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Abstract In this paper, we propose a new non-local diffusion equation for noise removal,

which is derived from the classical Perona-Malik equation (PM equation) and the regularized

PM equation. Using the convolution of the image gradient and the gradient, we propose a new

diffusion coefficient. Due to the use of the convolution, the diffusion coefficient is non-local.

However, the solution of the new diffusion equation may be discontinuous and belong to the

bounded variation space (BV space). By virtue of Young measure method, the existence of

a BV solution to the new non-local diffusion equation is established. Experimental results

illustrate that the new method has some non-local performance and performs better than the

original PM and other methods.
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1 Introduction

Images are inevitably affected by noise in the process of acquisition and transmission,

so that image denoising is an important task in image processing. The main difficulty in

image denoising is to preserve the details of information such as the edges and textures of the

original image from the noisy observation. Most of the time, those details of information are of

vital importance in subsequent image processing tasks, such as image segmentation and image

restoration.

Research on image denoising based on partial differential equations (PDE) has developed

extensively over the course of the last thirty years. Osher, in [1], proposed a pioneering denoising

model by a total variation (TV) method. Later, Vese, in [2], summarized a family of denoising

methods based on a variational PDE, then more in-depth studies on its theoretical background
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were proposed in [3] and [4], and the relevant numerical methods were proposed in [5–8]. After

that, denoising methods based on second-order equations were generalized to other types of

PDEs, such as fourth-order PDEs [9–11] and fractional PDEs [12–14].

Perona and Malik proposed an anisotropic diffusion equation [15] (the PM method) as

follows:

ut − div (g (|∇u|)∇u) = 0.

Here g(s) is a diffusivity function with the form

g(s) =
1

1 + s2/K2
, K > 0. (1.1)

The anisotropic diffusion enables the PM equation to detect the edge area of a noisy image and

implement an edge preserved diffusion. Moreover, the diffusion approach of the PM equation

was proved to be forward-backward, i.e., the edge area can not only be preserved, but also be

enhanced. However, this edge enhancement also leads to artificial phenomena; new features are

added to the restored images so that it no longer preserves the original information. As a result,

there will appear the “staircase” and “speckle” effects in the restored images. A regularized

PM equation (RPM [16]) was proposed to avoid forward-backward diffusion in the original

PM equation by refining the diffusivity function from g (|∇u|) to g (|∇Gσ ∗ u|), where Gσ is a

Gaussian function

Gσ(x) =
1

(2πσ2)
N
2

exp

(
−|x|2

2σ2

)
, σ > 0. (1.2)

With Gaussian convolution, the diffusivity becomes totally forward. Furthermore, the RPM

method becomes a well-posed problem, and the solution of the RPM equation is smooth, which

effectively avoids the “staircase” effect of the PM method. Unfortunately, this smooth solution

sometimes will result in blurry edges in the restored images.

Guidotti, in [17–19], regularized the diffusivity g(|∇u|) in the PM equation by fractional

derivatives g(
∣∣∇1−ǫu

∣∣), and proved in a one dimensional situation that the new equation could

be changed from a PM equation to a linear heat equation, as ǫ goes from 0 to 1. Later, Guidotti,

in [20], proposed the “milder” regularized PM method by modifying the diffusivity function of

the PM equation into

g(|∇u|) =
1

1 + |∇u|2 + δ;

the “milder” regularization preserves the forward and backward diffusion property of the PM

method but enables the equation to remove the “staircase” and “speckle” effects. Furthermore,

in [21], the authors extended this“milder” regularization diffusivity to

g(|∇u|) =
1

1 + |∇u|2 + δ|∇u|p−2, (1.3)

where p ∈ [1, +∞).

In this paper, we consider a new model for noise removal:





∂u

∂t
= div

( ∇u

1 + |∇Gσ ∗ u| |∇u|

)
, in ΩT , (1.4)

u(x, t) = 0, on Γ, (1.5)

u(x, 0) = u0(x), in Ω. (1.6)
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Define ΩT := Ω× (0, T ), where Ω ⊂ R
N is a bounded Lipschitz domain with boundary ∂Ω, and

Γ := ∂Ω × (0, T ). u0(x) is the initial noisy image. The diffusivity function contains both the

gradient term and the convolutional gradient term, which combines the advantages of PM and

RPM simultaneously. It is worth noticing that our new model is not just a trivial combination

of two existing models; the properties of the solution of our model are totally different from

that of the others and we will discuss this in depth in the ensuing sections. Because of the

non-local term |∇Gσ ∗ u|, the new diffusion at every point depends on a neighborhood of this

point.

In terms of mathematical theory, we investigate the first initial-boundary value problem of

diffusion equations in more general form as follows:




ut = div

( ∇u

1 + α(u)|∇u|

)
in ΩT , (1.7)

u(x, t) = 0 on Γ, (1.8)

u(x, 0) = u0(x) in Ω; (1.9)

this will be denoted by P . Here u0(x) ∈ BV(Ω) with a zero trace on ∂Ω. We also have that

α(u) = a(|−→f ∗ ũ|), −→f = (f1, f2, · · · , fn), fi ∈ S(RN ), and by | · | we denote the Euclidean norm

and we define S(RN ) to be the Schwartz space. Given u ∈ L2(Ω), we extend this by zero to the

whole of R
N and denote ũ as the extended function. a(·) ∈ C2[0,∞) and a(x) ≥ 0. Let f ∗ ũ

be the convolution of f and ũ in R
N . In particular, for the case α(u) = |∇Gσ ∗ u|, (1.7)–(1.9)

become (1.4)–(1.6). The loss of growth, however, brings some technical difficulties when α(u)

arrives at zero. We prove the existence of the solution to P for the case in which α(u) ≥ c > 0,

in theory. This means that α(u) = |∇Gσ ∗ u|+ ε is allowed, for a small ε > 0. The uniqueness

is proved in a narrower class of functions than the existence.

The rest of this paper is organized as follows: in Section 2, we propose the non-local PM

method. Section 3, Section 4 and Section 5 are the mathematical theory parts of the paper. We

first state the mathematical preliminaries in Section 3. The existence of solutions to problem

P is proved in Section 4. In Section 5, we investigate the uniqueness of solutions to problem

P . Finally, Section 6 verifies the effectiveness and superiority of our proposed method by

comparative numerical experiments.

2 Non-local PM Denoising Method

In this section, comparing our new model with the PM and RPM models, we discuss how

our new model works and the non-triviality of our modification.

As we know, PM diffusion is forward-backward, and this creates is an ill-posed problem.

An image restored by the PM method may have black and white speckles and false edges

because of the backward diffusion. RPM diffusion is regularized and well-posed, and produces

smoothing solutions, but this regularization property may destroy the edges in the restored

image. Combining the advantages of PM and RPM, and the corresponding diffusivities,

gPM =
1

1 + |∇u|2 ,

gRPM =
1

1 + |∇Gσ ∗ u|2 ,



1782 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

we propose the diffusivity function

g =
1

1 + |∇Gσ ∗ u| |∇u| . (2.1)

PM diffusivity only involves point-wise operation, and thus the PM equation is a local

method. RPM is non-local because of the convolution. Our new model combines the two

features so that it is also non-local. We name our new model the “non-local PM” (NLPM)

method.

The non-triviality of our model is mainly reflected in the properties of the solutions. The

solution of the PM equation may not exist, or exist but not be unique [22]. The solution space

of the RPM equation is the C∞ space [16]. However, some researchers regard the BV space as

the right space for image processing [1, 31]. With our new diffusivity (2.1), the NLPM model

is proved, in the next section, to have a BV solution, and so is similar to the TV model [1].

Next, a prototypical example is used to illustrate the edge-preserving ability of our NLPM

method. Formally, one can regard the edge of an image as a function with a large gradient norm,

observing that the diffusivity of the NLPM method consists of |∇u|−1, so the NLPM method

should undertake no diffusion on the edge area of an image, i.e., the edge will be preserved by

the NLPM method. Although this is not a strict mathematical analysis, numerical experiments

enable to validate this conclusion. Now we consider that

f(x) =





5, x > 0,

0, otherwise.

This function has a jump discontinuity at x = 0, which can be regarded as an edge of the

one-dimensional signal f . Also, we consider the mollified signals fσ by the Gaussian kernels

(1.2) with a different parameter σ, as shown by the red lines in Figure 1. Then we use the

NLPM method to process these signals; the output signals are shown as the black circled lines.

One can observe clearly that the NLPM method preserves the edge very well.

Figure 1 The NLPM method enables one to maintain the jump discontinuity
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Another prototypical experiment on one-dimensional signal processing demonstrates, in-

tuitively, the differences between the PM method, the RPM method and the NLPM method.

Consider the one-dimensional forms of the three respective methods as follows:

∂u

∂t
=

∂

∂x

(
ux

1 + |ux|2
)

,

∂u

∂t
=

∂

∂x

(
ux

1 + |(Gσ ∗ u)x|
2

)
,

∂u

∂t
=

∂

∂x

(
ux

1 + |(Gσ ∗ u)x| |ux|

)
.

