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Abstract We consider a Prandtl model derived from MHD in the Prandtl-Hartmann regime

that has a damping term due to the effect of the Hartmann boundary layer. A global-in-time

well-posedness is obtained in the Gevrey function space with the optimal index 2. The proof

is based on a cancellation mechanism through some auxiliary functions from the study of the

Prandtl equation and an observation about the structure of the loss of one order tangential

derivatives through twice operations of the Prandtl operator.
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1 Introduction and Main Result

We study a Prandtl type system with a damping term induced by a Hartmann magnetic

field that was derived by Gérard-Varet and Prestipino in [11]. Suppose that the fluid domain

is R
n
+ =

{
(x, y) ∈ R

n; x ∈ R
n−1, y > 0

}
. Denote by u and v the tangential and normal

components of the velocity fields. Then the dimensionless magnetic Prandtl model in R
n
+ is

given by 





(∂t + u · ∂x + v∂y − ∂2
y)u + ∂xp + u − U = 0,

∂x · u + ∂yv = 0,

(u, v)|y=0 = (0, 0), lim
y→+∞

u = U ,

u|t=0 = u0,

(1.1)
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where ∂xp and U are the traces of a given Euler flow satisfying the Bernoulli law

(∂t + U · ∂x)U + ∂xp = 0.

System (1.1) is derived from the incompressible MHD system in the mixed Prandtl/Hartmann

regime, where the leading order equations are






(∂t + u · ∂x + v∂y − ∂2
y)u + ∂xp = ∂yb,

∂yu + ∂2
yb = 0,

∂x · u + ∂yv = 0,

(u, v)|y=0 = (0, 0), lim
y→+∞

(u, b) = (U , B),

u|t=0 = u0,

(1.2)

where b stands for the tangential magnetic field satisfying that ∂yb trends to 0 as y → +∞. By

the second equation in (1.2) and the boundary conditions of (u, b), the magnetic fields b can

be determined in terms of u; that is,

∂yb = −(u − U), b = B +

∫ +∞

y

(u − U)dy.

Then system (1.2) reduces to (1.1). We refer to [11] for the detailed argument. Compared with

the classical Prandtl system, there is an extra damping term in (1.1); this does not lead to

any additional difficulty in the local-in-time existence and uniqueness theory. Hence, the local

well-posedness theories of the classical Prandtl system in Sobolev or Gevrey function spaces

established in [2, 5, 16, 28] hold for (1.1). On the other hand, we can expect a global-in-

time solution to (1.1) because of the damping effect. In fact, some results in this direction

were obtained in Xie-Yang [37] and Chen-Ren-Wang-Zhang [3] in the analytic and Sobolev

spaces, respectively, about the 2D global stability of the Hartmann layer that satisfies Oleinik’s

monotonicity condition. This paper aims to study the global-in-time property of the system for

general data without any structural assumption.

Compared with the local-in-time well-posedness theory (see, for instance, [2, 4–7, 9, 12–

14, 17, 20, 24, 38–41] and references therein), the global-in-time property of the Prandtl system

is much less known so that it is far from being well understood. Here we refer to an early work

on weak solutions by Xin-Zhang [38], and a work on analytic solutions by Paicu-Zhang [29] and

the improvement to Gevrey class 2 by Wang-Wang-Zhang [36]. We also mention some other

related works [13, 39, 41]. For the Prandtl system with a suitable background magnetic field,

the local solutions in Sobolev or Gevrey function spaces were obtained in [19, 21, 23, 25], and

the global analytic solution was established recently in [15, 26]. Note that all of these global-in-

time existence results are in 2D setting under some suitable structural conditions on the initial

data. Hence, the global-in-time properties of these systems in 3D setting remain unknown.

On the other hand, there have been some recent studies on the global well-posedness of

hydrostatic Navier-Stokes equations (also called hydrostatic Prandtl equations); these can be

used to describe a large scale motion in atmospheric and oceanic sciences, and are derived as

a limit of the Navier-Stokes equations in a very thin domain. The hydrostatic Navier-Stokes

equations have the same degeneracy structure as in the classical Prandtl system, so that the

analytic regularity is sufficient to obtain the local well-posedness theory for general initial data
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without any structural assumption. Moreover, due to the damping effect, by combining the ver-

tical diffusion and the Poincaré inequality in the vertical interval, the global-in-time property

of the hydrostatic Navier-Stokes equations was recently verified by Paicu-Zhang-Zhang [31].

However, differently from the classical Prandtl equations, the analytic regularity is necessary

for the well-posedness theory of the hydrostatic Prandtl equations without any structural as-

sumption (cf. Renardy’s work [32]). Hence, in order to investigate the well-posedness theory

in a larger function space than analytic, some structural conditions are required. We mention

that the well-posedness in Sobolev space of the hydrostatic Navier-Stokes equations remains

unknown. Under the convex assumption, Masmoudi-Wong [27] established the well-posedness

in a Sobolev space of the hydrostatic Euler equations which is the inviscid version of the hydro-

static Navier-Stokes equation. However, under the same convex assumption, the well-posedness

has been proved for the hydrostatic Navier-Stokes equation only in the Gevrey function space

by Gérard-Varet-Masmoudi-Vicol in [10], with the Gevrey index being up to 9/8, and in [8, 35]

up to 3/2 that is believed to be optimal. Furthermore, the global well-posedness theory of

the hyperbolic version of the 2D hydrostatic Navier-Stokes equation was obtained recently by

Aarach [1] and Paicu-Zhang [30] in analytic and Gevrey function spaces, respectively, with the

extension to the 3D case in [22]. A similar well-posedness result on the hyperbolic Prandtl

equations in Gevrey class was proven in [18]. These results imply that the hyperbolic feature

may lead to some kind of stability effect compared with the parabolic counterparts.

This work aims to combine some kind of intrinsic hyperbolic structure with the extra

magnetic damping term to derive the global-in-time well-posedness for general Gevrey classes

with sharp index 2 initial data without any structural assumption. More precisely, inspired

by [5, 16], we introduce some auxiliary functions to cancel the nonlocal terms involving the

loss of tangential derivatives, and then investigate the intrinsic hyperbolic feature for evolution

equations of the auxiliary functions.

In the discussion that follows, we assume that U = 0 and that ∂xp = 0. We expect the

approach can be applied to the case with a more general outer flow satisfying some suitable

conditions; that is, we consider system (1.1) as






(∂t + u · ∂x + v∂y − ∂2
y)u + u = 0,

∂x · u + ∂yv = 0,

(u, v)|y=0 = (0, 0), lim
y→+∞

u = 0,

u|t=0 = u0.

(1.3)

Note (1.3) is a degenerate parabolic system with a loss of tangential derivatives in the nonlocal

normal velocity given by

v(t, x, y) = −

∫ y

0

∂x · u(t, x, ỹ)dỹ

as the main degeneracy feature of the Prandtl type equations.

Notations In what follows, we will use ‖ · ‖L2 and (·, ·)L2 to denote the norm and inner

product of L2 = L2(Rn
+), and use the notation ‖ · ‖L2

x
and (·, ·)L2

x
when the variable x is

specified. Similar notation will be used for L∞. In addition, we use Lp
xLq

y = Lp(Rn−1; Lq(R+))

for the classical Sobolev space. For a vector-valued function A = (A1, A2, · · · , Ak), we use the
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convention that ‖A‖2
L2 =

∑

1≤j≤k

‖Aj‖
2
L2 . Throughout the paper, 〈y〉 := (1 + y2)1/2.

Definition 1.1 Let ℓ > 1/2 be a given number and let τ = τN be a given weight function

defined by

τ(y) = τN (y) =
(
N + y2

)1/2
, (1.4)

with N ≥ 1 a fixed integer depending only on ℓ such that

ℓ + 3

N1/2
+

ℓ2 + ℓ

N
≤

1

8
. (1.5)

The space Xr of Gevrey functions with the Gevrey index 2 consists of all smooth (scalar or

vector-valued) functions h such that the norm ‖h‖Xr < +∞, where

‖h‖2
Xr

=
∑

0≤j≤3

∑

α∈Z
n−1
+

L2
r,|α|+j‖τ

ℓ+j∂α
x ∂j

yh‖2
L2,

with

Lr,k =
rk+1(k + 1)10

(k!)2
, k ∈ Z+, r > 0. (1.6)

Theorem 1.2 Let the dimension be n = 2 or 3, and let the initial datum u0 in (1.3)

belong to X2ρ0 for some ρ0 > 0, compatible with the boundary condition in (1.3). Suppose that

‖u0‖X2ρ0
≤ ε0

for some sufficiently small ε0 > 0. Then the magnetic Prandtl model (1.3) admits a unique

global solution u ∈ L∞ ([0, +∞[; Xρ) with

ρ = ρ(t) =
ρ0

2
+

ρ0

2
e−t/12. (1.7)

Moreover,

sup
t≥0

et/4‖u(t)‖Xρ(t)
+

(∫ +∞

0

et/2‖∂yu(t)‖2
Xρ(t)

dt

)1/2

≤
4(ρ0 + 1)

ρ0
ε0.

Remark 1.3 Note that the same argument shows that the global well-posedness property

holds for a Gevrey function space with the Gevrey index in the interval [1, 2].

