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Abstract This article explores the O(t−β) synchronization and asymptotic synchronization

for fractional order BAM neural networks (FBAMNNs) with discrete delays, distributed

delays and non-identical perturbations. By designing a state feedback control law and a
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new kind of fractional order Lyapunov functional, a new set of algebraic sufficient conditions

are derived to guarantee the O(t−β) Synchronization and asymptotic synchronization of the

considered FBAMNNs model; this can easily be evaluated without using a MATLAB LMI

control toolbox. Finally, two numerical examples, along with the simulation results, illustrate

the correctness and viability of the exhibited synchronization results.

Key words O(t−β)-synchronization; asymptotic synchronization; BAM neural networks;

fractional order; state feedback control law
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1 Introduction

Over the past few years, many research areas such as control theory, stability theory,

optimization, cryptography, secure communications, signal and image processing, have played

a significant role in the study of neural networks and nonlinear dynamical systems [1–7]. The

quantitative behavior of dynamical applications is an important step in the practical design [8–

10]. Bidirectional associative memory (BAM), an expansion of auto-associate Hopfield neural

networks, was first proposed by Bart Kosko [11], and contains twin layers, one a K-Layer and

the other an L-layer. Between the two layers, the neurons are fully interconnected from K-layer

to L-layer. This lays a good foundation for artificial intelligence, optimization, signal and image

processing, and as such increasing attention has been paid to the dynamical behaviors of BAM

neural networks, and some important results have been obtained; see [12–14].

Recently, research on fractional-order dynamical systems has brought about numerous fruit-

ful achievements; see [15–17, 48, 49]. As an electronic execution of a BAM neural system model,

many scholars endeavored to update the typical capacitor fractional capacitor; this led to the

development of the fractional order BAM neural network models (FOBAMNNs). Generally,

time delays can impose complexity and restrictions in neural networks and may lead to insta-

bility, chaos and oscillation. Dynamical behaviors of time delayed FOBAMNNs have already

become a hot research topic, and lots of scientific results have appeared in this area; see [18–22].

For example, the non-fragile state estimator design of fractional order memristive BAM

neural networks (FOMBAMNNs) with a parameter mismatch problem was investigated in

[18]. By means of interval parameter techniques, nonsmooth analysis and Lyapunov theory,

sufficient criteria were obtained in asymptotic stability for the considered BAM neural net-

work models. In [19], by employing the appropriate Lyapunov function and Caputo fractional

derivatives, the author demonstrated the global Mittag-Leffler stability and asymptotical ω-

periodicity of fractional order BAM neural networks (FOBAMNNs). Based on the properties

of Riemann-Liouville fractional derivatives, the fractional Barbalet lemma and the Lyapunov

stability theory, some sufficient conditions were established in [21] to guarantee the global

asymptotic stability of FOBAMNNs with impulsive effects and time delays. In [22], the prob-

lem on the stabilization of FOMBAMNNs was demonstrated. By utilizing the two different

feedback control approaches, linear and partial feedback control, as well as the generalized

Gronwall inequality and the properties of Caputo derivatives, the sufficient conditions were es-

tablished to ensure the Mittag-Leffler stabilization condition for the considered FOMBAMNNs

models.
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Synchronization, which means the dynamical behaviors of a coupled system that realizes

convergence to the matching spatial state, has become an important research field. Many in-

teresting research topics in neural networks and complex networks have made great progress

(see [23–26]). There are many applications of synchronization, for example, secure communica-

tion, medicine, image processing, and so on. For fractional-order neural networks, researchers

have discussed various types of synchronization; see [27–33]. For example, in [28], the author

demonstrated several synchronization criteria by utilizing the suitable Lyapunov function, the

Razumikhin method and the differential inclusion theory to ensure the O(t−β)-synchronization

and adaptive Mittag-Leffler synchronization criterion in fractional order delayed memristive

neural networks. In [30], the authors proposed the problem of memristive fractional order fuzzy

neural networks with time delays. By employing some inequality skills and a suitable state

feedback control scheme, the set of sufficient conditions was presented to ensure the finite time

stability and finite time synchronization. For more on the significant research taking place

regarding fractional order synchronization in BAM neural networks, see [27, 31, 32] and refer-

ences therein. In [31], the problem of finite time Mittag-Leffler synchronization of memristive

FBAMNNs was addressed with the aid of a simple linear feedback controller, some inequal-

ity techniques, and a suitable Lyapunov functional approach. The authors of [33] developed

multiple variable delayed impulsive FBAMNNs by using linear delayed feedback control.

On the one hand, during a particular period, signal propagation is distributed because the

variety of axon sizes and lengths are too large. The significant attention has been paid to

distributed delays in neural network dynamical systems; see, for instance, [34, 35]. In [34], the

authors discussed the pinning synchronization of Riemann-Liouville sense fractional-order mem-

ristive complex-valued neural networks with both discrete and infinite distributed delays.By us-

ing the Lyapunov stability theory, a comparison theorem and a pinning control policy, several

sufficient conditions were obtained to ensure the global asymptotical synchronization analysis

of the considered neural network model. In [35], by using the adaptive feedback control law and

Lyapunov theory, the author investigated the global asymptotic synchronization of fractional

order complex valued neural networks with both discrete and infinite distributed delays.

On the other hand, in many practical systems, many uncertain and external perturbations

exist, which can damage synchronization’s dynamical performance. Taking account of this,

many interesting results on the dynamics of neural networks with discrete, infinite distributed

delays and nonlinear perturbations have recently been proposed; see [36–38]. These results are

built in integer order cases. To the best of our knowledge, no one has yet investigated the

fractional order cases, and in this paper, we make the first attempt to do so.

The main objective of this article is thus to study the O(t−β) synchronization and asymp-

totic synchronization for fractional order BAM neural networks with discrete delays, distributed

delays and non-identical perturbations. The main contributions of this research work are fol-

lows:

1. The theoretical results and techniques can be extended to O(t−β) stability and the

synchronization of both integer order and fractional-order neural networks.

2. To obtain our synchronization results, O(t−β) synchronization and asymptotic synchro-

nization definitions have been introduced, and a novel discontinuous state feedback controller

has been designed.
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3. In light of these definitions and proposed controllers, sufficient criteria for several syn-

chronization results are demonstrated theoretically.

4. While existing results have not taken into consideration nonlinear perturbation and

mixed time delays, our results fill this gap.

