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Abstract In this paper, we introduce a general hybrid iterative method to find an infinite

family of strict pseudo-contractions in a q-uniformly smooth and strictly convex Banach space.

Moreover, we show that the sequence defined by the iterative method converges strongly to

a common element of the set of fixed points, which is the unique solution of the variational

inequality 〈(λϕ − νF)z̃, jq(z − z̃)〉 ≤ 0, for z ∈
∞
⋂

i=1

Γ(Si). The results introduced in our work

extend to some corresponding theorems.
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1 Introduction

Assume that E is a real Banach space. Letting J : E → 2E∗

, we define the normalized

duality mapping by

J(z) = {g ∈ E∗ : 〈z, g〉 = ‖z‖2 and ‖g‖ = ‖z‖}, ∀z ∈ E,

where 〈·, ·〉 is the generalized duality pairing, and E∗ is the dual space of E. In addition, we

will use j to denote the single-valued normalized duality mapping. Let {zk} be a sequence in E.
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Thus we use zk → z̄ (respectively, zk ⇀ z̄, zk
∗
⇀ z̄) to denote strong (respectively, weak, weak∗)

convergence of the sequence {zk} to z̄. Assume that J is single valued if, for each {zk} ⊂ E

with zk ⇀ z̄, one has J(zk)
∗
⇀ J(z̄); thus J is said to be weakly sequentially continuous.

Letting q > 1, we use Jq to denote the generalized duality mapping, which is given by

Jq(z) = {g ∈ E∗ : 〈z, g〉 = ‖z‖q and ‖g‖ = ‖z‖q−1},

and the following relation holds:

Jq(z) = ‖z‖q−2J(z), z 6= 0.

Letting µE : [0,∞) → [0,∞), the modulus of the smoothness of E is given by

µE(θ) := sup{
1

2
(‖u + v‖ + ‖u − v‖) − 1 : ‖u‖ ≤ 1, ‖v‖ ≤ θ}.

Moreover, if lim
θ→0+

µE(θ)
θ

= 0, then E is said to be uniformly smooth.

Given q > 1, if there is a constant b > 0 such that µE(θ) ≤ bθq, then E is q-uniformly

smooth. The example of such spaces are Lp(or lp), p > 1 and Hilbert spaces. More specifically,

for each p > 1, Lp(or lp) is min{p, 2} -uniformly smooth.

Noticing that a q-uniformly smooth Banach space is uniformly smooth, this means that its

norm is uniformly Fréchet differentiable [1].

When E is uniformly smooth, the normalized duality mapping j is single valued and norm

to norm uniformly continuous on every bounded set.

A mapping S : E → E is called a (q) − γ-strict pseudo-contraction if there is a constant

γ > 0 for each y, z ∈ E and for all jq(y − z) ∈ Jq(y − z) such that

〈Sy − Sz, jq(y − z)〉 ≤ ‖y − z‖q − γ‖(I − S)y − (I − S)z‖q. (1.1)

The set of fixed points of the mapping S is denoted by Γ(S); that is, Γ(S) = {z ∈ E : Sz = z}.

Clearly, (1.1) is equivalent to the following:

〈(I − S)y − (I − S)z, jq(y − z)〉 ≥ γ‖(I − S)y − (I − S)z‖q. (1.2)

The following well-known theorem is the Banach contraction principle:

Theorem 1.1 ([2]) Suppose that (Y, d) is a complete metric space, and that h is a con-

tractive mapping on Y ; that is, there is a constant ρ ∈ (0, 1) such that d(h(y), h(z)) ≤ ρd(y, z),

∀y, z ∈ Y . Then h has a unique fixed point.

Theorem 1.2 ([3]) Suppose that (Y, d) is a complete metric space, and that ϕ is a Meir-

Keeler contraction (MKC for short) on Y ; that is, ∀ǫ > 0, and there is a number c > 0 such

that d(y, z) < ǫ + c implies that d(ϕ(y), ϕ(z)) < ǫ, ∀y, z ∈ Y . Then ϕ has a unique fixed point.

Since the contractions are Meir-Keeler contractions, Theorem 1.2 is one of generalizations

of Theorem 1.1.

Assume that E is a q-uniformly smooth and strictly convex Banach space which admits a

generalized duality mapping jq : E → E∗. A mapping F : E → E is said to be

(1) β-Lipschitzian, if there is a constant β > 0 such that

‖Fy −Fz‖ ≤ β‖y − z‖, ∀y, z ∈ E; (1.3)

(2) δ-strongly monotone, if there is a constant δ > 0 such that

〈Fy −Fz, jq(y − z)〉 ≥ δ‖y − z‖q, ∀y, z ∈ E. (1.4)
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Definition 1.3 Suppose that A is a strongly positive bounded linear operator in a q-

uniformly smooth and strictly convex Banach space E; that is, there is a constant η̃ > 0 such

that

〈Az, jq(z)〉 ≥ η̃‖z‖q, ∀z ∈ E, ‖a1I−a2A‖ = sup
‖z‖≤1

{|〈(a1I−a2A)z, jq(z)〉|}, a1 ∈ [0, 1], a2 ∈ [0, 1].

Here I is the identity mapping and jq is the generalized duality mapping.

Remark 1.4 By the definition of A, we can know that A is a ‖A‖-Lipschizian and an

η̃-strongly monotone operator.

Suppose that H is a real Hilbert space, and that D̃ is a non-empty closed convex subset of

H .

