dy-

namic systems based on chordal graphs. IEEE/ACM Trans Comput Biol Bioinform, 2022. DOI:

10.1109/TCBB.2022.3156759

[162] Gatermann K, Huber B. A family of sparse polynomial systems arising in chemical reaction systems. J

Symbolic Comput, 2022, 33: 275–305

[163] Gatermann K. Counting stable solutions of sparse polynomial systems in chemistry//Green E, Hosten

S, Laubenbacher R, et al, Ed. Symbolic Computation: Solving Equations in Algebra, Geometry, and

Engineering. Providence, RI: American Mathematical Society, 2001: 53–70

[164] Gatermann K, Eiswirth M, Sensse A. Toric ideals and graph theory to analyze Hopf bifurcations in mass

action systems. J Symbolic Comput, 2005, 40: 1361–1382

[165] Ferrell J, Machleder E. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science,

1998, 280: 895–898

[166] Angeli D, Ferrell J, Sontag E. Detection of multistability, bifurcations, and hysteresis in a large class of

biological positive-feedback systems. Proc Nat Acad Sci, 2004, 101: 1822–1827

[167] Liu L, Lu Z, Wang D. The structure of LaSalle’s invariant set for Lotka–Volterra systems. Sci China (Ser

A), 1991, 34: 783–790

[168] Lu Z. Computer aided proof for the global stability of Lotka–Volterra systems. Comput Math Appl, 1996,

31: 49–59

[169] Li B, Shen Y, Li B. Quasi-Steady-State laws in enzyme kinetics. J Phys Chem A, 2008, 112: 2311–2321

[170] Li B, Li B. Quasi-Steady-State laws in reversible model of enzyme kinetics. J Math Chem, 2013, 51:

2668–2686

[171] Boulier F, Lemaire F, Sedoglavic A, et al. Towards an automated reduction method for polynomial ODE

models in cellular biology. Math Comput Sci, 2009, 2: 443–464

[172] Boulier F, Lazard D, Ollivier F, et al. Representation for the radical of a finitely generated differen-

tial ideal//Levelt A, Ed. Proceedings of the 1995 International Symposium on Symbolic and Algebraic

Computation. New York: ACM Press, 1995: 158–166

[173] Boulier F, Lefranc M, Lemaire F, et al. Model reduction of chemical reaction systems using elimination.

Math Comput Sci, 2011, 5: 289–301

[174] Boulier F, Lefranc M, Lemaire F, et al. Applying a rigorous Quasi-Steady State Approximation method

for proving the absence of oscillations in models of genetic circuits//Horimoto K, Regensburger G, Ed.

Proceedings of the Third International Conference on Algebraic Biology. Heidelberg: Springer-Verlag,

2008: 56–64

[175] Wang D. Algebraic stability criteria and symbolic derivation of stability conditions for feedback control

systems. Int J of Control, 2012, 85: 1414–1421

[176] Li X, Wang D. Computing equilibria of semi-algebraic economies using triangular decomposition and real

solution classification. J Math Econ, 2014, 54: 48–58

[177] Huang B, Niu W. Analysis of snapback repellers using methods of symbolic computation. Int J Bifurcation

Chaos, 2019, 29: 1950054-1–13

[178] Quadrat A, Zerz E. Algebraic and Symbolic Computation Methods in Dynamical Systems. Advances in

Delays and Dynamics. Cham: Springer, 2020