2 Preliminaries

At first, let us present some standing definitions, and we also state four lemmas in this

section.

Definition 2.1 ([39, 40]) The integral of fractional order β > 0 for a function h(t) is

defined as

RL
t0

D
−β
t h(t) =

1

Γ(β)

∫ t

t0

(t − ℓ)β−1h(ℓ) dℓ,

where t ≥ t0, Γ(·) is the gamma function.

Definition 2.2 ([39, 40]) The Riemann-Liouville derivative of fractional order β > 0 for

a function h(t) is defined as

RL
t0

D
β
t h(t) =

1

Γ(m − β)

dm

dtm

∫ t

t0

h(ℓ)

(t − ℓ)β−m+1
dℓ,

where t ≥ t0 and m − 1 < β < m ∈ Z
+.

Definition 2.3 ([39, 40]) The Caputo derivative of fractional order β > 0 for a function

h(t) is defined as

C
t0

D
β
t h(t) =

1

Γ(m − β)

∫ t

t0

h(m)(ℓ)

(t − ℓ)β−m+1
dℓ,

where t ≥ t0 and m − 1 < β < m ∈ Z+.

Definition 2.4 ([39, 40]) The two parameter Mittag-Leffler function is defined as

Mβ,γ(σ) =

+∞
∑

κ=0

σκ

Γ(βκ + γ)
,

where β, γ ∈ R+, σ ∈ C.

Definition 2.5 ([39, 40]) For m−1 < β < m, the Laplace transform of the Mittag-Leffler

function with two parameter is defined as

L
{

tγ−1Mβ,γ(αtβ)
}

=
sβ−γ

sβ − α
,

(

Re(s) > β
√

|α|
)

,

where s and t are both variables in Laplace domain and time domain, respectively.

Lemma 2.6 ([40]) For m− 1 < β < m, if h(t) ∈ C1(0, +∞], then the following fractional

order properties hold:

(i) C
t0

D
β
t h(t) =RL

t0
D

β
t h(t) − h(t0)

Γ(1−β)((t−t0)β)
;

(ii) Letting h1(t) and h2(t) be two derivable continuous function, the Leibniz rule for

fractional differentiation takes the expression

RL
t0

D
β
t [h1(t)h2(t)] =

m
∑

l=0

(

β

l

)

dl

dtl
h1(t)

RL
t0

D
β−l
t [h2(t)] − Λβ

m(t),
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where
(

β
l

)

= Γ(β+1)
l!Γ(β+1−l) and m ≥ β + 1 lead to

Λβ
m(t) =

(−1)m(t − β)m+1−β

m!Γ(−β)

∫ 1

0

∫ 1

0

Υβ(t, λ, µ)dλdµ

Υβ(t, λ, µ) = h
(

t0 + µ(t − t0)
)

h
(m+1)
1

(

t0 + (t − t0)(λ + µ − λµ)
)

.

Remark 2.7 The above fractional order inequality expresses the main relationship be-

tween the Caputo and the Riemann-Liouville derivatives; this plays a significant role in realizing

O(t−β)-synchronization. Moreover, Definitions 2.1, 2.2 and 2.3 satisfy the linearity properties

of fractional order derivatives.

Lemma 2.8 ([41]) If h(t) signifies a continuously derivable function, the following in-

equality holds almost everywhere:

C
t0

D
β
t |h(t)| ≤ sign(h(t))C

t0
D

β
t {h(t)}, 0 < β < 1.

Lemma 2.9 (Asymptotic expansion of Mittag-Leffler function property [44]) Let Mβ,1(t)

be a monotonic nondecreasing function and let β ∈ (0, 1). Then for any integer λ > 1, 0 6= t ∈ R,

and | arg t| < π
2 , we have that

Mβ(t) =
1

β
et

1
β

−
λ

∑

χ=1

1

tχΓ(1 − βχ)
+ O

( 1

tλ+1

)

, |t| → +∞.

Lemma 2.10 Suppose that the nonnegative continuous real function Λ(k) is defined on

R and ℓ ∈ R. Then
∫ ℓ

−∞

Λ(ℓ − κ)dκ if and only if

∫ +∞

0

Λ(κ)dκ.

Proof . Denote that θ = ℓ − κ. Then, it is obvious that
∫ +∞

0

Λ(κ)dκ ⇔

∫ +∞

0

Λ(θ)dθ ⇔

∫ ℓ

−∞

Λ(ℓ − κ)dκ.

The proof is now complete.

2.1 Model description

In this manuscript, the FBAMNNs with mixed delays can defined by the states equation

C
t0

D
β
t ki(t) = −aiki(t) +

m
∑

j=1

vijhj(lj(t)) +

m
∑

j=1

wijhj(lj(t − τ)) +

m
∑

j=1

cij

∫ t

−∞

Dij(t − ω)

×hj(lj(ω))dω + Ji + ∆1i

(

t, ki(t), ki(t − τ),

∫ t

−∞

ki(ω)dω
)

C
0 D

β
t lj(t) = −bjlj(t) +

n
∑

i=1

pjigi(ki(t)) +
n

∑

i=1

qjigi(ki(t − τ)) +
n

∑

i=1

rji

∫ t

−∞

Eji(t − ω)

×gi(ki(ω))dω + Ij + ∆̃1j

(

t, lj(t), lj(t − τ),

∫ t

−∞

lj(ω)dω
)

. (2.1)

Here i = 1, 2, . . . , n, j = 1, 2, . . . , m, C
t0

D
β
t is the Caputo-derivative of order 0 < β < 1,

k(t) =
(

k1(t), k2(t), . . . , kn(t)
)T

∈ Rn and lj(t) =
(

l1(t), l2(t), . . . , lm(t)
)T

∈ Rm are the state

vectors of the neurons, m and n are the number of neurons, ai > 0 and bj > 0 are the self-

regulating parameters of the neurons. Let h
(

l(t)
)

=
(

h1

(

l1(t)
)

, . . . , hm

(

lm(t)
)

)T

∈ Rm and
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g
(

k(t)
)

=
(

g1

(

k1(t)
)

, . . . , gn

(

kn(t)
)

)T

∈ Rn be the neuron activations at time t, where τ > 0 is

the constant time lag. Ij and Ji are constant external input vectors, and cij , vij , wij , pji, qji

and rji represent the synaptic weight connections of the neurons. Dij and Eji are the delayed

kernel functions and are defined on the positive interval [0,∞). ∆1i(t) = ∆i

(

t, ki(t), ki(t − τ),
∫ t

−∞
ki(ω)dω

)

and ∆̃1j(t) = ∆̃j

(

t, lj(t), lj(t − τ),
∫ t

−∞
lj(ω)dω

)

are the external disturbances

of model (2.1). The initial values of system (2.1) are defined as

k(ν) = φ(ν), l(ν) = ϕ(ν), ν ∈ [−τ, 0].

