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Abstract In this paper, we introduce a general hybrid iterative method to find an infinite
family of strict pseudo-contractions in a g-uniformly smooth and strictly convex Banach space.
Moreover, we show that the sequence defined by the iterative method converges strongly to

a common element of the set of fixed points, which is the unique solution of the variational
oo

inequality ((Ap —vF)Z,jq(z — 2)) <0, for z € [ I'(Si). The results introduced in our work
i=1

extend to some corresponding theorems.
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1 Introduction

Assume that E is a real Banach space. Letting J : E — 2" we define the normalized

duality mapping by
J(z) ={g € E": (z,9) = ||z* and ||g|| = |I]}},Vz € E,

where (-,-) is the generalized duality pairing, and E* is the dual space of E. In addition, we

will use j to denote the single-valued normalized duality mapping. Let {zx} be a sequence in E.
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Thus we use z, — Z (respectively, zx — Z, 2z, — Z) to denote strong (respectively, weak, weak*)
convergence of the sequence {z;} to Z. Assume that J is single valued if, for each {zx} C E
with zp — %, one has J(z;) — J(2); thus J is said to be weakly sequentially continuous.

Letting ¢ > 1, we use J; to denote the generalized duality mapping, which is given by
Jq(2) ={g € E": (2,9) = ||2]| and |lg]| = ||z """},
and the following relation holds:
Jo(2) = [|12]72J (2), z # 0.
Letting pug : [0,00) — [0,00), the modulus of the smoothness of F is given by
1
pp(9) = sup{z(lu+vll +flu —vl)) = 1: flufl < 1, |[v]] < 6}.

Moreover, if elim+ ”Ee(e) =0, then F is said to be uniformly smooth.
—0

Given ¢ > 1, if there is a constant b > 0 such that pug(6) < b0?, then E is g-uniformly
smooth. The example of such spaces are Ly(or {,), p > 1 and Hilbert spaces. More specifically,
for each p > 1, Ly(or 1,,) is min{p, 2} -uniformly smooth.

Noticing that a g-uniformly smooth Banach space is uniformly smooth, this means that its
norm is uniformly Fréchet differentiable [1].

When FE is uniformly smooth, the normalized duality mapping j is single valued and norm
to norm uniformly continuous on every bounded set.

A mapping S : E — F is called a (q) — y-strict pseudo-contraction if there is a constant
~v > 0 for each y,z € E and for all j,(y — 2z) € J,(y — 2) such that

(Sy ~ S2,aly = ) < ly = 219 = AT = Sy — (1 = )zl (1)
The set of fixed points of the mapping S is denoted by I'(S); that is, T'(S) = {z € E : Sz = z}.
Clearly, (1.1) is equivalent to the following;:
(I =98)y—U=9)zjqly — 2)) 27T = Sy — (I = 5)z[|*. (1.2)
The following well-known theorem is the Banach contraction principle:

Theorem 1.1 ([2]) Suppose that (Y,d) is a complete metric space, and that h is a con-
tractive mapping on Y; that is, there is a constant p € (0,1) such that d(h(y), h(z)) < pd(y, z),
Vy,z € Y. Then h has a unique fixed point.

Theorem 1.2 ([3]) Suppose that (Y, d) is a complete metric space, and that ¢ is a Meir-
Keeler contraction (MKC for short) on Y’ that is, Ve > 0, and there is a number ¢ > 0 such
that d(y, z) < € + ¢ implies that d(o(y), ¢(z)) <€, Yy,z € Y. Then ¢ has a unique fixed point.

Since the contractions are Meir-Keeler contractions, Theorem 1.2 is one of generalizations
of Theorem 1.1.
Assume that F is a g-uniformly smooth and strictly convex Banach space which admits a
generalized duality mapping j, : £ — E*. A mapping F : E — FE is said to be
(1) B-Lipschitzian, if there is a constant 5 > 0 such that
IFy — Fzl| < Blly — =], Vy, z € E; (1.3)
(2) 0-strongly monotone, if there is a constant § > 0 such that

(Fy—Fz,jo(y — 2)) > 0|y — z||%,Vy,z € E. (1.4)
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Definition 1.3 Suppose that A is a strongly positive bounded linear operator in a g-
uniformly smooth and strictly convex Banach space F; that is, there is a constant 77 > 0 such
that

(Az,jq(2)) = 7l|z[|,Vz € E, [[aa]—az Al = sup {[((a1]—a2A)z,jq(2))]}, a1 € [0,1],a2 € [0,1].
llzll<1
Here I is the identity mapping and j, is the generalized duality mapping.
Remark 1.4 By the definition of A, we can know that A is a |.A|-Lipschizian and an

7-strongly monotone operator.