Figure 2 Synthetic one-dimensional signal

Figure 3 The PM method has a “staircase” effect
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Figure 4 The RPM method mollifies the edge

We use these equations to process a synthetic one-dimensional signal, as shown in Figure

2. Notice that this example consists of various cases such as jump discontinuities and the

smooth periodic signal. Figure 3 shows that the PM method has a severe “staircase” effect in

smooth intensity transition areas (i.e., the trigonometric function part of the synthetic signal),

while the RPM and NLPM methods maintain the smoothness well. Furthermore, we zoom on

the discontinuous region of the signal (i.e., the staircase function part) and put the processing

results together in Figure 4. One can easily see that the RPM method mollifies the edge while

the other two methods preserve the edge well. Noticing that the x-ticks in Figure 4 are close

to the jump discontinuity x = 1, it is natural that this phenomenon is not quite as obvious in

the original figures as in Figure 3.

In addition, the parameter σ in the NLPM diffusivity function (2.1) also increases the

flexibility of the model. The parameter σ is related to the window size of the Gaussian convo-

lution, which shows the non-locality of the model. When σ approaches zero, the non-locality

of the model is minimized and the equation degenerates to the original PM equation. When σ

approaches ∞, the model is approximate to the Laplacian equation.

3 Mathematical Preliminaries

3.1 Pairings between Measures and Bounded Functions

Denote M(X) as the set of finite Radon measures on a Borel set X , and denote M+
1 (X)

as its subset of probability measures. As usual, LN and HN−1 represent the N -dimensional

Lebesgue measure and (N − 1)-dimensional Hausdorff measure in R
N , respectively. We denote

M+(X) as the positive Radon measures. For all λ1, λ2 ∈ M(X),

λ1 > λ2 in M(X) ⇔ λ1 − λ2 ∈ M+(X).

Denote C0(R
N ) as the closure of continuous functions on R

N with compact support. The
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dual of C0(R
N ) can be identified with the Radon measure space M(RN ) via the pairing

〈ν, f〉 =

∫

RN

fdν, ∀ν ∈ M(RN ), f ∈ C0(R
N ).

Let the set D ⊂ Rn be a measurable set with finite measure. A map ν : D → M(RN ) is said

to be weakly∗ measurable if the functions x 7→
∫

RN fdνx are measurable for all f ∈ C0(R
N ),

where νx = ν(x).

Throughout the rest of this paper, I represents the identity operator in R
N .

A function u ∈ L1(Ω) is called a function of bounded variation if its distributional derivative

Du is a R
N -valued Radon measure with finite total variation in Ω. The vector space of functions

of bounded variation in Ω is denoted by BV(Ω). The space BV(Ω) is a non-reflexive Banach

space under the norm ‖u‖BV := ‖u‖L1 + |Du|(Ω), where |Du| is the total variation measure of

Du.

For u ∈ BV(Ω), the gradient Du is a Radon measure that can be decomposed into its

absolutely continuous and singular parts

Du = Dau + Dsu.

Then, Dau = ∇uLN , where ∇u is the Radon-Nikodým derivative of the measure Du with

respect to the Lebesgue measure LN . There is also the polar decomposition Dsu = Dsu
|Dsu| |Dsu|,

where Dsu
|Dsu| ∈ L1

(
Ω, |Dsu| ; ∂B

N
)

is the Radon-Nikodým derivative of Dsu with respect to its

total variation measure |Dsu|.
Set that Ω̃ is a bounded smooth domain and that is satisfies Ω ⊂⊂ Ω̃. For v ∈ BV(Ω), we

denote ṽ by

ṽ(x) :=





v(x), x ∈ Ω,

0, x ∈ Ω̃\Ω.

Lemma 3.1 Assume that u ∈ BV(Ω). There exists a sequence of functions ui ∈ W 1,1(Ω)⋂
C∞(Ω) such that

(i) ui → u in L1(Ω);

(ii) |Dui|(Ω) → |Du|(Ω);

(iii) ui|∂Ω = u|∂Ω for all i.

Moreover,

(iv) if u ∈ BV(Ω)
⋂

Lq(Ω), q < ∞, we can find functions ui such that ui ∈ Lq(Ω) and

ui → u in Lq(Ω);

(v) if u ∈ BV(Ω)
⋂

L∞(Ω), we can find ui such that ‖ui‖∞ ≤ ‖u‖∞ and ui → u weakly∗

in L∞(Ω).

It is well known that the summability conditions on the divergence of a vector field z in Ω

yield trace properties for the normal component of z on ∂Ω. As in [23], we define a function

[z, ~n] ∈ L∞(∂Ω), which is associated to any vector field z ∈ L∞(Ω, RN ) such that div(z) is a

bounded measure in Ω.

Assume that Ω is an open bounded set in R
N with ∂Ω Lipschitz, N ≥ 2, and 1 ≤ p ≤ N ,

N
N−1 ≤ q ≤ ∞. Since ∂Ω is Lipschitz, the outer unit normal ~n exists in HN a.e. on ∂Ω. We

shall consider the following spaces:

BV(Ω)q := BV(Ω)
⋂

Lq(Ω),
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BV(Ω)c := BV(Ω)
⋂

L∞(Ω)
⋂

C(Ω),

X(Ω)p := {z ∈ L∞(Ω, RN ) : div(z) ∈ Lp(Ω)},
X(Ω)µ := {z ∈ L∞(Ω, RN ) : div(z) ∈ M(Ω)}.

Lemma 3.2 Assume that Ω ⊆ R
N is a open bounded set with Lipschitz boundary ∂Ω.

Then there exists a bilinear map 〈z, u〉∂Ω : X(Ω)µ × BV(Ω)c → R such that

〈a, u〉∂Ω =

∫

∂Ω

u(x)z(x) · ~n dHN−∞ if z ∈ C1(Ω, RN ), (3.1)

|〈a, u〉∂Ω| ≤ ‖z‖∞
∫

∂Ω

|u(x)|dHN−∞. (3.2)

Lemma 3.3 Let Ω be as in Lemma 3.2. Then there exists a linear operator γ : X(Ω)µ →
L∞(∂Ω) such that

‖γ‖∞ ≤ ‖z‖∞, (3.3)

〈a, u〉∂Ω =

∫

∂Ω

u(x)γ(z)(x) · ~n dHN−∞ for all u ∈ BV(Ω)c, (3.4)

γ(z)(x) = z(x) · ~n for all x ∈ ∂Ω if z ∈ C1(Ω, RN ). (3.5)

The function γ(z) is a weakly defined trace on ∂Ω of the normal component of z. We denote

γ(z) by [z, ~n].

In the sequel, we shall consider pairs (z, u) such that one of the following conditions holds:





a) z ∈ X(Ω)p, u ∈ BV(Ω)p′ and 1 < p ≤ N ;

b) z ∈ X(Ω)1, u ∈ BV(Ω)∞; (3.6)

c) z ∈ X(Ω)µ, u ∈ BV(Ω)c.

Definition 3.4 Let z and u be two functions such that one of the conditions of (3.6)

holds. Then we define a functional (z, Du) : D(Ω) → R as

〈(z, Du), φ〉 := −
∫

Ω

u(x)φ div(z)dx −
∫

Ω

u(x)z · ∇φdx, φ ∈ D(Ω).

Lemma 3.5 For all open sets V ⊆ Ω and for all functions φ ∈ D(V ), one has that

|〈(z, Du), φ〉| ≤ sup ‖φ‖∞‖z‖L∞(V )|Du|(V ), (3.7)

and thus, (z, Du) is a Radon measure in Ω.

We give the Green’s formula relating the function [z, ~n] and the measure (z, Du).

Lemma 3.6 Let Ω be as in Lemma (3.2). If z and u are two functions such that one of

the conditions of (3.6) holds, then we have that
∫

Ω

u div(z)dx +

∫

Ω

(z, Du) =

∫

∂Ω

[z, ~n] u dHN−1. (3.8)

More details about the pairings 〈z, u〉∂Ω and (z, Du) can be found in [23].

3.2 The Generalized Young Measure

This subsection gives a brief overview of the basic theory of generalized Young measures

and recalls results that will be used later. We refer to [24] for further information about the

generalized Young measures.
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First, we need a suitable class of integrands. Let E(Ω; RN ) be the set of all f ∈ C(Ω×R
N)

such that

(Tf)(x, Â) := (1 − |Â|)f
(

x,
Â

1 − |Â|

)
, x ∈ Ω, Â ∈ B

N (3.9)

extends into a continuous function Tf ∈ (Ω × BN ), where B
N stands for the unit sphere in

R
N . In particular, this implies that f has linear growth at infinity, i.e., there exists a constant

M > 0 (in fact, M := ‖f‖E(Ω;RN ) := ‖Tf‖
∞,Ω×BN ) such that

|f(x, A)| 6 M(1 + |A|) for all (x, A) ∈ Ω × R
N .