In order to obtain synchronization between the drive and response neural networks, we consider

system (2.1) to be a drive system, and the corresponding response system is constructed by

C
t0

D
β
t k̃i(t) = −aik̃i(t) +

m
∑

j=1

vijhj(l̃j(t)) +

m
∑

j=1

wijhj(l̃j(t − τ)) +

m
∑

j=1

cij

∫ t

−∞

Dij(t − ω)

×hj(l̃j(ω))dω + Ji + ∆2i

(

t, k̃i(t), k̃i(t − τ),

∫ t

−∞

k̃i(ω)dω
)

+ χi(t)

C
0 D

β
t l̃j(t) = −bj l̃j(t) +

n
∑

i=1

pjigi(k̃i(t)) +

n
∑

i=1

qjigi(k̃i(t − τ)) +

n
∑

i=1

rji

∫ t

−∞

Eji(t − ω)

×gi(k̃i(ω))dω + Ij + ∆̃2j

(

t, l̃j(t), l̃j(t − τ),

∫ t

−∞

l̃j(ω)dω
)

+ θj(t), (2.2)

where χi(t) and θj(t) are suitable controllers. ∆2i(t) = ∆2i

(

t, k̃i(t), k̃i(t − τ),
∫ t

−∞
k̃i(ω)dω

)

and ∆̃2j(t) = ∆̃2j

(

t, l̃j(t), l̃j(t − τ),
∫ t

−∞
l̃j(ω)dω

)

are the other external disturbances of the

model (2.2), while all other parameters are similar to the drive system (2.1). Here the initial

values of the response model (2.2) are defined as

k̃(ν) = φ̃(ν), l̃(ν) = ϕ̃(ν), ν ∈ [−τ, 0].

Motivated by [7, 20, 28], we introduce the following O(t−β)-synchronization and asymptotic

synchronization definitions:

Definition 2.11 Drive system (2.1) realizes O(t−β)-synchronization with response system

(2.2) if

‖k̃(t) − k(t)‖ + ‖l̃(t) − l(t)‖ ≤
(

‖φ̃ − φ‖ + ‖ϕ̃ − ϕ‖
)

O(t−β), 0 < β < 1,

where (φ̃, φ) and (ϕ̃, ϕ) are initial values of (2.1) and (2.2), respectively, and where O(t−β) is

a same-order infinitesimal of t−β .

Definition 2.12 Drive system (2.1) realizes asymptotic synchronization with response

system (2.2) if

lim
t→+∞

‖k̃(t) − k(t)‖ + lim
t→+∞

‖l̃(t) − l(t)‖ = 0.

(A1) For i = 1, 2, . . . , n, j = 1, 2, . . . , m, the nonlinear activation gi, hj : R → R are

continuous. That is, there exist Lipschitz constants Gi and Rj such that

|gi(ζ1) − gi(ζ2)| ≤ Gi|ζ1 − ζ2|, |hj(ζ1) − hj(ζ2)| ≤ Rj |ζ1 − ζ2|

for all ζ1, ζ2 ∈ R.
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(A2) For i = 1, 2, . . . , n, j = 1, 2, . . . , m, the delay kernel functions Dij , Eji : [0, +∞) →

[0, +∞) are bounded and piecewise continuous functions, and this satisfies

∫ +∞

0

Dij(ω)dω = 1,

∫ +∞

0

ωDij(ω)dω < +∞

∫ +∞

0

Eji(ω)dω = 1,

∫ +∞

0

ωEji(ω)dω < +∞.

(A3) For i = 1, 2, . . . , n, j = 1, 2, . . . , m, there exist positive constants M1i, M2i, N1j and

N2j such that

|∆1i(t)| ≤ M1i, |∆̃1j(t)| ≤ N1j , |∆2i(t)| ≤ M2i, |∆̃2j(t)| ≤ N2j .

Let the synchronization error states be ui(t) = k̃i(t) − ki(t) and zj(t) = l̃j(t) − lj(t). Then, we

can obtain the following error system between drive system (2.1) and response system (2.2):

C
t0

D
β
t ui(t) = −aiui(t) +

m
∑

j=1

vij ĥj(zj(t)) +

m
∑

j=1

wij ĥj(zj(t − τ)) +

m
∑

j=1

cij

∫ t

−∞

Dij(t − ω)

×ĥj(zj(ω))dω + ∆2i(t) − ∆1i(t) + χi(t)

C
0 D

β
t zj(t) = −bjzj(t) +

n
∑

i=1

pjiĝi(ui(t)) +

n
∑

i=1

qjiĝi(ui(t − τ)) +

n
∑

i=1

rji

∫ t

−∞

Eji(t − ω)

×ĝi(ui(ω))dω + ∆̃2j(t) − ∆̃1j(t) + θj(t). (2.3)

Here, ĝi

(

ui(·)
)

= gi

(

k̃i(·)
)

− gi

(

ki(·)
)

and ĥj

(

zj(·)
)

= hj

(

l̃j(·)
)

− hj

(

lj(·)
)

.

For sake of simplicity, we set the following notations:

Φmin
1 = min

1≤i≤n
{ai + ηi}, Φmax

2 = max
1≤i≤n, 1≤j≤m

{δi|vij |Rj}, Ψ
min
1 = min

1≤j≤m
{bj + ̺i},

Φmax
3 = max

1≤i≤n, 1≤j≤m
{
δi(|wij | + |cij |)Rj

γj

}, Ψmax
2 = max

1≤i≤n, 1≤j≤m
{γj |pji|Gi},

Ψmax
3 = max

1≤i≤n, 1≤j≤m
{
γj(|qji| + |rji|)Gi

δi

}, Φmax
4 = max

1≤i≤n, 1≤j≤m
{
δi|wij |Rj

γj

},

Ψmax
4 = max

1≤i≤n, 1≤j≤m
{
γj |qji|Gi

δi

}.

3 Main Results

In this section, a new class of O(t−β)-synchronization and asymptotic synchronization are

derived by employing a Mittag-Leffler function, a suitable Lyapunov functional, and fractional

order derivative properties including the Riemann-Liouville and the Caputo-derivative.

