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Abstract Opinion dynamics has recently attracted much attention, and there have been

a lot of achievements in this area. This paper first gives an overview of the development of

opinion dynamics on social networks. We introduce some classical models of opinion dynamics

in detail, including the DeGroot model, the Krause model, 0 − 1 models, sign networks and

models related to Gossip algorithms. Inspired by some real life cases, we choose the unit

circle as the range of the individuals’ opinion values. We prove that the individuals’ opinions

of the randomized gossip algorithm in which the individuals’ opinion values are on the unit

circle reaches consensus almost surely.
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1 Introduction

As a part of a community, we interact with other people and exchange opinions with others

everyday. We have our own opinions about hot topics in the world, and we also influence and

are influenced by other people. Some people are easily influenced by others, while some are

stubborn. Some people are eager to find someone with the same opinions, while some people

are more likely to interact with those who have different opinions [1]. There are people who are

submissive to social norms, but there are also people who are rebellious [2]. We can see that all

different kinds of opinions spread among people throughout society, and these opinions interact

with each other in some way. Opinion dynamics is a field for analyzing the above phenomena.

Over the past several decades, there has been growing interest in opinion dynamics as an

interdisciplinary study in fields such as control theory, sociology, economics, and biology [3–8].

As networks grow more and more complex, distributive algorithms have become more and

more important. Gossip protocol, in which information exchange is only carried out in pairs

between two nodes, has been widely used to aggregate and spread information distributively,
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and has been used in distributed computation, optimization, and social networks [9–11]. Gos-

sip algorithms usually consist of two parts: the rules for the selection of pairs of nodes, and

updates on the values of the pair of nodes. The name for this algorithm comes from the office

gossip. Now, gossip protocol has been used to provide distributive computation in fields like

optimization, control theory, signal processing, and artificial intelligence [12–14].

Here, we give a review of the basic models in opinion dynamics. The aim of this paper is

to introduce the basic models in opinion dynamics and give some new insights or even extend

upon some of these. In Section 2, we introduce some classical models in opinion dynamics,

including the DeGroot model, the Krause model, signed networks, and fashion games. Models

relevant to gossip algorithms are discussed in Section 3. In the last part of Section 3, we provide

a new model in which opinion values are defined on the unit circle instead of by real numbers.

We categorize these models in Section 4.

2 Models of Opinion Dynamics

In this section, we introduce some classical models in opinion dynamics.

2.1 DeGroot Model

The DeGroot model, the basic model of opinion dynamics, was proposed by DeGroot as

early as 1974 [15]. The DeGroot model describes the process in which agents in a social network

change their own opinions by informing each other of their opinions, collecting all of opinions

they received, and finally forming a common opinion. Consider a social network described by

a graph G = (V, E) consisting of n agents. The edge of the graph is used to indicate the

interactive relationship between the nodes. If agents i and j can interact with each other, or in

other words, can exchange information, then {i, j} ∈ E. In graph theory, we also say that agent

i and agent j are neighbors. At time t, each agent has a specific opinion, xi(t) ∈ R, t = 0, 1, · · · .

Since each agent has different background, their opinions are also different, and they usually

reflect their own information. If an agent i is informed of the opinions xj(t), j = 1, · · · , n, j 6= i

of all their neighbors in the social network, then agent i will naturally change their opinions to

suit the opinions and judgments of other members. Let wij denote the weight that an agent i

assigns to an agent j when they changes their opinion; this is chosen by the individual according

to the relative importance of the opinion to all members in the network (including themselves).

Then at the time t + 1, agent i’s opinions will be updated to

xi(t + 1) =
n

∑

j=1

wijxj(t),

where wij ≥ 0 and
n
∑

j=1

wij = 1. Let x(t) = (x1(t), · · · , xn(t))T and let W be the matrix where

the (i, j)-entry is wij , i = 1, · · · , n, j = 1, · · · , n. Then the above opinion update rule can be

expressed in the following form:

x(t + 1) = Wx(t). (2.1)

Obviously, W is a random matrix, i.e., the sum of each row is 1. The DeGroot model depicts

the interaction between individuals in the social network G = (V, E), and the opinion of an

agent i at each update moment is the weighted average of its own opinion and the opinions



No.6 X. Wang et al:OPINION DYNAMICS ON SOCIAL NETWORKS 2461

of all its neighbors at the previous moment. Since it is assumed that the network topology

does not change with time in the process of opinion updating, the DeGroot model is called a

time-invariant social network model. Furthermore, given an initial opinion x(0), the opinion

dynamics of the social network can be expressed as

x(t) = W tx(0), (2.2)

which is only related to the weight that each agent in this network gives to all members of the

entire social network.

The model is convergent if and only if for any initial opinion x(0), there is an opinion vector

x∗ ∈ R
n such that

lim
t→∞

x(t) = x∗.

The model can reach consensus if and only if, for any initial opinion x(0), there is a real value

a such that

lim
t→∞

x(t) = a1,

where 1 is the vector with all entries being 1. It can be seen that consensus is a special case of

convergence; i.e., consensus can only be reached when the n components of x∗ all converge to

the same value a.

According to (2.1) and (2.2), the opinion evolution process on the social network G is a

discrete time Markov chain, and the random matrix W is its state transition matrix. DeGroot

[15] gives two sufficient conditions for consensus. First, if there is a positive integer k such

that at least one column of the matrix W k is positive, then each agent’s opinion in the social

network G can reach consensus. Second, if all the states of the Markov chain are positive

recurrent, irreducible, and aperiodic, then agents in the social network G can reach consensus.

Furthermore, when consensus is reached, the common opinion of the social network can be

precisely calculated.

2.2 Krause Model

In the DeGroot model, the topology of the social network is fixed; that is to say, the

influence of the social network remains constant. In real life, however, the influence between

people is always changing. The Krause model [16, 17] and its extensions [18] are time-variant

models in social networks.