2 A Priori Estimate in 2D

To have a clear presentation, we give a detailed proof of Theorem 1.2 in 2D. For n = 2, we

have the scalar tangential velocity u, and then the magnetic Prandtl model (1.3) can be written

as 





(∂t + u∂x + v∂y − ∂2
y)u + u = 0,

∂xu + ∂yv = 0,

(u, v)|y=0 = (0, 0), lim
y→+∞

u = 0,

u|t=0 = u0.

(2.1)

The key part is to derive an a priori estimate for (2.1) so that the existence and uniqueness

stated in Theorem 1.2 follows from a standard argument. Hence, for brevity, we only present

the proof of the following a priori estimates for solutions to (2.1) with Gevrey regularity:



No.6 W.X. Li et al: GLOBAL WELL-POSEDNESS OF A PRANDTL MODEL FROM MHD 2347

Theorem 2.1 Let Xρ be the Gevrey space given in Definition 1.1. Suppose that the

initial datum u0 in (2.1) belongs to X2ρ0 for some ρ0 > 0, and let u ∈ L∞ ([0, +∞[; Xρ) be

any solution to (2.1) satisfying that
∫ ∞

0

(
‖u(t)‖2

Xρ(t)
+ ‖∂yu(t)‖2

Xρ(t)

)
dt < +∞, (2.2)

where ρ is defined by (1.7). If

‖u0‖X2ρ0
≤ ε0 (2.3)

for some sufficiently small ε0 > 0, then

sup
t≥0

et/4‖u(t)‖Xρ(t)
+

(∫ +∞

0

et/2‖∂yu(t)‖2
Xρ(t)

dt

)1/2

≤
4(ρ0 + 1)

ρ0
ε0.

2.1 Methodologies and Auxiliary Functions

The main difficulty for the well-posedness of Prandtl type equations comes from the loss of

tangential derivatives. To overcome the tangential degeneracy, the abstract Cauchy-Kowalewski

Theorem is an effective method, for example, for the local existence and uniqueness in an

analytic setting, cf. [33]. However, it is not trivial to relax the analyticity regularity to a larger

function space such as Gevrey space for well-posedness. For this, some intrinsic structure of

the system needs to be used, cf. [5, 16]. As was shown in [18, 22, 30], the well-posedness is

well expected in the Gevrey class rather than the analytic setting for the hyperbolic Prandtl

equations without any structural assumption. This indicates that the hyperbolic feature may

act as a stabilizing factor for the Gevrey well-posedness theory. In this paper, with the extra

damping term in magnetic Prandtl model, we will prove the global-in-time existence in a Gevrey

function space by exploring the intrinsic hyperbolic feature for auxiliary functions.

In order to clarify the stability effect of the hyperbolic feature, let us use the following toy

model with a hyperbolic factor ∂2
t to illustrate the main idea in the proof:

∂2
t h + h∂xh − ∂2

yh = 0, h|t=0 = h0 and ∂th|t=0 = h1, (2.4)

where one order x-derivative is lost in twice-time differentiation. Denoting that g = ∂th, the

above Cauchy problem can be rewritten as






∂th = g,

∂tg − h∂xh − ∂2
yh = 0,

(h, g)|t=0 = (h0, h1).

(2.5)

To overcome the loss of the x-derivative, we introduce a decreasing function of radiusρ = ρ(t).

In what follows, ρ depends on time t, but we only write it as ρ instead of ρ(t) for simplicity of

the notations. Moreover, we denote by ρ′ and ρ′′ the first and the second time derivatives of ρ,

respectively. Now we derive estimates on the Gevrey norm

+∞∑

m=0

ρm+1

m!2
(‖∂m

x h‖L2 + ‖∂m
x ∂yh‖L2 + ‖∂m

x g‖L2) ,

where (h, g) solves the Cauchy problem (2.5). By direct calculation and using the fact that

ρ′ ≤ 0, we have that

1

2

d

dt

(
ρ2(m+1)

m!4

(

‖∂m
x h‖2

L2 + ‖∂m
x ∂yh‖2

L2 + ‖∂m
x g‖2

L2

))
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= ρ′
m + 1

ρ

ρ2(m+1)

m!4
(
‖∂m

x h‖2
L2 + ‖∂m

x ∂yh‖2
L2 + ‖∂m

x g‖2
L2

)

+
ρ2(m+1)

m!4
(
h∂m+1

x h, ∂m
x g

)

L2 + l.o.t.

≤ ρ′
m + 1

ρ

ρ2(m+1)

m!4
(
‖∂m

x ∂yh‖2
L2 + ‖∂m

x g‖2
L2

)

+
(m + 1)2

ρ
‖h‖L∞

(
ρm+2

(m + 1)!2
‖∂m+1

x h‖L2

)(
ρm+1

m!2
‖∂m

x g‖L2

)

+ l.o.t.,

where l.o.t. refers to the lower-order terms that can be controlled directly. Moreover, we have

( cf. Subsection 2.2 for details) that

ρ′
m + 1

ρ

ρ2(m+1)

m!4
‖∂m

x g‖2
L2 ≤ ρ′3

(m + 1)3

ρ3

ρ2(m+1)

m!4
‖∂m

x h‖2
L2 + l.o.t..

In summary,

1

2

d

dt

(
ρ2(m+1)

m!4
(
‖∂m

x h‖2
L2 + ‖∂m

x ∂yh‖2
L2 + ‖∂m

x g‖2
L2

)
)

≤
1

2
ρ′

m + 1

ρ

ρ2(m+1)

m!4
(
‖∂m

x ∂yh‖2
L2 + ‖∂m

x g‖2
L2

)
+

1

2
ρ′3

(m + 1)3

ρ3

ρ2(m+1)

m!4
‖∂m

x h‖2
L2

+
1

2
‖h‖L∞

m + 1

ρ

ρ2(m+1)

m!4
‖∂m

x g‖2
L2 +

1

2
‖h‖L∞

(m + 1)3

ρ3

ρ2(m+2)

(m + 1)!4
‖∂m+1

x h‖2
L2 + l.o.t..

If we define a norm ‖| · ‖|Yρ by

‖|h‖|2Yρ
=

+∞∑

m=0

m + 1

ρ

ρ2(m+1)

m!4
(
‖∂m

x ∂yh‖2
L2 + ‖∂m

x ∂th‖
2
L2

)
+

+∞∑

m=0

(m + 1)3

ρ3

ρ2(m+1)

m!4
‖∂m

x h‖2
L2,

(2.6)

then it follows from the above inequality that

1

2

d

dt

( +∞∑

m=0

ρ2(m+1)

m!4
(
‖∂m

x h‖2
L2 + ‖∂m

x ∂yh‖2
L2 + ‖∂m

x g‖2
L2

)
)

≤
1

2

(

max
{
ρ′, ρ′3

}
+ ‖h‖L∞

)

‖|h‖|3Yρ
+ l.o.t. ≤ l.o.t.,

provided that ‖h‖L∞ is bounded by |max
{
ρ′, ρ′3

}
| because ρ′ < 0.

Differently from the hyperbolic toy model (2.4), the magnetic Prandtl model is a parabolic

initial-boundary problem. If we perform estimates for the 2D magnetic Prandtl model (2.1)

directly, the above energy estimate cannot be closed in the Gevrey norm ‖ · ‖Xρ . In order to

overcome the loss of derivative difficulty, as in [5, 16], some anxilliary functions are needed. More

precisely, for a solution u ∈ L∞ ([0, +∞[; Xρ) to (2.1) satisfying the conditions in Theorem 2.1,

let U be a solution to the problem






(
∂t + u∂x + v∂y − ∂2

y

)
∫ y

0

Udỹ +

∫ y

0

Udỹ = −∂3
xv,

U|t=0 = 0, ∂yU|y=0 = U|y→+∞ = 0.

(2.7)

The existence of U follows from the standard parabolic theory. In fact, one can first apply the

existence theory for linear parabolic equations to construct a solution f to the initial-boundary
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problem
{ (

∂t + u∂x + v∂y − ∂2
y

)
f + f = −∂3

xv,

f |t=0 = 0, f |y=0 = ∂yf |y→+∞ = 0,
(2.8)

and then set f =
∫ y

0 U(t, x, ỹ)dỹ. Moreover, under condition (2.2), we use the parabolic regu-

larity theory to conclude that, for ℓ > 1/2 and for any m ≥ 0,






〈y〉
−ℓ

∂m
x

∫ y

0

U(t, x, ỹ)dỹ = 〈y〉
−ℓ

∂m
x f ∈ L2

(
[0, +∞[; L2

)
,

∂m
x U = ∂y∂m

x f ∈ L2
(
[0, +∞[; L2

xH1
y

)
.