Suppose that H is a real Hilbert space, and that Dis a non-empty closed convex subset of
H.

In 2010, Jung [4] proposed the following method: for a y-strict pseudo-contraction S : D —
H such that T'(S) #0 and z; =z € D,

2k = TpXEk + (1 — Tk)PDWCL'k,

(1.5)
Tpt1 = PrpAh(zk) + (I — BeA)zk, VE > 1,

where W : D — H is a mapping given by Wz =~z + (1 —v)Sz, and {0} and {r} C (0,1)

are sequences which hold hm Br = 0, Z Or = oo, and 0 < liminfy oo 7% < limsup7e <
k—oo

k=
b < 1 for the constant b € (0, 1). He obtamed that the sequence {zj} generated by (1.5)
converges strongly to a fixed point & of S, which uniquely solves the variational inequality
(A —A)z,z—3) <0, zeT(9).

Recently, Tian [5] introduced the iterative algorithm
Tyl = ﬂk/\h(a:k) + (I — Vﬂk}—)SIk, Vk>1, (1.6)

where S is a non-expansive mapping on H such that I'(S) # 0, F is a S-Lipschitzian and a §-
o0

strongly monotone operator, {8} C (0, 1) is a sequence which satisfies klim Br=0,> Br=o00
—0o0 k=1
and klim Br+1/08r = 1. He proved that {x} given by (1.6) converges strongly to a point Z in
— 00

I'(S), which uniquely solves the variational inequality ((Ah — vF)E,z — ) <0, z € T'(S).
Very recently, Wang [6] proposed the following algorithm: for z; = z € D,

2 = i + (1 — ) Ui,

(1.7)
Tpr1 = BeAh(zg) + (I — vBRF )2k, VE > 1.

Here Uy is a mapping given by (2.14), and F is a @-Lipschitzian and a J-strongly monotone
operator such that 0 < v < 62’ {8} and {7} C (0,1). In Hilbert spaces, she obtained that
if the parameters hold to certain conditions, then {x} generated by (1.7) converges strongly
to a common element of the fixed points of an infinite family of ~;-strict pseudo- contractions,
which uniquely solves the variational inequality ((Ah — vF)Z,z — %) <0, for z € ﬂ I'(S;).
Inspired and motivated by the above works, we introduce the following general iterative
scheme: for xr1 =z € F,
2k = Xk + (1 — 7)) Ui,
k= Tk + (1 — 76)Upg (1.8)
Thy1 = Bedp(@r) + (I — vBF)zr, Vi > 1.
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Here Uy, is a mapping given by (2.14), ¢ is a Meir-Keeler contraction (MKC for short), and F

is a O-Lipschitzian and a d-strongly monotone operator such that 0 < v < min{( Dq‘;q )qul, 1}.
q

We will show that if the parameters hold to certain conditions (see (D1)—(D3) in Theorem 3.1),

then {z} given by (1.8) converges strongly to a common element of the fixed points of an

infinite family of ~;-strict pseudo-contractions, which uniquely solves the variational inequality

(Ap—vF)Z,js(z—2)) <0 for z € () T'(S;). Our results generalize the theories of Wang inself
i=1
space[6] in the following two respects:

(i) we extend the results of Wang [6] from Hilbert spaces to g-uniformly smooth and strictly
convex Banach spaces;

(ii) we extend the results of Wang [6] from a contractive mapping to a Meir-Keeler con-
traction (MKC for short).

The rests of this work is organized as follows: in the next section, we introduce the notations
and preliminary results upon which we rely. In the final section, we study the convergence of
the proposed methods.

2 Preliminaries

In this part, we mainly recall some lemmas which are useful for proving our main ideas.

Lemma 2.1 ([7]) Given ¢ > 1, where F is a g-uniformly smooth space, there is a constant
Dy > 0 such that

ly + 217 < [lyll? + ¢(2, 4o (v)) + Dyll2||?, Vy,z € E. (2.1)

Lemma 2.2 ([8]) Suppose that F is a Banach space, and that D is a convex subset of E.
If ¢ : D — D is an MKC, then for every £ > 0, there is a number ¢ € (0,1) such that

ly — 2| = € implies |lo(y) — 0(2)|| < clly — 2|, Vy,z€ D.
If, for any sequence {z;} in a Banach space E, z;, — Z implies

limsup ||z, — 2| < limsup ||zx — ||,

k—o0 k—o00

then Vz € E with z # Z. Then F satisfies Opial’s condition [9]. Banach spaces which satisfy
Opial’s condition are all spaces IP(1 < p < co0) and Hilbert spaces. However, L?[0, 27| with
1 < p # 2 cannot satisfy Opial’s condition. It is well-known that if F admits a weak sequentially
continuous duality mapping, it satisfies Opial’s condition; see [10].