In 2010, Jung [4] proposed the following method: for a γ-strict pseudo-contraction S : D̃ →

H such that Γ(S) 6= ∅ and x1 = x ∈ D̃,






zk = τkxk + (1 − τk)PD̃Wxk,

xk+1 = βkλh(xk) + (I − βkA)zk, ∀ k ≥ 1,
(1.5)

where W : D̃ → H is a mapping given by Wx = γx + (1 − γ)Sx, and {βk} and {τk} ⊂ (0, 1)

are sequences which hold lim
k→∞

βk = 0,
∞
∑

k=1

βk = ∞, and 0 < lim infk→∞ τk ≤ lim sup
k→∞

τk ≤

b < 1 for the constant b ∈ (0, 1). He obtained that the sequence {xk} generated by (1.5)

converges strongly to a fixed point x̂ of S, which uniquely solves the variational inequality

〈(λh −A)x̂, z − x̂〉 ≤ 0, z ∈ Γ(S).

Recently, Tian [5] introduced the iterative algorithm

xk+1 = βkλh(xk) + (I − νβkF)Sxk, ∀ k ≥ 1, (1.6)

where S is a non-expansive mapping on H such that Γ(S) 6= ∅, F is a β-Lipschitzian and a δ-

strongly monotone operator, {βk} ⊂ (0, 1) is a sequence which satisfies lim
k→∞

βk = 0,
∞
∑

k=1

βk = ∞,

and lim
k→∞

βk+1/βk = 1. He proved that {xk} given by (1.6) converges strongly to a point x̂ in

Γ(S), which uniquely solves the variational inequality 〈(λh − νF)x̂, z − x̂〉 ≤ 0, z ∈ Γ(S).

Very recently, Wang [6] proposed the following algorithm: for x1 = x ∈ D̃,






zk = τkxk + (1 − τk)Ukxk,

xk+1 = βkλh(xk) + (I − νβkF)zk, ∀ k ≥ 1.
(1.7)

Here Uk is a mapping given by (2.14), and F is a β-Lipschitzian and a δ-strongly monotone

operator such that 0 < ν < 2δ
β2 , {βk} and {τk} ⊂ (0, 1). In Hilbert spaces, she obtained that

if the parameters hold to certain conditions, then {xk} generated by (1.7) converges strongly

to a common element of the fixed points of an infinite family of γi-strict pseudo-contractions,

which uniquely solves the variational inequality 〈(λh − νF)x̂, z − x̂〉 ≤ 0, for z ∈
∞
⋂

i=1

Γ(Si).

Inspired and motivated by the above works, we introduce the following general iterative

scheme: for x1 = x ∈ E,






zk = τkxk + (1 − τk)Ukxk,

xk+1 = βkλϕ(xk) + (I − νβkF)zk, ∀ k ≥ 1.
(1.8)
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Here Uk is a mapping given by (2.14), ϕ is a Meir-Keeler contraction (MKC for short), and F

is a β-Lipschitzian and a δ-strongly monotone operator such that 0 < ν < min{( qδ
Dqβq )

1
q−1 , 1}.

We will show that if the parameters hold to certain conditions (see (D1)–(D3) in Theorem 3.1),

then {xk} given by (1.8) converges strongly to a common element of the fixed points of an

infinite family of γi-strict pseudo-contractions, which uniquely solves the variational inequality

〈(λϕ− νF)z̃, jq(z − z̃)〉 ≤ 0 for z ∈
∞
⋂

i=1

Γ(Si). Our results generalize the theories of Wang inself

space[6] in the following two respects:

(i) we extend the results of Wang [6] from Hilbert spaces to q-uniformly smooth and strictly

convex Banach spaces;

(ii) we extend the results of Wang [6] from a contractive mapping to a Meir-Keeler con-

traction (MKC for short).

The rests of this work is organized as follows: in the next section, we introduce the notations

and preliminary results upon which we rely. In the final section, we study the convergence of

the proposed methods.

2 Preliminaries

In this part, we mainly recall some lemmas which are useful for proving our main ideas.

Lemma 2.1 ([7]) Given q > 1, where E is a q-uniformly smooth space, there is a constant

Dq > 0 such that

‖y + z‖q ≤ ‖y‖q + q〈z, jq(y)〉 + Dq‖z‖
q, ∀y, z ∈ E. (2.1)

Lemma 2.2 ([8]) Suppose that E is a Banach space, and that D is a convex subset of E.

If ϕ : D → D is an MKC, then for every ε > 0, there is a number c ∈ (0, 1) such that

‖y − z‖ ≥ ε implies ‖ϕ(y) − ϕ(z)‖ ≤ c‖y − z‖, ∀y, z ∈ D.

If, for any sequence {zk} in a Banach space E, zk ⇀ z̃ implies

lim sup
k→∞

‖zk − z̃‖ < lim sup
k→∞

‖zk − z‖,

then ∀z ∈ E with z 6= z̃. Then E satisfies Opial’s condition [9]. Banach spaces which satisfy

Opial’s condition are all spaces lp(1 < p < ∞) and Hilbert spaces. However, Lp[0, 2π] with

1 < p 6= 2 cannot satisfy Opial’s condition. It is well-known that if E admits a weak sequentially

continuous duality mapping, it satisfies Opial’s condition; see [10].

