

Acta Mathematica Scientia, 2022, 42B(5): 1765–1778
https://doi.org/10.1007/s10473-022-0504-2
©Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 2022

ITERATIVE METHODS FOR OBTAINING AN INFINITE FAMILY OF STRICT PSEUDO-CONTRACTIONS IN BANACH SPACES*

Meng WEN (文萌)^{1,2} Haiyang LI (李海洋)¹

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
 2. School of Science, Xi'an Polytechnic University, Xi'an 710048, China
 E-mail: wen5495688@163.com; fplihaiyang@126.com

Changsong HU (胡长松) Department of Mathematics, Hubei Normal University, Huangshi 435002, China E-mail: huchang1004@aliyun.com

Jigen PENG (彭济根)[†]

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China E-mail: jgpengxjtu@126.com

Abstract In this paper, we introduce a general hybrid iterative method to find an infinite family of strict pseudo-contractions in a q-uniformly smooth and strictly convex Banach space. Moreover, we show that the sequence defined by the iterative method converges strongly to a common element of the set of fixed points, which is the unique solution of the variational inequality $\langle (\lambda \varphi - \nu \mathcal{F})\tilde{z}, j_q(z - \tilde{z}) \rangle \leq 0$, for $z \in \bigcap_{i=1}^{\infty} \Gamma(S_i)$. The results introduced in our work extend to some corresponding theorems.

Key words MKC; iterative algorithm; strict pseudo-contraction; β -Lipschitzian; δ -strongly monotone; Banach spaces

2010 MR Subject Classification 47H09; 47H10

1 Introduction

Assume that E is a real Banach space. Letting $J: E \to 2^{E^*}$, we define the normalized duality mapping by

$$J(z) = \{g \in E^* : \langle z, g \rangle = \|z\|^2 \text{ and } \|g\| = \|z\|\}, \forall z \in E,$$

where $\langle \cdot, \cdot \rangle$ is the generalized duality pairing, and E^* is the dual space of E. In addition, we will use j to denote the single-valued normalized duality mapping. Let $\{z_k\}$ be a sequence in E.

^{*}Received March 30, 2021; revised April 1, 2022. This work was supported by the National Natural Science Foundation of China (12001416, 11771347 and 12031003), the Natural Science Foundations of Shaanxi Province (2021JQ-678).

[†]Corresponding author: Jigen PENG.

Thus we use $z_k \to \overline{z}$ (respectively, $z_k \rightharpoonup \overline{z}$, $z_k \stackrel{*}{\rightharpoonup} \overline{z}$) to denote strong (respectively, weak, weak^{*}) convergence of the sequence $\{z_k\}$ to \overline{z} . Assume that J is single valued if, for each $\{z_k\} \subset E$ with $z_k \rightharpoonup \overline{z}$, one has $J(z_k) \stackrel{*}{\rightharpoonup} J(\overline{z})$; thus J is said to be weakly sequentially continuous.

Letting q > 1, we use J_q to denote the generalized duality mapping, which is given by

$$J_q(z) = \{ g \in E^* : \langle z, g \rangle = \|z\|^q \text{ and } \|g\| = \|z\|^{q-1} \}$$

and the following relation holds:

$$J_q(z) = ||z||^{q-2} J(z), \ z \neq 0.$$

Letting $\mu_E: [0,\infty) \to [0,\infty)$, the modulus of the smoothness of E is given by

$$\mu_E(\theta) := \sup\{\frac{1}{2}(\|u+v\| + \|u-v\|) - 1 : \|u\| \le 1, \|v\| \le \theta\}.$$

Moreover, if $\lim_{\theta \to 0^+} \frac{\mu_E(\theta)}{\theta} = 0$, then E is said to be uniformly smooth.

Given q > 1, if there is a constant b > 0 such that $\mu_E(\theta) \leq b\theta^q$, then E is q-uniformly smooth. The example of such spaces are $L_p(\text{or } l_p)$, p > 1 and Hilbert spaces. More specifically, for each p > 1, $L_p(\text{or } l_p)$ is min $\{p, 2\}$ -uniformly smooth.

Noticing that a q-uniformly smooth Banach space is uniformly smooth, this means that its norm is uniformly Fréchet differentiable [1].

When E is uniformly smooth, the normalized duality mapping j is single valued and norm to norm uniformly continuous on every bounded set.

A mapping $S: E \to E$ is called a $(q) - \gamma$ -strict pseudo-contraction if there is a constant $\gamma > 0$ for each $y, z \in E$ and for all $j_q(y-z) \in J_q(y-z)$ such that

$$\langle Sy - Sz, j_q(y - z) \rangle \le \|y - z\|^q - \gamma \|(I - S)y - (I - S)z\|^q.$$
 (1.1)

The set of fixed points of the mapping S is denoted by $\Gamma(S)$; that is, $\Gamma(S) = \{z \in E : Sz = z\}$. Clearly, (1.1) is equivalent to the following:

$$\langle (I-S)y - (I-S)z, j_q(y-z) \rangle \ge \gamma ||(I-S)y - (I-S)z||^q.$$
 (1.2)

The following well-known theorem is the Banach contraction principle:

Theorem 1.1 ([2]) Suppose that (Y, d) is a complete metric space, and that h is a contractive mapping on Y; that is, there is a constant $\rho \in (0, 1)$ such that $d(h(y), h(z)) \leq \rho d(y, z)$, $\forall y, z \in Y$. Then h has a unique fixed point.

Theorem 1.2 ([3]) Suppose that (Y, d) is a complete metric space, and that φ is a Meir-Keeler contraction (MKC for short) on Y; that is, $\forall \epsilon > 0$, and there is a number c > 0 such that $d(y, z) < \epsilon + c$ implies that $d(\varphi(y), \varphi(z)) < \epsilon, \forall y, z \in Y$. Then φ has a unique fixed point.

Since the contractions are Meir-Keeler contractions, Theorem 1.2 is one of generalizations of Theorem 1.1.

Assume that E is a q-uniformly smooth and strictly convex Banach space which admits a generalized duality mapping $j_q: E \to E^*$. A mapping $\mathcal{F}: E \to E$ is said to be

(1) β -Lipschitzian, if there is a constant $\beta > 0$ such that

$$|\mathcal{F}y - \mathcal{F}z|| \le \beta ||y - z||, \forall y, z \in E;$$
(1.3)

(2) δ -strongly monotone, if there is a constant $\delta > 0$ such that

$$\langle \mathcal{F}y - \mathcal{F}z, j_q(y-z) \rangle \ge \delta \|y - z\|^q, \forall y, z \in E.$$
 (1.4)

Definition 1.3 Suppose that \mathcal{A} is a strongly positive bounded linear operator in a quniformly smooth and strictly convex Banach space E; that is, there is a constant $\tilde{\eta} > 0$ such that

$$\langle \mathcal{A}z, j_q(z) \rangle \geq \tilde{\eta} \|z\|^q, \forall z \in E, \|a_1 I - a_2 \mathcal{A}\| = \sup_{\|z\| \leq 1} \{ |\langle (a_1 I - a_2 \mathcal{A})z, j_q(z) \rangle |\}, \ a_1 \in [0, 1], a_2 \in [0, 1].$$

Here I is the identity mapping and j_q is the generalized duality mapping.

Remark 1.4 By the definition of \mathcal{A} , we can know that \mathcal{A} is a $\|\mathcal{A}\|$ -Lipschizian and an $\tilde{\eta}$ -strongly monotone operator.

Suppose that H is a real Hilbert space, and that D is a non-empty closed convex subset of H.