Just as in the DeGroot model, we use the real value xi(t) to represent the opinions of agent

i. However, each agent in the Krause model only interacts with those agents it regards as

necessary in order to communicate. Specifically, each agent i has a confidence bound, denoted

by εi. The opinions of agent i are only influenced by those agents whose opinions differ from

agent i’s opinion by no more than εi. Therefore, for agent i, the agents that will have an

influence on its opinion at time t can be represented by the set I(i, t), that is

I(i, t) = {1 ≤ j ≤ n : |xi(t) − xj(t)| ≤ εi},

where | · | represents the absolute value of a real number. Having these notations, the opinion

formation of agent i can be described as

xi(t + 1) = |I(i, t)|−1
∑

j∈I(i,t)

xj(t), (2.3)
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where |I(i, t)| is the number of elements in the finite set I(i, t); that is, agent i adjusts their

opinion in period t + 1 by taking a weighted average with weight |I(i, t)|−1 for the opinion of

agent j ∈ I(i, t) at time t.

Note that, in the Krause model, the agents interacting with agent i at different times are

not exactly the same. If a graph is used to represent the interaction between individuals, the

graph is constantly changing. This is to say the network topology of the Krause model is not

fixed, but that it changes over time.

To simplify, we can assume that the confidence bound of all agents are equal, i.e., εi =

ε, i = 1, · · · , n. An important property of the Krause model is that if the opinions of agent

i and agent j satisfy the relation xi(t) ≤ xj(t) at time t, then xi(t + 1) ≤ xj(t + 1). In other

words, the order of agent opinion values does not change over time. Taking advantage of this

property, it is possible to renumber the agents so that the order of agent opinion values is

consistent with the sequence number of the agents, i.e., x1(0) ≤ x2(0) ≤ · · · ≤ xn(0). Using

this order relationship, opinion dynamics in the network system can be studied, even if the

network topology formed between agents changes over time.

For a sorted opinion vector x(t) = (x1(t), · · · , xn(t)), we say that there is a split (or crack)

between agents i and i + 1 if |xi+1(t) − xi(t)| > ε. If at time t there is a split between agent

i and i + 1, then, according to the update equation (2.3), xi+1(t + 1) will not be less than

xi+1(t) and xi(t + 1) will not be greater than xi(t). Thus, if there exists a split at some time

t, the split will exist forever after t. Then the network of opinion dynamics can be split into

two smaller independent networks, one consisting of agent 1, · · · , i and the other consisting of

agent i + 1, · · · , n.

Since x(0) = (x1(0), · · · , xn(0)) is assumed to be sorted, the opinion x1(0) is nondecreasing

and bounded above by xn(0); as a result, it converges to a value x∗
1. Let k be the highest index

for which xk(t) converges to x∗
1. According to the fundamental properties in mathematical

analysis, we have that

lim
t→+∞

xj(t) = x∗
1

for j = 1, · · · , k. According to the definition of k, xk+1(t) will not converge to x∗
1. Intuitively,

we can imagine that at some time there should be a split between k and k +1. In fact, this can

be easily proved by contradiction.

Thus, we can divide the whole networks into two smaller networks, i.e., one consisting of

agent 1, · · · , k, and the other consisting of agent k + 1, · · · , n. It is known that the opinions

among agents 1, · · · , k reach consensus, which is x∗
1. The same analysis method can be used

for the remaining networks consisting of agents k + 1, · · · , n. Finally, it can be proven that for

every agent i, xi(t) converges to a limit x∗
i in finite time. Moreover, for any agents i and j,

either x∗
i = x∗

j or |x∗
i − x∗

j | > ε.

Blondel et al. [18] also generalize the model (2.3) so that each agent i has an associated

weight wi, and updates their opinion in the following way:

xi(t + 1) =

∑

j:|xi(t)−xj(t)|<1

wjxj(t)

∑

j:|xi(t)−xj(t)|<1

wj

. (2.4)

Here, the confidence bound ε is equal to 1. It can be verified that the properties and convergence
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results of model (2.3) are also applicable to model (2.4).

A set of agents whose opinions converge to a common value is called a cluster, and the

sum of the weights of all agents in the cluster is called the weight of the cluster. Let x̄ be a

vector of agent opinions at equilibrium. Add a perturbed agent indexed by 0 with weight δ and

initial opinion x̃0. Let the system (2.4) evolve again, until it converges to a new, perturbed

equilibrium x̄′ , and then remove the perturbing agent. Define ∆x̃0,δ =
∑

i

wi|x̄i − x̄′
i| as the

distance between the original and perturbed equilibria. The original equilibrium vector x̄ is said

to be stable if lim
δ→0

sup
x̃0

∆x̃0,δ = 0. Furthermore, x̄ is stable if and only if, for any two clusters A

and B with weights WA and WB , respectively, the following holds: either WA = WB and the

inter-cluster distance is greater than or equal to 2, or WA 6= WB and the inter-cluster distance

is strictly greater than 1 + min(WA,WB)
max(WA,WB) .

Furthermore, Blondel et al. [18] introduced the continuous Krause model to study a society

with large population. There are so many people that we can use an interval of real numbers

to approximately represent them. More specifically, agents are indexed by I = [0, 1], and the

opinions of all agents are nonnegative and bounded above by a positive constant L. Let xt(α)

be the opinion of agent α ∈ I at time t. Let X be the set of measurable functions x : I → R,

and let XL ⊂ X be the set of measurable functions x : I → [0, L]. The evolution of the opinions

is described by

xt+1(α) =

∫

β:(α,β)∈Cxt

xt(β)dβ
∫

β:(α,β)∈Cxt
dβ

, (2.5)

where Cx ⊆ I2 is defined for any x ∈ X by Cx := {(α, β) ∈ I2 : |x(α) − x(β)| < 1}.