(2.9)

The above auxiliary functions are slightly different from those introduced in [16] which were

inspired by [5]. As in [16]. by U and

λ = ∂3
xu − (∂yu)

∫ y

0

U(t, x, ỹ)dỹ, (2.10)

we can cancel the term involving v with the highest tangential derivative as shown in Subsection

2.2. The two auxiliary functions have the relation

(
∂t + u∂x + v∂y − ∂2

y

)
U + U =∂xλ + (∂x∂yu)

∫ y

0

U(t, x, ỹ)dỹ + (∂xu)U . (2.11)

In addition,

(
∂t + u∂x + v∂y − ∂2

y

)
∂xλ + ∂xλ = −4(∂xu)∂4

xu − 3(∂3
xv) + l.o.t.. (2.12)

Recall that the main structure of (2.4) or (2.5) is that the loss of the one order x-derivative

occurs in the twice-time differentiation. If U behaves like the 3-order x-derivative of u, then

(2.11)–(2.12) admit a similar structure as shown in toy model (2.5). More precisely, we have the

loss of one order x-derivative in the twice application of the Prandtl operator instead of a time

differentiation so that the pair (U , ∂xλ) plays a similar role as (h, g) in (2.5). Inspired by the

triple norm defined in (2.6), we define the norms on the solutions and the auxiliary functions

as follows:

Definition 2.2 Let U , λ be defined as in (2.7) and (2.10), respectively. By denoting

~a = (u,U , λ),

we define |~a|Xρ , |~a|Yρ and |~a|Zρ by

|~a|2Xρ
= ‖u‖2

Xρ
+

+∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2 +

+∞∑

m=0

L2
ρ,m+3‖∂

m
x U‖2

L2 ,

|~a|2Yρ
=

∑

0≤j≤3

+∞∑

m=0

m + j + 1

ρ
L2

ρ,m+j‖τ
ℓ+j∂m

x ∂j
yu‖2

L2 +

+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2

+

+∞∑

m=0

(m + 4)3

ρ3
L2

ρ,m+3‖∂
m
x U‖2

L2 ,

|~a|2Zρ
= ‖∂yu‖2

Xρ
+

+∞∑

m=0

L2
ρ,m+2‖∂y∂

m
x λ‖2

L2 +
+∞∑

m=0

L2
ρ,m+3‖∂y∂m

x U‖2
L2 ,

where ‖ · ‖Xρ and Lρ,k are given as in Definition 1.1.
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Remark 2.3 The norms defined above satisfy that

‖u‖Xρ ≤ |~a|Xρ and ‖∂yu‖Xρ ≤ |~a|Zρ .

If ρ ≤ 1, then

|~a|Xρ ≤ |~a|Yρ .

In view of the above remark, the a priori estimate given in Theorem 2.1 holds from the

following theorem:

Theorem 2.4 Under the same assumption as in Theorem 2.1 we have that

sup
t≥0

et/4|~a(t)|Xρ(t)
+

( ∫ +∞

0

et/2|~a(t)|2Zρ(t)
dt

)1/2

≤
4(ρ0 + 1)

ρ0
ε0.

The proof of this theorem is given in Subsections 2.2-2.4. To simplify the notations, we will

use C to denote a generic constant which may vary from line to line and depend only on the

Sobolev embedding constants and the constants ℓ and ρ0 in Definition 1.1 and (1.7). Observe

that Xr1 ⊂ Xr2 for r1 ≥ r2. Then we can assume, without loss of generality, that the initial

radius ρ0 ≤ 1. We now list some facts that follow directly from the definition (1.7) of ρ. For

t ≥ 0,

ρ0/2 ≤ ρ(t) ≤ ρ0 ≤ 1, ρ′(t) ≤ ρ′3 < 0, ρ′′(t) −
ρ′(t)2

ρ(t)
=

ρ0e
−t/12

288(1 + e−t/12)
≥ 0. (2.13)

Recall that Lρ,m is defined in (1.6). Then

∀ m ≥ 0,
d

dt
Lρ,m = ρ′

m + 1

ρ
Lρ,m. (2.14)

We will use the following Young’s inequality for discrete convolution:

[ ∞∑

m=0

( m∑

j=0

pjqm−j

)2
]1/2

≤
( ∞∑

m=0

q2
m

)1/2 ∞∑

j=0

pj . (2.15)

Here {pj}j≥0 and {qj}j≥0 are positive sequences. As an immediate consequence of (2.15),

∞∑

m=0

m∑

j=0

pjqm−jrm ≤
( ∞∑

m=0

q2
m

)1/2( ∞∑

m=0

r2
m

)1/2 ∞∑

j=0

pj (2.16)

holds for any positive sequences {pj}j≥0 , {qj}j≥0 and {rj}j≥0 .

2.2 Estimate on the Auxiliary Functions

The following proposition is the main part of the proof for Theorem: 2.4.

Proposition 2.5 Under the same assumption as that in Theorem 2.1, we have that

1

2

d

dt

+∞∑

m=0

(

L2
ρ,m+2‖∂

m
x λ‖2

L2 + L2
ρ,m+3‖∂

m
x U‖2

L2

)

+

+∞∑

m=0

(

L2
ρ,m+2‖∂

m
x ∂yλ‖2

L2 + L2
ρ,m+3‖∂

m
x ∂yU‖

2
L2

)

+
1

2

+∞∑

m=0

(

L2
ρ,m+2‖∂

m
x λ‖2

L2 + L2
ρ,m+3‖∂

m
x U‖2

L2

)
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+
1

4

d

dt

+∞∑

m=0

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2 +
1

2

+∞∑

m=0

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

≤
1

4
ρ′3

+∞∑

m=0

(
m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2 +
(m + 4)3

ρ3
L2

ρ,m+3‖∂
m
x U‖2

L2

)

+ C
(

|~a|Xρ + |~a|2Xρ

)(

|~a|2Yρ
+ |~a|2Zρ

)

.

First of all, the auxiliary function λ satisfies the following equation:
(
∂t + u∂x + v∂y − ∂2

y

)
λ + λ

= − 4(∂xu)∂3
xu − 3(∂2

xv)∂x∂yu − 3(∂2
xu)2 − 3(∂xv)∂2

x∂yu + 2(∂2
yu)U + (∂yu)

∫ y

0

Udỹ.

That is,
(
∂t + u∂x + v∂y − ∂2

y

)
λ + λ = H, (2.17)

with

H = − 4(∂xu)λ +
(

∂yu − 4(∂xu)∂yu
)∫ y

0

Udỹ + 3(∂x∂yu)

∫ y

0

λ(t, x, ỹ)dỹ

+ 3(∂x∂yu)

∫ y

0

(

(∂yu)(t, x, ỹ)

∫ ỹ

0

U(t, x, r)dr

)

dỹ

− 3(∂2
xu)2 − 3(∂xv)∂2

x∂yu + 2(∂2
yu)U . (2.18)

By the definition (2.10) of λ and the fact that λ|y=0 = λ|y→+∞ = 0, and the assumptions (2.2)

and (2.9), we have, for all m ≥ 0, that

∂m
x λ ∈ L2

(

[0, +∞[; L2
(

Rx; H1
0 (R+)

))

and ∂m
x ∂2

yλ ∈ L2
(

[0, +∞[; L2
(

Rx; H−1(R+)
))

,

and

∂m
x H, ∂m

x (u∂xλ + v∂yλ) ∈ L2
(
[0, +∞[; L2

)
.

This implies that

∂t∂
m
x λ ∈ L2

(

[0, +∞[; L2
(

Rx; H−1(R+)
))

.

Thus,

t 7→ ‖∂m
x λ(t)‖2

L2

is absolutely continuous on [0, +∞[, and, moreover,

1

2

d

dt
‖∂m

x λ‖2
L2 = 〈∂t∂

m
x λ, ∂m

x λ〉 ,

where 〈·, ·〉 stands for the pairing between L2
(

Rx; H−1(R+)
)

and L2
(

Rx; H1
0 (R+)

)

. Hence,

by (2.14),

1

2

d

dt
L2

ρ,m+2‖∂
m
x λ‖2

L2 = ρ′
m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2 + L2
ρ,m+2 〈∂t∂

m
x λ, ∂m

x λ〉 .

Consequently, we apply ∂m
x to (2.17) and then take the pairing with ∂m

x λ between

L2
(

Rx; H−1(R+)
)

and L2
(

Rx; H1
0 (R+)

)

,

together with the factor L2
ρ,m+2, to get that

1

2

d

dt

+∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2 +

+∞∑

m=0

L2
ρ,m+2‖∂

m
x ∂yλ‖2

L2 +

+∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2
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= ρ′
+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2 +

+∞∑

m=0

L2
ρ,m+2 (∂m

x H, ∂m
x λ)L2 , (2.19)

where H is given in (2.18).

The next lemmas are for the estimate on the last term on the right side of (2.19).

Lemma 2.6 Let |~a|Xρ , |~a|Yρ and |~a|Zρ be given as in Definition 2.2. Under the same

assumption as in Theorem 2.1, we have that

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[

3(∂x∂yu)

∫ y

0

(

(∂yu)(t, x, ỹ)

∫ ỹ

0

U(t, x, r)dr

)

dỹ
]

, ∂m
x λ

)

L2
≤ C|~a|2Xρ

|~a|2Yρ
.

(2.20)

Similarly, it holds that

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[

2(∂2
yu)U +

(

∂yu − 4(∂xu)∂yu
)∫ y

0

Udỹ
]

, ∂m
x λ

)

L2

≤ C|~a|Xρ |~a|
2
Zρ

+ C
(
|~a|Xρ + |~a|2Xρ

)
|~a|2Yρ

.