In 2010, Jung [4] proposed the following method: for a γ -strict pseudo-contraction $S: \tilde{D} \to H$ such that $\Gamma(S) \neq \emptyset$ and $x_1 = x \in \tilde{D}$,

$$\begin{cases} z_k = \tau_k x_k + (1 - \tau_k) P_{\tilde{D}} W x_k, \\ x_{k+1} = \beta_k \lambda h(x_k) + (I - \beta_k \mathcal{A}) z_k, \, \forall \, k \ge 1, \end{cases}$$
(1.5)

where $W: \tilde{D} \to H$ is a mapping given by $Wx = \gamma x + (1 - \gamma)Sx$, and $\{\beta_k\}$ and $\{\tau_k\} \subset (0, 1)$ are sequences which hold $\lim_{k\to\infty} \beta_k = 0$, $\sum_{k=1}^{\infty} \beta_k = \infty$, and $0 < \liminf_{k\to\infty} \tau_k \leq \limsup_{k\to\infty} \tau_k \leq b < 1$ for the constant $b \in (0, 1)$. He obtained that the sequence $\{x_k\}$ generated by (1.5) converges strongly to a fixed point \hat{x} of S, which uniquely solves the variational inequality $\langle (\lambda h - \mathcal{A})\hat{x}, z - \hat{x} \rangle \leq 0, z \in \Gamma(S).$

Recently, Tian [5] introduced the iterative algorithm

$$x_{k+1} = \beta_k \lambda h(x_k) + (I - \nu \beta_k \mathcal{F}) S x_k, \, \forall k \ge 1,$$

$$(1.6)$$

where S is a non-expansive mapping on H such that $\Gamma(S) \neq \emptyset$, \mathcal{F} is a β -Lipschitzian and a δ strongly monotone operator, $\{\beta_k\} \subset (0,1)$ is a sequence which satisfies $\lim_{k \to \infty} \beta_k = 0$, $\sum_{k=1}^{\infty} \beta_k = \infty$, and $\lim_{k \to \infty} \beta_{k+1}/\beta_k = 1$. He proved that $\{x_k\}$ given by (1.6) converges strongly to a point \hat{x} in $\Gamma(S)$, which uniquely solves the variational inequality $\langle (\lambda h - \nu \mathcal{F})\hat{x}, z - \hat{x} \rangle \leq 0, z \in \Gamma(S)$.

Very recently, Wang [6] proposed the following algorithm: for $x_1 = x \in D$,

$$\begin{cases} z_k = \tau_k x_k + (1 - \tau_k) U_k x_k, \\ x_{k+1} = \beta_k \lambda h(x_k) + (I - \nu \beta_k \mathcal{F}) z_k, \, \forall \, k \ge 1. \end{cases}$$

$$(1.7)$$

Here U_k is a mapping given by (2.14), and \mathcal{F} is a β -Lipschitzian and a δ -strongly monotone operator such that $0 < \nu < \frac{2\delta}{\beta^2}$, $\{\beta_k\}$ and $\{\tau_k\} \subset (0, 1)$. In Hilbert spaces, she obtained that if the parameters hold to certain conditions, then $\{x_k\}$ generated by (1.7) converges strongly to a common element of the fixed points of an infinite family of γ_i -strict pseudo-contractions, which uniquely solves the variational inequality $\langle (\lambda h - \nu \mathcal{F})\hat{x}, z - \hat{x} \rangle \leq 0$, for $z \in \bigcap_{i=1}^{\infty} \Gamma(S_i)$.

Inspired and motivated by the above works, we introduce the following general iterative scheme: for $x_1 = x \in E$,

$$\begin{cases} z_k = \tau_k x_k + (1 - \tau_k) U_k x_k, \\ x_{k+1} = \beta_k \lambda \varphi(x_k) + (I - \nu \beta_k \mathcal{F}) z_k, \, \forall \, k \ge 1. \end{cases}$$

$$(1.8)$$

Deringer

Here U_k is a mapping given by (2.14), φ is a Meir-Keeler contraction (MKC for short), and \mathcal{F} is a β -Lipschitzian and a δ -strongly monotone operator such that $0 < \nu < \min\{(\frac{q\delta}{D_q\beta^q})^{\frac{1}{q-1}}, 1\}$. We will show that if the parameters hold to certain conditions (see (D₁)–(D₃) in Theorem 3.1), then $\{x_k\}$ given by (1.8) converges strongly to a common element of the fixed points of an infinite family of γ_i -strict pseudo-contractions, which uniquely solves the variational inequality $\langle (\lambda \varphi - \nu \mathcal{F})\tilde{z}, j_q(z - \tilde{z}) \rangle \leq 0$ for $z \in \bigcap_{i=1}^{\infty} \Gamma(S_i)$. Our results generalize the theories of Wang inself space[6] in the following two respects:

(i) we extend the results of Wang [6] from Hilbert spaces to q-uniformly smooth and strictly convex Banach spaces;

(ii) we extend the results of Wang [6] from a contractive mapping to a Meir-Keeler contraction (MKC for short).

The rests of this work is organized as follows: in the next section, we introduce the notations and preliminary results upon which we rely. In the final section, we study the convergence of the proposed methods.

2 Preliminaries

In this part, we mainly recall some lemmas which are useful for proving our main ideas.

Lemma 2.1 ([7]) Given q > 1, where E is a q-uniformly smooth space, there is a constant $D_q > 0$ such that

$$\|y + z\|^{q} \le \|y\|^{q} + q\langle z, j_{q}(y)\rangle + D_{q}\|z\|^{q}, \quad \forall y, z \in E.$$
(2.1)

Lemma 2.2 ([8]) Suppose that *E* is a Banach space, and that *D* is a convex subset of *E*. If $\varphi: D \to D$ is an MKC, then for every $\varepsilon > 0$, there is a number $c \in (0, 1)$ such that

$$||y-z|| \ge \varepsilon$$
 implies $||\varphi(y) - \varphi(z)|| \le c||y-z||, \quad \forall y, z \in D.$

If, for any sequence $\{z_k\}$ in a Banach space $E, z_k \rightharpoonup \tilde{z}$ implies

$$\limsup_{k \to \infty} \|z_k - \tilde{z}\| < \limsup_{k \to \infty} \|z_k - z\|$$

then $\forall z \in E$ with $z \neq \tilde{z}$. Then E satisfies Opial's condition [9]. Banach spaces which satisfy Opial's condition are all spaces $l^p(1 and Hilbert spaces. However, <math>L^p[0, 2\pi]$ with 1 cannot satisfy Opial's condition. It is well-known that if <math>E admits a weak sequentially continuous duality mapping, it satisfies Opial's condition; see [10].

Lemma 2.3 ([11]) Suppose that E is a reflexive Banach space which satisfies Opial's condition, and that D is a non-empty closed convex subset of E. If S is a non-expansive mapping from D to E, then I - S is demiclosed at zero; that is, $z_k \rightarrow z$ and $||z_k - Sz_k|| \rightarrow 0$, and hence z = Sz. Moreover, Gu inself space [20] extended this conclusion from a non-expansive mapping to a asymptotic non-expansive mapping.

Lemma 2.4 ([12]) Suppose that \mathcal{F} is a β -Lipschitzian and a δ -strongly monotone operator in a *q*-uniformly smooth Banach space E such that $\beta > 0$, $\delta > 0$, 0 < a < 1 and $0 < \nu < \min\{(\frac{q\delta}{D_q\beta^q})^{\frac{1}{q-1}}, 1\}$. Then $T = (I - a\nu\mathcal{F}) : E \to E$ is a contractive mapping with a coefficient $1 - \alpha\theta$ and $\theta = \frac{q\nu\delta - D_q\nu^q\beta^q}{q}$.