Lemma 2.3 ([11]) Suppose that E is a reflexive Banach space which satisfies Opial’s

condition, and that D is a non-empty closed convex subset of E. If S is a non-expansive

mapping from D to E, then I − S is demiclosed at zero; that is, zk ⇀ z and ‖zk − Szk‖ → 0,

and hence z = Sz. Moreover, Gu inself space [20] extended this conclusion from a non-expansive

mapping to a asymptotic non-expansive mapping.

Lemma 2.4 ([12]) Suppose that F is a β-Lipschitzian and a δ-strongly monotone operator

in a q-uniformly smooth Banach space E such that β > 0, δ > 0, 0 < a < 1 and 0 < ν <

min{( qδ
Dqβq )

1
q−1 , 1}. Then T = (I − aνF) : E → E is a contractive mapping with a coefficient

1 − αθ and θ =
qνδ−Dqνqβq

q
.
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Suppose that E is a q-uniformly smooth Banach space, and that F : E → E is a β-

Lipschitzian and a δ-strongly monotone operator such that β > 0, δ > 0, and S : E → E is a non-

expansive mapping. Let ϕ : E → E be an MKC with 0 < a < 1, 0 < ν < min{( qδ
Dqβq )

1
q−1 , 1},

0 < λ <
qνδ−Dqνqβq

q
= θ. A mapping Ta on E is then defined as

Tax = aλϕ(x) + (I − aνF)Sx, x ∈ E.

It is easy to get that Ta is a contractive mapping. In fact, by Lemma 2.4, we obtain that

‖Tax − Taz‖ ≤ aλ‖ϕ(x) − ϕ(z)‖ + ‖(I − aνF)Sx − (I − aνF)Sz‖

≤ aλ‖x − z‖ + (1 − aθ)‖x − z‖

= [1 − a(θ − λ)]‖x − z‖

for all x, z ∈ E. Therefore, we have a unique point xa which is a unique solution of the fixed

point equation

xa = aλϕ(xa) + (I − aνF)Sxa, xa ∈ E. (2.2)

Lemma 2.5 Suppose that E is a q-uniformly smooth Banach space which admits a weak

sequentially continuous duality mapping jq : E → E∗. Given that S : E → E is a non-expansive

mapping with Γ(S) 6= ∅ and that ϕ : E → E is an MKC, F is a β-lipschitzian and a δ-strongly

monotone operator on E. Let 0 < λ < θ. Then, {xa} given by xa = aλϕ(xa) + (I − aνF)Sxa

(as a → 0) converges strongly to a fixed point p of S, which is a unique solution of the following

variational inequality:

〈(νF − λϕ)p, jq(p − x)〉 ≤ 0, x ∈ Γ(S). (2.3)

Proof Assume that both z̃ ∈ Γ(S) and ẑ ∈ Γ(S) are solutions of (2.3). Without loss of

generality, we suppose that there exists a constant σ such that ‖ẑ − z̃‖ ≥ σ. Therefore, from

Lemma 2.2, there exists a constant c such that ‖ϕ(ẑ) − ϕ(z̃)‖ ≤ c‖ẑ − z̃‖. By (2.3), we have

that

〈(νF − λϕ)z̃, jq(z̃ − ẑ)〉 ≤ 0, 〈(νF − λϕ)ẑ, jq(ẑ − z̃)〉 ≤ 0. (2.4)

Adding up (2.4), we get that

〈(νF − λϕ)ẑ − (νF − λϕ)z̃, jq(ẑ − z̃)〉 ≤ 0.

We observe that

〈(νF − λϕ)ẑ − (νF − λϕ)z̃, jq(ẑ − z̃)〉 = 〈νF ẑ − νF z̃, jq(ẑ − z̃)〉 − 〈λϕ(ẑ) − λϕ(z̃), jq(ẑ − z̃)〉

≥ νδ‖ẑ − z̃‖q − λ‖ϕ(ẑ) − ϕ(z̃)‖‖ẑ − z̃‖q−1

≥ νδ‖ẑ − z̃‖q − λc‖ẑ − z̃‖q

≥ (νδ − λc)‖ẑ − z̃‖q

≥ (νδ − λc)σq

> 0.

Hence, ẑ = z̃, and we have proved the uniqueness. In the sequel, the unique solution of (2.3) is

denoted by z̃.

Notice that {xa} is bounded. In fact, fix z ∈ Γ(S) and σ1 > 0 for every a ∈ (0, 1). When

(‖xa − z‖ ≥ σ1), from Lemma 2.2, we know that there exists a constant c1 such that

‖ϕ(xa) − ϕ(z)‖ ≤ c1‖xa − z‖,
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and thus, from Lemma 2.4, we get that

‖xa − z‖ = ‖aλϕ(xa) + (I − aνF)Sxa − z‖

= ‖a(λϕ(xa) − νFz) + (I − aνF)Sxa − (I − aνF)z‖

≤ a‖λϕ(xa) − νFz‖ + (1 − aθ)‖xa − z‖

≤ a‖λϕ(xa) − λϕ(z)‖ + a‖λϕ(z) − νFz‖ + (1 − aθ)‖xa − z‖

≤ aλc1‖xa − z‖ + a‖λϕ(z) − νFz‖ + (1 − aθ)‖xz − z‖,

and therefore, ‖xa − z‖ ≤ ‖λϕ(z) − νFz‖/(θ − λc1). We have, in any case, that

‖xa − z‖ ≤ max{σ1, ‖λϕ(z) − νFz‖/(θ − λc1)},

so {xa} is bounded.