As in the discrete-agent model (2.3), if xt(α) ≤ xt(β) holds for agents α and β at some time

t, then the same relation continues to hold at all subsequent times. Furthermore, if the initial

opinion vector x(0) ∈ XL only takes a finite number of values, the continuous-agent model (2.5)

coincides with the weighted discrete-agent model (2.4), with the same range of initial opinions,

and where each discrete agent’s weight is set as equal to the measure of the set of indices α for

which x0(α) takes the corresponding value. For the continuous Krause model, there are some

conjectures which are still unsolved in [18].

2.3 Signed Social Networks

The interactions of agents in the above models are all positive. However, in real world, we

are often affected by subjective emotions when we communicate with others. When confronted

with trustworthy friends, we are usually willing to listen to their opinions and update our views.

On the contrary, when confronted with strangers, we are often suspicious, have a negative

attitude, and are reluctant to listen to their opinions; sometimes confrontation even occurs. To

this end, signed networks are proposed [19–21]. In signed networks, each interaction link has a

sign (positive or negative) to reflect whether the agents interacting with each other are friends

or not.

Let G = (V, E) be an undirected graph. Each edge in E is associated with a sign, positive

or negative, defining G as a signed graph. The positive and negative edges are collected in the

sets E+ and E−, respectively. Then G+ = (V, E+) and G− = (V, E−) are, respectively, termed

as positive and negative subgraphs. Suppose that G is a connected graph and that G− contains

at least one edge. Write N+
i = {j : {i, j} ∈ E+} as the positive neighbor set of agent i, and
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N−
i = {j : {i, j} ∈ E−} as the negative neighbor set of agent i. The set N+

i ∪N−
i then contains

all nodes that interact with node i in the graph G. Correspondingly, the number of neighbors

of agent i, denoted by di, is equal to d+
i + d−i , where d+

i = |N+
i |, d−i = |N−

i |.

At moments t = 0, 1, · · · , each agent i has an opinion xi(t) ∈ R. The opinion updating rule

is specified by the sign of the links. Consider a particular link {i, j} ∈ E. If the sign of {i, j}

is positive, each node s ∈ {i, j} updates its opinion by

xs(t + 1) = xs(t) + α(x−s(t) − xs(t)) = (1 − α)xs(t) + αx−s(t),

where −s ∈ {i, j} \ {s}, α ∈ (0, 1). If the sign of {i, j} is negative, each node s ∈ {i, j} updates

its value by either the opposing rule

xs(t + 1) = xs(t) + β(−x−s(t) − xs(t)) = (1 − β)xs(t) − βx−s(t), (2.6)

or the repelling rule

xs(t + 1) = xs(t) − β(x−s(t) − xs(t)) = (1 + β)xs(t) − βx−s(t), (2.7)

with β ≥ 0.

It is observed that the positive interaction is consistent with the DeGroot model, suggesting

that the opinions of trusted social members are attractive to each other. There are two kinds

of negative interaction rules: the opposing rule states that the agent will be attracted by the

opposite of its neighbor’s opinion if they share a negative link; and the repelling rule indicates

that the opinions of two agents are mutually exclusive. The two parameters, α and β, reflect

the strength of positive and negative links, respectively.

Structural balance is a fundamental concept in the study of signed graphs. We say that a

signed graph G is structurally balanced if there is a partition of the node set into two nonempty

and mutually disjoint subsets V = V1

⋃

V2, where every edge between the two node subsets V1

and V2 is negative, and every edge within each Vi is positive, i = 1, 2.

Then we can introduce the first model with the opposing rule (2.6), along with the negative

links, where xi(t) is updated as follows:

xi(t + 1) = xi(t) + α
∑

j∈N
+
i

(xj(t) − xi(t)) − β
∑

j∈N
−

i

(xj(t) + xi(t))

= (1 − αd+
i − βd−i )xi(t) + α

∑

j∈N
+
i

xj(t) − β
∑

j∈N
−

i

xj(t). (2.8)

Assume that 0 < α + β < 1/ max
i∈V

di. Then under the opposing rule (2.6), the following

statements hold for any initial opinion vector x(0) [21]:

(i) If G is structurally balanced, then

lim
t→∞

xi(t) =
1

n





∑

j∈V1

xj(0) −
∑

j∈V2

xj(0)



 , i ∈ V1,

lim
t→∞

xi(t) = −
1

n





∑

j∈V1

xj(0) −
∑

j∈V2

xj(0)



 , i ∈ V2.

(ii) If G is not structurally balanced, then

lim
t→∞

xi(t) = 0, i ∈ V.
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For the second model with the repelling rule (2.7), along with the negative links, xi(t) is

updated as follows:

xi(t + 1) = xi(t) + α
∑

j∈N
+
i

(xj(t) − xi(t)) − β
∑

j∈N
−

i

(xj(t) − xi(t))

= (1 − αd+
i + βd−i )xi(t) + α

∑

j∈N
+
i

xj(t) − β
∑

j∈N
−

i

xj(t). (2.9)

With a further assumption that G+ is connected, for any 0 < α < 1/ max
i∈V

d+
i , there exists

β∗ > 0 such that

(i) if β < β∗, then average consensus is reached for (2.9) in the sense that lim
t→∞

xi(t) =
n
∑

j=1

xi(0)/n for all initial value x(0);

(ii) if β > β∗, then lim
t→∞

‖x(t)‖ = ∞ for almost all initial values w.r.t. the Lebesgue measure.

The above model and results can be generalized to directed signed networks. A directed

graph G = (V, E) is called a signed digraph if each of its links (i, j) ∈ E has a positive or

negative sign. The positive and negative neighbor sets of node i are N+
i = {j : (j, i) ∈ E+} and

N−
i = {j : (j, i) ∈ E−}, respectively. The network dynamics (2.8) and (2.9) are then readily

defined for the digraph G. In addition, by replacing undirected edges with directed edges, the

structural balance of directed graphs can be obtained.

Assume that 0 < α + β < 1/ max
i∈V

di and that G is strongly connected. For the model with

network dynamics (2.8) over G, the following statements hold for any initial value x(0) [21].