Suppose that E is a q-uniformly smooth Banach space, and that $\mathcal{F} : E \to E$ is a β -Lipschitzian and a δ -strongly monotone operator such that $\beta > 0, \delta > 0$, and $S : E \to E$ is a non-expansive mapping. Let $\varphi : E \to E$ be an MKC with $0 < a < 1, 0 < \nu < \min\{(\frac{q\delta}{D_q\beta^q})^{\frac{1}{q-1}}, 1\}, 0 < \lambda < \frac{q\nu\delta - D_q\nu^q\beta^q}{q} = \theta$. A mapping T_a on E is then defined as

$$T_a x = a\lambda\varphi(x) + (I - a\nu\mathcal{F})Sx, \ x \in E.$$

It is easy to get that T_a is a contractive mapping. In fact, by Lemma 2.4, we obtain that

$$\begin{aligned} \|T_a x - T_a z\| &\leq a\lambda \|\varphi(x) - \varphi(z)\| + \|(I - a\nu\mathcal{F})Sx - (I - a\nu\mathcal{F})Sz\| \\ &\leq a\lambda \|x - z\| + (1 - a\theta)\|x - z\| \\ &= [1 - a(\theta - \lambda)]\|x - z\| \end{aligned}$$

for all $x, z \in E$. Therefore, we have a unique point x_a which is a unique solution of the fixed point equation

$$x_a = a\lambda\varphi(x_a) + (I - a\nu\mathcal{F})Sx_a, \quad x_a \in E.$$
(2.2)

Lemma 2.5 Suppose that E is a q-uniformly smooth Banach space which admits a weak sequentially continuous duality mapping $j_q : E \to E^*$. Given that $S : E \to E$ is a non-expansive mapping with $\Gamma(S) \neq \emptyset$ and that $\varphi : E \to E$ is an MKC, \mathcal{F} is a β -lipschitzian and a δ -strongly monotone operator on E. Let $0 < \lambda < \theta$. Then, $\{x_a\}$ given by $x_a = a\lambda\varphi(x_a) + (I - a\nu\mathcal{F})Sx_a$ (as $a \to 0$) converges strongly to a fixed point p of S, which is a unique solution of the following variational inequality:

$$\langle (\nu \mathcal{F} - \lambda \varphi) p, j_q(p-x) \rangle \le 0, \quad x \in \Gamma(S).$$
 (2.3)

Proof Assume that both $\tilde{z} \in \Gamma(S)$ and $\hat{z} \in \Gamma(S)$ are solutions of (2.3). Without loss of generality, we suppose that there exists a constant σ such that $\|\hat{z} - \tilde{z}\| \ge \sigma$. Therefore, from Lemma 2.2, there exists a constant c such that $\|\varphi(\hat{z}) - \varphi(\tilde{z})\| \le c \|\hat{z} - \tilde{z}\|$. By (2.3), we have that

$$\langle (\nu \mathcal{F} - \lambda \varphi) \tilde{z}, j_q(\tilde{z} - \hat{z}) \rangle \le 0, \quad \langle (\nu \mathcal{F} - \lambda \varphi) \hat{z}, j_q(\hat{z} - \tilde{z}) \rangle \le 0.$$
 (2.4)

Adding up (2.4), we get that

$$\langle (\nu \mathcal{F} - \lambda \varphi) \hat{z} - (\nu \mathcal{F} - \lambda \varphi) \tilde{z}, j_q (\hat{z} - \tilde{z}) \rangle \leq 0$$

We observe that

$$\begin{split} \langle (\nu\mathcal{F} - \lambda\varphi)\hat{z} - (\nu\mathcal{F} - \lambda\varphi)\tilde{z}, j_q(\hat{z} - \tilde{z}) \rangle &= \langle \nu\mathcal{F}\hat{z} - \nu\mathcal{F}\tilde{z}, j_q(\hat{z} - \tilde{z}) \rangle - \langle \lambda\varphi(\hat{z}) - \lambda\varphi(\tilde{z}), j_q(\hat{z} - \tilde{z}) \rangle \\ &\geq \nu\delta \|\hat{z} - \tilde{z}\|^q - \lambda \|\varphi(\hat{z}) - \varphi(\tilde{z})\| \|\hat{z} - \tilde{z}\|^{q-1} \\ &\geq \nu\delta \|\hat{z} - \tilde{z}\|^q - \lambda c \|\hat{z} - \tilde{z}\|^q \\ &\geq (\nu\delta - \lambda c) \|\hat{z} - \tilde{z}\|^q \\ &\geq (\nu\delta - \lambda c)\sigma^q \\ &> 0. \end{split}$$

Hence, $\hat{z} = \tilde{z}$, and we have proved the uniqueness. In the sequel, the unique solution of (2.3) is denoted by \tilde{z} .

Notice that $\{x_a\}$ is bounded. In fact, fix $z \in \Gamma(S)$ and $\sigma_1 > 0$ for every $a \in (0, 1)$. When $(||x_a - z|| \ge \sigma_1)$, from Lemma 2.2, we know that there exists a constant c_1 such that

$$\|\varphi(x_a) - \varphi(z)\| \le c_1 \|x_a - z\|,$$

and thus, from Lemma 2.4, we get that

$$\begin{aligned} \|x_a - z\| &= \|a\lambda\varphi(x_a) + (I - a\nu\mathcal{F})Sx_a - z\| \\ &= \|a(\lambda\varphi(x_a) - \nu\mathcal{F}z) + (I - a\nu\mathcal{F})Sx_a - (I - a\nu\mathcal{F})z\| \\ &\leq a\|\lambda\varphi(x_a) - \nu\mathcal{F}z\| + (1 - a\theta)\|x_a - z\| \\ &\leq a\|\lambda\varphi(x_a) - \lambda\varphi(z)\| + a\|\lambda\varphi(z) - \nu\mathcal{F}z\| + (1 - a\theta)\|x_a - z\| \\ &\leq a\lambda c_1\|x_a - z\| + a\|\lambda\varphi(z) - \nu\mathcal{F}z\| + (1 - a\theta)\|x_z - z\|, \end{aligned}$$

and therefore, $||x_a - z|| \leq ||\lambda\varphi(z) - \nu\mathcal{F}z||/(\theta - \lambda c_1)$. We have, in any case, that

$$||x_a - z|| \le \max\{\sigma_1, ||\lambda\varphi(z) - \nu\mathcal{F}z||/(\theta - \lambda c_1)\}$$

so $\{x_a\}$ is bounded.

Next, we show that $x_a \to \tilde{z}(\tilde{z} \in \Gamma(S))$ as $a \to 0$.

Owing to the fact that E is reflexive and that $\{x_a\}$ is bounded, there is a subsequence $\{x_{a_k}\}$ of $\{x_a\}$ such that $x_{a_k} \rightharpoonup z^*$. By $x_a - Sx_a = a(\lambda \varphi(x_a) - \nu \mathcal{F}Sx_a)$, we get that $x_{a_k} - Sx_{a_k} \rightarrow 0$ as $a_k \rightarrow 0$. In addition, because E satisfies Opial's condition, by Lemma 2.3 we have $z^* \in \Gamma(S)$. We show that

$$||x_{a_k} - z^*|| \to 0.$$
 (2.5)

By the method of contradiction, there exists a constant σ_0 and a subsequence $\{x_{a_t}\}$ of $\{x_{a_k}\}$ such that $\|x_{a_t} - z^*\| \ge \sigma_0$. From Lemma 2.2, there exists a constant c_{σ_0} such that $\|\varphi(x_{a_t}) - \varphi(z^*)\| \le c_{\sigma_0} \|x_{a_t} - z^*\|$. We observe that

$$x_{a_t} - z^* = a_t (\lambda \varphi(x_{a_t}) - \nu \mathcal{F} z^*) + (I - a_t \nu \mathcal{F}) S x_{a_t} - (I - a_t \nu \mathcal{F}) z^*,$$
(2.6)

and from this, we get that

$$\|x_{a_{t}} - z^{*}\|^{q} = a_{t} \langle \lambda \varphi(x_{a_{t}}) - \nu \mathcal{F} z^{*}, j_{q}(x_{a_{t}} - z^{*}) \rangle + \langle (I - a_{t} \nu \mathcal{F}) S x_{a_{t}} - (I - a_{t} \nu \mathcal{F}) z^{*}, j_{q}(x_{a_{t}} - z^{*}) \rangle \leq a_{t} \langle \lambda \varphi(x_{a_{t}}) - \nu \mathcal{F} z^{*}, j_{q}(x_{a_{t}} - z^{*}) \rangle + (1 - a_{t} \theta) \|x_{a_{t}} - z^{*}\|^{q}.$$
(2.7)