Lemma 2.3 ([11]) Suppose that E is a reflexive Banach space which satisfies Opial’s
condition, and that D is a non-empty closed convex subset of E. If S is a non-expansive
mapping from D to E, then I — S is demiclosed at zero; that is, z;, — 2z and ||z — Szk|| — 0,
and hence z = Sz. Moreover, Gu inself space [20] extended this conclusion from a non-expansive
mapping to a asymptotic non-expansive mapping.

Lemma 2.4 ([12]) Suppose that F is a S-Lipschitzian and a §-strongly monotone operator

in a g-uniformly smooth Banach space E such that 8 > 0, > 0,0 <a < land 0 < v <
s
D, 77

1— of and § = &8=Dqv15?
. )

)q%l, 1}. Then T = (I — avF) : E — E is a contractive mapping with a coefficient

min{(
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Suppose that E is a g-uniformly smooth Banach space, and that 7 : £ — FE is a -
Lipschitzian and a §-strongly monotone operator such that 8 > 0,5 > 0,and S : E — FE'is anon-

expansive mapping. Let ¢ : E — E be an MKC with 0 < a <1,0< v < min{(Dq‘;q)qul, 1},
qué—D,v1p9 !
q

0<A< = 6. A mapping T, on F is then defined as
Tox = are(x) + (I — avF)Sz, x € E.
It is easy to get that T, is a contractive mapping. In fact, by Lemma 2.4, we obtain that
[Tax = Toz|| < aM[[o(z) = p(2)]| + |(I = avF) Sz = (I — avF)Sz||
aAz = 2] + (1 — ab)[lx — ||
= [ —a(0 =Nz - =]

IN

for all z,2z € E. Therefore, we have a unique point x, which is a unique solution of the fixed
point equation
To = aAp(xq) + (I — avF)Sx,, x4 € E. (2.2)
Lemma 2.5 Suppose that E is a g-uniformly smooth Banach space which admits a weak
sequentially continuous duality mapping j, : £ — E*. Given that S : F — F is a non-expansive
mapping with T'(S) # 0 and that ¢ : E — F is an MKC, F is a f-lipschitzian and a §-strongly
monotone operator on E. Let 0 < A < 6. Then, {x,} given by z, = alp(z,) + (I — avF)Sz,
(as a — 0) converges strongly to a fixed point p of S, which is a unique solution of the following
variational inequality:
(vF = 2p)p, jg(p — ) <0, z€T(9). (2.3)
Proof Assume that both zZ € T'(S) and 2 € T'(S) are solutions of (2.3). Without loss of
generality, we suppose that there exists a constant o such that |2 — Z|| > o. Therefore, from
Lemma 2.2, there exists a constant ¢ such that ||¢(2) — ¢(Z)|| < ¢||2 — Z||. By (2.3), we have
that
(WF —AQ)ZJu(E = 2) S0, {(WF = Ap)2 g2 — 2)) < 0. (2.4)
Adding up (2.4), we get that
(WF = Ap)z2 — (WF = Ap)Z, jq(2 — 2)) < 0.
We observe that
(VF = Ap)2 = (WF = Ap)E, g5 — 2)) = WF — vFZ, y(5 — 2)) — A(2) = Ap(3), & - 2)
> vd]|2 — 2|17 = AMlp(2) — e(3)|l|2 - 2[77
> a2 — 2|7 = Acllz — 2|
> (W — Ae)||z — z||9

> (vd — Ae)o?

> 0.

Hence, £ = Z, and we have proved the uniqueness. In the sequel, the unique solution of (2.3) is
denoted by Z.