We choose the controllers χi(t) and θj(t) in response system (2.2) as follows:

χi(t) = −ηiui(t) − πiSIGN(ui(t)), i = 1, 2, . . . , n,

θj(t) = −̺jzj(t) − εjSIGN(zj(t)), j = 1, 2, . . . , m. (3.1)

Here ηi, πi, ̺j , εj are control gains.

Theorem 3.1 Assuming that the conditions (A1)–(A3) hold, there exist constants ∆ ≥

1, and ς < τ , and n positive constants δi (i = 1, 2, . . . , n) as well as m positive constants
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γj (j = 1, 2, . . . , m) such that

−Υ + Π
[ ς

ς − τ

]β

+
[ 1 − β + β2

ςβΓ(2 − β)

]

< 0, (3.2)

πi > Mi, εj > Nj , i = 1, 2, . . . , n, j = 1, 2, . . . , m. (3.3)

Then the FBAMNNs system (2.1) and FBAMNNs system (2.2) can realize O(t−β)-synchron-

ization under controller (3.1), where

−Υ = max
1≤i≤n,1≤j≤m

{

− Φmin
1 +

mΨmax
2

δi

, −Ψmin
1 +

nΦmax
2

γj

}

< 0,

Π = max
1≤i≤n,1≤j≤m

{mΨmax
3

δi

,
nΦmax

3

γj

}

, Mi = max
1≤i≤n

{M1i + M2i}, Nj = max
1≤j≤m

{N1j + N2j}.

Proof Now consider the following non-negative functional:



























G(t) =
n

∑

i=1

δi|ui(t)| +
m

∑

j=1

γj |zj(t)|

H(t) = [t − t0 + ς]βG(t)

H̃(t) = sup
t0−τ≤ω≤t

H(ω).

(3.4)

Next, we demonstrate that

C
t0

D
β
t H(t) = [t − t0 + ς]β

C

t0
D

β
t G(t) +

1 − β + β2

ςβΓ(2 − β)
H̃(t). (3.5)

From Leibniz’s rule for fractional differentiation (see (ii) in Lemma (2.6)), we obtain that

C
t0

D
β
t H(t) = RL

t0
D

β
t H(t) −

H(t0)

Γ(1 − β)(t − t0)β

≤ RL
t0

D
β
t [t − t0 + ς]βG(t) +

β2

[t − t0 + ς]1−β

RL
t0

D
β−1
t G(t) −

ςβG(t0)

Γ(1 − β)(t − t0)β

≤ C
t0

D
β
t [t − t0 + ς]βG(t) +

β2

[t − t0 + ς]1−β

RL
t0

D
β−1
t G(t) + (2β + 1)

G(t0)

Γ(1 − β)

≤ C
t0

D
β
t [t − t0 + ς]βG(t) +

β2

[t − t0 + ς]1−β

RL
t0

D
β−1
t G(t) + (2β + 1)

H̃(t)

ςβΓ(1 − β)
.

(3.6)

Consider

β2

[t − t0 + ς]1−β

RL
t0

D
β−1
t G(t) =

β2

Γ(1 − β)[t − t0 + ς]1−β

∫ t

t0

(t − ℓ)−βG(ℓ) dℓ

=
β2

Γ(1 − β)[t − t0 + ς]1−β
G̃(t)

∫ t

t0

(t − ℓ)−β dℓ

=
β2

Γ(2 − β)[t − t0 + ς]1−β
G̃(t)(t − t0)

1−β

≤
β2

Γ(2 − β)
G̃(t)

≤
β2

ςβΓ(2 − β)
H̃(t) (3.7)
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for t ≥ t0 and G̃(t) = sup
t0−τ≤ω≤t

G(ω). From (3.6) and (3.7), it follows that (3.5) holds. Based

on Definition 2.3, one has

C
t0

D
β
t G(t) =

1

Γ(1 − β)

∫ t

t0

G′(ℓ)(t − ℓ)−βdℓ

=
1

Γ(1 − β)

∫ t

t0

d

dℓ

[

n
∑

i=1

δi|ui(t)| +
m

∑

j=1

γj|zj(t)|

]

(t − ℓ)−βdℓ

=
1

Γ(1 − β)

∫ t

t0

d

dℓ

[

n
∑

i=1

δi|ui(t)|

]

(t − ℓ)−βdℓ

+
1

Γ(1 − β)

∫ t

t0

d

dℓ

[

m
∑

j=1

γj |zj(t)|

]

(t − ℓ)−βdℓ

=
1

Γ(1 − β)

n
∑

i=1

δi

∫ t

t0

d

dℓ

[

|ui(t)|
]

(t − ℓ)−βdℓ

+
1

Γ(1 − β)

m
∑

j=1

γj

∫ t

t0

d

dℓ

[

|zj(t)|
]

(t − ℓ)−βdℓ. (3.8)

Based on Lemma (2.8) in (3.8), we obtain that

C
t0

D
β
t G(t) =

1

Γ(1 − β)

n
∑

i=1

δiSIGN(ui(t))

∫ t

t0

d

dℓ

[

|ui(t)|
]

(t − ℓ)−βdℓ

+
1

Γ(1 − β)

m
∑

j=1

γjSIGN(zj(t))

∫ t

t0

d

dℓ

[

|zj(t)|
]

(t − ℓ)−βdℓ

≤
n

∑

i=1

δiSIGN(|ui(t)|)
C
t0

D
β
t ui(t) +

m
∑

j=1

γjSIGN(|zj(t|))
C
t0

D
β
t zj(t). (3.9)

According to the synchronization error system (2.3) and Lemma (2.10), it follows that

C
t0

D
β
t G(t) ≤

n
∑

i=1

δiSIGN(|ui(t)|)

{

− aiui(t) +
m

∑

j=1

vij ĥj(zj(t)) +
m

∑

j=1

wij ĥj(zj(t − τ))

+
m

∑

j=1

cij

∫ t

−∞

Dij(t − ω)ĥj(zj(ω))dω + ∆2i(t) − ∆1i(t) − ηi|ui(t)| − πisi(t)

}

+
m

∑

j=1

γjSIGN(|zj(t)|)

{

− bjzj(t) +
n

∑

i=1

pjiĝi(ui(t)) +
n

∑

i=1

qjiĝi(ui(t − τ))