(i) If G is structurally balanced, then there are n positive numbers w1, · · · , wn with
n
∑

i=1

wi =

1 such that

lim
t→∞

xi(t) =
1

n





∑

j∈V1

wjxj(0) −
∑

j∈V2

wjxj(0)



 , i ∈ V1,

lim
t→∞

xi(t) = −
1

n





∑

j∈V1

wjxj(0) −
∑

j∈V2

wjxj(0)



 , i ∈ V2.

(ii) If G is not structurally balanced, then

lim
t→∞

xi(t) = 0, i ∈ V.

Here, the value of (w1, · · · , wn) depends on α and β.

Consider the model with network dynamics (2.9) over a digraph G. Suppose that G+ is

strongly connected, and fix that 0 < α < 1/ max
i∈V

d+
i . There exists β∗ > 0 such that, for any

β < β∗, there are q1(β), · · · , qn(β) ∈ R
+ with

n
∑

i=1

qi(β) = 1 satisfying that a consensus is

reached at

lim
t→∞

xi(t) =

n
∑

j=1

qi(β)xi(0), i ∈ V

for all initial value x(0).

We can see that different models have different properties on convergence. They can be

used to describe different social phenomena. Other properties, such as rates of convergence,
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have also been studied. The topologies of the above models are all fixed, and can also be

extended to time-varying structures.

2.4 Fashion Game

A fashion game [22–25] is essentially a deterministic 0 − 1 type opinion dynamics model.

In this kind of social network, the value of the opinions of agents are no longer arbitrary real

numbers, but binary numbers: either 0 or 1. For example, in the early 1980s, there were two

kinds of trousers that were popular in some cities of China. One was straight-leg, and the other

was flared. Each person’s choice of trousers was influenced by what their neighbors wore. The

fashion trend of flared trousers took off at that time. When the fashion trend faded, straight-leg

trousers became the dominant choice. However, in recent years, flared trousers have become

popular again. Such fashion evolution is very common, and the fashion game can give a good

explanation for it.

Regarding fashion, there are two viewpoints that are both extremely popular but almost

opposite to each other. Some think that fashion is a distinctive or peculiar manner or way.

Others take fashion to be the prevailing custom or style. People falling into the first class are

called rebels, and the latter are called conformists. Since fashion comes from comparison with

others, and the range of fashion from which people compare is almost always confined to their

friends, relatives, colleagues, and neighbors, that fashion works through a social network is very

natural [26, 27].

Let G = (V, E) be a social network, where V = {1, 2, · · · , n} is the set of agents and

E ⊆ V × V is the set of edges (no self-loops are allowed). Each agent is faced with a binary

choice of opinions 0 or 1, and they can only form opinions that affect themselves through the

opinions of their neighbors. Time is discrete for t = 0, 1, 2, · · · and every agent has an opinion

at time t, which is denoted by xi(t) for agent i. Denote the set of neighbors of player i by Ni.

For agent i ∈ V , they are either a conformist or a rebel, and its type does not change over

time. Conformists tend to take the most common views among their neighbors, while rebels

tend to take the opposite. At time t all agents obtain their neighbors’ opinions. If an agent’s

neighbors have equal numbers of agents with opinions 0 and 1, then this agent will not change

their opinion at time t + 1. Otherwise, a conformist agent i will update their opinion at time

t + 1 to the more selected opinion value at time t for agents in Ni, while a rebel agent j will

update their opinion at time t + 1 to the less selected opinion value at time t for agents in Nj .

More precisely, giving an opinion profile x(t) = (x1(t), · · · , xn(t)) ∈ {0, 1}n, the utility of

agent i is defined by

ui(x(t)) = |Li(x(t))| − |Di(x(t))|,

where

Li(x(t)) =







{j ∈ Ni : xj(t) = xi(t)}, i is a comformist,

{j ∈ Ni : xj(t) 6= xi(t)}, i is a rebel

is the set of neighboring agents that i likes, and Di(x(t)) = Ni\Li(x(t)) is the set of neighboring

agents that i dislikes. The ui(x(t)) can also be referred to as the satisfaction degree. Agent

i is satisfied at time t if ui(x(t)) ≥ 0. Otherwise, this agent is dissatisfied. When the agent i

is dissatisfied at time t, they will change their opinion at time t + 1, otherwise this agent will
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maintain their own opinion. Thus, these opinion values are updated synchronously according

to

xi(t + 1) =







1 − xi(t), ui(x(t)) < 0,

xi(t), ui(x(t)) ≥ 0.

It is worth mentioning that the iterative rules of this model are inspired by matching pennies

from game theory, which is why the researchers call it the fashion game. Since the network

topology of the considered system is fixed, the value updating process is deterministic; the

opinion vector at a specific time is only dependent on the opinion vector at the last time, and

the opinion vector has only a finite number of values, i.e., 2n; the system will eventually enter a

cycle, that is, at a certain moment T , x(T ) = x(s) holds for some 0 ≤ s < T , and the evolution

of the opinion vector of all agents is the same as before. This is called the fashion cycle.

Zhigang Cao et al. [24] introduced the homophily index to further study the fashion cycle,

and concluded that a lower homophily index usually promotes the appearance of fashion cycles.

3 Gossip Algorithms

Gossip algorithms can be regarded as a special kind of algorithm in social networks, and

they are widely used in modern distributed systems. As the name suggests, the gossip algorithm

is inspired by gossip: in an office, when a person gossips about a piece of social news, everyone

in the office will know the news for a limited time. The gossip protocol, which characterizes

a manner of information dissemination and aggregation on social networks, was proposed in

1987 by Alan Demers [28]. For the gossip algorithm, the key indicators are the convergence

and speed of the convergence of the algorithm. This section will introduce some classic gossip

algorithms [29–31, 39], and make certain extensions on the basis of existing algorithms.