Notice that {z,} is bounded. In fact, fix z € I'(S) and o1 > 0 for every a € (0,1). When
(|lxq — 2|| > o1), from Lemma 2.2, we know that there exists a constant ¢; such that

le(za) — 0(2)]| < crllza — 2|,
@ Springer
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and thus, from Lemma 2.4, we get that
|2a — 2|l = [ladp(za) + (I — avF)Szq — 2|
= |la(Mp(zq) — vFz2) + (I — avF)Sz, — (I — avF)z||
< alldp(zq) —vFz|| + (1 — ab)||lza — 2|
< alldp(za) = Ap(2)| + allAp(z) — vFzl| 4 (1 — ab)|za — 2|
< aley||xa — 2| + al|dp(z) — vFz|| + (1 — ab) ||z, — =],
and therefore, ||z, — 2| < [[Ap(2) — vFz||/(0 — Ac1). We have, in any case, that
[za — 2|l < max{oy, [[Ap(2) — vFz[/(0 — Ac1)},

so {z,} is bounded.

Next, we show that x4, — Z(Z € I'(S)) as a — 0.

Owing to the fact that E is reflexive and that {z,} is bounded, there is a subsequence {z,, }
of {z,} such that z,, — z*. By z, — Sz, = a(A¢(z,) —vFSz,), we get that ., —Sx,, — 0 as
ar — 0. In addition, because E satisfies Opial’s condition, by Lemma 2.3 we have z* € I'(5).
We show that

50, — 2]l = 0. (2.5)

By the method of contradiction, there exists a constant o¢ and a subsequence {z,, } of {x,, } such
that ||x4, —2*|| > 0¢. From Lemma 2.2, there exists a constant c,, such that ||¢(z,,)—@(z*)] <

Cool|Za, — 2*||. We observe that
Za, — 25 = ar(Ap(xg,) —vF2") + (I — awF)Sz,, — (I — avF)z", (2.6)
and from this, we get that

za, — 271" = ar(Ap(Ta,) — VF 2", jg(Ta, — 27))
+ (I — awwF)Szq, — (I — arvF)z", jo(xa, — 27))
< ar(Ap(Ta,) — vF 2", jg(Ta, — 27)) + (1 — asb)||zq, — 27" (2.7)

Thus, it can be seen that

2a, — 2" |7 < 2 (Ap(wa,) — VF2 s Jo(Ta, — 2 )

0
< S0 (@a) = A=), Galwa, = ) + 5 (N0(") = VF2", o, = 2°))
1 . #
< glcosllza, =277 + (Ap(=7) = vF2", jq(@a, — 27))]. (2.8)

Hence,

(Ap(z*) — vFz*, jo(Ta, — 2%))
0 — Aoy '

€0, —2"[|7 <

(2.9)

Using the fact that the duality mapping j, : £ — E* is single valued and weakly sequentially
continuous, from (2.9) we have that xz,, — z*. This is a contradiction. Therefore, we obtain
Tq, — 2"

Now, we show that z* is a solution of the variational inequality (2.3). Because

Taq = arp(xq) + (I — avF)Sz,, (2.10)
@ Springer
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we get that
1
WF = dAp)xg = —=[(I — S)xq — avFxq + avFSz,). (2.11)

a
We notice that
(I =8)xa = (I =)z, jg(xa — ) = [0 — 2[|* = (Sza — Sz, jo (20 — 7))
> Jfza — ol ~ 1S4 — Sl 70 — 2]+

2 |lwa — )| = a0 — |7

> 0. (2.12)
Therefore, for z € T'(S),
(VF = Ap)xq, jg(xg — x)) = —2(([ — Sy —avFzq + avF Sz, jo(xq — )
— 2 = S)a — (I = S)z gy ~ )
+ (VF —vFS)xq, jg(xa — x))
<A{(WF —vFS)xq, jo(xq — x)). (2.13)

Now, let us replace a in (2.13) with ag, and letting ¥ — oo, we observe that (vF —
vFS)xe, — (WF —vFS)z* =0 for z* € T'(S), so we get

(WF = Ap)2", jo (27 — 2)) < 0.

Thus z* € T'(S), which is a solution of (2.3). Therefore, z* = Z, by uniqueness. In conclusion,
we have proved that every cluster point of {z,} (at a — 0) equals Z, and hence, z, — % as
a — 0. ]

Lemma 2.6 ([13]) Suppose that {yx} and {zx} are bounded sequences in a Banach space
E, and that {wy} is a sequence in [0, 1] which adheres to the following condition:

0 < liminf wy < limsupwy < 1.

k—o00 k—o0

Let yr+1 = wryr + (1 — wi)zk, k > 0, and let limsup(||zk+1 — 2kl — ||yk+1 — vkll) < 0. Then

k—o0

[z — el = 0.
Lemma 2.7 ([14, 15]) Suppose that {tx} is a sequence of non-negative real numbers
which satisfies that
te1 < (1 —aw)ty + arfe + &k, k>0,
Here {a}, {8k} and {&} adhere to the following conditions:

(i) {ar} C [0,1] and kz::O Qg = 00;

(ii) imsup B <0 or > agfk < oo;

k—oo k=0
(i) € > 0(k > 0), 3 & < .
Thus klin;o tr = 0. 0
Lemma 2.8 ([16]) Suppose that E is a g-uniformly smooth Banach space, that D is a non-
empty closed convex subset of E, and that S : D — D is a ~y-strict pseudo-contraction. Given
a mapping S’ on D with S’z =rz+ (1 —r)Sz,Vz € D and r € (0,v], v = min{1, {%—’Z}Fll}, S0
S’ is called a non-expansive mapping, and F(S") = F(S).
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We consider the mapping U}, given by

Wiks1 =1,
Wi = MeSiWe k1 + (1 — M),
Wik—1 = M1, W + (1 — N1,

Wk)j = )\jS}Wk)]q_l + (1 — )\j)I, (214)
Wk,j—l = )\j_ls;;ka’j + (1 — )\j_l)l,

Wi = ASiWi s+ (1 — M),
U, = Wk,l = )\15{Wk72 + (1 — )\1)1.

Here {\;} is a real sequence with 0 < A\, <1, S/ = T+ (1 — ;)S;, and S; : D — D is a
~i-strict pseudo-contraction with «; € (0, min{1, ('gg)ﬁ}) From Lemma 2.8, we can obtain
that S; is a non-expansive mapping such that F'(S;) = F(S). Therefore, it is easy see that Uy

is a non-expansive mapping.

With respect to Uy, we obtain the following important lemmas:

Lemma 2.9 ([17]) Suppose that F is a strictly convex Banach space, and that D is a non-
empty closed convex subset of E. Set that {S!: D — D} is a family of infinite non-expansive

mappings with () T'(S;) # 0, and that {);} is a real sequence such that 0 < \; < m < 1 for

1
every ¢ = 1,2,---. Then, for any z € D and j € N, klim Uk, ;z exists.
— 00

By Lemma 2.9, a mapping U : D — D is defined as follows:

Uz:= lim Upz = klim Wiz, z€D.

k—o0
Such a mapping U is said to be the modified U-mapping obtained by S1,S2, -+, A1, A2, -+ and
a1, Q2,000 .
Lemma 2.10 ([17]) Suppose that E is a strictly convex Banach space, and that D is a non-
empty closed convex subset of E. Set that {S!: D — D} is a family of infinite non-expansive

mappings with [ F(Sg) # 0, and that {)\;} is a real sequence such that 0 < \; < m < 1,
i=1

1=

Vi > 1. Then T(U) = (] T'(S.).
=1

From Lemmas 2.8-2.10, we get that T(U) = () T(S;) = () T'(S,).
=1 L

i=1
Lemma 2.11 ([18]) Suppose that E is a strictly convex Banach space, and that D is a

non-empty closed convex subset of E. Set that S, S5, - - are non-expansive mappings of D into
x /

itself such that () T'(S;) # 0, and that A1, Ag,- -+ are real numbers such that 0 < \; <m < 1,
i=1

Vi > 1. Then, if G is any bounded subset of D, we have that

limsup [|[Uz — Ugz|| = 0.
k—oo0z€G
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3 Main Result

Now we study the strong convergence results for an infinite family of strict pseudo-contractions
in a g-uniformly smooth and strictly convex Banach space.

Theorem 3.1 Suppose that F is a g-uniformly smooth and strictly convex Banach space
which admits a weak sequentially continuous duality mapping j, : E — E*. Set that {S; :
E — FE} is a 7;-strict pseudo-contraction such that ﬁ I'(S;) # 0, and that {\;} is a real
sequence with 0 < A\; < m < 1, V& > 1. Take that f;lis a (-Lipschitzian and a d-strongly
monotone operator on E such that 0 < v < min{(D‘i‘sﬁq )ﬁ, 1}, and that ¢ is an MKC on E

with 0 < A < M = 0. Let {0} and {7%} C (0,1) be sequences which adhere to the
following conditions:
(Dy) klim Bk = 0;
(D2) > B = oo
k=1
(D3) 0 < likminfm <limsup7, <b<1,and b€ (0,1).