Thus, it can be seen that

$$\|x_{a_{t}} - z^{*}\|^{q} \leq \frac{1}{\theta} \langle \lambda \varphi(x_{a_{t}}) - \nu \mathcal{F}z^{*}, j_{q}(x_{a_{t}} - z^{*}) \rangle$$

$$\leq \frac{1}{\theta} \langle \lambda \varphi(x_{a_{t}}) - \lambda \varphi(z^{*}), j_{q}(x_{a_{t}} - z^{*}) \rangle + \frac{1}{\theta} \langle \lambda \varphi(z^{*}) - \nu \mathcal{F}z^{*}, j_{q}(x_{a_{t}} - z^{*}) \rangle$$

$$\leq \frac{1}{\theta} [\lambda c_{\sigma_{0}} \|x_{a_{t}} - z^{*}\|^{q} + \langle \lambda \varphi(z^{*}) - \nu \mathcal{F}z^{*}, j_{q}(x_{a_{t}} - z^{*}) \rangle].$$
(2.8)

Hence,

$$\|x_{a_t} - z^*\|^q \le \frac{\langle \lambda \varphi(z^*) - \nu \mathcal{F} z^*, j_q(x_{a_t} - z^*) \rangle}{\theta - \lambda c_{\sigma_0}}.$$
(2.9)

Using the fact that the duality mapping $j_q : E \to E^*$ is single valued and weakly sequentially continuous, from (2.9) we have that $x_{a_t} \to z^*$. This is a contradiction. Therefore, we obtain $x_{a_k} \to z^*$.

Now, we show that z^* is a solution of the variational inequality (2.3). Because

$$x_a = a\lambda\varphi(x_a) + (I - a\nu\mathcal{F})Sx_a, \qquad (2.10)$$

we get that

$$(\nu \mathcal{F} - \lambda \varphi) x_a = -\frac{1}{a} [(I - S) x_a - a\nu \mathcal{F} x_a + a\nu \mathcal{F} S x_a].$$
(2.11)

We notice that

$$\langle (I-S)x_a - (I-S)x, j_q(x_a - x) \rangle = \|x_a - x\|^q - \langle Sx_a - Sx, j_q(x_a - x) \rangle$$

$$\geq \|x_a - x\|^q - \|Sx_a - Sx\| \|x_a - x\|^{q-1}$$

$$\geq \|x_a - x\|^q - \|x_a - x\|^q$$

$$\geq 0.$$

$$(2.12)$$

Therefore, for $x \in \Gamma(S)$,

$$\langle (\nu \mathcal{F} - \lambda \varphi) x_a, j_q(x_a - x) \rangle = -\frac{1}{a} \langle (I - S) x_a - a\nu \mathcal{F} x_a + a\nu \mathcal{F} S x_a, j_q(x_a - x) \rangle$$

$$= -\frac{1}{a} \langle (I - S) x_a - (I - S) x, j_q(x_a - x) \rangle$$

$$+ \langle (\nu \mathcal{F} - \nu \mathcal{F} S) x_a, j_q(x_a - x) \rangle$$

$$\leq \langle (\nu \mathcal{F} - \nu \mathcal{F} S) x_a, j_q(x_a - x) \rangle.$$

$$(2.13)$$

Now, let us replace a in (2.13) with a_k , and letting $k \to \infty$, we observe that $(\nu \mathcal{F} - \nu \mathcal{F}S)x_{a_k} \to (\nu \mathcal{F} - \nu \mathcal{F}S)z^* = 0$ for $z^* \in \Gamma(S)$, so we get

$$\langle (\nu \mathcal{F} - \lambda \varphi) z^*, j_q (z^* - x) \rangle \leq 0.$$

Thus $z^* \in \Gamma(S)$, which is a solution of (2.3). Therefore, $z^* = \tilde{z}$, by uniqueness. In conclusion, we have proved that every cluster point of $\{x_a\}$ (at $a \to 0$) equals \tilde{z} , and hence, $x_a \to \tilde{z}$ as $a \to 0$.

Lemma 2.6 ([13]) Suppose that $\{y_k\}$ and $\{z_k\}$ are bounded sequences in a Banach space E, and that $\{w_k\}$ is a sequence in [0, 1] which adheres to the following condition:

$$0 < \liminf_{k \to \infty} w_k \le \limsup_{k \to \infty} w_k < 1.$$

Let $y_{k+1} = w_k y_k + (1 - w_k) z_k, k \ge 0$, and let $\limsup_{k \to \infty} (\|z_{k+1} - z_k\| - \|y_{k+1} - y_k\|) \le 0$. Then $\lim_{k \to \infty} \|z_k - y_k\| = 0$.

Lemma 2.7 ([14, 15]) Suppose that $\{t_k\}$ is a sequence of non-negative real numbers which satisfies that

$$t_{k+1} \le (1 - \alpha_k)t_k + \alpha_k\beta_k + \xi_k, \quad k \ge 0.$$

Here $\{\alpha_k\}, \{\beta_k\}$ and $\{\xi_k\}$ adhere to the following conditions:

(i)
$$\{\alpha_k\} \subset [0, 1] \text{ and } \sum_{k=0}^{\infty} \alpha_k = \infty;$$

(ii) $\limsup_{k \to \infty} \beta_k \leq 0 \text{ or } \sum_{k=0}^{\infty} \alpha_k \beta_k < \infty;$
(iii) $\xi_k \geq 0 (k \geq 0), \sum_{k=0}^{\infty} \xi_k < \infty.$

Thus $\lim_{k \to \infty} t_k = 0.$

Lemma 2.8 ([16]) Suppose that E is a q-uniformly smooth Banach space, that D is a nonempty closed convex subset of E, and that $S: D \to D$ is a γ -strict pseudo-contraction. Given a mapping S' on D with S'z = rz + (1-r)Sz, $\forall z \in D$ and $r \in (0, \nu]$, $\nu = \min\{1, \{\frac{q\gamma}{D_q}\}^{\frac{1}{q-1}}\}$, so S' is called a non-expansive mapping, and F(S') = F(S).

We consider the mapping U_k given by

$$W_{k,k+1} = I,$$

$$W_{k,k} = \lambda_k S'_k W_{k,k+1} + (1 - \lambda_k) I,$$

$$W_{k,k-1} = \lambda_{k-1} S'_{k-1} W_{k,k} + (1 - \lambda_{k-1}) I,$$

$$\vdots$$

$$W_{k,j} = \lambda_j S'_j W_{k,j+1} + (1 - \lambda_j) I,$$

$$W_{k,j-1} = \lambda_{j-1} S'_{j-1} W_{k,j} + (1 - \lambda_{j-1}) I,$$

$$\vdots$$

$$W_{k,2} = \lambda_2 S'_2 W_{k,3} + (1 - \lambda_2) I,$$

$$U_k = W_{k,1} = \lambda_1 S'_1 W_{k,2} + (1 - \lambda_1) I.$$
(2.14)

Here $\{\lambda_k\}$ is a real sequence with $0 \leq \lambda_k \leq 1$, $S'_i = \alpha_i I + (1 - \alpha_i)S_i$, and $S_i : D \to D$ is a γ_i -strict pseudo-contraction with $\alpha_i \in (0, \min\{1, (\frac{\gamma_i q}{D_q})^{\frac{1}{q-1}}\})$. From Lemma 2.8, we can obtain that S'_i is a non-expansive mapping such that $F(S_i) = F(S'_i)$. Therefore, it is easy see that U_k is a non-expansive mapping.