Proof It suffices to prove the first estimate because the second one can be obtained

similarly.

Step 1 For simplicity of notation, set

L (u,U) :=

∫ y

0

(

(∂yu)(t, x, ỹ)

∫ ỹ

0

U(t, x, r)dr

)

dỹ. (2.21)

We first prove the following two estimates for L (u,U):

( +∞∑

m=0

(m + 4)3

ρ3
L2

ρ,m+3‖∂
m
x L (u,U)‖2

L2
xL∞

y

)1/2

≤ C|~a|Xρ |~a|Yρ (2.22)

and
( +∞∑

m=0

L2
ρ,m+5‖∂

m
x L (u,U)‖2

L∞

)1/2

≤ C|~a|2Xρ
. (2.23)

In fact, Leibniz’s formula gives that

(m + 4)3/2

ρ3/2
Lρ,m+3‖∂

m
x L (u,U)‖L2

xL∞

y
≤ am + bm, (2.24)

with

am = C

[m/2]
∑

j=0

m!

j!(m − j)!

(m + 4)3/2

ρ3/2

Lρ,m+3

Lρ,j+3Lρ,m−j+3

×
(
Lρ,j+3‖ 〈y〉

ℓ+1
∂j

x∂yu‖L∞

x L2
y

)(
Lρ,m−j+3‖∂

m−j
x U‖L2

)

bm = C

m∑

j=[m/2]+1

m!

j!(m − j)!

(m + 4)3/2

ρ3/2

Lρ,m+3

Lρ,j+1Lρ,m−j+5

×
(
Lρ,j+1‖ 〈y〉

ℓ+1
∂j

x∂yu‖L2

)(
Lρ,m−j+5‖∂

m−j
x U‖L∞

x L2
y

)
,

where [m/2] represents the largest integer less than or equal to m/2. Direct computation shows

that, for any 0 ≤ j ≤ [m/2],

m!

j!(m − j)!

(m + 4)3/2

ρ3/2

Lρ,m+3

Lρ,j+3Lρ,m−j+3
≤

C

ρ4

1

j + 1

(m − j + 4)3/2

ρ3/2
≤

C

j + 1

(m − j + 4)3/2

ρ3/2
,
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where we have used the fact that ρ0/2 ≤ ρ ≤ ρ0 in the last inequality. Then

+∞∑

m=0

a2
m ≤ C

+∞∑

m=0

[ [m/2]
∑

j=0

Lρ,j+3‖ 〈y〉
ℓ+1 ∂j

x∂yu‖L∞

x L2
y

j + 1

(m − j + 4)3/2

ρ3/2
Lρ,m−j+3‖∂

m−j
x U‖L2

]2

≤ C

( +∞∑

j=0

Lρ,j+3‖ 〈y〉
ℓ+1

∂j
x∂yu‖L∞

x L2
y

j + 1

)2 +∞∑

j=0

(j + 4)3

ρ3
L2

ρ,j+3‖∂
j
xU‖

2
L2

≤ C|~a|2Xρ
|~a|2Yρ

,

where we have used Young’s inequality (2.15) for discrete convolution. Similarly, by using the

estimate

∀ [m/2] ≤ j ≤ m,
m!

j!(m − j)!

(m + 4)3/2

ρ3/2

Lρ,m+3

Lρ,j+1Lρ,m−j+5
≤

C

m − j + 1
,

we obtain, by observing |~a|Xρ ≤ |~a|Yρ , that

+∞∑

m=0

b2
m ≤ C

( +∞∑

j=0

Lρ,j+5‖∂
j
xU‖L∞

x L2
y

j + 1

)2 +∞∑

j=0

L2
ρ,j+1‖ 〈y〉

ℓ+1
∂j

x∂yu‖2
L2

≤ C|~a|4Xρ
≤ C|~a|2Xρ

|~a|2Yρ
.

Combining the above estimates with (2.24) yields (2.22).

Step 2 To prove (2.20), Leibniz’s formula gives that

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[
3(∂x∂yu)L (u,U)

]
, ∂m

x λ
)

L2
≤ I1 + I2, (2.25)

where

I1 = 3

+∞∑

m=0

[m/2]
∑

j=0

(
m

j

)
Lρ,m+2

Lρ,j+4Lρ,m−j+3

ρ2

(m − j + 4)
3
2 (m + 1)

1
2

Lρ,j+4‖∂
j+1
x ∂yu‖L∞

x L2
y

×
((m − j + 4)3/2

ρ3/2
Lρ,m−j+3‖∂

m−j
x L (u,U)‖L2

xL∞

y

)( (m + 1)1/2

ρ1/2
Lρ,m+2‖∂

m
x λ‖L2

)

,

I2 = 3
+∞∑

m=0

m∑

j=[m/2]+1

(
m

j

)
Lρ,m+2

Lρ,j+2Lρ,m−j+5
Lρ,j+2‖∂

j+1
x ∂yu‖L2

×
(
Lρ,m−j+5‖∂

m−j
x L (u,U)‖L∞

)(
Lρ,m+2‖∂

m
x λ‖L2

)
.

Straightforward calculation shows that

∀ 0 ≤ j ≤ [m/2],
m!

j!(m − j)!

Lρ,m+2

Lρ,j+4Lρ,m−j+3

ρ2

(m − j + 4)3/2(m + 1)1/2
≤

C

j + 1
.

Thus,

I1 ≤ C

+∞∑

m=0

[m/2]
∑

j=0

Lρ,j+4‖∂
j+1
x ∂yu‖L∞

x L2
y

j + 1

×
( (m − j + 4)3/2

ρ3/2
Lρ,m−j+3‖∂

m−j
x L (u,U)‖L2

xL∞

y

)((m + 1)1/2

ρ1/2
Lρ,m+2‖∂

m
x λ‖L2

)

≤ C
+∞∑

j=0

Lρ,j+4‖∂
j+1
x ∂yu‖L∞

x L2
y

j + 1

( +∞∑

m=0

(m + 4)3

ρ3
L2

ρ,m+3‖∂
m
x L (u,U)‖2

L2
xL∞

y

) 1
2

|~a|Yρ
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≤ C|~a|2Xρ
|~a|2Yρ

,

where we have used (2.16) in the second inequality and (2.22) in the last inequality.

For I2, by (2.23) and the estimate

∀ [m/2] + 1 ≤ j ≤ m,
m!

j!(m − j)!

Lρ,m+2

Lρ,j+2Lρ,m−j+5
≤

C

m − j + 1
,

we have that

I2 ≤ C

( +∞∑

j=0

L2
ρ,j+2‖∂

j+1
x ∂yu‖2

L2

)1/2( +∞∑

m=0

Lρ,m+5‖∂
m
x L (u,U)‖L∞

m + 1

)

|~a|Xρ

≤ C|~a|4Xρ
≤ C|~a|2Xρ

|~a|2Yρ
.

Substituting the above estimates on I1 and I2 into (2.25) yields the first estimate of (2.20) in

Lemma 2.6.

Step 3 It remains to prove the second estimate in Lemma 2.6. For this, write

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[
2(∂2

yu)U
]
, ∂m

x λ
)

L2

≤ 2

+∞∑

m=0

[m/2]
∑

j=0

m!

j!(m − j)!

Lρ,m+2

Lρ,j+5Lρ,m−j+3

ρ2

(m − j + 4)3/2(m + 1)1/2
(Lρ,j+5‖∂

j
x∂2

yu‖L∞)

×
( (m − j + 4)3/2

ρ3/2
Lρ,m−j+3‖∂

m−j
x U‖L2

)( (m + 1)1/2

ρ1/2
Lρ,m+2‖∂

m
x λ‖L2

)

+ 2

+∞∑

m=0

m∑

j=[m/2]+1

m!

j!(m − j)!

Lρ,m+2

Lρ,j+2Lρ,m−j+5
(Lρ,j+2‖ 〈y〉

1/2
∂j

x∂2
yu‖L2)

×
(
Lρ,m−j+5‖∂

m−j
x U‖L∞

)(
Lρ,m+2‖∂

m
x λ‖L2

)
. (2.26)

Similarly to the previous step, we conclude that the first term on the right hand side of (2.26) is

bounded from above by C|~a|Xρ |~a|
2
Yρ

, and the last term is bounded from above by C|~a|2Xρ
|~a|Zρ .

Thus,

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[
2(∂2

yu)U
]
, ∂m

x λ
)

L2
≤ C|~a|Xρ |~a|

2
Yρ

+ C|~a|2Xρ
|~a|Zρ

≤ C|~a|Xρ |~a|
2
Yρ

+ C|~a|Xρ |~a|
2
Zρ

.

Similarly,

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[(

∂yu − 4(∂xu)∂yu
)∫ y

0

Udỹ
]

, ∂m
x λ

)

L2
≤ C

(
|~a|Xρ + |~a|2Xρ

)
|~a|2Yρ

.