k—o0

Then, {zx} generated by (1.8) converges strongly to Z € [ I'(S;), which uniquely solves the
i=1

variational inequality
(M —vF)2, jg(x—2)) <0, z€ m T'(S;).
i=1
Proof The rest of our proof consists of the following five steps:
Step 1 We prove that {x}} is bounded. Actually, letting =z € () I'(S;), it follows from
i=1
(1.8) that
2 — 2l = Ik (zx — ) + (1 = 7) (Uzx — 2)||
< llze — 2l + (1= 7) | Uk — |
< Jlzx — 2l (3.1)
Thus, by (1.8), (3.1) and Lemma 2.4, we have that

[#rt1 — 2| = 1BkAo(zr) + (I = vBLF)ze — 2
= ||BeAp(zr) — vBrFx + VB Fr + (I — vBF )z — x|
= ||B(Mo(z) — vFz) + (I — vBpF)zk — (I — vBLF)x||
< (1= B0z — [l + BrlllAo(zr) — Ap(@)|| + [[Ap(x) — vF|]
< (1= Beb)llek — x| + BeAllze — af| + BelAp(z) — vFa
< 1= Br(0 = Mlllze — || + BrllAp(x) — vFz|

<1 =Bk(0 = )llzr — || + Br (0 — /\)w
< max{||zx — 2, w}’ k=1

By induction, we get that
[Ap(z) — vF x|
- IH)

k>1
9_)\ }5 —

i — ]| < max{ 2,
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so we have that {z;} is bounded. We also get that {zx}, {Urzi}, {vFzr} and o(xy) are all
bounded. Without loss of generality, we suppose that {zx}, {zx}, {Usxr}, {vFzr}, o(zx) C G,
where G is a bounded set of E.

Step 2 We claim that klinéo |zk+1 — k|| = 0. To this end, set yi = (Xp+1 — Tkzx)/ (1 —7%)
such that xg+1 = 7k + (1 — 7%)yx. We note that

Lht2 — Te+1Th41 Th41 — TETk

Ye+1 — Yk = 1= o1 T
_ Bt Ao(@p41) + (= vBet1F) 2k1 — Th1Tht1
o 1-— Tk+1
. ﬁk)\(p(.%'k) + (I — I/ﬁk]‘-)zk — TkXk
1-— Tk
Br+1 Zk+1 — Tk+1Tk+1

= T —(plekn) — vFa) +
— Tk+1

- 1é—i’k()\go(gck) —vFz) —

1 = Thta
Zk — TkTk

1 — Tk

1- U _

B M()‘w(‘rkﬂ) — vF241) + (T2 @1 + (L= T ) Upp1 k1] — Tepa T

1= 7Tk T

1-— U, _
- i()‘%’(xk) —vFz) — [Trwk + (1 — ) Upi] — ey,
1 —_— Tk 1 — Tk

- M()‘%’(xkﬂ) —vF2pq1) — P

1 — Tk+1 1 .

(/\Qﬁ(il?k) — V]:Zk) + Ugt1Tk4+1 — Upxg.
(3.2)

Then, by (3.2), we get that

Brt+1 Bk
k1 — yrll < 17+(|‘)‘<P(xk+l)” + lvFzpal) +

— Tk+1 1—7'k

(e (@p)ll + v Fzil)

+ |Uk412k41 — Upy || (3.3)

for all £ > 1.
From (2.14), we obtain that

U126 — Upzil| = (M ST Whi,22% — M ST Wi 22|
< M| Wit1,22 — Wi oz ||
= M| A2 S5 W1 32k — Ao SyWi s |
< M A2 [|[Wiga sz — Wi sz ||

<< M M Wit w12k — Wi 12|

k
<L H)‘i'
=1

Here, L1 > 0 is a constant which satisfies that |Wig41 k4126 — Wi g+12k|| < L1, VE > 1.

Therefore, we obtain that
1Uk+12k4+1 — Ukrk|] < |Upr12r41 — Ugsr2kl| + |Uks 12k — Ugs||

< @kt1 — 2l + U128 — Upi |
k
< lwrrs — 2l + Lo [ ] A (3.4)

i=1
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Putting (3.4) into (3.3), we get that

k
Brt1 P

—ull < L - Lol L -

lye+1 — vkl < 2(1_Tk+1+1_7_k)+||$k+1 x| + 1};[1 (3.5)