3.1 Deterministic Gossip Algorithms

Consider a network G = (V, E) with the node set V = {1, · · · , n}. The value node i holds

at time t is denoted as xi(t) ∈ R for discrete time t = 0, 1, 2, · · · . The global network state

is then given by x(t) = (x1(t), · · · , xn(k))T . Unlike the DeGroot model, in the deterministic

gossip algorithm, only two selected agents update their values or opinions to the average of the

values they held prior to the interaction at time t+1, and the values of all other agents remain

unchanged. Therefore, at time t + 1, the update rule for agents can be expressed as

xi(t + 1) =
xi(t) + xj(t)

2
;

xj(t + 1) =
xj(t) + xi(t)

2
;

xl(t + 1) = xl(t), l ∈ V \ {i, j}.

To simplify the update rule, a matrix set

Mn :=

{

In −
(ei − ej)(ei − ej)

T

2
: {i, j} ∈ E

}

is introduced, where In is the n × n identity matrix, and em = (0 · · · 0 1 0 · · · 0)T is the n × 1

unit vector whose m’th component is 1.
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For a deterministic gossip algorithm, we have a given function W (t) from nonnegative

integers to Mn. Then the update rule can be expressed in the following matrix form:

x(t + 1) = W (t)x(t), W (t) ∈ Mn, t = 0, 1, · · · . (3.1)

We can see that this has the same matrix form as the DeGroot model. The same method can

be used to analyze the speed of convergence.

It is straightforward to ask the question of whether the deterministic gossip algorithm

is convergent in finite time. More precisely, we say that algorithm (3.1) achieves finite-time

convergence with respect to initial value x(0) ∈ R
n if there exists an integer T (x0) ≥ 0 such

that x(T ) = WT−1 · · ·W0x(0) ∈ span{1}, and global finite-time convergence if such T (x0) ≥ 0

exists for every initial value x(0) ∈ R
n. Here 1 is the vector with all entries being 1.

There exists a deterministic gossip algorithm that converges globally in finite time if and

only if the number of network nodes is a power of two. For n = 2m nodes, the fastest gossip

algorithms take a total of mn = n log2 n node updates to converge. Moreover, if there exists no

integer m ≥ 0 such that n = 2m, then, for almost all initial values, there exists no deterministic

gossip algorithm with finite-time convergence.

For deterministic gossip algorithms, if only one of the two selected interacting agents up-

dates their opinion, we say it an asymmetric deterministic Gossip algorithm. The model de-

scription of the asymmetric deterministic gossip algorithm and the conclusion of finite time

convergence can be found in [30].

3.2 Randomized Gossip Algorithms

We can see that in the above subsection, the value of W (t) is a prefixed matrix. This can

be extended to randomized algorithms; that is, W (t) is not a matrix but a distribution on Mn.

We consider a special case as an example. At any time, an agent is selected at random

and then this agent selects one of their neighbors randomly to communicate. We can use a

nonnegative random matrix P = (pij) ∈ R
n×n to characterize this kind of randomized gossip

algorithm. Here pij > 0 if and only if {i, j} ∈ E, and a random matrix is a matrix in which

the sum of any row elements is 1. Furthermore, we assume that the biggest eigenvalue of P is

1, and the absolute value of all other n− 1 eigenvalues are less than 1. The randomized gossip

algorithm relevant to P can be described as follows: at time t, agent i is selected randomly

with probability 1
n
, and then agent j as one of agent i’s neighbor is selected with probability

pij . Then, agent i and j both update their opinion values to their average value, i.e.,

xi(t + 1) = xj(t + 1) =
xi(t) + xj(t)

2
.

Let x(t) be the opinion vector at time t for all agents. The updating rule can be described as

x(t + 1) = M(t)x(t),

where M(t) is a random variable which is

In −
(ei − ej)(ei − ej)

T

2

with probability 1
n
pij .

It is easy to see that

x(t + 1) = M(t)M(t − 1) · · ·M(0)x(0) = φ(t)x(0),
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where φ(t) is defined by M(t)M(t−1) · · ·M(0). The sum of all entries in x(t) is unchanged over

time. We use xave to denote the average opinion values of all agents. If consensus occurs, the

opinion values of all agents should converge to xave. Thus, we must have lim
t→∞

φ(t) = 11
T

n
. Let

M denote the expectation of the variable M(t). Note that M(t), t = 0, 1, 2, · · · are a series of

independent identical distributed random variables. We have E(φ(t)) =
t
∏

i=0

E(M(i)) = M
t+1

.

Thus, we can infer that the expectation of φ(t) converges to 11
T

n
if and only if lim

t→∞
M

t
= 11

T

n
.

A theorem in matrix analysis shows that the convergence of these algorithms is determined by

ρ

(

M −
11T

n

)

< 1,

where ρ(A) represent the largest absolute value of eigenvalues of the matrix A.

When we get the convergence of the algorithm, it is more valuable to study the speed

of convergence. Boyd [29] introduced the concept of ǫ-average time: for any 0 < ǫ < 1, the

ǫ-average time of an algorithm relevant to matrix P is denoted by Tave(ǫ, P ), and defined by

sup
x(0)

inf

{

t : P

(

‖x(t) − xave1‖

‖x(0)‖
≥ ǫ

)

≤ ǫ

}

,

where ‖ ·‖ is the l2 norm. Intuitively, ǫ-average time describes the shortest time needed for x(t)

reach to the ǫ neighborhood of xave1 with high probability, regardless of the initial value x(0).

Theorem [29] shows that

0.5 log ǫ−1

log λ2(M)−1
≤ Tave(ǫ, P ) ≤

3 log ǫ−1

log λ2(M)−1
,

where λ2(·) is the second largest eigenvalue, M , I − 1
2n

D + P+P T

2n
, and D is a diagonal matrix

with Di =
n
∑

j=1

[Pij + Pji].

3.3 Randomized Boolean Gossip Model

In this subsection, we introduce the randomized boolean gossip model [31]. Like fashion

games, every agent holds binary values 0 or 1. However randomized boolean gossip models

are random algorithms, just as their names indicate, while fashion games are deterministic.

Moreover, the evolution of opinions is based on boolean logic.