Combining the above two estimates gives the second estimate in Lemma 2.6. This completes

the proof of the lemma. �

Lemma 2.7 Let |~a|Xρ , |~a|Yρ and |~a|Zρ be given as in Definition 2.2. Under the same

assumption as in Theorem 2.1, we have that

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[

3(∂x∂yu)

∫ y

0

λ(t, x, ỹ)dỹ
]

, ∂m
x λ

)

L2
≤ C|~a|Xρ |~a|

2
Yρ

,
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and
+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[
− 4(∂xu)λ − 3(∂2

xu)2 − 3(∂xv)∂2
x∂yu

]
, ∂m

x λ
)

L2

≤ C|~a|Xρ |~a|
2
Yρ

+ C|~a|Xρ |~a|
2
Zρ

.

Proof By Leibniz’s formula, we have that

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[

(∂x∂yu)

∫ y

0

λ(t, x, ỹ)dỹ
]

, ∂m
x λ

)

L2

≤

+∞∑

m=0

[m/2]
∑

j=0

(
m

j

)

L2
ρ,m+2‖ 〈y〉

ℓ
∂j+1

x ∂yu‖L∞

x L2
y
‖∂m−j

x λ‖L2‖∂m
x λ‖L2

+

+∞∑

m=0

m∑

j=[m/2]+1

(
m

j

)

L2
ρ,m+2‖ 〈y〉

ℓ
∂j+1

x ∂yu‖L2‖∂m−j
x λ‖L∞

x L2
y
‖∂m

x λ‖L2 , (2.27)

where we have used the fact that

‖ 〈y〉−ℓ
∫ y

0

∂m−j
x λdỹ‖L2

xL∞

y
≤ C‖∂m−j

x λ‖L2

for ℓ > 1/2 with 〈y〉 = (1 + y2)1/2. By

∀ 0 ≤ j ≤ [m/2],
m!

j!(m − j)!

Lρ,m+2

Lρ,j+4Lm−j+2
≤

C

j + 1
,

we have that

+∞∑

m=0

[m/2]
∑

j=0

(
m

j

)

L2
ρ,m+2‖ 〈y〉

ℓ
∂j+1

x ∂yu‖L∞

x L2
y
‖∂m−j

x λ‖L2‖∂m
x λ‖L2

≤ C

+∞∑

m=0

[m/2]
∑

j=0

Lρ,j+4‖ 〈y〉
ℓ
∂j+1

x ∂yu‖L∞

x L2
y

j + 1
(Lρ,m−j+2‖∂

m−j
x λ‖L2)(Lρ,m+2‖∂

m
x λ‖L2)

≤ C
+∞∑

j=0

Lρ,j+4‖ 〈y〉
ℓ
∂j+1

x ∂yu‖L∞

x L2
y

j + 1

+∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2 ≤ C|~a|3Xρ
, (2.28)

where (2.16) is used in the second inequality and

+∞∑

j=0

Lρ,j+4‖ 〈y〉
ℓ
∂j+1

x ∂yu‖L∞

x L2
y

j + 1
≤ C

( +∞∑

j=0

L2
ρ,j+4‖ 〈y〉

ℓ
∂j+1

x ∂yu‖2
L∞

x L2
y

)1/2

≤ C|~a|Xρ

is used in the last inequality. Similarly, by noting that

∀ [m/2] + 1 ≤ j ≤ m,
m!

j!(m − j)!

Lρ,m+2

Lρ,j+2Lm−j+4
≤

C

m − j + 1
,

we have that
+∞∑

m=0

m∑

j=[m/2]+1

(
m

j

)

L2
ρ,m+2‖ 〈y〉

ℓ
∂j+1

x ∂yu‖L2‖∂m−j
x λ‖L∞

x L2
y
‖∂m

x λ‖L2

≤ C

( +∞∑

j=0

L2
ρ,j+2‖ 〈y〉

ℓ
∂j+1

x ∂yu‖2
L2

) 1
2
( +∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2

) 1
2

+∞∑

m=0

Lρ,m+4‖∂
m
x λ‖L∞

x L2
y

m + 1

≤ C|~a|3Xρ
.
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By substituting the above inequality and (2.28) into (2.27) and observing that |~a|Xρ ≤ |~a|Yρ ,

we obtain the first estimate in Lemma 2.7.

A similar argument as that above gives that

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[
− 4(∂xu)λ − 3(∂2

xu)2
]
, ∂m

x λ
)

L2
≤ C|~a|3Xρ

,

and

+∞∑

m=0

L2
ρ,m+2

(

∂m
x

[
− 3(∂xv)∂2

x∂yu
]
, ∂m

x λ
)

L2

≤ C

+∞∑

m=0

[m/2]
∑

j=0

(
m

j

)

L2
ρ,m+2‖ 〈y〉

ℓ
∂j+2

x u‖L∞

x L2
y
‖∂m−j+2

x ∂yu‖L2‖∂m
x λ‖L2

+C
+∞∑

m=0

m∑

j=[m/2]+1

(
m

j

)

L2
ρ,m+2‖ 〈y〉

ℓ ∂j+2
x u‖L2‖∂m−j+2

x ∂yu‖L∞

x L2
y
‖∂m

x λ‖L2

≤ C|~a|2Xρ
|~a|Zρ ≤ C|~a|3Xρ

+ C|~a|Xρ |~a|
2
Zρ

,

where v = −
∫ y

0 ∂xu(t, x, ỹ)dỹ is used. Combining the above estimates and observing that

|~a|Xρ ≤ |~a|Yρ gives the second estimate in Lemma 2.7. Hence, the proof of the lemma is

complete. �

By the definition of H given in (2.18), the estimates in Lemmas 2.6 and 2.7 yield that

+∞∑

m=0

L2
ρ,m+2 (∂m

x H, ∂m
x λ)L2 ≤ C|~a|Xρ |~a|

2
Zρ

+ C
(
|~a|Xρ + |~a|2Xρ

)
|~a|2Yρ

.

Therefore, we have, by the equality (2.19), the following corollary:

Corollary 2.8 (Estimate for λ) Under the same assumption as in Theorem 2.1, we have

that

1

2

d

dt

+∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2 +
+∞∑

m=0

L2
ρ,m+2‖∂

m
x ∂yλ‖2

L2 +
+∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2

≤ ρ′
+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2 + C|~a|Xρ |~a|
2
Zρ

+ C
(
|~a|Xρ + |~a|2Xρ

)
|~a|2Yρ

.

We now turn to derive the estimate on U .

Lemma 2.9 (Estimate on U) Under the same assumption as in Theorem 2.1, we have

1

2

d

dt

+∞∑

m=0

L2
ρ,m+3‖∂

m
x U‖2

L2 +

+∞∑

m=0

L2
ρ,m+3‖∂

m
x ∂yU‖

2
L2 +

1

2

+∞∑

m=0

L2
ρ,m+3‖∂

m
x U‖2

L2

≤
1

2

+∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2 + C|~a|Xρ |~a|
2
Yρ

.

Proof By (2.9) and the boundary condition that ∂yU|y=0 = U|y=+∞ = 0, the energy

estimate on (2.11) gives

1

2

d

dt

+∞∑

m=0

L2
ρ,m+3‖∂

m
x U‖2

L2 +

+∞∑

m=0

L2
ρ,m+3‖∂

m
x ∂yU‖

2
L2 +

+∞∑

m=0

L2
ρ,m+3‖∂

m
x U‖2

L2
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≤ ρ′
+∞∑

m=0

m + 4

ρ
L2

ρ,m+3‖∂
m
x U‖2

L2 +

+∞∑

m=0

L2
ρ,m+3‖∂

m+1
x λ‖L2‖∂m

x U‖L2

+
+∞∑

m=0

L2
ρ,m+3

(

∂m
x

[

(∂x∂yu)

∫ y

0

Udỹ + (∂xu)U
]

, ∂m
x U

)

L2
.

Note that the first term on the right side is non-positive and the second one is bounded from

above by

1

2

+∞∑

m=0

L2
ρ,m+2‖∂

m
x λ‖2

L2 +
1

2

+∞∑

m=0

L2
ρ,m+3‖∂

m
x U‖2

L2 .

For the last term in the above inequality, a similar argument as that for Lemmas 2.6 and 2.7

yields that

+∞∑

m=0

L2
ρ,m+3

(

∂m
x

[

(∂x∂yu)

∫ y

0

Udỹ + (∂xu)U
]

, ∂m
x U

)

L2
≤ C|~a|3Xρ

≤ C|~a|Xρ |~a|
2
Yρ

.

Combining the above estimates completes the proof of the lemma. �

Proof of Proposition 2.5 Combining the estimates in Corollary 2.8 and Lemma 2.9

gives that

1

2

d

dt

+∞∑

m=0

(

L2
ρ,m+2‖∂

m
x λ‖2

L2 + L2
ρ,m+3‖∂

m
x U‖2

L2

)

+

+∞∑

m=0

(

L2
ρ,m+2‖∂

m
x ∂yλ‖2

L2 + L2
ρ,m+3‖∂

m
x ∂yU‖

2
L2

)

+
1

2

+∞∑

m=0

(

L2
ρ,m+2‖∂

m
x λ‖2

L2 + L2
ρ,m+3‖∂

m
x U‖2

L2

)

≤ ρ′
+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2 + C|~a|Xρ |~a|
2
Zρ

+ C
(
|~a|Xρ + |~a|2Xρ

)
|~a|2Yρ

≤
ρ′

2

+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2 +
ρ′3

4

+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2

+ C
(

|~a|Xρ + |~a|2Xρ

)(

|~a|2Yρ
+ |~a|2Zρ

)

, (2.29)

where we have used the fact that ρ′/2 ≤ ρ′3/2 ≤ ρ′3/4 in the last inequality.