For all f ∈ E(Ω; RN ), the recession function

f∞(x, A) := lim
A′→A
x′→x
t→∞

f(x′, tA′)

t
, x ∈ Ω, A ∈ R

N (3.10)

exists as a continuous function. Sometimes this notion of a recession function is too strong, so

for any function g ∈ C(RN ) with linear growth at infinity, we define the generalized recession

function as

g♯(A) := lim
A′→A
t→∞

g(tA′)

t
, A ∈ R

N . (3.11)

Definition 3.7 A generalized Young measure with target space R
N is a triple λ =

(νx, λν , ν∞
x ) comprising

(i) a parametrized family of probability measures (νx)x∈Ω ⊆ M+
1 (RN );

(ii) a positive finite measure λν ∈ M+(Ω);

(iii) a parametrized family of probability measures (ν∞
x )x∈Ω ⊆ M+

1 (∂B
N ) (∂B

N denotes

the unit sphere in R
N );

(iv) a map x 7→ νx is weakly∗ measurable with respect to LN , i.e., the function x 7→
〈νx, f(x, ·)〉 is LN -measurable for all bounded Borel functions f : Ω × R

N → R;

(v) a map x 7→ ν∞
x is weakly∗ measurable with respect to λν ;

(vi) x 7→ 〈νx, | · |〉 ∈ L1(Ω).

By Y (Ω; RN ), we denote the set of all such generalized Young measures. The parametrized

measure (νx) is called the oscillation measure, the measure λν is the concentration measure,

and (ν∞
x ) is the concentration-angle measure.

The duality pairing 〈〈λ, f〉〉 for λ ∈ Y (Ω; RN ) and f ∈ (Ω; RN ) is defined by

〈〈λ, f〉〉 :=

∫

Ω

〈νx, f(x, ·)〉dx +

∫

Ω

〈ν∞
x , f∞(x, ·)〉dλν(x)

=

∫

Ω

∫

RN

f(x, A)dνx (A)dx +

∫

Ω

∫

∂RN

f∞(x, ·)dν∞
x (A)dλν(x).

The space Y (Ω; RN ) of Young measures can be considered as a part of the dual space

E(Ω; RN )∗ (the inclusion is strict since, for instance, f 7→ s
∫
Ω f(x, ·)dx lies in E(Ω; RN )∗ \

Y (Ω; RN ) whenever s 6= 1). This embedding gives rise to a weak* topology on Y (Ω; RN )

and so we say that (λj) ⊆ Y (Ω; RN ) (where λj := (νj
x, λνj

, (ν∞
x )j)) weakly∗ converges to

λ ∈ Y (Ω; RN ), in symbols, λj
∗
⇁ λ, if 〈〈λj , f〉〉 → 〈〈λ, f〉〉 for all f ∈ E(Ω; RN ). The set

Y (Ω; RN ) is topologically weakly∗-closed in E(Ω; RN )∗.

The main compactness result in the space Y (Ω; RN ) is listed as follows:



1788 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

Lemma 3.8 Let (λi) ⊆ Y (Ω; RN ) be a sequence such that

(i) the functions x 7→ 〈(νj)x, | · |〉 are uniformly bounded in L1(Ω);

(ii) the sequence (λνj
(Ω)) is uniformly bounded.

Then, (λj) is weakly∗ sequentially relatively compact in Y (Ω; RN ), i.e., there exist λ ∈ Y (Ω; RN )

and a subsequence of (λj) (not relabeled) such that λj
∗
⇁ λ.

Next, we define the set GY (Ω; RN ) of generalized gradient Young measures as the collection

of the generalized Young measures λ ∈ Y (Ω; RN ) with the property that there exists a norm-

bounded sequence (uj) ⊆ BV(Ω) such that the sequence (Duj) generates λ, which, in symbols,

we will write as Duj
Y→ λ, meaning that

∫

Ω

f(x,∇uj(x))dx +

∫

Ω

f∞(x,
Dsuj

|Dsuj|
)d |Dsuj | → 〈〈λ, f〉〉

for all f ∈ E(Ω; RN ).

Lemma 3.9 Let λ ∈ Y (Ω; RN ) be a generalized Young measure with λν(∂Ω) = 0. Then

λ ∈ GY (Ω; RN ), if and only if there exists u ∈ BV(Ω) with

Du = 〈ν, I〉 LN
xΩ + 〈ν∞, I〉λνxΩ in M(Ω),

and for all quasiconvex g ∈ C(RN ) with linear growth at infinity, the following Jensen-type

inequalities hold:

(i)

g

(
〈ν, I〉 + 〈ν∞, I〉 dλν

dLN

)
6 〈ν, g〉 +

〈
ν∞, g♯

〉 dλν

dLN
for LN -a.e. x ∈ Ω,

where dλν

dLN is the Radon-Nikodým derivative of the measure λ with respect to the Lebesgue

measure LN ;

(ii)

g♯ (〈ν∞, I〉) 6
〈
ν∞, g♯

〉
for λs

ν -a.e. x ∈ Ω,

where λs
ν is the singular part of λ with respect to the Lebesgue measure LN .

We remark that for both flavors of recession function, one can drop the additional sequence

A′ → A if the functional is Lipschitz continuous (see [25]).

Given u ∈ BV(Ω), denote that σDu := (δ∇u, |Dsu|, δp) ∈ GY (Ω; RN ) and p := Dsu
|Dsu| ∈

L1
(
Ω, |Dsu| ; ∂B

N
)
. δA is denoted as the Dirac measure on R

N giving unit mass to the point

A ∈ R
N .

Throughout the rest of this paper, uΩ represents the trace of u ∈ BV(Ω) on ∂Ω.

Referring to [26], Corollary 4, we have the following necessary lemma:

Lemma 3.10 Assume X ⊂ B ⊂ Y with compact imbedding X ⊂ B (X, B and Y are

Banach spaces).

i) Let F be bounded in Lp(0, T ; X), where 1 ≤ p < ∞, and let ∂F
∂t

=
{

∂f
∂t

; f ∈ F
}

be

bounded in L1(0, T ; Y ). Then F is relatively compact in Lp(0, T ; B);

ii) Let F be bounded in L∞(0, T ; X), where 1 ≤ p < ∞, and let ∂F
∂t

=
{

∂f
∂t

; f ∈ F
}

be

bounded in Lr(0, T ; Y ) where r > 1. Then F is relatively compact in C(0, T ; B).
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4 Existence

This section is divided into four subsections. In Subsection 4.1, we list the main results. In

Subsection 4.2, we employ the regularization method and prove the existence of weak solutions

of the auxiliary problems. In order to obtain the solution of problem P , some regular estimates

for weak solutions of the auxiliary problems are also necessary in Subsection 4.3. Finally, we

prove the main two theorems (Theorem 4.4 and Theorem 4.5) in Subsection 4.4.

4.1 Main Results

For the sake of simplicity, throughout the rest of this paper we use the notation

−→q v(A) := −→q (v, A) =
A

1 + α(v)|A| ,

where v ∈ L2(ΩT ), A ∈ R
N .

Definition 4.1 A measurable function u : (0, T ) × Ω → R is a strong solution of (P ) in

ΩT if u ∈ C([0, t], L2(Ω)), u(0) = u0, u′(t) ∈ L2(Ω), u(t) ∈ BV(Ω)
⋂

L2(Ω) a.e. t ∈ [0, T ], and

there exists z(t) ∈ X(Ω)1 with ‖α(u)z‖∞ ≤ 1, satisfying, for almost all t ∈ [0, T ], that

u′(t) = div(z(t)) in D(Ω), (4.1)

z(t) =
∇u

1 + α(u)|∇u| LN -a.e. on Ω, (4.2)

α(u) (z(t), Dsu(t)) = |Dsu(t)| in M(Ω), (4.3)

α(u)[z(t), ~n] ∈ −sign(uΩ) HN−1-a.e. on ∂Ω. (4.4)

Definition 4.2 A generalized Young measure valued solution of P is a pair (u, λ), where

u ∈ L∞(0, T ; BV(Ω)
⋂

L2(Ω)), ∂u
∂t

∈ L2(ΩT ), and, for almost all t ∈ (0, T ), λ = (ν, λν , ν∞)x,t

is a parametrized family of generalized Young measures in Y (Ω; RN ) such that

ut = div〈ν,−→q u〉, in D′(Ω). (4.5)

Du = 〈ν, I〉 LN
xΩ + 〈ν∞, I〉λνxΩ in M(Ω) (4.6)

and

〈ν∞, I〉λνx∂Ω =
(
−uΩ ⊗ ~n

)
HN−1x∂Ω in M(Ω), (4.7)

u(x, 0) = u0(x), x ∈ Ω. (4.8)

Furthermore,

〈〈| · |, λ〉〉 ∈ L∞(0, T ), (4.9)

and the (JF) inequality

〈ν,−→q u〉 ·
(
〈ν, I〉 LNxΩ + 〈ν∞, I〉λνxΩ

)

≥
(
〈ν,−→q u · I〉 LNxΩ + 〈ν∞, (−→q u · I)∞〉λνxΩ

)
(4.10)

holds in M(Ω).

Remark 4.3 If (u, λ) is a generalized Young measure solution, and, for almost all t ∈
(0, T ), λ ∈ GY (Ω; RN ), we say that (u, λ) is a generalized gradient Young measure solution.