Also, we consider a social network G = (V, E) with n agents V = {1, 2, · · · , n}. There is

no self-loop in E, and G is connected. Time is discrete like t = 0, 1, 2, · · · . At any moment,

agent i holds a binary opinion xi(t). At every time, a pair of agents, i and j, are randomly

selected such that {i, j} ∈ E. They update their opinion according to a boolean function on

their opinions. Note that there are 16 boolean functions that map {0, 1}2 into {0, 1}. We use

that ⊙k specifies a binary boolean function and that a ⊙k b represents the value of ⊙k(a, b).

The set of all 16 boolean functions is denoted by H .

Let C 6= ∅ be a subset of H which specifies all possible updating rules between two nodes.

Assume that C contains q elements. Then C can be represented by

⊙C1 , · · · ,⊙Cq
.

Suppose that agents i and j are selected at time t. Introduce pkl > 0 for 1 ≤ k, l ≤ q

satisfying
∑

k,l

pkl = 1. At time t, agent i and j jointly choose (⊙Ck
,⊙Cl

) ∈ C × C with
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probability pkl to update their opinion, i.e.,















xi(t + 1) = xi(t) ⊙Ck
xj(t),

xj(t + 1) = xj(t) ⊙Cl
xi(t),

xm(t + 1) = xm(t), m /∈ {i, j}.

As the set C can be arbitrary subsets of the set of all boolean functioins H , this randomized

boolean gossip model not only can be used to analyze the evolution of social opinions [32], but

also can be used to explain gene regulation [33] and virus spreading [34].

Let x(t) = (x1(t), x2(t), · · · , xn(t)), t = 0, 1, · · · denote the stochastic process determined

by the above model. This process defines a Markov chain with 2n states, MG(C) = (Sn, P ),

where

Sn = {[s1 · · · sn] : si ∈ {0, 1}, i ∈ V }

is the state space, and P = [P[s1···sn][q1···qn]] ∈ R
2n×2n

is the transition matrix such that

P[s1···sn][q1···qn] , P(x(t + 1) = [q1 · · · qn]|x(t) = [s1 · · · sn]).

Next, we consider a special case. The set C does not involve the negation rule ¬, and we

use the conventional notation ∧ to represent that boolean “AND” operation and ∨ to represent

“OR” operation. We term such types of boolean operations as positive boolean dynamics, and

define that Cpst = {∨,∧}. For this kind of randomized boolean gossip model, the Markov chain

is an absorbing chain with two absorbing states, [0 · · · 0] and [1 · · · 1]. Thus, from the standard

theory of Markov chains, for x0 = x(0) ∈ Sn \ {[0 · · · 0], [1 · · ·1]}, we can find a Bernoulli

random variable x∗, such that

P
(

lim
t→∞

xi(t) = x∗, ∀i ∈ V
)

= 1.

For other binary valued opinion dynamics, Yildiz [35] studied models with stubborn agents

who never change their opinions.

3.4 Clique Gossip Algorithms

Cliques are complete subgraphs and are very common in social, computer, and engineering

networks. They have been applied to beamforming and clustering in wireless sensor networks

[36, 37] and quantum networks [38]. Yang Liu et al. [39] introduced the concept of cliques in

gossip algorithms to speed up the gossip algorithms. Intuitively, in clique gossip algorithms,

all of the agents in the clique update their opinions simultaneously, while in gossip algorithms,

only one pair of agents updates their opinions.

Consider the network G(V, E), where V = {1, · · · , n} is the set of all agents and E represents

the relationship between agents as before. Assume that E is without any loop and that G is

connected. Agent i holds an opinion xi(t) ∈ R for discrete time t = 0, 1, · · · . Let H∗
G =

{Cµ1 , · · · , Cµd
} be a clique coverage of G, which means that each Cµl

is a clique in G and every

agent in G must belong to at least one clique in H∗
G. For each clique Cµl

∈ H∗
G, we assign a

number Aij(µl) for each edge {i, j} ∈ E in the induced subgraph G[Cµl
] and assign a number

Aii(µl) for every agent i. Introduce the function σ(·) : Z
≥0 → {µ1, µ1, · · · , µd}. If at time t the
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clique Cσ(t) ∈ H∗
G is selected, then agents update their opinions as follows:

xi(t + 1) =











∑

j∈Cσ(t)

Aij(σ(t))xj(t), i ∈ Cσ(t),

xi(t), i /∈ Cσ(t).

We see that the updating rule can be represented by matrix forms

x(t + 1) = Mσ(t)x(t).

If all agents in the clique update their opinions as their average opinion in the clique, the

updating rule is

xi(t + 1) =











∑

j∈Cσ(t)

xj(t)/|Cσ(t)|, i ∈ Cσ(t),

xi(t), i /∈ Cσ(t).

Just as randomized gossip algorithms, the above updating rule can be randomized. If

σ(t) is prefixed, this algorithm is deterministic. If σ(t) is a distribution on H∗
G, then this is a

randomized clique gossip algorithm.

The finite time convergence was considered. One can find an m-regular clique coverage H∗
G

which leads to a globally finite-time convergent clique gossip averaging algorithm if and only if

n is divisible by m with the same prime factors as m.

For randomized clique gossip algorithms, M(t) has the value

I −
1

2ml

∑

(i,j)∈Wµl

(ei − ej)(ei − ej)
T ,

with probability pl, l = 1, 2, · · · , d. Here

Wµl
, Cµl

× Cµl
\ {(i, i) : i ∈ Cµl

}.

Using the same method as for the randomized gossip algorithms, we have

x(t + 1) = M(t)M(t − 1) · · ·M(0)x(0) = φ(t)x(0).

We also use M to represent the expectation of M(t). We also have that

E(φ(t)) =

t
∏

i=0

E(M(i)) = M
t+1

,

so the convergence of these algorithms is still determined by

ρ

(

M −
11T

n

)

< 1.