With respect to U_k , we obtain the following important lemmas:

Lemma 2.9 ([17]) Suppose that E is a strictly convex Banach space, and that D is a nonempty closed convex subset of E. Set that $\{S'_i : D \to D\}$ is a family of infinite non-expansive mappings with $\bigcap_{i=1}^{\infty} \Gamma(S'_i) \neq \emptyset$, and that $\{\lambda_i\}$ is a real sequence such that $0 < \lambda_i \leq m < 1$ for every $i = 1, 2, \cdots$. Then, for any $z \in D$ and $j \in N$, $\lim_{k \to \infty} U_{k,j} z$ exists.

By Lemma 2.9, a mapping $U: D \to D$ is defined as follows:

$$Uz := \lim_{k \to \infty} U_k z = \lim_{k \to \infty} W_{k,1} z, \ z \in D.$$

Such a mapping U is said to be the modified U-mapping obtained by $S_1, S_2, \dots, \lambda_1, \lambda_2, \dots$ and $\alpha_1, \alpha_2, \dots$.

Lemma 2.10 ([17]) Suppose that E is a strictly convex Banach space, and that D is a nonempty closed convex subset of E. Set that $\{S'_i : D \to D\}$ is a family of infinite non-expansive mappings with $\bigcap_{i=1}^{\infty} \Gamma(S'_i) \neq \emptyset$, and that $\{\lambda_i\}$ is a real sequence such that $0 < \lambda_i \leq m < 1$, $\forall i \geq 1$. Then $\Gamma(U) = \bigcap_{i=1}^{\infty} \Gamma(S'_i)$.

From Lemmas 2.8–2.10, we get that $\Gamma(U) = \bigcap_{i=1}^{\infty} \Gamma(S_i) = \bigcap_{i=1}^{\infty} \Gamma(S_i).$

Lemma 2.11 ([18]) Suppose that E is a strictly convex Banach space, and that D is a non-empty closed convex subset of E. Set that S'_1, S'_2, \cdots are non-expansive mappings of D into itself such that $\bigcap_{i=1}^{\infty} \Gamma(S'_i) \neq \emptyset$, and that $\lambda_1, \lambda_2, \cdots$ are real numbers such that $0 < \lambda_i \leq m < 1$, $\forall i \geq 1$. Then, if \mathcal{G} is any bounded subset of D, we have that

$$\limsup_{k \to \infty z \in \mathcal{G}} \|Uz - U_k z\| = 0$$

3 Main Result

Now we study the strong convergence results for an infinite family of strict pseudo-contractions in a *q*-uniformly smooth and strictly convex Banach space.

Theorem 3.1 Suppose that E is a q-uniformly smooth and strictly convex Banach space which admits a weak sequentially continuous duality mapping $j_q : E \to E^*$. Set that $\{S_i : E \to E\}$ is a γ_i -strict pseudo-contraction such that $\bigcap_{i=1}^{\infty} \Gamma(S_i) \neq \emptyset$, and that $\{\lambda_i\}$ is a real sequence with $0 < \lambda_i \leq m < 1$, $\forall i \geq 1$. Take that \mathcal{F} is a β -Lipschitzian and a δ -strongly monotone operator on E such that $0 < \nu < \min\{(\frac{q\delta}{D_q\beta^q})^{\frac{1}{q-1}}, 1\}$, and that φ is an MKC on Ewith $0 < \lambda < \frac{q\nu\delta - D_q\nu^q\beta^q}{q} = \theta$. Let $\{\beta_k\}$ and $\{\tau_k\} \subset (0, 1)$ be sequences which adhere to the following conditions:

(D₁) $\lim_{k \to \infty} \beta_k = 0;$ (D₂) $\sum_{k=1}^{\infty} \beta_k = \infty;$ (D₃) $0 < \liminf_{k \to \infty} \tau_k \le \limsup_{k \to \infty} \tau_k \le b < 1, \text{ and } b \in (0, 1).$

Then, $\{x_k\}$ generated by (1.8) converges strongly to $\tilde{z} \in \bigcap_{i=1}^{\infty} \Gamma(S_i)$, which uniquely solves the variational inequality

$$\langle (\lambda \varphi - \nu \mathcal{F})\tilde{z}, j_q(x - \tilde{z}) \rangle \le 0, \quad x \in \bigcap_{i=1}^{\infty} \Gamma(S_i).$$

Proof The rest of our proof consists of the following five steps:

Step 1 We prove that $\{x_k\}$ is bounded. Actually, letting $x \in \bigcap_{i=1}^{\infty} \Gamma(S_i)$, it follows from (1.8) that

$$||z_k - x|| = ||\tau_k(x_k - x) + (1 - \tau_k)(U_k x_k - x)||$$

$$\leq \tau_k ||x_k - x|| + (1 - \tau_k)||U_k x_k - x||$$

$$\leq ||x_k - x||.$$
(3.1)

Thus, by (1.8), (3.1) and Lemma 2.4, we have that

$$\begin{aligned} \|x_{k+1} - x\| &= \|\beta_k \lambda \varphi(x_k) + (I - \nu \beta_k \mathcal{F}) z_k - x\| \\ &= \|\beta_k \lambda \varphi(x_k) - \nu \beta_k \mathcal{F} x + \nu \beta_k \mathcal{F} x + (I - \nu \beta_k \mathcal{F}) z_k - x\| \\ &= \|\beta_k (\lambda \varphi(x_k) - \nu \mathcal{F} x) + (I - \nu \beta_k \mathcal{F}) z_k - (I - \nu \beta_k \mathcal{F}) x\| \\ &\leq (1 - \beta_k \theta) \|z_k - x\| + \beta_k [\|\lambda \varphi(x_k) - \lambda \varphi(x)\| + \|\lambda \varphi(x) - \nu \mathcal{F} x\|] \\ &\leq (1 - \beta_k \theta) \|x_k - x\| + \beta_k \lambda \|x_k - x\| + \beta_k \|\lambda \varphi(x) - \nu \mathcal{F} x\| \\ &\leq [1 - \beta_k (\theta - \lambda)] \|x_k - x\| + \beta_k (\theta - \lambda) \frac{\|\lambda \varphi(x) - \nu \mathcal{F} x\|}{\theta - \lambda} \\ &\leq \max\{\|x_k - x\|, \frac{\|\lambda \varphi(x) - \nu \mathcal{F} x\|}{\theta - \lambda}\}, \quad k \ge 1. \end{aligned}$$

By induction, we get that

$$||x_k - x|| \le \max\{||x_1 - x||, \frac{||\lambda\varphi(x) - \nu\mathcal{F}x||}{\theta - \lambda}\}, \quad k \ge 1,$$

so we have that $\{x_k\}$ is bounded. We also get that $\{z_k\}$, $\{U_k x_k\}$, $\{\nu \mathcal{F} z_k\}$ and $\varphi(x_k)$ are all bounded. Without loss of generality, we suppose that $\{x_k\}, \{z_k\}, \{U_k x_k\}, \{\nu \mathcal{F} z_k\}, \varphi(x_k) \subset \mathcal{G}$, where \mathcal{G} is a bounded set of E.