Here, Ly = sup{||A\¢(zx)|| + ||[vFzk||, k > 1}. Then, by (3.5), we obtain that

k

k1 = Ykl = lzr+1 — zell < La( By + O )+ Ly [ [ n- (3.6)
1 -7 1—7 e

Noticing the conditions (D7), (D3), (3.6) and 0 < A; <m < 1, we have that
1iirisogp(llyk+1 = Ukl = lzrr — i) < 0.
Therefore, from Lemma 2.6, we get that
g~ | = 1)
From (D3) and (3.7), we obtain that
klllilo k1 — il = kli_}ﬁgo(l —7) |y — 2kl = 0.
Step 3 We show that klilgo ||lxx — Uzl = 0. Note that
lzr = Ukzrll < llon =zl + [lonen — 2zl + [lzr — Urai]
= llzr = 2|l + llorsr — zell + 7ellze — Uail]-
By Step 2, (D7) and (D3), we get that

(I =b)llzx — Ukzr || < (1 = me)l|wn — Urwk |l < |2k — zpa || + 1741 — 2]

<k — zra |l + BrlAp(zr) — vFzi| — 0 as (k — oo),

which means that

|lzx — Ugzk|] — 0 (as k — o). (3.8)
In addition, we know that
|2k — Uzl < [low — Ukarll + [|Ukzr — Uz ||
< lzg — Ugr || + sup Uz — Uz|. (3.9)
From (3.8), (3.9) and Lemma 2.11, we get that
klgr;() lxx — Uzl = 0.

Step 4 We show that limsup(ApZ — vFZ, jo(xx — 2)) < 0; here, Z = lim z, with z, =

a—0
aro(zy) + (I — avF)Ux,.
Due to the fact that {xj} is bounded, there is a subsequence {x, } of {z)} which converges

k—o0

weakly to x, and such that lim sup(ApZ —vFZ, je(xr — 2)) = tlim (ApZ —vFZ, jo(zk, —Z)). From
k—o0 oo

|lzx — Uzk|| — 0, we obtain that Uz, — x. Since E admits a weak sequentially continuous
duality mapping, it satisfies Opial’s condition; see [10]. By Lemma 2.3, we obtain that « € T'(U).
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Therefore, from Lemma 2.5 and the fact that j, is a weakly sequentially continuous duality
mapping, we have that

limsup(ApZ — vFZ, jo(zi — 2)) = tlim (ApZ —VvFZ, jo(xg, — 2))

k—oo

= (\pZ — VFZ, jo(x — 2)) 0. (3.10)

Step 5 We prove that {x;} converges strongly to Z. By contradiction, there exists a
constant og > 0 such that

limsup ||z — Z|| > 0p.

k—o0
Case 1 Fix 01(01 < 0¢). Fix, for some k > N € N such that ||z — Z|| > 09 — 01, and for
the other £k > N € N such that ||z — Z|| < 09 — 01, set

_ a{ApZ — AFE, o (k1 — 7))

Ly =
(00 —01)1
By (3.10), we have that limsup Ly < 0. Thus, there exists a number N, when k& > N, such
k—oo

that Ly < 6 — A. We extract a number ky > N which satisfies ||z, — Z|| < 09 — 01. Thus we
can estimate ||zg,4+1 — Z||. Note that
[ko+1 — 2|7 = [|BroAp(@ho ) + (I — VB F)2ke — 2|
= (I = VB F) ko — (I = By F)Z + Bro [ Ap(To) — VFZ], joq(@ho11 — 2))
= (I = By F)2ky — (I = vBko F)Z, g (Tho+1 — 2))
+ Bro MNp(Thy) — VFZ, jg(Thog4+1 — 2))
= (I = By F)zky — (I — By F)Z, Jo(Tho+1 — Z))
+ Bro (Ap(Thy ) = Ap(2), g (Thot1 — 2)) + Bro (Ap(Z) — VFZ, jg(Tro+1 — 2))
< (1= BroDlzro = Zlllwre+1 = 2177 + Bro M e(@re) = 0E)lre+1 — 2177
+ Bro (Ap(2) = vFZ, jg(Tko 11 — 2))
(1= Bro (0 — N(00 — 1) |2k 11 — 2|77 + Bro Mp(2) — vFZ, jo(Thos1 — 2))

<
= 3[1 B (8 — N9 (op — o)t + L1

[2rko+1 — 2|
+ ﬁko <)\(P(2) - I/]:'gvjq(xko-i-l - 2)>
From Young’s inequality, we derive that

[@ko41 = 2T <1 = Bro (6 = A)]¥ (00 — 01) + qBro (Ap(2) = vFZ, jo(@ho1 — 2))

[ ( z
<1 = Bro (0 = M(00 — 01)7 + Bk (Ap(2) — VFZ, jg(Tho41 — 2))
=[1 = Bre (0 = A = Lg)](00 — 01)?
< (o9 —01)4.