Next, we show that xa → z̃(z̃ ∈ Γ(S)) as a → 0.

Owing to the fact that E is reflexive and that {xa} is bounded, there is a subsequence {xak
}

of {xa} such that xak
⇀ z∗. By xa−Sxa = a(λϕ(xa)−νFSxa), we get that xak

−Sxak
→ 0 as

ak → 0. In addition, because E satisfies Opial’s condition, by Lemma 2.3 we have z∗ ∈ Γ(S).

We show that

‖xak
− z∗‖ → 0. (2.5)

By the method of contradiction, there exists a constant σ0 and a subsequence {xat
} of {xak

} such

that ‖xat
−z∗‖ ≥ σ0. From Lemma 2.2, there exists a constant cσ0

such that ‖ϕ(xat
)−ϕ(z∗)‖ ≤

cσ0
‖xat

− z∗‖. We observe that

xat
− z∗ = at(λϕ(xat

) − νFz∗) + (I − atνF)Sxat
− (I − atνF)z∗, (2.6)

and from this, we get that

‖xat
− z∗‖q = at〈λϕ(xat

) − νFz∗, jq(xat
− z∗)〉

+ 〈(I − atνF)Sxat
− (I − atνF)z∗, jq(xat

− z∗)〉

≤ at〈λϕ(xat
) − νFz∗, jq(xat

− z∗)〉 + (1 − atθ)‖xat
− z∗‖q. (2.7)

Thus, it can be seen that

‖xat
− z∗‖q ≤

1

θ
〈λϕ(xat

) − νFz∗, jq(xat
− z∗)〉

≤
1

θ
〈λϕ(xat

) − λϕ(z∗), jq(xat
− z∗)〉 +

1

θ
〈λϕ(z∗) − νFz∗, jq(xat

− z∗)〉

≤
1

θ
[λcσ0

‖xat
− z∗‖q + 〈λϕ(z∗) − νFz∗, jq(xat

− z∗)〉]. (2.8)

Hence,

‖xat
− z∗‖q ≤

〈λϕ(z∗) − νFz∗, jq(xat
− z∗)〉

θ − λcσ0

. (2.9)

Using the fact that the duality mapping jq : E → E∗ is single valued and weakly sequentially

continuous, from (2.9) we have that xat
→ z∗. This is a contradiction. Therefore, we obtain

xak
→ z∗.

Now, we show that z∗ is a solution of the variational inequality (2.3). Because

xa = aλϕ(xa) + (I − aνF)Sxa, (2.10)



No.5 M. Wen et al: ITERATIVE METHODS FOR OBTAINING AN INFINITE FAMILY 1771

we get that

(νF − λϕ)xa = −
1

a
[(I − S)xa − aνFxa + aνFSxa]. (2.11)

We notice that

〈(I − S)xa − (I − S)x, jq(xa − x)〉 = ‖xa − x‖q − 〈Sxa − Sx, jq(xa − x)〉

≥ ‖xa − x‖q − ‖Sxa − Sx‖‖xa − x‖q−1

≥ ‖xa − x‖q − ‖xa − x‖q

≥ 0. (2.12)

Therefore, for x ∈ Γ(S),

〈(νF − λϕ)xa, jq(xa − x)〉 = −
1

a
〈(I − S)xa − aνFxa + aνFSxa, jq(xa − x)〉

= −
1

a
〈(I − S)xa − (I − S)x, jq(xa − x)〉

+ 〈(νF − νFS)xa, jq(xa − x)〉

≤ 〈(νF − νFS)xa, jq(xa − x)〉. (2.13)

Now, let us replace a in (2.13) with ak, and letting k → ∞, we observe that (νF −

νFS)xak
→ (νF − νFS)z∗ = 0 for z∗ ∈ Γ(S), so we get

〈(νF − λϕ)z∗, jq(z
∗ − x)〉 ≤ 0.

Thus z∗ ∈ Γ(S), which is a solution of (2.3). Therefore, z∗ = z̃, by uniqueness. In conclusion,

we have proved that every cluster point of {xa} (at a → 0) equals z̃, and hence, xa → z̃ as

a → 0. �

Lemma 2.6 ([13]) Suppose that {yk} and {zk} are bounded sequences in a Banach space

E, and that {wk} is a sequence in [0, 1] which adheres to the following condition:

0 < lim inf
k→∞

wk ≤ lim sup
k→∞

wk < 1.

Let yk+1 = wkyk + (1 − wk)zk, k ≥ 0, and let lim sup
k→∞

(‖zk+1 − zk‖ − ‖yk+1 − yk‖) ≤ 0. Then

lim
k→∞

‖zk − yk‖ = 0.

Lemma 2.7 ([14, 15]) Suppose that {tk} is a sequence of non-negative real numbers

which satisfies that

tk+1 ≤ (1 − αk)tk + αkβk + ξk, k ≥ 0.

Here {αk}, {βk} and {ξk} adhere to the following conditions:

(i) {αk} ⊂ [0, 1] and
∞
∑

k=0

αk = ∞;

(ii) lim sup
k→∞

βk ≤ 0 or
∞
∑

k=0

αkβk < ∞;

(iii) ξk ≥ 0(k ≥ 0),
∞
∑

k=0

ξk < ∞.

Thus lim
k→∞

tk = 0.