Theorem 4.4 Given u0 ∈ BV(Ω)
⋂

L∞(Ω) with a trace of zero on ∂Ω, then there exists

a generalized Young measure solution of P for every T > 0.
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Theorem 4.5 Suppose that all the assumptions of Theorem 4.4 hold. This admits a

strong solution of P for every T > 0.

4.2 Weak Solution for Auxiliary Problem

We use Pε to denote the following auxiliary problem:





∂u

∂t
= div

( ∇u

1 + α(u)|∇u|

)
+ ε△u in ΩT , (4.11)

u(x, t) = 0 on Γ, (4.12)

u(x, 0) = uε
0(x) in Ω. (4.13)

Here uε
0(x) ∈ H1

0 (Ω) and uε
0(x) ∈ H1

0 (Ω) satisfies, when ε → 0, that




‖uε
0(x)‖BV(Ω) → ‖u0(x)‖BV(Ω) , (4.14)

uε
0(x) → u0(x) in L2(Ω), (4.15)

‖uε
0(x)‖L∞(Ω) 6 ‖u0(x)‖L∞(Ω), (4.16)

√
εn‖uεn

0 (x)‖H1(Ω) → 0, for a subsequence of {ε}. (4.17)

First, we are going to prove that there exists a weak solution (in that usual sense) of Pε. For

any v ∈ L2(QT ), we denote u = Tv as the solution to the following problem:




∂u

∂t
= div

( ∇u

1 + α(v)|∇u|

)
+ ε△u in ΩT , (4.18)

u(x, t) = 0 on Γ, (4.19)

u(x, 0) = uε
0(x) in Ω. (4.20)

By the usual theory of monotone operators, there exists a unique u = Tv, and u ∈ L2(0, T ;

H1
0 (Ω)), ∂u

∂t
∈ L2(0, T ; H−1(Ω)). The following estimate holds:

|f ∗ ṽ| =

∣∣∣∣
∫

RN

f(x − y)ṽ(y)dy

∣∣∣∣ 6 ‖f‖L2(RN )‖ṽ‖L2(RN ) 6 ‖f‖L2(RN )‖v‖L2(Ω).

Thus,

0 < c ≤ α(v) ≤ C‖v‖L2(Ω). (4.21)

According to the definition of weak solutions,
∫ s

0

〈ut, ϕ〉dt +

∫ s

0

∫

Ω

( ∇u

1 + α(v) |∇u| + ε∇u

)
· ∇ϕdxdt = 0.

Taking ϕ = u, we have that

‖u(s)‖2
L2(Ω) + 2

∫ s

0

∫

Ω

(
|∇u|2

1 + α(v) |∇u| + ε|∇u|2
)

dxdt = ‖uε
0‖2

L2(Ω) 6 M,

where M is a constant independent of ε and T . It follows that

ess sup
0<t<T

‖u(t)‖2
L2(Ω) +

∫ T

0

∫

Ω

(
|∇u|2

1 + α(v) |∇u| + ε|∇u|2
)

dxdt 6 M.

Then, by
∣∣∣∣∣

∫ T

0

〈ut, ϕ〉dt

∣∣∣∣∣ =

∣∣∣∣∣

∫ T

0

∫

Ω

( ∇u

1 + α(v) |∇u| + ε∇u

)
· ∇ϕdxdt

∣∣∣∣∣
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6

∣∣∣∣
∫∫

ΩT

∇u

1 + α(v) |∇u| · ∇ϕdxdt

∣∣∣∣+
∣∣∣∣
∫∫

ΩT

ε∇u · ∇ϕdxdt

∣∣∣∣

6

(∫∫

ΩT

|∇u|2
1 + α(v) |∇u|dxdt

) 1
2

·
(∫∫

ΩT

|∇ϕ|2
1 + α(v) |∇u|dxdt

) 1
2

+
√

ε

(∫∫

ΩT

ε|∇u|2dxdt

) 1
2

·
(∫∫

ΩT

|∇ϕ|2dxdt

) 1
2

6 C‖∇ϕ‖L2(ΩT ),

where C is a constant independent of ε and T , we arrive at





‖u‖L2(0,T ;H1
0
(Ω)) 6

C√
ε
, (4.22)

‖u‖L∞(0,T ;L2(Ω)) 6 C, (4.23)

‖ut‖L2(0,T ;H−1(Ω)) 6 C. (4.24)

Now, we write

W (0, T ) =





w ∈ L2(ΩT )

∣∣∣∣∣∣∣∣∣∣

‖w‖L2(0,T ;H1
0
(Ω)) 6

C√
ε
,

‖w‖L∞(0,T ;L2(Ω)) 6 C,

‖wt‖L2(0,T ;H−1(Ω)) 6 C.





Applying the compact embedding theorem of Aubin-Lions (see also Lemma 3.10), we get that

W (0, T ) is precompact in L2(ΩT ). Let us now consider the mapping T : L2(ΩT ) → L2(ΩT ).

Based on Schauder’s fixed point theorem, it is clear that this mapping will have a fixed point

provided that it is continuous. To prove this, note that u1 = T (v1), u2 = T (v2). According to

(4.18), taking the texting function ϕ = u1 − u2, it follows that

1

2

d

dt
‖u1 − u2‖2

+

∫

Ω

ε|∇(u1 − u2)|2dx

+

∫

Ω

( ∇u1

1 + α(v1) |∇u1|
− ∇u2

1 + α(v1) |∇u2|

)
· ∇(u1 − u2)dx

= −
∫

Ω

( ∇u2

1 + α(v1) |∇u2|
− ∇u2

1 + α(v2) |∇u2|

)
· (∇u1 −∇u2) dx

6

∫

Ω

|α(v1) − α(v2)| · |∇u2|2
(1 + α(v1) |∇u2|) · (1 + α(v2) |∇u2|)

· |∇u1 −∇u2| dx. (4.25)

Then, by

|α(v1) − α(v2)| 6 C

∣∣∣∣
∫

RN

f(x − y) (ṽ1(y) − ṽ2(y)) dy

∣∣∣∣ ,

we get that

|α(v1) − α(v2)|L∞(RN ) 6 C‖v1 − v2‖L2(Ω). (4.26)

Hence, by (4.25), (4.26) and Young’s inequality, we have that

d

dt
‖u1 − u2‖2

L2(Ω) 6
C

2εc2
‖v1 − v2‖2

L2(Ω) , (4.27)

which proves the continuity of the mapping T , and thus that there exists a weak solution uε to

the problem Pε. On the other hand, using Gronwall’s inequality, (4.27) ensures the uniqueness

of Pε.
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4.3 Regularity for Weak Solution of Pε

In order to obtain the general Young measure solution of P , some estimates are also nec-

essary.

Since L2(0, T ; H−1(Ω)) is the dual space of L2(0, T ; H1
0 (Ω)), for every w ∈ L2(0, T ; H−1(Ω)),

it follows that

w ∈ L2(0, T ; H−1(Ω)) ⇔





w = w0 +
∑

i

Dxi
wi, w0, wi ∈ L2 (ΩT ) , i = 1, 2, · · · , n,

∀ϕ ∈ L2(0, T ; H1
0(Ω)), 〈w, ϕ〉 =

∫

ΩT

(
w0ϕ +

∑

i

wiDxi
ϕ

)
dxdt.

Lemma 4.6 Let v ∈ W (0, T ) and f ∈ S(RN ). We note that vt = v0 +
∑
i

Dxi
vi, vi ∈

L2 (ΩT ) , i = 0, 1, · · · , n. Then it follows that

(f ∗ ṽ)t = v0 −
∑

i

(Dxi
f) ∗ ṽi. (4.28)

Moreover, for almost all t ∈ [0, T ],

‖(f ∗ ṽ)t‖L∞(Ω) ≤ C‖vt‖H−1(Ω), (4.29)

where C is a constant that depends only on
∑
i

‖Dxi
f‖L2(RN ).

Proof By the definition of the weak derivative of f ∗ ṽ and Fubini’s Theorem, for every

ϕ ∈ D(ΩT ), one has that

〈(f ∗ ṽ)t, ϕ〉 = −
∫ T

0

∫

RN

f ∗ ṽ · ϕt(x, t)dxdt

= −
∫ T

0

∫

RN

ṽ ∗ f · ϕt(x, t)dxdt

= −
∫ T

0

∫

RN

(∫

RN

f(x − y)ṽ(y, t)dy

)
ϕt(x, t)dxdt

= −
∫ T

0

∫

RN

(∫

RN

f(x − y)ϕt(x, t)dx

)
ṽ(y, t)dydt

= −
∫ T

0

∫

RN

(∫

RN

f(x)ϕt(x + y, t)dx

)
ṽ(y, t)dydt

= −
∫

RN

(∫ T

0

∫

RN

ϕt(x + y, t)ṽ(y, t)dydt

)
f(x)dx

=

∫

RN

〈ṽt(y, t), ϕ(x + y, t)〉f(x)dx.