We can define Tave(ǫ) as ǫ-average time of a convergent randomized clique gossip algorithm as

sup
x(0)

inf

{

t : P

(

‖x(t) − xave1‖

‖x(0)‖
≥ ǫ

)

≤ ǫ

}

,

and we also know that it satisfies that

0.5 log ǫ−1

log λ2(M))−1
≤ Tave(ǫ) ≤

3 log ǫ−1

log λ2(M)−1
.

This shows that the second largest eigenvalue of M determines the speed of the convergence.
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Although the aim of introducing cliques gossip algorithms is to boost the speed of the

algorithms, an interesting phenomenon shows that the involvement of cliques does not always

accelerate the computation. For complete graphs, the introduction of regular cliques does

improve the performance of the algorithms. The following example shows that the second

largest eigenvalue may be less than the one in the relevant randomized gossip algorithm.

Consider the social network G(V, E) as shows in the figure, where V = {1, · · · , 7}. The

clique coverage is H∗
G = {C1, C2, C3}, where three cliques have different sizes.

Figure 1 Social networks with 7 agents

For the randomized gossip algorithm, one of the 10 edges is selected with equal probability

at time t. The two agents of this edge communicate and update their opinions as the average

opinion. We can obtain that λ2(MGossip) = 0.980084.

For the randomized clique gossip algorithm, one of the three cliques is selected at time t

randomly. The cliques C1, C2, and C3 are going to be selected with probabilities p, q, and

1 − p − q, respectively. All of the agents of the selected clique communicate and update their

opinions as the average opinion of the clique. Then,

(1) when p = 1/20, q = 1/10, we have λ2(MClique Gossip) = 0.9819708;

(2) when p = 3/10, q = 3/5, λ2(MClique Gossip) = 0.9754117;

(3) when p = 9/20, q = 1/2, λ2(MClique Gossip) = 0.9864559.

We see that in this social network, the speed of convergence of clique gossip algorithms is

relevant to the probability of the cliques being chosen. Under different p and q, we cannot be

assured that randomized clique gossip algorithms are faster than randomized gossip algorithms.

3.5 Randomized Gossip Algorithm on the Unit Circle

Whether it is the classic social network model or the above-mentioned Gossip algorithm,

agent opinion values are one-dimensional real values, so there exists an order relationship.

However, some real-life instances, such as the well-known rock-paper-scissors game, do not

have an order relationship. They can no longer be described by one-dimensional real values.

As another example, some people like to go out for activities at three o’clock in the afternoon

every day, while others go at five o’clock. The value range of these time points is a circle on

the clock. Inspired by this, we take agent opinion values from the unit circle and study the

consensus of agent opinions.

Consider a social network G = (V, E) consisting of n agents. Time is slotted and the value

that agent i holds at time t is denoted by vi(t) = (xi(t), yi(t)) ∈ R
2, where x2

i (t)+ y2
i (t) = 1. It

is not difficult to find that for any agent i and time t, there is a unique angle θi(t) ∈ [0, 2π) such

that xi(t) = cos θi(t), yi(t) = sin θi(t). That is, we can use θi(t) to characterize the opinion

vector vi(t) of agent i.
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Since, for any r ∈ R, there is a unique θ ∈ [0, 2π) such that r−θ
2π

is an integer, we introduce

the notation mod(r) to represent θ.

The evolution of opinions still proceeds in a random gossip manner, that is, at time t,

agent i is randomly selected from V , and agent j is randomly selected from i’s neighbor set

Ni to communicate with i. We also use averages to update the opinions of i and j. How

do we take the average on the circle? We know that any two points on the unit circle will

divide the circumference into two arcs: when the two arcs are equal in length, they are both

semicircles; otherwise, the arc larger than the semicircle is the superior arc, and the arc smaller

than the semicircle is the inferior arc. The midpoint of both arcs can be called the average

of the two viewpoints. Of course, because the distance between the inferior arcs is closer, we

think that individuals are more likely to shift their opinions to the midpoint of the inferior arc

after communication, and less likely to shift their opinion to the midpoint of the superior arc.

Furthermore, if the opinions of these two agents are the same, their opinions should be the

same after the communication. We can borrow a model from quantum networks [40] to define

the updates of agent i and agent j as follows: agent i and agent j independently update their

opinions to

mod

(

θi(t) + θj(t)

2

)

,

with probability cos2
θi(t)−θj(t)

4 , or to

mod

(

θi(t) + θj(t)

2
+ π

)

,

with probability sin2 θi(t)−θj(t)
4 . We also assume that the selection of both agent i and agent j

is uniformly random. Then we get the following theorem:

Theorem All the nodes reaches consensus almost surely, i.e.,

P
(

lim
t→∞

‖vi(t) − vj(t)‖ = 0, ∀i, j ∈ V
)

= 1,

where ‖ · ‖ is the l2 norm in R
2.

Proof Let pij be the probability that agent i and agent j are chosen at any specific time.

Denote that

Ft = σ(θi(s), i ∈ V, 0 ≤ s ≤ t)

is the σ-algebra flow. Let Ekl[·|Ft] be the conditional expectation at time t when agent k and

agent l have been chosen. Let g(t) =
∑

1≤i,j≤N

cos2
θi(t)−θj(t)

2 . We have that

E[g(t + 1)|Ft] =
∑

{k,l}∈E

pklEkl[g(t + 1)|Ft]

=
∑

{k,l}∈E

pklEkl[g(t + 1)|θm(t), m ∈ V ]

=
∑

{k,l}∈E

pklEkl





∑

1≤i,j≤n

cos2
θi(t + 1) − θj(t + 1)

2
|θm(t), 1 ≤ m ≤ n





= E1 + E2 + E3 + E4 + E5 + E6,
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where

E1 =
∑

{k,l}∈E

pklEkl

[

cos2
θk(t + 1) − θl(t + 1)

2
|θm(t), 1 ≤ m ≤ n

]

,

E2 =
∑

{k,l}∈E

pklEkl





∑

i=k,1≤j≤n,j 6=k,l

cos2
θi(t + 1) − θj(t + 1)

2
|θm(t), 1 ≤ m ≤ n



 ,

E3 =
∑

{k,l}∈E

pklEkl





∑

j=l,1≤i≤n,i6=k,l

cos2
θi(t + 1) − θj(t + 1)

2
|θm(t), 1 ≤ m ≤ n



 ,

E4 =
∑

{k,l}∈E

pklEkl





∑

1≤i,j≤n,i6=k,j 6=l

cos2
θi(t + 1) − θj(t + 1)

2
|θm(t), 1 ≤ m ≤ n



 ,

E5 =
∑

{k,l}∈E

pklEkl

[

cos2
θk(t + 1) − θk(t + 1)

2
|θm(t), 1 ≤ m ≤ n

]

,

E6 =
∑

{k,l}∈E

pklEkl

[

cos2
θl(t + 1) − θl(t + 1)

2
|θm(t), 1 ≤ m ≤ n

]

.