It remains to estimate the first term on the right hand side of (2.29) as follows:

1

2
ρ′

+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2 +
1

4

d

dt

+∞∑

m=0

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

+
1

2
ρ′2

+∞∑

m=0

(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

≤
1

4
ρ′3

+∞∑

m=0

(m + 4)3

ρ3
L2

ρ,m+3‖∂
m
x U‖2

L2 + C|~a|2Xρ
|~a|2Zρ

+ C|~a|2Xρ
|~a|2Yρ

. (2.30)

Then, Proposition 2.5 follows by combining (2.29) and (2.30).

To prove (2.30), denote that

P = ∂t + u∂x + v∂y − ∂2
y + 1. (2.31)
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By applying ∂m
x to (2.11), we obtain that

∂m+1
x λ = P∂m

x U + Km, (2.32)

where

Km =
m∑

j=1

(
m

j

)
[
(∂j

xu)∂m−j+1
x U + (∂j

xv)∂m−j
x ∂yU

]
− ∂m

x

[

(∂x∂yu)

∫ y

0

Udỹ + (∂xu)U
]

. (2.33)

Then, by observing that

1

2
ρ′

+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2 ≤
1

2
ρ′

+∞∑

m=0

m + 4

ρ
L2

ρ,m+3‖∂
m+1
x λ‖2

L2 ,

and
1

2
ρ′‖∂m+1

x λ‖2
L2 +

1

2
ρ′‖Km‖2

L2 ≤
1

4
ρ′‖P∂m

x U‖2
L2 ,

because of (2.32) and the fact that ρ′ < 0, we have that

1

2
ρ′

+∞∑

m=0

m + 3

ρ
L2

ρ,m+2‖∂
m
x λ‖2

L2

≤
1

4
ρ′

+∞∑

m=0

m + 4

ρ
L2

ρ,m+3‖P∂m
x U‖2

L2 −
1

2
ρ′

+∞∑

m=0

m + 4

ρ
L2

ρ,m+3‖Km‖2
L2 . (2.34)

The two terms on the right hand side of the above inequality will be estimated as follows:

(i) Estimate on the last term on the right hand side of (2.34). Noting that −ρ′/ρ ≤

1, by the defintion of Km in (2.33), we have that

−
1

2
ρ′

+∞∑

m=0

m + 4

ρ
L2

ρ,m+3‖Km‖2
L2 ≤

+∞∑

m=0

(m + 4)L2
ρ,m+3‖Km‖2

L2 ≤ S1 + S2 + S3, (2.35)

where

S1 = 4

+∞∑

m=0

(

(m + 4)1/2Lρ,m+3

m∑

j=1

m!

j!(m − j)!
‖(∂j

xu)∂m−j+1
x U‖L2

)2

,

S2 = 4

+∞∑

m=0

(

(m + 4)1/2Lρ,m+3

m∑

j=1

m!

j!(m − j)!
‖(∂j

xv)∂m−j
x ∂yU‖L2

)2

,

and

S3 = 4

+∞∑

m=0

(

(m + 4)1/2Lρ,m+3

∥
∥∂m

x

[
(∂x∂yu)

∫ y

0

Udỹ + (∂xu)U
]∥
∥

L2

)2

.

We first estimate S1. Note that

∀ 1 ≤ j ≤ [m/2], (m + 4)1/2 m!

j!(m − j)!

Lρ,m+3

Lρ,j+3Lρ,m−j+4
≤

C

j + 1

(m − j + 5)3/2

ρ3/2
,

and

∀ [m/2] + 1 ≤ j ≤ m, (m + 4)1/2 m!

j!(m − j)!

Lρ,m+3

Lρ,j+1Lρ,m−j+6
≤

C

m − j + 1
.

By (2.15), we obtain that

S1 ≤ C
+∞∑

m=0

( [m/2]
∑

j=1

Lρ,j+3‖∂
j
xu‖L∞

j + 1

(m − j + 5)3/2

ρ3/2
Lρ,m−j+4‖∂

m−j+1
x U‖L2

)2
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+C

+∞∑

m=0

( m∑

j=[m/2]+1

Lρ,j+1‖∂
j
xu‖L2

xL∞

y

Lρ,m−j+6‖∂
m−j+1
x U‖L∞

x L2
y

m − j + 1

)2

≤ C|~a|2Xρ
|~a|2Yρ

+ C|~a|4Xρ
≤ C|~a|2Xρ

|~a|2Yρ
.

Similarly, we have that

S2 ≤

+∞∑

m=0

( [m/2]
∑

j=1

Lρ,j+3‖ 〈y〉
ℓ
∂j+1

x u‖L∞

x L2
y

j + 1
Lρ,m−j+3‖∂

m−j
x ∂yU‖L2

)2

+

+∞∑

m=0

( m∑

j=[m/2]+1

Lρ,j+1‖ 〈y〉
ℓ
∂j+1

x u‖L2

Lρ,m−j+5‖∂
m−j
x ∂yU‖L∞

x L2
y

m − j + 1

)2

≤ C|~a|2Xρ
|~a|2Zρ

,

and

S3 ≤ C|~a|2Xρ
|~a|2Yρ

.

Substituting the above estimates into (2.35) yields that

−
1

2
ρ′

+∞∑

m=1

m + 4

ρ
L2

ρ,m+3‖Km‖2
L2 ≤ C|~a|2Xρ

|~a|2Zρ
+ C|~a|2Xρ

|~a|2Yρ
. (2.36)

(ii) Estimate on the first term on the right hand side of (2.34). Direct calculation

gives that

ρ′
m + 4

ρ
L2

ρ,m+3‖P∂m
x U‖2

L2 = ρ′
m + 4

ρ
‖P

(
Lρ,m+3∂

m
x U

)
‖2

L2 + ρ′3
(m + 4)3

ρ3
L2

ρ,m+3‖∂
m
x U‖2

L2

− 2ρ′2
(m + 4)2

ρ2

(
P

(
Lρ,m+3∂

m
x U

)
, Lρ,m+3∂

m
x U

)

L2 .

For the last term in the above inequality, by (2.31), one has that

(
P

(
Lρ,m+3∂

m
x U

)
, Lρ,m+3∂

m
x U

)

L2 ≥
1

2

d

dt
‖Lρ,m+3∂

m
x U‖2

L2 + L2
ρ,m+3‖∂

m
x U‖2

L2.

Thus,

ρ′
m + 4

ρ
L2

ρ,m+3‖P∂m
x U‖2

L2

≤ ρ′3
(m + 4)3

ρ3
L2

ρ,m+3‖∂
m
x U‖2

L2 − 2ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

− ρ′2
(m + 4)2

ρ2

d

dt
‖Lρ,m+3∂

m
x U‖2

L2 .

Here, the last term can be written as

−ρ′2
(m + 4)2

ρ2

d

dt
‖Lρ,m+3∂

m
x U‖2

L2

= −
d

dt

(

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

)

+ 2ρ′
(
ρ′′ − ρ′2/ρ

) (m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

≤ −
d

dt

(

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

)

,

where we have used (2.13) in the last inequality. Hence,

ρ′
m + 4

ρ
L2

ρ,m+3‖P∂m
x U‖2

L2
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≤ ρ′3
(m + 4)3

ρ3
L2

ρ,m+3‖∂
m
x U‖2

L2 − 2ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

−
d

dt

(

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

)

.

Substituting the above estimate and (2.36) into (2.34) yields (2.30). Thus, the proof of propo-

sition is complete. �

2.3 Estimate on the Tangential Velocity

We now derive the estimate on ‖u‖Xρ.

Proposition 2.10 Under the same assumption as in Theorem 2.1, the estimate

1

2

d

dt

+∞∑

m=0

L2
ρ,m+k‖τ

ℓ+k∂m
x ∂k

y u‖2
L2 +

1

4

+∞∑

m=0

L2
ρ,m+k‖τ

ℓ+k∂m
x ∂k+1

y u‖2
L2

+
1

4

+∞∑

m=0

L2
ρ,m+k‖τ

ℓ+k∂m
x ∂k

y u‖2
L2

≤
1

4
ρ′3

+∞∑

m=0

m + k + 1

ρ
L2

ρ,m+k‖τ
ℓ+k∂m

x ∂k
yu‖2

L2 + C
(
|~a|Xρ + |~a|2Xρ

)
|~a|2Yρ

holds for any 0 ≤ k ≤ 3, where τ is defined as in (1.4).

Proof We will basically give the estimates in the cases of when k = 0 and k = 3.

(a) The case of when k = 0. We first derive the estimate on tangential derivatives.

Applying ∂m
x to the first equation in (2.1) gives that

(
∂t + u∂x + v∂y − ∂2

y

)
∂m

x u + ∂m
x u

= −

m∑

j=1

(
m

j

)

(∂j
xu)∂m−j+1

x u −

m−1∑

j=1

(
m

j

)
(
∂j

xv
)
∂m−j

x ∂yu − (∂m
x v)∂yu.