Step 2 We claim that $\lim_{k\to\infty} ||x_{k+1} - x_k|| = 0$. To this end, set $y_k = (x_{k+1} - \tau_k x_k)/(1 - \tau_k)$ such that $x_{k+1} = \tau_k x_k + (1 - \tau_k) y_k$. We note that

$$\begin{aligned} y_{k+1} - y_k &= \frac{x_{k+2} - \tau_{k+1} x_{k+1}}{1 - \tau_{k+1}} - \frac{x_{k+1} - \tau_k x_k}{1 - \tau_k} \\ &= \frac{\beta_{k+1} \lambda \varphi(x_{k+1}) + (I - \nu \beta_{k+1} \mathcal{F}) z_{k+1} - \tau_{k+1} x_{k+1}}{1 - \tau_{k+1}} \\ &- \frac{\beta_k \lambda \varphi(x_k) + (I - \nu \beta_k \mathcal{F}) z_k - \tau_k x_k}{1 - \tau_k} \\ &= \frac{\beta_{k+1}}{1 - \tau_{k+1}} (\lambda \varphi(x_{k+1}) - \nu \mathcal{F} z_{k+1}) + \frac{z_{k+1} - \tau_{k+1} x_{k+1}}{1 - \tau_{k+1}} \\ &- \frac{\beta_k}{1 - \tau_k} (\lambda \varphi(x_k) - \nu \mathcal{F} z_k) - \frac{z_k - \tau_k x_k}{1 - \tau_k} \\ &= \frac{\beta_{k+1}}{1 - \tau_{k+1}} (\lambda \varphi(x_{k+1}) - \nu \mathcal{F} z_{k+1}) + \frac{[\tau_{k+1} x_{k+1} + (1 - \tau_{k+1}) U_{k+1} x_{k+1}] - \tau_{k+1} x_{k+1}}{1 - \tau_{k+1}} \\ &- \frac{\beta_k}{1 - \tau_k} (\lambda \varphi(x_k) - \nu \mathcal{F} z_k) - \frac{[\tau_k x_k + (1 - \tau_k) U_k x_k] - \tau_k x_k}{1 - \tau_k} \\ &= \frac{\beta_{k+1}}{1 - \tau_{k+1}} (\lambda \varphi(x_{k+1}) - \nu \mathcal{F} z_{k+1}) - \frac{\beta_k}{1 - \tau_k} (\lambda \varphi(x_k) - \nu \mathcal{F} z_k) + U_{k+1} x_{k+1} - U_k x_k. \end{aligned}$$

$$(3.2)$$

Then, by (3.2), we get that

$$\|y_{k+1} - y_k\| \le \frac{\beta_{k+1}}{1 - \tau_{k+1}} (\|\lambda\varphi(x_{k+1})\| + \|\nu\mathcal{F}z_{k+1}\|) + \frac{\beta_k}{1 - \tau_k} (\|\lambda\varphi(x_k)\| + \|\nu\mathcal{F}z_k\|) + \|U_{k+1}x_{k+1} - U_kx_k\|$$
(3.3)

for all $k \geq 1$.

From (2.14), we obtain that

$$\begin{aligned} \|U_{k+1}x_k - U_k x_k\| &= \|\lambda_1 S_1' W_{k+1,2} x_k - \lambda_1 S_1' W_{k,2} x_k\| \\ &\leq \lambda_1 \|W_{k+1,2} x_k - W_{k,2} x_k\| \\ &= \lambda_1 \|\lambda_2 S_2' W_{k+1,3} x_k - \lambda_2 S_2' W_{k,3} x_k\| \\ &\leq \lambda_1 \lambda_2 \|W_{k+1,3} x_k - W_{k,3} x_k\| \\ &\leq \dots \leq \lambda_1 \lambda_2 \dots \lambda_k \|W_{k+1,k+1} x_k - W_{k,k+1} x_k\| \\ &\leq L_1 \prod_{i=1}^k \lambda_i. \end{aligned}$$

Here, $L_1 \ge 0$ is a constant which satisfies that $||W_{k+1,k+1}x_k - W_{k,k+1}x_k|| \le L_1, \forall k \ge 1$. Therefore, we obtain that

$$\|U_{k+1}x_{k+1} - U_kx_k\| \le \|U_{k+1}x_{k+1} - U_{k+1}x_k\| + \|U_{k+1}x_k - U_kx_k\| \le \|x_{k+1} - x_k\| + \|U_{k+1}x_k - U_kx_k\| \le \|x_{k+1} - x_k\| + L_1 \prod_{i=1}^k \lambda_i.$$
(3.4)

Putting (3.4) into (3.3), we get that

$$\|y_{k+1} - y_k\| \le L_2\left(\frac{\beta_{k+1}}{1 - \tau_{k+1}} + \frac{\beta_k}{1 - \tau_k}\right) + \|x_{k+1} - x_k\| + L_1\prod_{i=1}^k \lambda_i.$$
(3.5)

Here, $L_2 = \sup\{\|\lambda\varphi(x_k)\| + \|\nu\mathcal{F}z_k\|, k \ge 1\}$. Then, by (3.5), we obtain that

$$\|y_{k+1} - y_k\| - \|x_{k+1} - x_k\| \le L_2\left(\frac{\beta_{k+1}}{1 - \tau_{k+1}} + \frac{\beta_k}{1 - \tau_k}\right) + L_1\prod_{i=1}^k \lambda_i.$$
(3.6)

Noticing the conditions (D₁), (D₃), (3.6) and $0 < \lambda_i \le m < 1$, we have that

$$\limsup_{k \to \infty} (\|y_{k+1} - y_k\| - \|x_{k+1} - x_k\|) \le 0.$$

Therefore, from Lemma 2.6, we get that

$$\lim_{k \to \infty} \|y_k - x_k\| = 0.$$
(3.7)

From (D_3) and (3.7), we obtain that

$$\lim_{k \to \infty} \|x_{k+1} - x_k\| = \lim_{k \to \infty} (1 - \tau_k) \|y_k - x_k\| = 0.$$

Step 3 We show that $\lim_{k \to \infty} ||x_k - Ux_k|| = 0$. Note that

$$||x_k - U_k x_k|| \le ||x_k - x_{k+1}|| + ||x_{k+1} - z_k|| + ||z_k - U_k x_k||$$

= $||x_k - x_{k+1}|| + ||x_{k+1} - z_k|| + \tau_k ||x_k - U_k x_k||.$

By Step 2, (D_1) and (D_3) , we get that

$$(1-b)\|x_k - U_k x_k\| \le (1-\tau_k)\|x_k - U_k x_k\| \le \|x_k - x_{k+1}\| + \|x_{k+1} - z_k\|$$

$$\le \|x_k - x_{k+1}\| + \beta_k \|\lambda \varphi(x_k) - \nu \mathcal{F} z_k\| \to 0 \text{ as } (k \to \infty),$$

which means that

$$||x_k - U_k x_k|| \to 0 \quad (\text{as } k \to \infty).$$
(3.8)

In addition, we know that

$$||x_{k} - Ux_{k}|| \leq ||x_{k} - U_{k}x_{k}|| + ||U_{k}x_{k} - Ux_{k}||$$

$$\leq ||x_{k} - U_{k}x_{k}|| + \sup_{z \in \mathcal{G}} ||U_{k}z - Uz||.$$
(3.9)

From (3.8), (3.9) and Lemma 2.11, we get that

$$\lim_{k \to \infty} \|x_k - Ux_k\| = 0.$$

Step 4 We show that $\limsup_{k\to\infty} \langle \lambda \varphi \tilde{z} - \nu \mathcal{F} \tilde{z}, j_q(x_k - \tilde{z}) \rangle \leq 0$; here, $\tilde{z} = \lim_{a\to 0} x_a$ with $x_a = a\lambda\varphi(x_a) + (I - a\nu\mathcal{F})Ux_a$.

Due to the fact that $\{x_k\}$ is bounded, there is a subsequence $\{x_{k_t}\}$ of $\{x_k\}$ which converges weakly to x, and such that $\limsup_{k\to\infty} \langle \lambda \varphi \tilde{z} - \nu \mathcal{F} \tilde{z}, j_q(x_k - \tilde{z}) \rangle = \lim_{t\to\infty} \langle \lambda \varphi \tilde{z} - \nu \mathcal{F} \tilde{z}, j_q(x_{k_t} - \tilde{z}) \rangle$. From $\|x_k - Ux_k\| \to 0$, we obtain that $Ux_{k_t} \to x$. Since E admits a weak sequentially continuous duality mapping, it satisfies Opial's condition; see [10]. By Lemma 2.3, we obtain that $x \in \Gamma(U)$.