Lemma 2.8 ([16]) Suppose that E is a q-uniformly smooth Banach space, that D is a non-

empty closed convex subset of E, and that S : D → D is a γ-strict pseudo-contraction. Given

a mapping S′ on D with S′z = rz + (1− r)Sz, ∀z ∈ D and r ∈ (0, ν], ν = min{1, { qγ
Dq

}
1

q−1 }, so

S′ is called a non-expansive mapping, and F (S′) = F (S).
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We consider the mapping Uk given by


























































































Wk,k+1 = I,

Wk,k = λkS′
kWk,k+1 + (1 − λk)I,

Wk,k−1 = λk−1S
′
k−1Wk,k + (1 − λk−1)I,

...

Wk,j = λjS
′
jWk,j+1 + (1 − λj)I,

Wk,j−1 = λj−1S
′
j−1Wk,j + (1 − λj−1)I,

...

Wk,2 = λ2S
′
2Wk,3 + (1 − λ2)I,

Uk = Wk,1 = λ1S
′
1Wk,2 + (1 − λ1)I.

(2.14)

Here {λk} is a real sequence with 0 ≤ λk ≤ 1, S′
i = αiI + (1 − αi)Si, and Si : D → D is a

γi-strict pseudo-contraction with αi ∈ (0, min{1, (γiq
Dq

)
1

q−1 }). From Lemma 2.8, we can obtain

that S′
i is a non-expansive mapping such that F (Si) = F (S′

i). Therefore, it is easy see that Uk

is a non-expansive mapping.

With respect to Uk, we obtain the following important lemmas:

Lemma 2.9 ([17]) Suppose that E is a strictly convex Banach space, and that D is a non-

empty closed convex subset of E. Set that {S′
i : D → D} is a family of infinite non-expansive

mappings with
∞
⋂

i=1

Γ(S
′

i) 6= ∅, and that {λi} is a real sequence such that 0 < λi ≤ m < 1 for

every i = 1, 2, · · · . Then, for any z ∈ D and j ∈ N , lim
k→∞

Uk,jz exists.

By Lemma 2.9, a mapping U : D → D is defined as follows:

Uz := lim
k→∞

Ukz = lim
k→∞

Wk,1z, z ∈ D.

Such a mapping U is said to be the modified U -mapping obtained by S1, S2, · · · , λ1, λ2, · · · and

α1, α2, · · · .

Lemma 2.10 ([17]) Suppose that E is a strictly convex Banach space, and that D is a non-

empty closed convex subset of E. Set that {S′
i : D → D} is a family of infinite non-expansive

mappings with
∞
⋂

i=1

Γ(S
′

i) 6= ∅, and that {λi} is a real sequence such that 0 < λi ≤ m < 1,

∀i ≥ 1. Then Γ(U) =
∞
⋂

i=1

Γ(S
′

i).

From Lemmas 2.8–2.10, we get that Γ(U) =
∞
⋂

i=1

Γ(S
′

i) =
∞
⋂

i=1

Γ(Si).

Lemma 2.11 ([18]) Suppose that E is a strictly convex Banach space, and that D is a

non-empty closed convex subset of E. Set that S′
1, S

′
2, · · · are non-expansive mappings of D into

itself such that
∞
⋂

i=1

Γ(S
′

i) 6= ∅, and that λ1, λ2, · · · are real numbers such that 0 < λi ≤ m < 1,

∀i ≥ 1. Then, if G is any bounded subset of D, we have that

lim sup
k→∞z∈G

‖Uz − Ukz‖ = 0.
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3 Main Result

Now we study the strong convergence results for an infinite family of strict pseudo-contractions

in a q-uniformly smooth and strictly convex Banach space.

Theorem 3.1 Suppose that E is a q-uniformly smooth and strictly convex Banach space

which admits a weak sequentially continuous duality mapping jq : E → E∗. Set that {Si :

E → E} is a γi-strict pseudo-contraction such that
∞
⋂

i=1

Γ(Si) 6= ∅, and that {λi} is a real

sequence with 0 < λi ≤ m < 1, ∀i ≥ 1. Take that F is a β-Lipschitzian and a δ-strongly

monotone operator on E such that 0 < ν < min{( qδ
Dqβq )

1
q−1 , 1}, and that ϕ is an MKC on E

with 0 < λ <
qνδ−Dqνqβq

q
= θ. Let {βk} and {τk} ⊂ (0, 1) be sequences which adhere to the

following conditions:

(D1) lim
k→∞

βk = 0;

(D2)
∞
∑

k=1

βk = ∞;

(D3) 0 < lim inf
k→∞

τk ≤ lim sup
k→∞

τk ≤ b < 1, and b ∈ (0, 1).

Then, {xk} generated by (1.8) converges strongly to z̃ ∈
∞
⋂

i=1

Γ(Si), which uniquely solves the

variational inequality

〈(λϕ − νF)z̃, jq(x − z̃)〉 ≤ 0, x ∈
∞
⋂

i=1

Γ(Si).