Multiplying by τ2ℓ∂m
x u on both sides of the above equation and then integrating over R

2
+, we

have, by observing |∂yτ2ℓ| ≤ N−1/2ℓτ2ℓ and |∂2
yτ2ℓ| ≤ N−1(ℓ + ℓ2)τ2ℓ, that

1

2

d

dt
‖τ ℓ∂m

x u‖2
L2 +

∥
∥τ ℓ∂y∂m

x u
∥
∥

2

L2 +
∥
∥τ ℓ∂m

x u
∥
∥

2

L2

≤
1

2

ℓ

N1/2
‖vτ ℓ∂m

x u‖L2‖τ ℓ∂m
x u‖L2 +

1

2

ℓ + ℓ2

N
‖τ ℓ∂m

x u‖2
L2

−

m∑

j=1

(
m

j

)(

τ ℓ(∂j
xu)∂m−j+1

x u, τ ℓ∂m
x u

)

L2
−

m−1∑

j=1

(
m

j

)(

τ ℓ
(
∂j

xv
)
∂m−j

x ∂yu, τ ℓ∂m
x u

)

L2

−
(

τ ℓ(∂m
x v)∂yu, τ ℓ∂m

x u
)

L2
.

This, with (1.5), yields that

1

2

d

dt

+∞∑

m=0

L2
ρ,m‖τ ℓ∂m

x u‖2
L2 +

+∞∑

m=0

L2
ρ,m‖τ ℓ∂y∂m

x u‖2
L2 +

1

2

+∞∑

m=0

L2
ρ,m‖τ ℓ∂m

x u‖2
L2

≤

+∞∑

m=0

ρ′
m + 1

ρ
L2

ρ,m‖τ ℓ∂m
x u‖2

L2 + C

+∞∑

m=0

L2
ρ,m‖vτ ℓ∂m

x u‖L2‖τ ℓ∂m
x u‖L2

+
+∞∑

m=0

m∑

j=1

(
m

j

)

L2
ρ,m‖τ ℓ(∂j

xu)∂m−j+1
x u‖L2‖τ ℓ∂m

x u‖L2
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+
+∞∑

m=0

m−1∑

j=1

(
m

j

)

L2
ρ,m‖τ ℓ(∂j

xv)∂m−j
x ∂yu‖L2‖τ ℓ∂m

x u‖L2

+

+∞∑

m=0

L2
ρ,m‖τ ℓ(∂m

x v)∂yu‖L2‖τ ℓ∂m
x u‖L2. (2.37)

Direct calculation gives that

+∞∑

m=0

L2
ρ,m‖vτ ℓ∂m

x u‖L2‖τ ℓ∂m
x u‖L2 ≤ C|~a|3Xρ

. (2.38)

Similarly to the proofs of Lemmas 2.6 and 2.7, we have that

+∞∑

m=0

m∑

j=1

(
m

j

)

L2
ρ,m‖τ ℓ(∂j

xu)∂m−j+1
x u‖L2‖τ ℓ∂m

x u‖L2

+

+∞∑

m=0

m−1∑

j=1

(
m

j

)

L2
ρ,m‖τ ℓ(∂j

xv)∂m−j
x ∂yu‖L2‖τ ℓ∂m

x u‖L2 ≤ C|~a|Xρ |~a|
2
Yρ

. (2.39)

It remains to estimate the last term in (2.37). Direct calculation gives that

∀ 0 ≤ m ≤ 1, L2
ρ,m‖τ ℓ(∂m

x v)∂yu‖L2‖τ ℓ∂m
x u‖L2 ≤ C|~a|3Xρ

.

For m ≥ 2, by recalling L (u,U) given in (2.21), we use (2.10) to write that

∂m
x v = −

∫ y

0

∂m+1
x u(t, x, ỹ)dỹ

= −

∫ y

0

∂m−2
x λ(t, x, ỹ)dỹ − ∂m−2

x

∫ y

0

(

∂yu(t, x, ỹ)

∫ ỹ

0

U(t, x, r)dr

)

dỹ

︸ ︷︷ ︸

=L (u,U)

.

Thus,

+∞∑

m=0

L2
ρ,m‖τ ℓ(∂m

x v)∂yu‖L2‖τ ℓ∂m
x u‖L2

≤
C

ρ5
|~a|3Xρ

+ C

+∞∑

m=2

L2
ρ,m‖τ ℓ+1∂yu‖L∞

x L2
y
‖∂m−2

x λ‖L2‖τ ℓ∂m
x u‖L2

+C

+∞∑

m=2

L2
ρ,m‖τ ℓ+1∂yu‖L∞

x L2
y
‖∂m−2

x L (u,U)‖L2
xL∞

y
‖τ ℓ∂m

x u‖L2

≤ C|~a|3Xρ
+ C|~a|Xρ

+∞∑

m=2

(m + 2)3/2

ρ3/2
Lρ,m+1‖∂

m−2
x L (u,U)‖L2

xL∞

y

(m + 1)1/2

ρ1/2
Lρ,m‖τ ℓ∂m

x u‖L2

≤ C
(

|~a|Xρ + |~a|2Xρ

)

|~a|2Yρ
,

where we have used (2.22) in the last inequality. By substituting the above estimates and

(2.38)–(2.39) into (2.37), and by using the fact that ρ′ ≤ ρ′3 ≤ ρ′3/4 ≤ 0, we have that

1

2

d

dt

+∞∑

m=0

L2
ρ,m‖τ ℓ∂m

x u‖2
L2 +

+∞∑

m=0

L2
ρ,m‖τ ℓ∂y∂m

x u‖2
L2 +

1

2

+∞∑

m=0

L2
ρ,m‖τ ℓ∂m

x u‖2
L2

≤
1

4
ρ′3

+∞∑

m=0

m + 1

ρ
L2

ρ,m‖τ ℓ∂m
x u‖2

L2 + C
(
|~a|Xρ + |~a|2Xρ

)
|~a|2Yρ

.
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Thus, Proposition 2.10 holds for k = 0.

(b) The case of k = 3. We apply ∂m
x ∂2

y to the first equation in (2.1) to obtain that

∂t∂
m
x ∂2

yu − ∂m
x ∂4

yu + ∂m
x ∂2

yu = −∂m
x ∂2

y

(
u∂xu + v∂yu

)
. (2.40)

The assumption (2.2) implies that each term in the above equation belongs to

L2
(

[0, +∞[; L2(〈y〉
ℓ+3

)
)

with

L2(〈y〉
ℓ+3

) :=
{

f ∈ S′; 〈y〉
ℓ+3

f ∈ L2
}

.

Then we multiply both sides of (2.40) by −∂y

(

τ2(ℓ+3)∂m
x ∂3

yu
)

∈ L2
(

[0, +∞[; L2(〈y〉
−(ℓ+3)

)
)

,

and then integrate over R
2
+. By using ∂2

yu|y=0 = 0, we have that

1

2

d

dt
‖τ ℓ+3∂m

x ∂3
yu‖2

L2 + ‖τ ℓ+3∂m
x ∂4

yu‖2
L2 + ‖τ ℓ+3∂m

x ∂3
yu‖2

L2

= −

∫

R
2
+

(
∂m

x ∂4
yu

)
(∂yτ2ℓ+6)∂m

x ∂3
yu dxdy

+

∫

R
2
+

[

∂m
x ∂2

y

(
u∂xu + v∂yu

)]

∂y

(

τ2(ℓ+3)∂m
x ∂3

yu
)

dxdy.

For the terms on the right hand side of the above equality, we have that

−

∫

R
2
+

(
∂m

x ∂4
yu

)
(∂yτ2ℓ+6)∂m

x ∂3
yu dxdy ≤

1

2

(
‖τ ℓ+3∂m

x ∂4
yu‖2

L2 + ‖τ ℓ+3∂m
x ∂3

yu‖2
L2

)
,

where we have used the fact that |∂yτ2ℓ+6| ≤ ℓ+3
N1/2 τ2ℓ+6 ≤ τ2ℓ+6, and

∫

R
2
+

[

∂m
x ∂2

y

(
u∂xu + v∂yu

)]

∂y

(

τ2(ℓ+3)∂m
x ∂3

yu
)

dxdy

≤
1

4

(
‖τ ℓ+3∂m

x ∂4
yu‖2

L2 + ‖τ ℓ+3∂m
x ∂3

yu‖2
L2

)
+ 4‖τ ℓ+3∂m

x ∂2
y

(
u∂xu + v∂yu

)
‖2

L2 .

Hence,

1

2

d

dt

+∞∑

m=0

L2
ρ,m+3‖τ

ℓ+3∂m
x ∂3

yu‖2
L2 +

1

4

+∞∑

m=0

L2
ρ,m+3‖τ

ℓ+3∂m
x ∂4

yu‖2
L2

+
1

4

+∞∑

m=0

L2
ρ,m+3‖τ

ℓ+3∂m
x ∂3

yu‖2
L2

≤ ρ′
+∞∑

m=0

m + 4

ρ
L2

ρ,m+3‖τ
ℓ+3∂m

x ∂3
yu‖2

L2 + 4
+∞∑

m=0

L2
ρ,m+3‖τ

ℓ+3∂m
x ∂2

y

(
u∂xu + v∂yu

)
‖2

L2 .