On the other hand,

∫

RN

(∫ T

0

∫

RN

ṽi(y, t)Dyi
ϕ(x + y, t)dydt

)
f(x)dx

=

∫ T

0

∫

RN

ṽi(y, t)

(∫

RN

f(x)Dyi
ϕ(x + y, t)dx

)
dydt

=

∫ T

0

∫

RN

ṽi(y, t)

(∫

RN

f(x)Dxi
ϕ(x + y, t)dx

)
dydt
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= −
∫ T

0

∫

RN

ṽi(y, t)

(∫

RN

ϕ(x, t)Dxi
f(x − y)dx

)
dydt

= −
∫ T

0

∫

RN

ϕ(x, t)

(∫

RN

ṽi(y, t)Dxi
f(x − y)dy

)
dxdt

= − 〈(Dxi
f) ∗ ṽi, ϕ〉 .

Collecting all of these facts, we obtain (4.28).

Moreover, by Hölder’s inequality, it follows that

|(f ∗ ṽ)t| 6
∑

i

‖Dxi
f‖L2(RN ) · ‖vi‖L2(Ω) 6

∑

i

‖Dxi
f‖L2(RN ) · ‖vt‖H−1(Ω),

and this implies (4.29). �

Lemma 4.7 If uε is a solution of Pε, then

ess sup
0<t<T

∫

Ω

(
|∇uε|2

1 + α(v) |∇uε| + ε|∇uε|2
)

dx +

∫ T

0

∫

Ω

|uε
t |2dxdt 6 C, (4.30)

where C is a constant independent of ε.

Proof Let us use the notation

h(t) = max
x∈Ω

|α(v)t| . (4.31)

Multiply relations (4.18) by ut. This gives the equality

‖ut‖2
L2(Ω) +

∫

Ω

∇u

1 + α(v) |∇u| · ∇utdx+

∫

Ω

ε∇u · ∇utdx = 0. (4.32)

We use the formulas

∇u

1 + α(v) |∇u| · ∇ut =
∂

∂t

∫ |∇u|

0

s

1 + α(v)s
ds + α(v)t

∫ |∇u|

0

(
s

1 + α(v)s

)2

ds,

ε∇u · ∇ut =
∂

∂t

(ε

2
|∇u|2

)
.

Substituting these into (4.32), we rewrite it in the form

‖ut‖2
L2(Ω) + Y ′(t) = J, (4.33)

where

Y (t) =

∫

Ω

∫ |∇u|

0

s

1 + α(v)s
dsdx +

∫

Ω

ε

2
|∇u|2dx, (4.34)

J = −
∫

Ω

α(v)t

∫ |∇u|

0

(
s

1 + α(v)s

)2

dsdx. (4.35)

Since c ≤ α(v), it follows that

|J | 6
h(t)

c

∫

Ω

∫ |∇u|

0

s

1 + α(v)s
dsdx 6

h(t)

c
Y (t).

On the other hand, by Lemma 4.6,

h(t) ≤ C‖vt‖H−1(Ω),

Thus, the function Y (t) satisfies the differential inequality

‖ut‖2
L2(Ω) + Y ′(t) 6

h(t)

c
Y (t). (4.36)
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Omitting the nonnegative terms on the left-hand side, we estimate Y (t) by using Gronwall’s

lemma. The estimate follows from the integration of (4.36) over the interval (0, T ). �

4.4 Letting ε → 0

Proof of Theorem 4.4 We set




−→p := −→q (u, A) =
A

1 + α(u)|A| ,

−→p n := −→q (uεn , A) =
A

1 + α(uεn)|A| ,

λεn := (νεn , 0, 0) = σDuεn .

According to Lemma 3.8 and Lemma 4.7, for almost all t ∈ (0, T ), we can extract from

{uεn} and {νεn} a subsequence (still labeled {uεn} and {νεn}) such that





uεn → u in L2(Ω), (4.37)

uεn
∗
⇀ u in L∞(Ω), (4.38)

uεn

t ⇀ut in L2(Ω), (4.39)

∇ũεnLNxΩ̃
∗
⇁ Dũ in M(Ω̃), (4.40)

εn |∇uεn | → 0 in L2(Ω). (4.41)





〈νεn ,−→p 〉 ∗
⇀ 〈ν,−→p 〉 in L∞(Ω; RN ), (4.42)

〈νεn ,−→p · I〉 LN
xΩ

∗
⇁ 〈ν,−→p · I〉 LN

xΩ +
〈
ν∞, (−→p · I)

∞〉
λν in M(Ω), (4.43)

λεn
∗
⇁ λ in Y

(
Ω; RN

)
, (4.44)

where λ = (ν, λν , ν∞).

Step 1 According to Lemma 4.7, since ∂uεn

∂t
is bounded in L2(ΩT ) and uεn is bounded in

L∞(0, T ; W 1,1
0 (Ω)), we have that ∂α(uεn )

∂t
is bounded in L2(0, T ; C(Ω)) and α(uεn) is bounded

in L∞(0, T ; W 1,∞(Ω)). Thus, according to Lemma 3.10, there exists a subsequence {α(uεn)}
(not relabeled) satisfying

α(uεn) → α(u) uniformly in C([0, T ]; C(Ω)). (4.45)

Moreover,

|〈νεn ,−→p n〉 − 〈νεn ,−→p 〉| 6

∫

RN

|A|2 |α(uεn) − α(u)|
(1 + α(u)|A|) (1 + α(uεn)|A|)dνεn

6
1

c2
|α(uεn) − α(u)| ,

which converges to zero uniformly in Ω. Together with (4.42), it follows that

〈νεn ,−→p n〉 ∗
⇀ 〈ν,−→p 〉 in L∞(Ω; RN ). (4.46)

Therefore, by (4.39) and (4.41), we get that

ut = div〈ν,−→p 〉, in D′(Ω).

Since uεn ∈ H1
0 (Ω),

Dũεn = 〈νεn , I〉 LN
xΩ. (4.47)

As

Dũεn
∗
⇁ Dũ in M(Ω̃)
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and

〈νεn , I〉 LN
xΩ

∗
⇁ 〈ν, I〉 LN

xΩ + 〈ν∞, I〉λν in M(Ω), (4.48)

we obtain that

Dũ = 〈ν, I〉 LN
xΩ + 〈ν∞, I〉 λν in M(Ω̃). (4.49)

Therefore,

Du = 〈ν, I〉 LNxΩ + 〈ν∞, I〉λνxΩ in M(Ω) (4.50)

and

Dũx∂Ω = 〈ν∞, I〉 λνx∂Ω =
(
−uΩ ⊗ ~n

)
HN−1x∂Ω in M(Ω). (4.51)

Step 2 Since ut = div〈ν,−→p 〉, in D′(Ω), with ut ∈ L2(Ω), we get that

〈ν,−→p 〉 ∈ X2(Ω).

Similarly, by (4.18) and uεn

t ∈ L2(Ω), one has that

〈νεn ,−→p + εnI〉 ∈ X2(Ω).

For any 0 ≤ ϕ ∈ C∞
c (Ω̃), we obtain that

−
∫

Ω̃

uεn

t ϕuεndx = −
∫

Ω̃

div (〈νεn ,−→p + εnI〉)ϕuεndx

=

∫

Ω̃

ϕ 〈νεn ,−→p + εnI〉 · ∇uεndx +

∫

Ω̃

uεn 〈νεn ,−→p + εnI〉 · ∇ϕdx. (4.52)

Observe that, by (4.45) and Lemma 4.7, we obtain that
∣∣∣∣
∫

Ω̃

ϕ (〈νεn ,−→p n · I〉 − 〈νεn ,−→p · I〉) dx

∣∣∣∣

6

∫

Ω̃

ϕ

∫

RN

∣∣∣∣
|A|2

1 + α(uεn)|A| −
|A|2

1 + α(u)|A|

∣∣∣∣dνεndx

6
1

c2

∫

Ω̃

(
ϕ |α(uεn) − α(u)|

∫

RN

|A|dνεn

)
dx

6
1

c2
‖ϕ‖C(Ω) · ‖α(uεn) − α(u)‖C(Ω) · ‖∇uεn‖L1(Ω)

6 C‖α(uεn) − α(u)‖C(Ω) → 0.

By (4.47), we have that
∫

Ω̃

ϕ 〈νεn ,−→p + εnI〉 · ∇uεndx =

∫

Ω̃

ϕ 〈νεn ,−→p + εnI〉 · 〈νεn , I〉 dx

=

∫

Ω̃

ϕ 〈νεn ,−→p · I〉dx + εn

∫

Ω̃

ϕ|〈νεn , I〉|2dx

>

∫

Ω̃

ϕ 〈νεn ,−→p · I〉dx. (4.53)

Combining (4.37), (4.41) and (4.46), we get that
∫

Ω̃

uεn 〈νεn ,−→p n + εnI〉 · ∇ϕdx

=

∫

Ω̃

uεn 〈νεn ,−→p n〉 · ∇ϕdx +

∫

Ω̃

uεn (εn∇uεn · ∇ϕ) dx



1796 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

→
∫

Ω̃

u 〈ν,−→p 〉 · ∇ϕdx, n → ∞. (4.54)

On the other hand, by Green’s formula of Lemma 3.6, it follows that

−
∫

Ω̃

utϕudx = −
∫

Ω̃

div (〈ν,−→p 〉)ϕudx

=

∫

Ω̃

ϕ (〈ν,−→p 〉 , Dũ) +

∫

Ω̃

u 〈ν,−→p 〉 · ∇ϕdx

=

∫

Ω̃

ϕ 〈ν,−→p 〉 · (〈ν, I〉 dx + 〈ν∞, I〉 dλν) +

∫

Ω̃

u 〈ν,−→p 〉 · ∇ϕdx. (4.55)

Hence, by (4.52), (4.53), (4.54) and (4.55), letting n → ∞, we have that
∫

Ω̃

ϕ 〈ν,−→p 〉 · (〈ν, I〉 dx + 〈ν∞, I〉 dλν) >

∫

Ω̃

ϕ
(
〈ν,−→p · I〉dx +

〈
ν∞, (−→p · I)

∞〉
dλν

)
.