Proof The rest of our proof consists of the following five steps:

Step 1 We prove that {xk} is bounded. Actually, letting x ∈
∞
⋂

i=1

Γ(Si), it follows from

(1.8) that

‖zk − x‖ = ‖τk(xk − x) + (1 − τk)(Ukxk − x)‖

≤ τk‖xk − x‖ + (1 − τk)‖Ukxk − x‖

≤ ‖xk − x‖. (3.1)

Thus, by (1.8), (3.1) and Lemma 2.4, we have that

‖xk+1 − x‖ = ‖βkλϕ(xk) + (I − νβkF)zk − x‖

= ‖βkλϕ(xk) − νβkFx + νβkFx + (I − νβkF)zk − x‖

= ‖βk(λϕ(xk) − νFx) + (I − νβkF)zk − (I − νβkF)x‖

≤ (1 − βkθ)‖zk − x‖ + βk[‖λϕ(xk) − λϕ(x)‖ + ‖λϕ(x) − νFx‖]

≤ (1 − βkθ)‖xk − x‖ + βkλ‖xk − x‖ + βk‖λϕ(x) − νFx‖

≤ [1 − βk(θ − λ)]‖xk − x‖ + βk‖λϕ(x) − νFx‖

≤ [1 − βk(θ − λ))]‖xk − x‖ + βk(θ − λ)
‖λϕ(x) − νFx‖

θ − λ

≤ max{‖xk − x‖,
‖λϕ(x) − νFx‖

θ − λ
}, k ≥ 1.

By induction, we get that

‖xk − x‖ ≤ max{‖x1 − x‖,
‖λϕ(x) − νFx‖

θ − λ
}, k ≥ 1,
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so we have that {xk} is bounded. We also get that {zk}, {Ukxk}, {νFzk} and ϕ(xk) are all

bounded. Without loss of generality, we suppose that {xk}, {zk}, {Ukxk}, {νFzk}, ϕ(xk) ⊂ G,

where G is a bounded set of E.

Step 2 We claim that lim
k→∞

‖xk+1−xk‖ = 0. To this end, set yk = (xk+1 − τkxk)/(1− τk)

such that xk+1 = τkxk + (1 − τk)yk. We note that

yk+1 − yk =
xk+2 − τk+1xk+1

1 − τk+1
−

xk+1 − τkxk

1 − τk

=
βk+1λϕ(xk+1) + (I − νβk+1F)zk+1 − τk+1xk+1

1 − τk+1

−
βkλϕ(xk) + (I − νβkF)zk − τkxk

1 − τk

=
βk+1

1 − τk+1
(λϕ(xk+1) − νFzk+1) +

zk+1 − τk+1xk+1

1 − τk+1

−
βk

1 − τk

(λϕ(xk) − νFzk) −
zk − τkxk

1 − τk

=
βk+1

1 − τk+1
(λϕ(xk+1) − νFzk+1) +

[τk+1xk+1 + (1 − τk+1)Uk+1xk+1] − τk+1xk+1

1 − τk+1

−
βk

1 − τk

(λϕ(xk) − νFzk) −
[τkxk + (1 − τk)Ukxk] − τkxk

1 − τk

=
βk+1

1 − τk+1
(λϕ(xk+1) − νFzk+1) −

βk

1 − τk

(λϕ(xk) − νFzk) + Uk+1xk+1 − Ukxk.

(3.2)

Then, by (3.2), we get that

‖yk+1 − yk‖ ≤
βk+1

1 − τk+1
(‖λϕ(xk+1)‖ + ‖νFzk+1‖) +

βk

1 − τk

(‖λϕ(xk)‖ + ‖νFzk‖)

+ ‖Uk+1xk+1 − Ukxk‖ (3.3)

for all k ≥ 1.

From (2.14), we obtain that

‖Uk+1xk − Ukxk‖ = ‖λ1S
′
1Wk+1,2xk − λ1S

′
1Wk,2xk‖

≤ λ1‖Wk+1,2xk − Wk,2xk‖

= λ1‖λ2S
′
2Wk+1,3xk − λ2S

′
2Wk,3xk‖

≤ λ1λ2‖Wk+1,3xk − Wk,3xk‖

≤ · · · ≤ λ1λ2 · · ·λk‖Wk+1,k+1xk − Wk,k+1xk‖

≤ L1

k
∏

i=1

λi.

Here, L1 ≥ 0 is a constant which satisfies that ‖Wk+1,k+1xk − Wk,k+1xk‖ ≤ L1, ∀k ≥ 1.

Therefore, we obtain that

‖Uk+1xk+1 − Ukxk‖ ≤ ‖Uk+1xk+1 − Uk+1xk‖ + ‖Uk+1xk − Ukxk‖

≤ ‖xk+1 − xk‖ + ‖Uk+1xk − Ukxk‖

≤ ‖xk+1 − xk‖ + L1

k
∏

i=1

λi. (3.4)
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Putting (3.4) into (3.3), we get that

‖yk+1 − yk‖ ≤ L2(
βk+1

1 − τk+1
+

βk

1 − τk

) + ‖xk+1 − xk‖ + L1

k
∏

i=1

λi. (3.5)

Here, L2 = sup{‖λϕ(xk)‖ + ‖νFzk‖, k ≥ 1}. Then, by (3.5), we obtain that

‖yk+1 − yk‖ − ‖xk+1 − xk‖ ≤ L2(
βk+1

1 − τk+1
+

βk

1 − τk

) + L1

k
∏

i=1

λi. (3.6)

Noticing the conditions (D1), (D3), (3.6) and 0 < λi ≤ m < 1, we have that

lim sup
k→∞

(‖yk+1 − yk‖ − ‖xk+1 − xk‖) ≤ 0.

Therefore, from Lemma 2.6, we get that

lim
k→∞

‖yk − xk‖ = 0. (3.7)

From (D3) and (3.7), we obtain that

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

(1 − τk)‖yk − xk‖ = 0.