+

n
∑

i=1

rji

∫ t

−∞

Eji(t − ω)ĝi(ui(ω))dω + ∆̃2j(t) − ∆̃1j(t) − ̺j |zj(t)| − εj s̃j(t)

}

≤
n

∑

i=1

δi

{

− ai|ui(t)| +
m

∑

j=1

|vij ||ĥj(zj(t))| +
m

∑

j=1

|wij ||ĥj(zj(t − τ))|

+
m

∑

j=1

|cij |

∫ +∞

0

Dij(ω)|ĥj(zj(t − ω))|dω + (M2i + M1i) − ηi|ui(t)| − πi

}

+
m

∑

j=1

γj

{

− bj|zj(t)| +
n

∑

i=1

|pji||ĝi(ui(t))| +
n

∑

i=1

|qji||ĝi(ui(t − τ))|
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+

n
∑

i=1

|rji|

∫ +∞

0

Eji(ω)|ĝi(ui(t − ω))|dω + (N2j + N1j) − ̺j |zj(t)| − εj

}

(3.10)

where si(t) = SIGN(ui(t)) if si(t) 6= 0 and s̃j(t) = SIGN(zj(t)) if s̃j(t) 6= 0, from which si(t)

and s̃j(t) can be selected as the intervals in [−1, 1].

From (3.3) and (3.10), it follows that

C
t0

D
β
t G(t) ≤

n
∑

i=1

δi|ui(t)|
[

− Φmin
1 +

mΨmax
2

δi

]

+
m

∑

j=1

γj |zj(t)|
[

− Ψmin
1 +

nΦmax
2

γj

]

+ max
1≤i≤n,1≤j≤m

{mΨmax
3

δi

,
nΦmax

3

γj

}

G̃(t)

≤ −ΥG(t) + ΠG̃(t),

and hence

[t − t0 + ς]β
C

t0
D

β
t G(t) = −ΥH(t) + [t − t0 + ς]βΠG̃(t)

≤ −ΥH(t) + Π[
t − t0 + ς

t − τ − t0 + ς
]βH̃(t)

≤ −

[

Υ − Π[
ς

τ + ς
]β

]

H(t),

when H̃(t) = H(t). According to Equation (3.5), it follows that

C
t0

D
β
t H(t) = [t − t0 + ς]β

C

t0
D

β
t G(t) +

1 − β + β2

ςβΓ(2 − β)
H̃(t)

≤

[

− Υ + Π[
ς

τ + ς
]β +

1 − β + β2

ςβΓ(2 − β)

]

H(t)

≤ 0 (3.11)

when H̃(t) = H(t). Next, we assume that

H̃(t) = H̃(t0). (3.12)

On the other hand, there exists t1 > t0 such that H̃(ω) = H̃(t0) ≥ H(ω) for any t0 < ω ≤ t1,

but H̃(t) = H(t) and H(ι) ≤ H(t) for t0 ≤ ι ≤ t for t > t1. From (3.12), C
t0

D
β
t H(t) ≤ 0. Also,

by means of Definition 2.3, one has that

C
t0

D
β
t H̃(t) =

1

Γ(1 − β)

∫ t

t0

H̃ ′(ℓ)(t − ℓ)−βdℓ,

=
1

Γ(1 − β)

∫ t

t1

H ′(ℓ)(t − ℓ)−βdℓ +
1

Γ(1 − β)

∫ t1

t0

H̃ ′(ℓ)(t − ℓ)−βdℓ,

<
1

Γ(1 − β)

∫ t1

t0

H̃ ′(ℓ)(t − ℓ)−βdℓ,

= C
t0

D
β
t H(t) < 0,

which is contradiction. Therefore, H̃(t) = H̃(t0).

It is pointed out that

G(t0) =
n

∑

i=1

δi|ui(t0)| +
m

∑

j=1

γj |zj(t0)| ≤ Λmax

[

‖φ̃ − φ‖ + ‖ϕ̃ − ϕ‖
]

(3.13)
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and

G(t) =

n
∑

i=1

δi|ui(t)| +
m

∑

j=1

γj |zj(t)| ≥ Λmin

[

‖u(t)‖ + ‖z(t)‖
]

, (3.14)

where Λmax = max
1≤i≤n,1≤j≤m

{δi, γj} and Λmin = min
1≤i≤n,1≤j≤m

{δi, γj}. From (3.4), we get the

values of G(t) as G(t) = H(t)
[t−t0+ς]β

. Based on inequalities (3.10), (3.13) and (3.14), one can

obtain that

‖k̃(t) − k(t)‖ + ‖l̃(t) − l(t)‖ =
H(t)

Λmin[t − t0 + ς]β
≤

H̃(t)

Λmin[t − t0 + ς]β

=
ςβG̃(t0)

Λmin[t − t0 + ς]β
≤

Λmax

Λmin

‖φ̃ − φ‖ + ‖ϕ̃ − ϕ‖

[t − t0 + ς]β
ςβ

≤ ∆
‖φ̃ − φ‖ + ‖ϕ̃ − ϕ‖

[t − t0 + ς]β
ςβ ≤ ‖φ̃ − φ‖ + ‖ϕ̃ − ϕ‖O(t−β)

for t ≥ t0 and ∆ = Λmax

Λmin
. Based on Definition 2.11, the FBAMNNs system (2.1) and the

FBAMNNs system (2.2) can realize O(t−β)-synchronization under controller (3.1). Hence the

proof is now complete. �

The following corollaries are also very interesting and can be directly obtained from Theo-

rem 3.1:

Corollary 3.2 Suppose that conditions (A1)–(A3) hold. Then there exist constants ∆ ≥

1 and ς < τ , and n positive constants δi (i = 1, 2, . . . , n) as well as m positive constants

γj , (j = 1, 2, . . . , m) such that

−Υ + Π̃
[ ς

ς − τ

]β

+
[ 1 − β + β2

ςβΓ(2 − β)

]

< 0,

πi > Mi, εj > Nj , i = 1, 2, . . . , n, j = 1, 2, . . . , m,

so the drive system (2.1) without infinite distributed delays realizes O(t−β)-synchronization

with response system (2.2) without infinite distributed delays under controller (3.1), where

Π̃ = max
1≤i≤n,1≤j≤m

{mΨmax
4

δi

,
nΦmax

4

γj

}

,

and where Υ is as already defined in Theorem 3.1.