Furthermore, by the arbitrariness of ϕ and the definition of ũ,

〈ν,−→p 〉 ·
(
〈ν, I〉 LN

xΩ + 〈ν∞, I〉λνxΩ
)
≥
(
〈ν,−→p · I〉 LN

xΩ + 〈ν∞, (−→p · I)∞〉 λνxΩ
)

(4.56)

holds in M(Ω). Moreover, λεn ∈ GY (Ω) yields that λ ∈ GY (Ω), and u is a generalized gradient

Young measure solution. �

Proof of Theorem 4.5 To prove Theorem 4.5, we only need to prove that the generalized

gradient Young measure solution in Theorem 4.4 is also a strong solution to problem P . As in

the proof of Theorem 4.4, one has that




uεn → u in L2(Ω), (4.57)

uεn

t ⇀ut in L2(Ω), (4.58)

εn |∇uεn | → 0 in L2(Ω), (4.59)

〈νεn ,−→p n〉 ∗
⇀ 〈ν,−→p 〉 in L∞(Ω; RN ). (4.60)

Since

ut = div〈ν,−→p 〉, in D′(Ω), (4.61)

we have that 〈ν,−→p 〉 ∈ X2(Ω). Letting 0 ≤ θ ∈ D(Ω) and η ∈ C1(Ω), by the monotonicity of
−→q (uεn , ·), it follows that

∫

Ω

θ ((−→p n (∇uεn) + εn∇uεn) − (−→p n (∇η) + εn∇η)) · (∇uεn −∇η) dx > 0;

since

lim
n→∞

∫

Ω

θuεn

t (uεn − η) dx =

∫

Ω

θut (u − η) dx

and

lim
n→∞

∫

Ω

(uεn − η)∇θ · (−→p n (∇uεn) + εn∇uεn) dx =

∫

Ω

(u − η)∇θ · 〈v,−→p 〉 dx.

Hence, by Green’s formula of Lemma 3.6, we obtain that

lim
n→∞

∫

Ω

θ (−→p n (∇uεn) + εn∇uεn) · ∇ (uεn − η) dx

= lim
n→∞

∫

Ω

−θuεn

t (uεn − η) dx + lim
n→∞

∫

Ω

− (uεn − η)∇θ · (−→p n (∇uεn) + εn∇uεn) dx

= −
∫

Ω

θut (u − η) dx −
∫

Ω

(u − η)∇θ · 〈v,−→p 〉dx
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=

∫

Ω

θ (〈ν,−→p 〉 , D (u − η)).

With this, and

lim
n→∞

∫

Ω

θ (−→p n (∇η) + εn∇η) · (∇uεn −∇η) dx =

∫

Ω

θ (−→p (∇η) , D (u − η)),

we have that ∫

Ω

θ (〈ν,−→p 〉 − −→p (∇η) , D (u − η)) > 0.

Therefore,

(〈ν,−→p 〉 − −→p (∇η) , D (u − η)) > 0 in M(Ω),

so its absolutely continuous part is

(〈ν,−→p 〉 − −→p (∇η)) · ∇ (u − η) > 0 a.e. in Ω.

Since C1(Ω) is separable, by taking a countable set as dense in C1(Ω), we have that the above

inequality holds for all x ∈ Ω′, where Ω′ ⊆ Ω satisfies that LN (Ω \ Ω′) = 0 and all η ∈ C1(Ω).

Now, fixing x ∈ Ω′, and given A ∈ R
N , there exists η ∈ C1(Ω) such that ∇η = A. Thus,

(〈ν,−→p 〉 − −→p (A)) · (∇u(x) − A) > 0, ∀ A ∈ R
N .

By choosing A = ∇u(x) ± ǫξ, ∀ξ ∈ R
N and letting ǫ → 0+, we obtain that

〈ν,−→p 〉 = −→p (∇u(x)) =
∇u

1 + α(u)|∇u| , a.e. x ∈ Ω, (4.62)

which implies (4.2).

According to (4.49) and (4.56), we have that

Dũ = 〈ν, I〉 LNxΩ + 〈ν∞, I〉λν in M(Ω̃) (4.63)

and

〈ν,−→p 〉 ·
(
〈ν, I〉 LNxΩ + 〈ν∞, I〉λνxΩ

)

≥
(
〈ν,−→p · I〉 LN

xΩ + 〈ν∞, (−→p · I)∞〉λνxΩ
)

in M(Ω). (4.64)

Thus,

(〈ν,−→p 〉 〈ν, I〉 − 〈ν,−→p · I〉)LNxΩ +
(
〈ν,−→p 〉 〈ν∞, I〉 −

〈
ν∞, (−→p · I)

∞〉)
λνxΩ̄ > 0, (4.65)

and its singular parts are
(
〈ν,−→p 〉 〈ν∞, I〉 −

〈
ν∞, (−→p · I)

∞〉)
λs

νxΩ̄ > 0 in M(Ω).

Then, it follows that

〈ν,−→p 〉 〈ν∞, I〉 >
〈
ν∞, (−→p · I)

∞〉
λs

ν − a.e. in Ω̄.

With this, and by

Dsũ = 〈ν∞, I〉λs
ν in M(Ω̃), (4.66)

we have that
〈
ν∞, (−→p · I)

∞〉
λs

ν =
1

α(u)
|〈v∞, I〉|λs

ν =
1

α(u)
|Dsũ| in M(Ω̃).
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On the other hand, by (4.66), we have that

〈ν,−→p 〉 〈ν∞, I〉λs
ν = 〈ν,−→p 〉Dsũ = 〈ν,−→p 〉 〈δp, I〉 |Dsũ| ,

where p = Dsũ
|Dsũ| ∈ L1(Ω, |Dsũ|). Then,

〈ν,−→p 〉 〈δp, I〉 =

∫

RN

∫

∂BN

−→p (B) · Adδp(A)dν(B)

=

∫

RN

∫

∂BN

A · B
1 + α(u)|B|dδp(A)dν(B)

6

∫

RN

∫

∂BN

|A|
α(u)

dδp(A)dν(B)

=
1

α(u)
,

with |Dsũ| − a.e. in Ω. Thus,

1

α(u)
|Dsũ| > 〈ν,−→p 〉 〈δp, I〉 |Dsũ| = 〈ν,−→p 〉 〈ν∞, I〉λs

ν

>
〈
ν∞, (−→p · I)

∞〉
λs

ν =
1

α(u)
|Dsũ| in M(Ω̃),

i.e.,

〈ν,−→p 〉Dsũ =
1

α(u)
|Dsũ| in M(Ω̃).

This implies that

〈ν,−→p 〉Dsũ xΩ = 〈ν,−→p 〉Dsu xΩ =
1

α(u)
|Dsu| in M(Ω̄) (4.67)

and

〈ν,−→p 〉Dsũx∂Ω =
1

α(u)
|Dsũ| x∂Ω in M(Ω̄).

Since u ∈ BV(Ω), by the boundary trace theorem (see Theorem 3.87 in [27]), we get that

Dsũx∂Ω = Dsu xΩ =
(
−uΩ ⊗ ~n

)
HN−1x∂Ω in M(Ω̄).

Hence,

〈ν,−→p 〉 ·
(
−uΩ ⊗ ~n

)
HN−1x∂Ω =

1

α(u)

∣∣uΩ
∣∣HN−1x∂Ω;

i.e.,

[〈ν,−→p 〉 , ~n] ∈ −sign
(
uΩ
)
· 1

α(u)
HN−1-a.e. on ∂Ω. (4.68)

Letting z = 〈ν,−→p 〉, and combining (4.61), (4.62), (4.67) and (4.68), we complete the proof. �

5 Uniqueness Results

The uniqueness is proved in a narrower class of functions than the existence. However, since

the proof of Theorem 5.1 is practically independent of the proof of existence, the regularity on

ut is less restrictive.