🖄 Springer

1775

Therefore, from Lemma 2.5 and the fact that j_q is a weakly sequentially continuous duality mapping, we have that

$$\lim_{k \to \infty} \sup \langle \lambda \varphi \tilde{z} - \nu \mathcal{F} \tilde{z}, j_q(x_k - \tilde{z}) \rangle = \lim_{t \to \infty} \langle \lambda \varphi \tilde{z} - \nu \mathcal{F} \tilde{z}, j_q(x_{k_t} - \tilde{z}) \rangle$$
$$= \langle \lambda \varphi \tilde{z} - \nu \mathcal{F} \tilde{z}, j_q(x - \tilde{z}) \rangle \le 0.$$
(3.10)

Step 5 We prove that $\{x_k\}$ converges strongly to \tilde{z} . By contradiction, there exists a constant $\sigma_0 > 0$ such that

$$\limsup_{k \to \infty} \|x_k - \tilde{z}\| \ge \sigma_0.$$

Case 1 Fix $\sigma_1(\sigma_1 < \sigma_0)$. Fix, for some $k \ge N \in \mathbb{N}$ such that $||x_k - \tilde{z}|| \ge \sigma_0 - \sigma_1$, and for the other $k \ge N \in \mathbb{N}$ such that $||x_k - \tilde{z}|| < \sigma_0 - \sigma_1$, set

$$L_k = \frac{q\langle \lambda \varphi \tilde{z} - \lambda \mathcal{F} \tilde{z}, j_q(x_{k+1} - \tilde{z}) \rangle}{(\sigma_0 - \sigma_1)^q}.$$

By (3.10), we have that $\limsup_{k\to\infty} L_k \leq 0$. Thus, there exists a number N, when k > N, such that $L_k \leq \theta - \lambda$. We extract a number $k_0 \geq N$ which satisfies $||x_{k_0} - \tilde{z}|| < \sigma_0 - \sigma_1$. Thus we can estimate $||x_{k_0+1} - \tilde{z}||$. Note that

$$\begin{split} \|x_{k_{0}+1} - \tilde{z}\|^{q} &= \|\beta_{k_{0}}\lambda\varphi(x_{k_{0}}) + (I - \nu\beta_{k_{0}}\mathcal{F})z_{k_{0}} - \tilde{z}\|^{q} \\ &= \langle (I - \nu\beta_{k_{0}}\mathcal{F})z_{k_{0}} - (I - \nu\beta_{k_{0}}\mathcal{F})\tilde{z} + \beta_{k_{0}}[\lambda\varphi(x_{k_{0}}) - \nu\mathcal{F}\tilde{z}], j_{q}(x_{k_{0}+1} - \tilde{z}) \rangle \\ &= \langle (I - \nu\beta_{k_{0}}\mathcal{F})z_{k_{0}} - (I - \nu\beta_{k_{0}}\mathcal{F})\tilde{z}, j_{q}(x_{k_{0}+1} - \tilde{z}) \rangle \\ &+ \beta_{k_{0}}\langle\lambda\varphi(x_{k_{0}}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k_{0}+1} - \tilde{z}) \rangle \\ &= \langle (I - \nu\beta_{k_{0}}\mathcal{F})z_{k_{0}} - (I - \nu\beta_{k_{0}}\mathcal{F})\tilde{z}, j_{q}(x_{k_{0}+1} - \tilde{z}) \rangle \\ &+ \beta_{k_{0}}\langle\lambda\varphi(x_{k_{0}}) - \lambda\varphi(\tilde{z}), j_{q}(x_{k_{0}+1} - \tilde{z}) \rangle + \beta_{k_{0}}\langle\lambda\varphi(\tilde{z}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k_{0}+1} - \tilde{z}) \rangle \\ &\leq (1 - \beta_{k_{0}}\theta)\|x_{k_{0}} - \tilde{z}\|\|x_{k_{0}+1} - \tilde{z}\|^{q-1} + \beta_{k_{0}}\lambda\|\varphi(x_{k_{0}}) - \varphi(\tilde{z})\|\|x_{k_{0}+1} - \tilde{z}\|^{q-1} \\ &+ \beta_{k_{0}}\langle\lambda\varphi(\tilde{z}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k_{0}+1} - \tilde{z}) \rangle \\ &\leq \frac{1}{q}[1 - \beta_{k_{0}}(\theta - \lambda)]^{q}(\sigma_{0} - \sigma_{1})^{q} + \frac{q-1}{q}\|x_{k_{0}+1} - \tilde{z}\|^{q} \\ &+ \beta_{k_{0}}\langle\lambda\varphi(\tilde{z}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k_{0}+1} - \tilde{z}) \rangle. \end{split}$$

From Young's inequality, we derive that

$$\begin{aligned} \|x_{k_0+1} - \tilde{z}\|^q &< [1 - \beta_{k_0}(\theta - \lambda)]^q (\sigma_0 - \sigma_1)^q + q\beta_{k_0} \langle \lambda \varphi(\tilde{z}) - \nu \mathcal{F}\tilde{z}, j_q(x_{k_0+1} - \tilde{z}) \rangle \\ &< [1 - \beta_{k_0}(\theta - \lambda)] (\sigma_0 - \sigma_1)^q + q\beta_{k_0} \langle \lambda \varphi(\tilde{z}) - \nu \mathcal{F}\tilde{z}, j_q(x_{k_0+1} - \tilde{z}) \rangle \\ &= [1 - \beta_{k_0}(\theta - \lambda - L_k)] (\sigma_0 - \sigma_1)^q \\ &\leq (\sigma_0 - \sigma_1)^q. \end{aligned}$$

Thus, we obtain that

$$||x_{k_0+1} - \tilde{z}|| < \sigma_0 - \sigma_1$$

By induction, we have that

$$||x_k - \tilde{z}|| < \sigma_0 - \sigma_1, \quad \forall k \ge k_0.$$

This contradicts the fact that the $\limsup_{k\to\infty} ||x_k - \tilde{z}|| \ge \sigma_0.$

Deringer

Case 2 Fix σ_1 ($\sigma_1 < \sigma_0$). Set $||x_k - \tilde{z}|| \ge \sigma_0 - \sigma_1$, $\forall k \ge N \in \mathbb{N}$. By Lemma 2.2, there exists a constant $c \in (0, 1)$ such that

$$\|\varphi(x_k) - \varphi(\tilde{z})\| \le c \|x_k - \tilde{z}\|, \quad k \ge N.$$

Following on from (1.8), we get that

$$\begin{split} \|x_{k+1} - \tilde{z}\|^{q} &= \|\beta_{k}\lambda\varphi(x_{k}) + (I - \nu\beta_{k}\mathcal{F})z_{k} - \tilde{z}\|^{q} \\ &= \langle (I - \nu\beta_{k}\mathcal{F})z_{k} - (I - \nu\beta_{k}\mathcal{F})\tilde{z} + \beta_{k}[\lambda\varphi(x_{k}) - \nu\mathcal{F}\tilde{z}], j_{q}(x_{k+1} - \tilde{z}) \rangle \\ &= \langle (I - \nu\beta_{k}\mathcal{F})z_{k} - (I - \nu\beta_{k}\mathcal{F})\tilde{z}, j_{q}(x_{k+1} - \tilde{z}) \rangle \\ &+ \beta_{k}\langle\lambda\varphi(x_{k}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k+1} - \tilde{z}) \rangle \\ &= \langle (I - \nu\beta_{k}\mathcal{F})z_{k} - (I - \nu\beta_{k}\mathcal{F})\tilde{z}, j_{q}(x_{k+1} - \tilde{z}) \rangle \\ &+ \beta_{k}\langle\lambda\varphi(x_{k}) - \lambda\varphi(\tilde{z}), j_{q}(x_{k+1} - \tilde{z}) \rangle + \beta_{k}\langle\lambda\varphi(\tilde{z}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k+1} - \tilde{z}) \rangle \\ &\leq (1 - \beta_{k}\theta)\|x_{k} - \tilde{z}\|\|x_{k+1} - \tilde{z}\|^{q-1} + \beta_{k}\lambda c\|x_{k} - \tilde{z}\|\|x_{k+1} - \tilde{z}\|^{q-1} \\ &+ \beta_{k}\langle\lambda\varphi(\tilde{z}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k+1} - \tilde{z}) \rangle \\ &= [1 - \beta_{k}(\theta - \lambda c)]\|x_{k} - \tilde{z}\|\|x_{k+1} - \tilde{z}\|^{q-1} + \beta_{k}\langle\lambda\varphi(\tilde{z}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k+1} - \tilde{z}) \rangle \\ &\leq [1 - \beta_{k}(\theta - \lambda c)]\frac{1}{q}\|x_{k} - \tilde{z}\|^{q} + \frac{q-1}{q}\|x_{k+1} - \tilde{z}\|^{q} \\ &+ \beta_{k}\langle\lambda\varphi(\tilde{z}) - \nu\mathcal{F}\tilde{z}, j_{q}(x_{k+1} - \tilde{z}) \rangle. \end{split}$$