Corollary 3.3 Suppose that conditions (A1)–(A3) hold. Then there exist constants ∆ ≥

1 and ς < τ , and n positive constants δi (i = 1, 2, . . . , n) as well as m positive constants

γj , (j = 1, 2, . . . , m) such that the condition of (3.2) holds, so systems (2.1) and (2.2), without

external disturbances, can realize O(t−β)-synchronization under the following controller:

χi(t) = −ηiui(t), i = 1, 2, . . . , n,

θj(t) = −̺jzj(t), j = 1, 2, . . . , m. (3.15)

Theorem 3.4 Assuming that the conditions (A1)–(A3) and condition (3.3) of Theorem

3.1 hold, then there exist n positive constants δi (i = 1, 2, . . . , n) and m positive constants

γj , (j = 1, 2, . . . , m) such that

λ1 = min
1≤i≤n,1≤j≤m

{

Φmin
1 −

mΨmax
2

δi

, Ψmin
1 −

nΦmax
2

γj

}
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> max
1≤i≤n,1≤j≤m

{mΨmax
3

δi

,
nΦmax

3

γj

}

= λ2, (3.16)

so systems (2.1) and (2.2) can realize asymptotic synchronization under controller (3.1).

Proof Consider the Lyapunov-Razumikhin function

H(t) =
n

∑

i=1

δi|ui(t)| +
m

∑

j=1

γj |zj(t)|. (3.17)

Similarly to the proofs of (3.8) and (3.9) in Theorem 3.1, and based on error system (2.3), one

can obtain that

C
t0

D
β
t H(t) ≤

n
∑

i=1

δi

{

− ai|ui(t)| +
m

∑

j=1

|vij ||ĥj(zj(t))| +
m

∑

j=1

|wij ||ĥj(zj(t − τ))|

+
m

∑

j=1

|cij |

∫ +∞

0

Dij(ω)|ĥj(zj(t − ω))|dω + (M2i + M1i) − ηi|ui(t)| − πi

}

+
m

∑

j=1

γj

{

− bj |zj(t)| +
n

∑

i=1

|pji||ĝi(ui(t))| +
n

∑

i=1

|qji||ĝi(ui(t − τ))|

+
n

∑

i=1

|rji|

∫ +∞

0

Eji(ω)|ĝi(ui(t − ω))|dω + (N2j + N1j) − ̺j |zj(t)| − εj

}

≤ −Φmin
1

n
∑

i=1

δi|ui(t)| − Ψmin
1

m
∑

j=1

γj |zj(t)| + mΨmax
2

n
∑

i=1

|ui(t)| + nΦmax
2

m
∑

j=1

|zj(t)|

+ max
1≤i≤n, 1≤j≤m

{mΨmax
3

δi

,
nΦmax

3

γj

}

sup
t−τ≤ω≤t

(

n
∑

i=1

δi|ui(ω)| +
m

∑

j=1

γj |zj(ω)|
)

+(M2i + M1i) − πi + (N2j + N1j) − εj . (3.18)

Choose πi (i = 1, 2, . . . , n) and εj (j = 1, 2, . . . , m) and let π = min
1≤i≤n

πi and ε = min
1≤j≤m

εj such

that

π > max
1≤i≤n

{M1i + M2i}, ε > max
1≤j≤m

{N1j + N2j}.

Then

C
t0

D
β
t H(t) ≤ min

1≤i≤n, 1≤j≤m

{

Φmin
1 −

mΨmax
2

δi

, Ψmin
1 −

nΦmax
2

γj

}

H(t)

+ max
1≤i≤n, 1≤j≤m

{mΨmax
3

δi

,
nΦmax

3

γj

}

sup
t−τ≤ω≤t

H(ω)

≤ −λ1H(t) + λ2 sup
t−τ≤ω≤t

H(ω). (3.19)

From this calculation, any solution (uT (t), zT (t))T fulfills the following Razumikhin criteria (see

[43]):

H(ω) ≤ H(t), t − τ ≤ ω ≤ t.

Note that λ1 > λ2 > 0, so there exists a scalar λ > 0 in such a way that λ1 − λ2 ≥ 0.

Thus, we have

C
t0

D
β
t H(t) ≤ −λH(t). (3.20)
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From (3.20), there exists a non-negative function Λ(t) such that

C
t0

D
β
t H(t) + Λ(t) = −λH(t). (3.21)

Applying a Laplace transform to (3.21), we obtain that

sβH(s) − sβ−1H(0) + Λ(s) = −λH(s), t ≥ 0,

where H(s) = L{H(t)} and Λ(s) = L{Λ(t)}. Thus, we have

H(s) =
H(0)sβ−1 − Λ(s)

sβ + λ
. (3.22)

Applying an inverse Laplace transform to (3.22), we get that

H(t) ≤ H(0)Mβ,1(−λtβ) − Λ(t) ∗ [tβ−1Mβ,β(−λtβ)],

where ∗ is a convolution operator. On the other hand, Λ(t), tβ−1 and Mβ,β(−λtβ) are non-

negative functions, so we have that

Λ(t) ∗ [tβ−1Mβ,β(−λtβ)] ≥ 0.

Hence, we have that

H(t) ≤ H(0)Mβ,1(−λtβ). (3.23)

Based on Lemma 2.9, we obtain that

Mβ,1(t) =
1

β
et

1
β

−
θ

∑

κ=1

1

tκΓ(1 − βκ)
+ O

(

1

tθ+1

)

, |t| → ∞,

where O
(

1
tθ+1

)

= 0. Thus we have that

lim
t→+∞









1
β
et

1
β
−

θ
∑

κ=1

1
tκΓ(1−βκ) + O

(

1
tθ+1

)

1
β
et

1
β −

θ
∑

κ=1

1
tκΓ(1−βκ)









= 1.

Therefore,

Mβ,1 ∼
1

β
et

1
β

−
θ

∑

κ=1

1

tκΓ(1 − βκ)
, as t → +∞.

Since
θ
∑

κ=1

1
tκΓ(1−βκ) ≥ 0, one has that

Mβ,1 ≤
1

β
et

1
β

, as t → +∞.

Considering the limit function axioms, there exist t0 > 0 such that

Mβ,1 ≤
1

β
et

1
β

, t > t0.