Theorem 5.1 There is at most one solution (in the sense of Definition 4.1 or Definition

4.2) to the problem P in the class

W (ΩT ) = {u(x, t)|u ∈ L2(0, T ; H1
0 (Ω)), ut ∈ L2(0, T ; H−1(Ω))}.
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Proof Actually, a solution in the class W (ΩT ) is also a weak solution in usual sense. Let

both u1 and u2 be weak solutions of P . Then one has that
〈

∂u1

∂t
− ∂u2

∂t
, u1 − u2

〉
= −

∫

Ω

( ∇u1

1 + α(u1)|∇u1|
− ∇u2

1 + α(u2)|∇u2|

)
· (∇u1 −∇u2) dx

= −
∫

Ω

( ∇u1

1 + α(u1)|∇u1|
− ∇u2

1 + α(u1)|∇u2|

)
· (∇u1 −∇u2) dx

+

∫

Ω

( ∇u2

1 + α(u2)|∇u2|
− ∇u2

1 + α(u1)|∇u2|

)
· (∇u1 −∇u2) dx

:= − I1 + I2,

where 〈·, ·〉 denotes the dual product of H−1(Ω) and H1
0 (Ω).

By some calculations, we get that

I1 =

∫

Ω

|∇u1 −∇u2|2
(1 + α(u1)|∇u1|) (1 + α(u1)|∇u2|)

dx

+

∫

Ω

α(u1) (|∇u1| + |∇u2|) (|∇u1||∇u2| − ∇u1 · ∇u2)

(1 + α(u1)|∇u1|) (1 + α(u1)|∇u2|)
dx

>

∫

Ω

|∇u1 −∇u2|2
(1 + α(u1)|∇u1|) (1 + α(u1)|∇u2|)

dx,

and

|I2| 6

∫

Ω

|α(u1) − α(u2)| |∇u2|2 |∇u1 −∇u2|
(1 + α(u1)|∇u2|) (1 + α(u2)|∇u2|)

dx

6

∫

Ω

|∇u1 −∇u2|2
(1 + α(u1)|∇u1|) (1 + α(u1)|∇u2|)

dx

+
1

4

∫

Ω

|α(u1) − α(u2)|2|∇u2|4 (1 + α(u1)|∇u1|)
(1 + α(u2)|∇u2|)2 (1 + α(u1)|∇u2|)

dx.

Collecting all of these facts, by α ≥ c > 0, we obtain that

1

2

d

dt

∫

Ω

(u1(t) − u2(t))
2
dx

6
1

4c3

∫

Ω

|α(u1) − α(u2)|2 |∇u2| (1 + α(u1)|∇u1|) dx

6
1

4c3
|α(u1) − α(u2)|2C(Ω) · ‖∇u2‖L2(Ω) · ‖1 + α(u1)|∇u1|‖L2(Ω).

Thus, by (4.26), we have that

Y ′(t) 6 Cλ(t)Y (t),

where C is a constant and

Y (t) = ‖u1(t) − u2(t)‖2
L2(Ω) ,

λ(t) = ‖∇u2(t)‖L2(Ω) · ‖1 + |∇u1(t)|‖L2(Ω).

Observing that λ(t) ∈ L1(0, T ), by Gronwall’s inequality, it follows that

Y (t) 6 exp(C

∫ T

0

λ(s)ds) · Y (0).

Since Y (0) = ‖u1(0) − u2(0)‖2
L2(Ω) = 0, we have that u1 = u2, and the proof is concluded. �
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6 Numerical Scheme and Experiments

In this section, the PM scheme in [15] and a fast numerical scheme are used to implement

our NLPM method. Furthermore, we compare our NLPM method with other denoising methods

through experiments on different types of images. It is worth noting that, starting from this

section, we introduce a positive modifier parameter K into our NLPM diffusivity function (2.1),

as the original PM diffusivity (1.1) did. More specifically, the modified diffusivity

gNLPM =
1

1 + |∇Gσ ∗ u||∇u|/K2

will be used in our experiments. The reason we add the modifier K is to enhance the flexibility

of our NLPM method. In order to maintain the fairness of the comparison experiments, we add

the modifier K to all the other methods, and adjust the parameters in order for each to reach

its best results. The analytical results we proved in the previous sections can be viewed as a

special case of when K = 1. We will carefully discuss the selection of parameters in Section 6.3.

6.1 Numerical Schemes

(1) PM scheme (PMS)

Similarly to the numerical scheme in [15], which was originally introduced to implement the

PM method, and thus called the “PM scheme”, the scheme that follows is used for our NLPM

method.

First, the gradient terms of u and Gσ ∗ u are respectively discretized into four orthogonal

directions: north, south, east and west. Assume that the width and length of the images are I

and J , respectively, and also assume that the spatial step sizes are hx = hy = 1.

For 0 ≤ i ≤ I, 0 ≤ j ≤ J ,

∇W ui,j = ui−1,j − ui,j, ∇Eui,j = ui+1,j − ui,j ,

∇Nui,j = ui,j+1 − ui,j , ∇Sui,j = ui,j−1 − ui,j,

∇W [Gσ ∗ u]i,j = [Gσ ∗ u]i−1,j − [Gσ ∗ u]i,j ,

∇E [Gσ ∗ u]i,j = [Gσ ∗ u]i+1,j − [Gσ ∗ u]i,j,

∇N [Gσ ∗ u]i,j = [Gσ ∗ u]i,j+1 − [Gσ ∗ u]i,j,

∇S [Gσ ∗ u]i,j = [Gσ ∗ u]i,j−1 − [Gσ ∗ u]i,j.

Then, we denote Λ ∈ Ω = {N, S, E, W} as any of the four directions, and define Cn
Λi,j as

Cn
Λi,j =

1

1 +
∣∣∣∇Λ[Gσ ∗ u]i,j

∣∣∣ |∇Λui,j | /K2
.

Finally, the NLPM equation is put into a simple form as follows:

un+1
i,j = un

i,j + τ
∑

Λ∈Ω

Cn
Λi,j∇Λun

i,j , (6.1)

u0
i,j = fi,j = f (i, j) ,

un
i,0 = un

i,1, un
0,j = un

1,j , un
I,j = un

I−1,j , un
i,J = un

i,J−1.

Here τ is unit time step, and 0 ≤ τ ≤ 1
4 is required to ensure that the scheme is stable.
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Furthermore, if we denote Un ∈ R
IJ as the vector with entries un

i,j, then we can rewrite

equation (6.1) as the matrix form

Un+1 = (I + τA(Un))Un, (6.2)

where I is a IJ × IJ identity matrix, and A(Un) with respect to Un is a negative semidefinite

IJ × IJ matrix derived from the diffusion process at time level n.

The PMS is a very simple and intuitive scheme to implement our new model, however

since PMS is an explicit scheme with a fixed time step size, it suffers from a strict time step

restriction which will cause a severe inefficiency. Therefore, we use another numerical scheme

which can realize a rapid implementation for our NLPM method.

(2) Fast explicit diffusion scheme (FED)

According to Grewenig et al. [28], splitting a long fixed time step iteration into several

variant time step cycles (i.e., the FED cycles) will speed up the implementation, as well as

maintain the stability. More specifically, the corresponding FED scheme for our NLPM model

is as follows (given that the default spatial step size h in image processing is 1):

1) Input: total processing time T , the number of FED cycles M , noisy image f .

2) Initialization: let U0 be the vector generalized by f.

3) Iteration: for k = 0, · · · , M − 1,

a) Find the current diffusion matrix P , where P = A(Uk), according to equation (6.2).

b) Find the largest module µm of eigenvalues of P (i.e., µm = maxi |µi|, where µi is the

eigenvalue of P ).

c) Find the smallest n satisfying that

2(n2 + n)

3µm
≥ T

M
.

d) Compute

τ̃i =
3T

2M(n2 + n) cos2
(
π 2i+1

4n+2

) for i = 0, · · · , n − 1.

e) Reorder τ̃i, for i = 0, · · · , n − 1, using Leja ordering [29] for the sake of numerical

stability. For the simplicity of notation, we still use {τ̃i}n−1
i=0 to denote the reordered time step

sizes.

f) Do one FED cycle:

Uk+1 =

n−1∏

i=0

(I + τ̃iP )Uk.

End

6.2 Numerical Experiments

We use peak signal-to-noise ratio (PSNR) to measure the effectiveness of different image

denoising methods:

PSNR = 10 log10

MN |maxuo − min uo|2
||û − uo||22

(dB).

Here uo is the noise-free image, û is the denoised image, and M and N are the width and length

of the images, respectively.
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First we compare the results of our NLPM method implemented by two schemes introduced

in Section 6.1. We use these two methods (i.e., NLPM implemented by the PMS scheme, and

NLPM implemented by the FED scheme) to process the images shown in Figure 5. For each

method, the iteration is stopped when the maximal PSNR value is attained. The PSNR results,

processing time and corresponding parameters are listed in Table 1. We can find that the FED

scheme sharply reduces the processing time of the PMS scheme, however, the PSNR of the

FED scheme drops by around 0.2 − 0.5 dB; this is a compromise of fast implementation.