From Young's inequality, we derive that

$$\|x_{k+1} - \tilde{z}\|^q \le [1 - \beta_k(\theta - \lambda c)] \|x_k - \tilde{z}\|^q + q\beta_k \langle \lambda \varphi(\tilde{z}) - \nu \mathcal{F} \tilde{z}, j_q(x_{k+1} - \tilde{z}) \rangle.$$
(3.11)

Applying Lemma 2.7 to (3.11), we can obtain that $x_k \to \tilde{z}$, as $k \to \infty$. This contradicts the fact that $||x_k - \tilde{z}|| \ge \sigma_0 - \sigma_1$. Hence, $\{x_k\}$ converges strongly to $\tilde{z} \in \bigcap_{i=1}^{\infty} \Gamma(S_i)$. By $\tilde{z} = \lim_{a \to 0} x_a$ and Lemma 2.5, we obtain that \tilde{z} uniquely solves the variational inequality $\langle \lambda \varphi \tilde{z} - \nu \mathcal{F} \tilde{z}, j_q(x - \tilde{z}) \rangle \le 0$, $x \in \bigcap_{i=1}^{\infty} \Gamma(S_i)$.

Lemma 3.2 ([19]) Assume that E is a q-uniformly smooth Banach space which admits a weak sequentially continuous duality mapping $j_q : E \to E^*$. Given that $S : E \to E$ is a non-expansive mapping such that $\Gamma(S) \neq \emptyset$ and that $\varphi : E \to E$ is an MKC, \mathcal{A} is a strongly positive bounded linear operator with a coefficient $\theta > 0$. Suppose that $0 < \lambda < \theta$. Then the sequence $\{x_a\}$ given by $x_a = a\lambda\varphi(x_a) + (I - a\mathcal{A})Sx_a$ (as $a \to 0$) converges strongly to a fixed point \tilde{z} of S, which is a unique solution of the variational inequality

$$\langle (\mathcal{A} - \lambda \varphi) \tilde{z}, j_q(\tilde{z} - x) \rangle \le 0, \quad x \in \Gamma(S).$$
 (3.12)

When \mathcal{F} reduces to a strongly positive bounded linear operator \mathcal{A} and $\nu = 1$ in (1.8), we can obtain the following results:

Corollary 3.3 Assume that E is a q-uniformly smooth and strictly convex Banach space which admits a weak sequentially continuous duality mapping $j_q : E \to E^*$. Suppose that $\{S_i : E \to E\}$ is a γ_i -strict pseudo-contraction such that $\bigcap_{i=1}^{\infty} \Gamma(S_i) \neq \emptyset$ and that $\{\lambda_i\}$ is a real sequence such that $0 < \lambda_i \leq m < 1$, $\forall i \geq 1$. Set that \mathcal{A} is a strongly positive bounded linear operator on E with a coefficient $0 < \tilde{\eta} < 1$ and that φ is an MKC such that $0 < \lambda < \tilde{\eta}$. Let \bigotimes Springer $\{\alpha_k\}$ and $\{\beta_k\} \subset (0,1)$ be sequences which adhere to the conditions (D₁), (D₂) and (D₃). Let $\{x_k\}$ be a sequence defined by $x_1 = x \in E$ as follows:

$$\begin{cases} z_k = \tau_k x_k + (1 - \tau_k) U_k x_k, \\ x_{k+1} = \beta_k \lambda \varphi(x_k) + (I - \beta_k \mathcal{A}) z_k, \, \forall \, k \ge 1. \end{cases}$$

Then $\{x_k\}$ converges strongly to $\tilde{z} \in \bigcap_{i=1}^{\infty} \Gamma(S_i)$, which uniquely solves the variational inequality $\langle \lambda \varphi \tilde{z} - \mathcal{A} \tilde{z}, j_q(x - \tilde{z}) \rangle \leq 0, x \in \bigcap_{i=1}^{\infty} \Gamma(S_i).$

Proof By the same steps as those used to prove Theorem 3.1, and replacing Lemma 2.5 with Lemma 3.2 in Step 4, we easily get the results of Corollary 3.3. \Box

References

- [1] Diestel J. Geometry of Banach Spaces: Selected Topics. Lecture Notes in Math 485. Springer-Verlag, 1975
- Banach S. Surles operations dans les ensembles abstraits et leur application aux equations integrales. Fund Math, 1922, 3: 133-181
- [3] Meir A, Keeler E. A theorem on contraction mappings. J Math Anal Appl, 1969, 28: 326–329
- [4] Jung J S. Strong convergence of iterative methods for k-strictly pseudo-contractive mappings in Hilbert spaces. Appl Math Comput, 2010, 215: 3746–3753
- [5] Tian M. A general iterative algorithm for nonexpansive mappings in Hilbert spaces. Nonlinear Anal, 2010, 73: 689–694
- [6] Wang S. A general iterative method for obtaining an infinite family of strictly pseudo-contractive mappings in Hilbert spaces. Appl Math Lett, 2011, 24: 901–907
- [7] Cai G, Hu C S. Strong convergence theorems of a general iterative process for a finite family of λ_i -strict pseudo-contractions in q-uniformly smooth Banach spaces. Comput Math Appl, 2010, **59**(1): 149–160
- [8] Suzuki T. Moudafi's viscosity approximations with Meir-Keeler contractions. J Math Anal Appl, 2007, 325(1): 342–352
- [9] Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Amer Math Soc, 1967, 73: 591–597
- [10] Gossez J P, Dozo E L. Some geometric properties related to the fixed point theory for nonexpansive mappings. Pacific J Math, 1972, 40: 565–573
- [11] Jung J S. Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J Math Anal Appl, 2005, 302(2): 509–520
- [12] Wen M, Hu CS, Cui AG, et al. Convergence of an explicit scheme for nonexpansive semigroups in Banach spaces. J Fixed Point Theory Appl, 2019, 21: 52
- [13] Suzuki T. Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integral. J Math Anal Appl, 2005, 35: 227–239
- [14] Liu L S. Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces. J Math Anal Appl, 1995, 194: 114–125
- [15] Xu H K. Iterative algorithms for nonlinear operators. J London Math Sov, 2002, 66: 240–256
- [16] Zhang H, Su Y. Strong convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces. Nonlinear Anal, 2009, 70(9): 3236–3242
- [17] Shimoji K, Takahashi W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwanese J Math, 2001, 5(2): 387–404
- [18] Chang S S. A new method for solving equilibrium problem and variational inequality problem with application to optimization. Nonlinear Anal, 2009, 70: 3307–3319
- [19] Song Y L. Strong convergence theorems of a new general iterative process with Meir-Keeler contractions for a countable family of λ_i -strict pseudocontractions in q-uniformly smooth Banach spaces. Fixed Point Theory App, 2010, **19**: 354202
- [20] Gu F. Convergence of implicit iterative process with errors for a finite family of asymptotically nonexpansive mappings. Acta Math Sci, 2006, 26B: 1131–1143