Step 3 We show that lim
k→∞

‖xk − Uxk‖ = 0. Note that

‖xk − Ukxk‖ ≤ ‖xk − xk+1‖ + ‖xk+1 − zk‖ + ‖zk − Ukxk‖

= ‖xk − xk+1‖ + ‖xk+1 − zk‖ + τk‖xk − Ukxk‖.

By Step 2, (D1) and (D3), we get that

(1 − b)‖xk − Ukxk‖ ≤ (1 − τk)‖xk − Ukxk‖ ≤ ‖xk − xk+1‖ + ‖xk+1 − zk‖

≤ ‖xk − xk+1‖ + βk‖λϕ(xk) − νFzk‖ → 0 as (k → ∞),

which means that

‖xk − Ukxk‖ → 0 (as k → ∞). (3.8)

In addition, we know that

‖xk − Uxk‖ ≤ ‖xk − Ukxk‖ + ‖Ukxk − Uxk‖

≤ ‖xk − Ukxk‖ + sup
z∈G

‖Ukz − Uz‖. (3.9)

From (3.8), (3.9) and Lemma 2.11, we get that

lim
k→∞

‖xk − Uxk‖ = 0.

Step 4 We show that lim sup
k→∞

〈λϕz̃ − νF z̃, jq(xk − z̃)〉 ≤ 0; here, z̃ = lim
a→0

xa with xa =

aλϕ(xa) + (I − aνF)Uxa.

Due to the fact that {xk} is bounded, there is a subsequence {xkt
} of {xk} which converges

weakly to x, and such that lim sup
k→∞

〈λϕz̃−νF z̃, jq(xk− z̃)〉 = lim
t→∞

〈λϕz̃−νF z̃, jq(xkt
− z̃)〉. From

‖xk − Uxk‖ → 0, we obtain that Uxkt
⇀ x. Since E admits a weak sequentially continuous

duality mapping, it satisfies Opial’s condition; see [10]. By Lemma 2.3, we obtain that x ∈ Γ(U).



1776 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

Therefore, from Lemma 2.5 and the fact that jq is a weakly sequentially continuous duality

mapping, we have that

lim sup
k→∞

〈λϕz̃ − νF z̃, jq(xk − z̃)〉 = lim
t→∞

〈λϕz̃ − νF z̃, jq(xkt
− z̃)〉

= 〈λϕz̃ − νF z̃, jq(x − z̃)〉 ≤ 0. (3.10)

Step 5 We prove that {xk} converges strongly to z̃. By contradiction, there exists a

constant σ0 > 0 such that

lim sup
k→∞

‖xk − z̃‖ ≥ σ0.

Case 1 Fix σ1(σ1 < σ0). Fix, for some k ≥ N ∈ N such that ‖xk − z̃‖ ≥ σ0 − σ1, and for

the other k ≥ N ∈ N such that ‖xk − z̃‖ < σ0 − σ1, set

Lk =
q〈λϕz̃ − λF z̃, jq(xk+1 − z̃)〉

(σ0 − σ1)q
.

By (3.10), we have that lim sup
k→∞

Lk ≤ 0. Thus, there exists a number N , when k > N , such

that Lk ≤ θ − λ. We extract a number k0 ≥ N which satisfies ‖xk0
− z̃‖ < σ0 − σ1. Thus we

can estimate ‖xk0+1 − z̃‖. Note that

‖xk0+1 − z̃‖q = ‖βk0
λϕ(xk0

) + (I − νβk0
F)zk0

− z̃‖q

= 〈(I − νβk0
F)zk0

− (I − νβk0
F)z̃ + βk0

[λϕ(xk0
) − νF z̃], jq(xk0+1 − z̃)〉

= 〈(I − νβk0
F)zk0

− (I − νβk0
F)z̃, jq(xk0+1 − z̃)〉

+ βk0
〈λϕ(xk0

) − νF z̃, jq(xk0+1 − z̃)〉

= 〈(I − νβk0
F)zk0

− (I − νβk0
F)z̃, jq(xk0+1 − z̃)〉

+ βk0
〈λϕ(xk0

) − λϕ(z̃), jq(xk0+1 − z̃)〉 + βk0
〈λϕ(z̃) − νF z̃, jq(xk0+1 − z̃)〉

≤ (1 − βk0
θ)‖xk0

− z̃‖‖xk0+1 − z̃‖q−1 + βk0
λ‖ϕ(xk0

) − ϕ(z̃)‖‖xk0+1 − z̃‖q−1

+ βk0
〈λϕ(z̃) − νF z̃, jq(xk0+1 − z̃)〉

< [1 − βk0
(θ − λ)](σ0 − σ1)‖xk0+1 − z̃‖q−1 + βk0

〈λϕ(z̃) − νF z̃, jq(xk0+1 − z̃)〉

≤
1

q
[1 − βk0

(θ − λ)]q(σ0 − σ1)
q +

q − 1

q
‖xk0+1 − z̃‖q

+ βk0
〈λϕ(z̃) − νF z̃, jq(xk0+1 − z̃)〉.

From Young’s inequality, we derive that

‖xk0+1 − z̃‖q < [1 − βk0
(θ − λ)]q(σ0 − σ1)

q + qβk0
〈λϕ(z̃) − νF z̃, jq(xk0+1 − z̃)〉

< [1 − βk0
(θ − λ)](σ0 − σ1)

q + qβk0
〈λϕ(z̃) − νF z̃, jq(xk0+1 − z̃)〉

= [1 − βk0
(θ − λ − Lk)](σ0 − σ1)

q

≤ (σ0 − σ1)
q.