(a) Synthetic 1 (b) Synthetic 2 (c) House (d) Barbara

(e) Boat (f) Lena (g) Pepper (h) Cameraman

Figure 5 Test images used in comparison experiments of the PMS and FED schemes

Tabld 1 Test results between the PMS and FED schemes. All of the test images are from Figure

5. τPMS is the time step size of the PMS scheme, IterPMS is the total iterations of the PMS scheme,

TFED is the total processing time of the FED scheme, MFED is the number of FED cycles, σNLPM is

the parameters of the Gaussian in our NLPM method

Test image PMS time FED time PMS PSNR FED PSNR τPMS IterPMS TFED MFED σNLPM

Synthetic 1 0.4779 0.1097 39.8452 39.9370 0.1 353 35 6 3

Synthetic 2 2.1384 0.4702 41.1160 40.9414 0.1 550 55 9 3

House 1.5085 0.2790 30.3166 30.1993 0.1 450 45 8 3

Barbara 2.8479 0.3147 27.8142 27.3395 0.05 350 17 5 1

Boat 6.6273 0.7257 31.3769 31.2265 0.05 750 75 10 1

Lena 2.8780 0.3339 31.5354 31.2055 0.05 300 15 3 3

Pepper 8.5388 0.6982 30.0658 30.0089 0.05 950 47 8 3

Cameraman 1.8377 0.2232 30.3965 30.2106 0.05 700 35 10 1

Furthermore, to verify the effectiveness of our NLPM method, we perform comparison

experiments among several different image denoising methods. In the experiments, we care more

about PSNR comparison for the different methods rather than the processing time. In order to

make a fair comparison between different methods, we uniformly use the simple explicit finite

difference schemes for implementation (i.e., PMS for NLPM). The corresponding parameters

are set to reach the maximal PSNR for each method.
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We first add Gaussian noise with a standard deviation 25 to a clean synthetic image, as

shown in Figure 6(a). Then Figures 6(b)–6(d) show the denoising results of PM, RPM and our

NLPM method, respectively. To make a detailed comparison, we zoom on the restored images

to compare the detail performance of our NLPM method with the other two diffusion methods.

Figures 7(a) and 7(e) are restored images of the PM and NLPM methods, respectively. We box

three pairs of local blocks in these, and display in pairs the rest of the subfigures of Figure 7.

Figures 7(b) and 7(c) demonstrate that there exists a “staircase” effect in PM restored images,

while this kind of oscillation is well avoided by the NLPM method, as shown in Figures7(f)

and 7(e). Figures 7(d) and 7(h) demonstrate that NLPM method can avoid black and white

“speckle” effect occurring in PM restored images. Figure 8 compares the performance of the

RPM and NLPM methods. From Figures 8(b) and 8(c) we can see that, in the edge areas,

the RPM method has serious blurring; the contrast of two adjacent colors becomes much less

obvious. Figures 8(e) and 8(f) demonstrate that the NLPM method can preserve the edge area

much better.

(a) Noisy image, σnoise = 25 (b) PM restored, PSNR= 36.96

(c) RPM restored, PSNR= 37.78 (d) NLPM restored, PSNR= 39.11

Figure 6 Restored results of three different diffusion methods

(a) PM restored (b) PM detail 1 (c) PM detail 2 (d) PM detail 3

(e) NLPM restored (f) NLPM detail 1 (g) NLPM detail 2 (h) NLPM detail 3

Figure 7 Detailed comparisons of restored images by the PM method and the NLPM method
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(a) RPM restored (b) RPM detail 1 (c) RPM detail 2

(d) NLPM restored (e) NLPM detail 1 (f) NLPM detail 2

Figure 8 Detailed comparisons of restored images by the RPM method and the NLPM method

Our next examples compare the performance of the proposed NLPM method with more

PDE-based image denoising methods, namely, the total variation method (TV) [1], the PM

method, the RPM method, the mild regularized PM method (M-RPM) [21], and the adaptive

PM method (we use the same notation “D-α-PM” as the original article [30]). All of the

parameters are chosen to be optimal based on the corresponding articles, also, the iteration is

stopped when maximal PSNR value is reached. The best PSNR results of these six different

PDE-based methods are listed in Table 2, and the test images are chosen from Figure 5. The

highest PSNR value of each experiment is shown in bold face. For various types of images, our

NLPM method demonstrates the best denoising ability among these six PDE-based methods.

Table 2 The optimal PSNR results of different PDE-based methods

Image TV PM RPM M-RPM D-α-PM NLPM

Synthetic1 34.68532959 36.93236781 35.60422723 33.39559309 37.2309 37.7621703

House 31.40358253 30.87583707 31.75864565 31.0057527 31.60348162 31.8226579

Lena 28.59233379 28.4242997 28.78708987 27.98096444 28.55191082 28.82056526

Pepper 30.28443428 29.99339522 30.57299094 29.46266412 30.2640025 30.61255026

The visual results are presented in Figures 9–12, with the original image, the noisy image

contaminated by additive Gaussian noise, and the images denoised by different methods shown

in the respective subfigures. One notices that there are several random black and white speckles

appearing in the images denoised by the PM method; that is because of the forward-backward

diffusion. The RPM method loses the preservation of edge lines (such as the junction lines of

the four squares in Figure 9(e)), due to the high regularization of its solutions. In the smooth

intensity transition areas (such as the first three quadrants of “Synthetic 1” in Figure 9(a), the

cheeks of “Lena” in Figure 11(a), and the smooth surface of “Pepper” in Figure 12(a)), the TV

method has an obvious “staircase” effect as shown in Figures 9(c), 11(c), and 12(c), while the

M-RPM method exposes a more serious “staircase” effect in the corresponding experiments,

demonstrated especially in Figure 9(f). This is because the M-RPM method depends too much

on the parameter p in terms of its diffusivity (1.3), and the fixed parameter p results in a lack
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of flexibility regarding its diffusion process. The D-α-PM method, specifically,

ut = div

( ∇u

1 + (|∇u|/K)
2− 2

1+k|∇Gσ∗u|2

)
− λ(u − f), (6.3)

adopts an adaptive diffusivity which can effectively improve the drawbacks of the M-RPM

method (as shown in Figures 9(g), 11(g) and 12(g)). However, the D-α-PM method has too

many parameters (namely, K, k, σ, λ in (6.3), the time step τ , and the iteration times) to

modify, which increases the difficulty of implementation and limits the application of the D-

α-PM method. Our NLPM method prevents the shortcomings mentioned above. Specifically,

the NLPM method preserves the edges well (Figures 9(g) and 10(h)), restores the smooth

transitions well, and avoids the “staircase” artifacts (Figures 9(h), 11(h) and (12)(h)). It also

presents visual effects as good as the D-α-PM method while having less parameters to modify.

(a) Original image (b) Noisy image (c) TV (d) PM

(e) RPM (f) M-RPM (g) D-α-PM (h) NLPM

Figure 9 Experiments on “Synthetic 1”, of size 128× 128, the noise standard deviation being 30

(a) Original image (b) Noisy image (c) TV (d) PM

(e) RPM (f) M-RPM (g) D-α-PM (h) NLPM

Figure 10 Experiments on “House”, of size 256× 256, the noise standard deviation being 20
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(a) Original image (b) Noisy image (c) TV (d) PM

(e) RPM (f) M-RPM (g) D-α-PM (h) NLPM

Figure 11 Experiments on “Lena”, of size 300× 300, the noise standard deviation being 25

(a) Original image (b) Noisy image (c) TV (d) PM

(e) RPM (f) M-RPM (g) D-α-PM (h) NLPM

Figure 12 Experiments on “Pepper”, of size 256 × 256, the noise standard deviation being 20

6.3 Selection of Parameters

There are two main parameters, K and σ, in our NLPM method that need to be modified

in the experiments.

The parameter K is a threshold value of diffusion progress; it has more influence on the

boundary and edge areas than the smooth areas. Consequently, there are differences of the

optimal K among different types of images. As for the images with fewer details, such as the

“Synthetic 1” and “House” in Figures 9(a) and 10(a), the optimal K is smaller and lies between

3 and 5. For the images with more details, i.e., the real natural images such as “Lena” and

“Pepper” in Figures 11(a) and 12(a), the optimal K is supposed to be larger; around 7 − 9.

On the other hand, the noise level will also affect the optimal value of K. Specifically, images
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with larger noise levels will have a larger optimal K, which is reasonable, since the noise will

increase the “details” in the image.

The parameter σ, as discussed in Section 2, represents the non-locality level of diffusion

progress. Throughout the experiments, we found that σ = 1 is an optimal choice for different

types of images. On the other hand, to ensure the numerical stability of the PMS scheme, the

time step τ is required to be less than 0.25. Also, according to our empirical evidence, the

PSNR result will not increase after τ gets small enough. Therefore, we choose τ = 0.02 for all

experiments to both satisfy the stability requirements and preserve the time efficiency. Finally,

for the number of iteration times, we apply the maximal PSNR criterion, i.e., stop the iteration

when the maximal PSNR is reached. Therefore, the number of iteration times is fixed if all of

the other parameters are given. In general, the number of iteration times is in proportion to

noise level, and is inversely proportional to K.
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