Therefore,

Mβ,1(−λ(t − t0)
β) ≤

1

β
e−[λ(t−t0)

β ]
1
β

, t > t0. (3.24)

By utilizing inequality (3.24), equation (3.23) becomes

H(t) ≤ H(0)

[

1

β
e−[λ(t−t0)

β ]
1
β

]

, t > t0,
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and hence

‖k̃(t) − k(t)‖ + ‖l̃(t) − l(t)‖ ≤ (‖φ̃ − φ‖ + ‖ϕ̃ − ϕ‖)
1

β
e−[λ(t−t0)

β ]
1
β

, t > t0.

Based on Definition 2.12, systems (2.1) realizes asymptotical synchronization with response

system (2.2) under controller (3.1). Hence the proof is now complete. �

The following corollaries are also very interesting, and can be directly obtained from The-

orem 3.4:

Corollary 3.5 Assuming that the conditions (A1)–(A3) hold, then there exist n positive

constants δi (i = 1, 2, . . . , n) and m positive constants γj (j = 1, 2, . . . , m) such that

λ1 = min
1≤i≤n,1≤j≤m

{

Φmin
1 −

mΨmax
2

δi

, Ψmin
1 −

nΦmax
2

γj

}

> max
1≤i≤n,1≤j≤m

{mΨmax
4

δi

,
nΦmax

4

γj

}

= λ2, (3.25)

so the drive system (2.1) without infinite distributed delays realizes asymptotic-synchronization

with response system (2.2) without infinite distributed delays under controller (3.1).

Corollary 3.6 Assuming that the conditions (A1)–(A2) hold, then there exist n pos-

itive constants δi (i = 1, 2, . . . , n) and m positive constants γj (j = 1, 2, . . . , m) such that

the condition of (3.16) holds, so the drive system (2.1) without external disturbances real-

izes asymptotic-synchronization with response system (2.2) without external disturbance under

controller (3.15).

Remark 3.7 This is the first time that O(t−β)-synchronization and asymptotic synchro-

nization criterion for mixed time delayed BAM neural networks with a Caputo-fractional order

have been investigated. In this work, fractional order, mixed time delays, nonlinear perturba-

tions and a matrix element method have been taken into consideration; these results are very

complicated and not easy to calculate. The main innovation of this paper is to extend and to

overcome these complications. Our proposed model is more general and advanced.

Remark 3.8 In view of Theorem 3.1, the O(t−β)-synchronization implies asymptotic

synchronization.

Remark 3.9 When β = 1, FBAMNNs model (2.1) degenerates into an asymptotic syn-

chronization criterion for mixed time delayed BAM neural networks with nonlinear perturba-

tion; these results do not exist in previous works.

Remark 3.10 In Theorems 3.1 and 3.4, the sufficient condition that guarantees the

O(t−β)-synchronization and asymptotic synchronization criteria of mixed time delayed Caputo

fractional order BAM neural networks with nonlinear perturbations are established in the forms

of the matrix element method. These results can be easily evaluated without utilizing a MAT-

LAB LMI control toolbox.

Remark 3.11 By using the results in FBAMNNs [31], infinite distributed time delay

and nonlinear perturbation terms are added to FBAMNNs, and these results are established

by means of the Razumikhin method, a new class of Lyapunov method, a novel discontinuous

controller and an asymptotic expansion of Mittag-Leffler function. Moreover, a few outcomes

in [31] are special cases of our results obtained in Theorem 3.4 when infinite distributed time
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delay and nonlinear perturbation terms are not considered in acquiring system (2.1). Therefore,

our proposed model is more general and advanced than [31].

4 Numerical Simulation

Here, two numerical cases are provided to check the advantages of our synchronization

results from the previous section.

Example 4.1 Consider the class of FBAMNNs expressed by the equations

C
t0

D0.97
t ki(t) = −aiki(t) +

2
∑

j=1

vijhj(lj(t)) +

2
∑

j=1

wijhj(lj(t − τ)) +

2
∑

j=1

cij

∫ t

−∞

Dij(t − ω)

×hj(lj(ω))dω + Ji + ∆1i(t)

C
0 D0.97

t lj(t) = −bjlj(t) +

2
∑

i=1

pjigi(ki(t)) +

2
∑

i=1

qjigi(ki(t − τ)) +

2
∑

i=1

rji

∫ t

−∞

Eji(t − ω)

×gi(ki(ω))dω + Ij + ∆̃1j(t), (4.1)

where

A =





5 0

0 5



 , B =





5.5 0

0 5.5



 , P =





0.5 0.7

0.2 0.3



 , Q =





1.1 0.7

1.1 0.2





R =





1.2 0.9

1.1 0.4



 , V =





1.1 0.4

0.3 0.7



 , W =





0.8 0.3

0.6 0.5



 , C =





0.3 0.3

0.9 1.4



 ,

and where τ = 1, Ij = Ji = 0, Dij(t) = 0.4 sin t and Eji(t) = 0.1 cos t for i, j = 1, 2. Here the

activation functions are chosen as g(x) = h(x) = 0.07 tanx. Next, we assume that ∆1i(t) =

1.3 cos t, ∆2i(t) = 2.5 sinh t, ∆̃1j(t) = 0.9 cos t, ∆̃2j(t) = 1.7 sinh t for i, j = 1, 2. Through

simple computations, we get that Gi = Rj = 1 for i, j = 1, 2. Therefore, Assumptions (A1)–

(A3) hold. Therefore, |∆2i(t) − ∆1i(t)| ≤ 1.2 and |∆̃2j(t) − ∆̃1j(t)| ≤ 0.8. Then, we take

Mi = 1.2 and Nj = 0.8 for i, j = 1, 2. According to controller (3.1), we choose the control

gains as ηi = 15, πi = 2, ̺j = 17 and εj = 2.5 for i, j = 1, 2. By choosing δi = γj = 1, it is easy

to find that Φmin
1 = 20, Φmax

2 = 1.5, Φmax
3 = 3.4, Ψmin

1 = 22.2, Ψmax
2 = 1.2 and Ψmax

3 = 3.9. By

simple computation, it is easy to get that

17.437 = Π
[ ς

ς − τ

]β

+
[ 1 − β + β2

ςβΓ(2 − β)

]

< Υ = 17.6

2 = max
1≤i≤n

{πi} > max
1≤i≤n

{M1i + M2i} = 1.2,

2.5 = max
1≤j≤m

{εj} > max
1≤j≤m

{N1j + N2j} = 0.8.