It is easy to verify that

E1 =
∑

{k,l}∈E

pkl

(

cos4
θk(t) − θl(t)

4
+ sin4 θk(t) − θl(t)

4

)

=
∑

{k,l}∈E

pkl

(

1

2
+

1

2
cos2

θk(t) − θl(t)

2

)

,

E4 =
∑

{k,l}∈E

pkl





∑

1≤i,j≤n,i6=k,j 6=l

cos2
θi(t) − θj(t)

2



 ,

E5 = 1 =
∑

{k,l}∈E

pkl cos2
θk(t) − θk(t)

2
,

E6 = 1 =
∑

{k,l}∈E

pkl cos2
θl(t) − θl(t)

2
.

Moreover,

E2 =
∑

{k,l}∈E

pkl

∑

1≤j≤n,j 6=k,l

Ekl

[

cos2
θk(t + 1) − θj(t + 1)

2
|θm(t), 1 ≤ m ≤ n

]

=
∑

{k,l}∈E

pkl

∑

1≤j≤n,j 6=k,l

(

cos2
(θk(t) + θl(t))/2 − θj(t)

2
cos2

θk(t) − θl(t)

4

+ sin2 (θk(t) + θl(t))/2 − θj(t)

2
sin2 θk(t) − θl(t)

4

)

=
∑

{k,l}∈E

pkl

∑

1≤j≤n,j 6=k,l

1

2

(

cos2
θk(t) − θj(t)

2
+ cos2

θl(t) − θj(t)

2

)

,

E3 =
∑

{k,l}∈E

pkl

∑

1≤i≤n,i6=k,l

Ekl

[

cos2
θi(t + 1) − θl(t + 1)

2
|θm(t), 1 ≤ m ≤ n

]
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=
∑

{k,l}∈E

pkl

∑

1≤i≤n,i6=k,l

(

cos2
(θk(t) + θl(t))/2 − θi(t)

2
cos2

θk(t) − θl(t)

4

+ sin2 (θk(t) + θl(t))/2 − θi(t)

2
sin2 θk(t) − θl(t)

4

)

=
∑

{k,l}∈E

pkl

∑

1≤i≤n,i6=k,l

1

2

(

cos2
θk(t) − θi(t)

2
+ cos2

θl(t) − θi(t)

2

)

.

Therefore, we can conclude that

E[g(t + 1)|Ft] = E1 + E2 + E3 + E4 + E5 + E6

=
∑

{k,l}∈E

pkl





∑

1≤i,j≤N

cos2
θi(t) − θj(t)

2
+

1

2
sin2 θk(t) − θl(t)

2





= g(t) +
1

2

∑

{k,l}∈E

pkl sin2 θk(t) − θl(t)

2

≥ g(t). (3.2)

The inequality (3.2) implies that g(t) is a submartingale. It is easy to verify that for all t,

g(t) ≤ n2. Therefore, according to the Martingale Convergence Theorem, g(t) converges to a

finite limit with probability 1. Let G represent the limits of g(t). In other words,

P
(

lim
t→∞

g(t) = G
)

= 1.

By Inequality (3.2) and the Dominated Convergent Theorem, we can prove that

lim
t→∞

E





∑

{k,l}∈E

pkl sin2 θk(t) − θl(t)

2



 = 0.

Thus, for any {k, l} ∈ E,

lim
t→∞

E

[

sin2 θk(t) − θl(t)

2

]

= 0.

Then, we can prove that sin2 θk(t)−θl(t)
2 converges to zero in probability. Therefore, we can

conclude that cos2 θk(t)−θl(t)
2 converges to one in probability. That is to say, g(t) converges to

n2 in probability. As g(t) converges to G almost surely, we know that g(t) converges to n2

almost surely. According to the definition of g(t), θi(t) is equal to θj(t) almost surely, as t

increases to infinity. Thus, everyone reaches consensus. �

4 Conclusion

In this paper, we introduced a few types of models of social networks. The key differences

among these models can be characterized as follows:

(1) The manner of communication between agents. In the DeGroot model, the signed

social network models, and fashion games, agents communicate with all their neighbors. In

the Krause model, agents only communicate with neighbors whose opinions do not deviate too

much from their own. In gossip algorithms, agents just choose one neighbor with whom to

communicate, while in clique gossip algorithms, agents choose all neighbors in one clique with

which to communicate.
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(2) The set of all possible opinions. In fashion games and randomized boolean gossip

algorithms, the possible values of opinions are just 0 and 1. For other models, the possible set

is the real numbers. In the last subsection, we introduced the unit circle as the possible set for

the first time.

(3) Consists of Deterministic or randomized.

(4) The network topology. The underlying graph can be directed, undirected, or even

signed. Moreover, the network topology can be time-variant or time-invariant.

Different combinations of these characteristics form different models, which can then be used

to describe different social network phenomena. Opinion dynamics is an interdisciplinary field

that has implications for economics, computer science, biology, and mathematics. The technical

tools used for studying these models come from graph theory, matrix analysis, combinatorics,

probability, and even artificial intelligence. It is a thriving field that deserves a wider attention.
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