Thus, we obtain that

‖xk0+1 − z̃‖ < σ0 − σ1.

By induction, we have that

‖xk − z̃‖ < σ0 − σ1, ∀k ≥ k0.

This contradicts the fact that the lim sup
k→∞

‖xk − z̃‖ ≥ σ0.
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Case 2 Fix σ1 (σ1 < σ0). Set ‖xk − z̃‖ ≥ σ0 − σ1, ∀k ≥ N ∈ N. By Lemma 2.2, there

exists a constant c ∈ (0, 1) such that

‖ϕ(xk) − ϕ(z̃)‖ ≤ c‖xk − z̃‖, k ≥ N.

Following on from (1.8), we get that

‖xk+1 − z̃‖q = ‖βkλϕ(xk) + (I − νβkF)zk − z̃‖q

= 〈(I − νβkF)zk − (I − νβkF)z̃ + βk[λϕ(xk) − νF z̃], jq(xk+1 − z̃)〉

= 〈(I − νβkF)zk − (I − νβkF)z̃, jq(xk+1 − z̃)〉

+ βk〈λϕ(xk) − νF z̃, jq(xk+1 − z̃)〉

= 〈(I − νβkF)zk − (I − νβkF)z̃, jq(xk+1 − z̃)〉

+ βk〈λϕ(xk) − λϕ(z̃), jq(xk+1 − z̃)〉 + βk〈λϕ(z̃) − νF z̃, jq(xk+1 − z̃)〉

≤ (1 − βkθ)‖xk − z̃‖‖xk+1 − z̃‖q−1 + βkλc‖xk − z̃‖‖xk+1 − z̃‖q−1

+ βk〈λϕ(z̃) − νF z̃, jq(xk+1 − z̃)〉

= [1 − βk(θ − λc)]‖xk − z̃‖‖xk+1 − z̃‖q−1 + βk〈λϕ(z̃) − νF z̃, jq(xk+1 − z̃)〉

≤ [1 − βk(θ − λc)]
1

q
‖xk − z̃‖q +

q − 1

q
‖xk+1 − z̃‖q

+ βk〈λϕ(z̃) − νF z̃, jq(xk+1 − z̃)〉.

From Young’s inequality, we derive that

‖xk+1 − z̃‖q ≤ [1 − βk(θ − λc)]‖xk − z̃‖q + qβk〈λϕ(z̃) − νF z̃, jq(xk+1 − z̃)〉. (3.11)

Applying Lemma 2.7 to (3.11), we can obtain that xk → z̃, as k → ∞. This contradicts the fact

that ‖xk − z̃‖ ≥ σ0 − σ1. Hence, {xk} converges strongly to z̃ ∈
∞
⋂

i=1

Γ(Si). By z̃ = lim
a→0

xa and

Lemma 2.5, we obtain that z̃ uniquely solves the variational inequality 〈λϕz̃−νF z̃, jq(x− z̃)〉 ≤

0, x ∈
∞
⋂

i=1

Γ(Si). �

Lemma 3.2 ([19]) Assume that E is a q-uniformly smooth Banach space which admits

a weak sequentially continuous duality mapping jq : E → E∗. Given that S : E → E is a

non-expansive mapping such that Γ(S) 6= ∅ and that ϕ : E → E is an MKC, A is a strongly

positive bounded linear operator with a coefficient θ > 0. Suppose that 0 < λ < θ. Then the

sequence {xa} given by xa = aλϕ(xa) + (I − aA)Sxa (as a → 0) converges strongly to a fixed

point z̃ of S, which is a unique solution of the variational inequality

〈(A− λϕ)z̃, jq(z̃ − x)〉 ≤ 0, x ∈ Γ(S). (3.12)

When F reduces to a strongly positive bounded linear operator A and ν = 1 in (1.8), we

can obtain the following results:

Corollary 3.3 Assume that E is a q-uniformly smooth and strictly convex Banach space

which admits a weak sequentially continuous duality mapping jq : E → E∗. Suppose that

{Si : E → E} is a γi-strict pseudo-contraction such that
∞
⋂

i=1

Γ(Si) 6= ∅ and that {λi} is a real

sequence such that 0 < λi ≤ m < 1, ∀i ≥ 1. Set that A is a strongly positive bounded linear

operator on E with a coefficient 0 < η̃ < 1 and that ϕ is an MKC such that 0 < λ < η̃. Let
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{αk} and {βk} ⊂ (0, 1) be sequences which adhere to the conditions (D1), (D2) and (D3). Let

{xk} be a sequence defined by x1 = x ∈ E as follows:






zk = τkxk + (1 − τk)Ukxk,

xk+1 = βkλϕ(xk) + (I − βkA)zk, ∀ k ≥ 1.

Then {xk} converges strongly to z̃ ∈
∞
⋂

i=1

Γ(Si), which uniquely solves the variational inequality

〈λϕz̃ −Az̃, jq(x − z̃)〉 ≤ 0, x ∈
∞
⋂

i=1

Γ(Si).

Proof By the same steps as those used to prove Theorem 3.1, and replacing Lemma 2.5

with Lemma 3.2 in Step 4, we easily get the results of Corollary 3.3. �
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