Moreover, similarly to the proof of Lemma 2.6, we can show that

4
+∞∑

m=0

L2
ρ,m+3‖τ

ℓ+3∂m
x ∂2

y

(
u∂xu + v∂yu

)
‖2

L2 ≤ C|~a|4Xρ
≤ C|~a|2Xρ

|~a|2Yρ
.

Therefore, by noting that ρ′ ≤ ρ′3 ≤ ρ′3/4, it holds that

1

2

d

dt

+∞∑

m=0

L2
ρ,m+3‖τ

ℓ+3∂m
x ∂3

yu‖2
L2 +

1

4

+∞∑

m=0

L2
ρ,m+3‖τ

ℓ+3∂m
x ∂4

yu‖2
L2
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+
1

4

+∞∑

m=0

L2
ρ,m+3‖τ

ℓ+3∂m
x ∂3

yu‖2
L2

≤
1

4
ρ′3

+∞∑

m=0

m + 3

ρ
L2

ρ,m+3‖τ
ℓ+3∂m

x ∂3
yu‖2

L2 + C|~a|2Xρ
|~a|2Yρ

.

This proves Proposition 2.10 for k = 3.

The cases of when k = 1, 2 can discussed similarly, so we omit the details, for brevity. The

proof of proposition is complete. �

2.4 A Priori Estimate in 2D

We will apply the following abstract version of the bootstrap principle given in [34] to prove

Theorem 2.4:

Proposition 2.11 (Proposition 1.21 of [34]) Letting I be a time interval, and for each

t ∈ I we have two statements: a “hypothesis” H(t) and a “conclusion” C(t). Suppose that we

can verify the following four statements:

(i) If H(t) is true for some time t ∈ I, then C(t) is also true for the time t.

(ii) If C(t) is true for some t ∈ I, then H(t′) holds for all t′ in a neighborhood of t.

(iii) If t1, t2, · · · is a sequence of times in I which converges to another time t ∈ I and C(tn)

is true for all tn, then C(t) is true.

(iv) H(t) is true for at least one time t ∈ I.

Then C(t) is true for all t ∈ I.

For each T ∈ [0, +∞[, let H(T ) be the statement

∀ t ∈ [0, T ], et/2|~a(t)|2Xρ(t)
+

1

4

∫ t

0

es/2 |~a(s)|
2
Zρ(s)

ds ≤
2
(
1 + ρ2

0

)

ρ2
0

ε2
0, (2.41)

and let C(T ) be the statement

∀ t ∈ [0, T ], et/2|~a(t)|2Xρ(t)
+

1

4

∫ t

0

es/2 |~a(s)|2Zρ(s)
ds ≤

1 + ρ2
0

ρ2
0

ε2
0, (2.42)

where ρ0, ε0 are the constants given in Theorem 2.1. In the discussion that follows, we will

verify that the conditions (i)–(iv) in Proposition 2.11 are satisfied by H(T ) and C(T ) defined

as in (2.41) and (2.42). Note that ~a|t=0 = (u0, 0, ∂3
xu0). Thus, H(0) holds because of (2.3) and

the fact that

|~a(0)|2Xρ0
= ‖u0‖

2
Xρ0

+

+∞∑

m=0

L2
ρ0,m+2‖∂

m+3
x u0‖

2
L2

≤ ‖u0‖
2
Xρ0

+

+∞∑

m=0

(m + 3)4

4ρ2
0

4−(m+3)L2
2ρ0,m+3‖∂

m+3
x u0‖

2
L2

≤
ρ2
0 + 1

ρ2
0

‖u0‖
2
X2ρ0

. (2.43)

Hence, the condition (iv) in Proposition 2.11 holds. Moreover, the conditions (ii)-(iii) follow

from the continuity of the function

t 7→ et/2|~a(t)|2Xρ(t)
+

1

4

∫ t

0

es/2 |~a(s)|2Zρ(s)
ds.
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It remains to check the condition (i) in Proposition 2.11; that is that

H(T ) is true for some time T > 0 =⇒ C(T ) is also true for the same time T.

By Definition 2.2, we combine the estimates given in Propositions 2.5 and 2.10 to get that

1

2

d

dt
|~a|2Xρ

+
1

4
|~a|2Zρ

+
1

4
|~a|2Xρ

+
1

4

d

dt

+∞∑

m=0

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2 +
1

8

+∞∑

m=0

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2

≤
1

4
ρ′3|~a|2Yρ

+ C
(

|~a|Xρ + |~a|2Xρ

)

|~a|2Zρ
+ C

(

|~a|Xρ + |~a|2Xρ

)

|~a|2Yρ

≤ C
(
|~a|Xρ + |~a|2Xρ

)
|~a|2Zρ

+
(1

4
ρ′3 + C|~a|Xρ + C|~a|2Xρ

)

|~a|2Yρ
.

Note that

C
(
|~a|Xρ + |~a|2Xρ

)
|~a|2Zρ

≤ 4C
1 + ρ2

0

ρ2
0

ε0|~a|
2
Zρ

≤
1

8
|~a|2Zρ

and that
1

4
ρ′3 + C|~a|Xρ + C|~a|2Xρ

≤ −
1

4

(
ρ0

24

)3

e−t/4 + 4C
1 + ρ2

0

ρ2
0

e−t/4ε0 ≤ 0,

provided ε0 is sufficiently small. Combining the above estimates implies that

1

2

d

dt
et/2|~a|2Xρ

+
1

8
et/2|~a|2Zρ

+
1

4

d

dt
et/2

+∞∑

m=0

ρ′2
(m + 4)2

ρ2
L2

ρ,m+3‖∂
m
x U‖2

L2 ≤ 0.

By integrating the above estimate over [0, t] for any t ∈ [0, T ] and using U|t=0 = 0, we obtain

that

∀ t ∈ [0, T ], et/2|~a(t)|2Xρ(t)
+

1

4

∫ t

0

es/2 |~a(s)|2Zρ(s)
ds ≤ |~a(0)|2Xρ0

≤
1 + ρ2

0

ρ2
0

ε2
0,

where we have used (2.43). This yields (2.42) if (2.41) holds, so that the condition (i) holds.

Therefore, by Proposition 2.11, the estimate (2.42) holds for any T ≥ 0, and the proof of

Theorem 2.4 is complete.

3 A Priori Estimate in 3D

The discussion on the 3D magnetic Prandtl model is similar to that of the 2D case. For

this, we will use vector-valued auxiliary functions instead of the scalar ones used in the previous

section. More precisely, denote by u = (u1, u2) and v the tangential and normal velocities,

respectively, and by (x, y) the spatial variables in R
2×R+ with x = (x1, x2). As the counterparts

of U and λ defined by (2.7) and (2.10), we define U = (U1,U2) and λ = (λ1, λ2, λ3, λ4) as follows:

let Uj , j = 1, 2, solve the initial-boundary problem






(
∂t + u · ∂x + v∂y − ∂2

y

)
∫ y

0

Uj(t, x, ỹ)dỹ +

∫ y

0

Uj(t, x, ỹ)dỹ = −∂3
xj

v,

Uj |t=0 = 0, ∂yUj |y=0 = Uj |y→+∞ = 0.

Accordingly, set






λ1 = ∂3
x1

u1 − (∂yu1)

∫ y

0

U1(t, x, ỹ)dỹ, λ2 = ∂3
x2

u1 − (∂yu1)

∫ y

0

U2(t, x, ỹ)dỹ,

λ3 = ∂3
x1

u2 − (∂yu2)

∫ y

0

U1(t, x, ỹ)dỹ, λ4 = ∂3
x2

u2 − (∂yu2)

∫ y

0

U2(t, x, ỹ)dỹ.
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Denote that ~a = (u, U , λ), and define |~a|Xρ , |~a|Yρ and |~a|Zρ as in Definition 2.2.

Then the a priori estimate in Theorem 2.4 also holds for the function ~a as stated in the

following theorem:

Theorem 3.1 Suppose that the initial datum u0 in (1.3) belongs to X2ρ0 for some ρ0 > 0.

Let u ∈ L∞ ([0, +∞[; Xρ) be a solution to (1.3) satisfying that
∫ ∞

0

(
‖u(t)‖2

Xρ(t)
+ ‖∂yu(t)‖2

Xρ(t)

)
dt < +∞,

where ρ is defined by (1.7). If ‖u0‖X2ρ0
≤ ε0 for some sufficiently small ε0 > 0, then we have

that

sup
t≥0

et/4|~a(t)|Xρ(t)
+

(∫ +∞

0

et/2|~a(t)|2Zρ(t)
dt

)1/2

≤
4(ρ0 + 1)

ρ0
ε0.

Thus,

sup
t≥0

et/4|u(t)|Xρ(t)
+

( ∫ +∞

0

et/2|∂yu(t)|2Xρ(t)
dt

)1/2

≤
4(ρ0 + 1)

ρ0
ε0.

The proof of Theorem 3.1 is the same as that of the 2D case, so, for brevity, we omit the

details.
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