Thus, we obtain that

[#ko+1 = 2| < 00 — 01

By induction, we have that
||Ik — 2” < opg—o01, Vk > kg.

This contradicts the fact that the limsup ||z — Z|| > oo.
k—o0
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Case 2 Fix 01 (01 < 09). Set ||z — Z|| > 09 — 01, Vk > N € N. By Lemma 2.2, there

exists a constant ¢ € (0,1) such that
(k) — o) < cllex — 2, k= N.
Following on from (1.8), we get that

lzer1 — 2|7 = [|Bedp(ar) + (I — vBeF)zr — Z||?
= (I = v F)zr — (I = vBLF)Z + B[ Ap(ax) — vFZ], jg(xpt1 — 2))
= (I = vBF)zr — (I —VBF)Z, jg(Trt1 — 2))
+ Br(Mp(wk) — vFZ, jg(Tht1 — 2))
= (I —vBeF)zr — (I — vBF)Z, jo(Tk41 — 2))
+ Br{Ao(zr) = Ap(2), jg(zrs1 — 2)) + Bru(Mp(Z) — vFZ, jg(Trs1 — 2))
< (1= Bi0)llew — Zlllznr — 217" + BuAcllen — Z[llegra — 2771
+ Bi(Ap(2) = vFZ, jo(Tp41 — 2))
=[1 = B0 = A)ller, = 2| [|wrsr = 27" + BelAp(2) = vFZ, jo(wp41 — 2))

< (1= Bu(0 = Ml o = 207 + T s = 2]
+ Be{Ap(2) — vFZ, jo(xpt1 — 2)).
From Young’s inequality, we derive that
ks — 27 < [1 = Bu(6 = Al — 217 + 4B Mo (3) — vFZ fglanr — 2)). (3.11)

Applying Lemma 2.7 to (3.11), we can obtain that x; — Z, as k — oco. This contradicts the fact

o0
that ||z — Z|| > 0o — 01. Hence, {x)} converges strongly to 2 € () I'(S;). By Z = lirr%) Zq and
i=1 a—
Lemma 2.5, we obtain that Z uniquely solves the variational inequality (ApZ —vFZ, j,(z — 2)) <

0,z € N I(S)). O
=1

Lemma 3.2 ([19]) Assume that E is a g-uniformly smooth Banach space which admits
a weak sequentially continuous duality mapping j, : £ — E*. Given that S : £ — FE is a
non-expansive mapping such that T'(S) # (0 and that ¢ : E — E is an MKC, A is a strongly
positive bounded linear operator with a coefficient § > 0. Suppose that 0 < A < 6. Then the
sequence {z,} given by z, = adp(x,) + (I — aA)Sz, (as a — 0) converges strongly to a fixed

point Z of S, which is a unique solution of the variational inequality
(A= Ap)Z.jg(2 —2)) <0, 2 €T(S), (3.12)
When F reduces to a strongly positive bounded linear operator A4 and v =1 in (1.8), we

can obtain the following results:

Corollary 3.3 Assume that F is a g-uniformly smooth and strictly convex Banach space

which admits a weak sequentially continuous duality mapping j, : £ — E*. Suppose that
oo
{S; : E — E} is a 7;-strict pseudo-contraction such that [ T'(S;) # 0 and that {\;} is a real

i=1
sequence such that 0 < A\; < m < 1, Vi > 1. Set that A is a strongly positive bounded linear
operator on E with a coefficient 0 < 77 < 1 and that ¢ is an MKC such that 0 < A < 7. Let
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{ax} and {Br} C (0,1) be sequences which adhere to the conditions (D;), (Dz2) and (D3). Let
{zx} be a sequence defined by x1 = x € E as follows:

2 = Ty + (1 — ) Uray,
Tyl = 6k>\<ﬂ($k) + (I — 6kA)zk, Vk>1.

o0
Then {zy} converges strongly to Z € [ I'(.S;), which uniquely solves the variational inequality
i=1

(ApZ — AZ,jo(x — 2)) <0,z € ﬁ T'(S;).
i=1

Proof By the same steps as those used to prove Theorem 3.1, and replacing Lemma 2.5

with Lemma 3.2 in Step 4, we easily get the results of Corollary 3.3. O
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