Therefore, all conditions of Theorem 3.1 hold. Hence system (2.1) realizes O(t−β) syn-

chronization with system (2.2) under controller (3.1). The phase plots of state curves of the

drive-response systems with control inputs are shown in Figure 1. Figure 2 depicts the time re-

sponse of synchronization errors u1(t), u2(t), z1(t) and z2(t) of a system (4.2) that converges to

zero, which confirms the effectiveness of O(t−β) synchronization results with the initial values

k(t) = (0.6,−0.5)T , l(t) = (0.9,−0.5)T and k̃(t) = (0.4, 1.9)T , l̃(t) = (−1.2, 0.5)T . By taking
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discrete delays, distributed delays and external disturbances into account, our main results

rapidly lead to O(t−β)-synchronization for the above given parameters.
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Figure 1 Phase plot of drive and response system with control inputs
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Figure 2 Synchronization error signal of drive and response system with control inputs

Example 4.2 Consider the class of FBAMNNs expressed by the equations

C
t0

D0.99
t ki(t) = −aiki(t) +

3
∑

j=1

vijhj(lj(t)) +
3

∑

j=1

wijhj(lj(t − τ)) +
3

∑

j=1

cij

∫ t

−∞

Dij(t − ω)

×hj(lj(ω))dω + Ji + ∆1i(t)

C
0 D0.99

t lj(t) = −bjlj(t) +

3
∑

i=1

pjigi(ki(t)) +

3
∑

i=1

qjigi(ki(t − τ)) +

3
∑

i=1

rji

∫ t

−∞

Eji(t − ω)

×gi(ki(ω))dω + Ij + ∆̃1j(t), (4.2)

where

A =









5 0 0

0 5 0

0 0 5









, B =









4.5 0 0

0 4.5 0

0 0 4.5









, P =









0.2 −0.7 2.6

−1 0.5 1.5

0.6 −1.1 −0.3









,

Q =









2.6 −1.1 −0.7

1.2 −1.4 1.5

3.1 1.2 1









, R =









0.2 0.1 0.7

−1.2 1.2 3.1

−0.5 0.7 −2.1









, V =









0.4 −0.2 1.1

0.2 −0.7 0.2

−0.5 0.8 0.9









,
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W =









0.4 0.2 2.2

−1.1 1.4 1.7

−1 1 −1.5









, C =









1.2 −0.5 0.7

−1.5 −0.1 0.1

−1.7 0.6 1.2









,

and where τ = 0.5, Ij = Ji = 0, Dij(t) = 0.01 cos t and Eji(t) = 0.07 sin t for i, j = 1, 2, 3. Here

the neuron activation functions are selected as g(x) = h(x) = tanhx. Next, we assume that

∆1i(t) = 0.7 sin t, ∆2i(t) = 1.5 cosh t, ∆̃1j(t) = 0.3 tan t, ∆̃2j(t) = 0.7 tanh t for i, j = 1, 2, 3.

Through the simplest of computations, we have that Gi = 0.2, Rj = 0.1 for i, j = 1, 2, 3.

Therefore, Assumptions (A1)–(A3) hold, from |∆2i(t)−∆1i(t)| = 0.8 and |∆̃2j(t)−∆̃1j(t)| = 0.4.

Then, we take Mi = 0.8 and Nj = 0.4 for i, j = 1, 2, 3. According to controller (3.1), we

choose the control gains as ηi = 5, πi = 2.5, ̺j = 4.5 and εj = 3 for i, j = 1, 2, 3. By selecting

δi = γj = 1, it is easy to find that Φmin
1 = 8, Φmax

2 = 0.44, Φmax
3 = 1.4, Ψmin

1 = 8.5, Ψmax
2 = 0.35

and Ψmax
3 = 0.96. By simple manipulation, it is easy to get that

6.95 = λ1 = min
1≤i≤n,1≤j≤m

{

Φmin
1 −

mΨmax
2

δi

, Ψmin
1 −

nΦmax
2

γj

}

> max
1≤i≤n,1≤j≤m

{mΨmax
3

δi

,
nΦmax

3

γj

}

= λ2 = 4.2.
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Figure 3 Chaotic behavior of drive and response system with control inputs
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Figure 4 Synchronization error signal of drive and response system with control inputs

Therefore, the drive system (2.1) realizes asymptotic synchronization with response system

(2.2) under controller (3.1) based on Theorem 3.4. The chaotic behavior of synchronization error

curves of the drive-response systems with control inputs are shown in Figure 3. Figure 4 de-

scribes the time response of synchronization errors u1(t), u2(t), z1(t) and z2(t) of a system (4.2)

that converges to zero, which confirms the effectiveness of asymptotic synchronization results



1290 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

with the initial values k(t) = (−1.2, 1.5, 2)T , l(t) = (−2,−4, 2)T and k̃(t) = (−4, 2.5,−3)T ,

l̃(t) = (0.5, 1, 1.5)T . By taking discrete delays, distributed delays and external disturbances

into account, our main results rapidly lead to asymptotic synchronization for the above given

parameters.

5 Conclusion

In this paper, several synchronization conditions of FBAMNNs with mixed time delays

and nonlinear non-identical perturbations have been explored. By utilizing the proposed state

feedback controller, fractional order derivative properties and a new kind of fractional order

Lyapunov functional, we have demonstrated an algebraically sufficient condition for O(t−β)

synchronization and the asymptotic synchronization of the considered FBAMNNs model. Two

numerical examples have been given to show the effectiveness of our work.

Compared with O(t−β) synchronization and asymptotic synchronization, the convergence

speed of finite-time synchronization is optimal and predictable. Furthermore, our system has

other advantages, such as better robustness and interference suppression features. Therefore,

it is important to investigate finite-time synchronization of neural networks. Some researchers

proposed finite-time synchronization neural networks with both integer-order and fractional

cases; for example, the authors of [45] investigated the finite-time synchronization of integer-

order time-delayed coupled neural networks via intermittent quantized control. The authors of

[46] studied the finite-time synchronization of integer-order time-delayed fuzzy neural networks

via non-chattering quantized control. The authors of [47] derived the finite-time synchroniza-

tion analysis of fractional-order memristor-based neural networks with different fractional-order

cases 0 < α < 1 and 1 < α < 2. Motivated by the above mentioned references, the proposed

analysis method can be extended to investigate some other dynamical behavior analyses such

as finite-time passivity, finite-time dissipativity, finite-time stability, finite-time-stabilization,

finite-time synchronization, and so on for fractional-order non-identical fuzzy BAM neural net-

works with time delays via intermittent quantized control; we will consider these interesting

issues in future work.
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