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Abstract In this work, the Poisson-Nernst-Planck-Fourier system in three dimensions is

considered. For when the initial data regards a small perturbation around the constant

equilibrium state in a H3
∩ Ḣ−s(0 ≤ s ≤ 1/2) norm, we obtain the time convergence rate of

the global solution by a regularity interpolation trick and an energy method.
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1 Introduction

The Poisson-Nernst-Planck (PNP) system is a very important mathematical model de-

scribing the movement of charges under a concentration gradient and a electrostatic potential

generated by themselves. The system has many applications such as in semiconductor tech-

nology, chemical science and biology (see [4, 8, 9, 18, 19, 29, 31, 34, 38–40] and the references

therein). In the usual PNP model, the temperature is assumed to be homogeneous and inde-

pendent of time. However, the heating effect plays a very important role in many applications.
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For example, in biological science (see [5, 35]), the charge transport is found to be sensitive

to changes in temperature. The ion-channels which are gated by the temperature will adjust

the internal homeostasis and disease-related processes when the temperature changes. This

suggests that it is necessary to take the influence of the temperature into consideration to fully

understand the behavior of the electrothermal motion. In order to model the dynamic process

with temperature, the mechanical equation should be coupled with the thermal equation. By

an energetic variation method, the authors in [17, 25] deduced the following Poisson-Nernst-

Planck-Fourier (PNPF) equations:


























































∂tρi + ∇·(ρiui) = 0, i = ±,

νiρi(ui − u0) = −kB∇(ρiT ) − zieρi∇φ,

−ǫ∆φ =
∑

i=±

ρiezi,

∑

i=0,±

kBCiρi∂tT +
∑

i=0,±

kBCiρiui · ∇T +
∑

i=±

kBρiT∇ · ui

= k∆T + λ0|∇u0|
2 +

∑

i=±

νiρi|ui − u0|
2.

(1.1)

Here u0 is the velocity of the solvent and satisfies










divu0 = 0,

∇P0 +
∑

±

νiρi(u0 − ui) − λ0∆u0 = 0,
(1.2)

while, ρ+ and z+ are the density and the valence of cations, respectively. ρ− and z− are the

density and valence of anions. ν+ and ν− are the diffusion coefficients. e is the elementary

charge. kB is the Boltzmann constant. T is the temperature. ǫ is related to the dielectric

constant and the Debye length. u± denotes the flow map of cations and anions. C± and C0

are the heat capacities of cations and anions of the solvent. k is the thermal conductivity. u0 is

the velocity of the solvent. λ0 is the solvent viscosity. This system is inferred by employing the

given free energy function and entropy production where the conservative forces are deduced

by least action principle and the dissipative forces are inferred by the maximum dissipation

principle. More details on the process of deducing this system can be found in [25].

While T = 1 and u0 is equal to some constant, the PNPF system will be reduced to

the original PNP equations. One can check [23] and its references for a detailed derivation

process of the PNP system. There have been a variety of studies on the well-posedness and

the properties of the classical PNP equations and some modified versions. Gagneux and Millet

[13] studied the well-posedness of the Nernst-Planck-Poisson system in both one dimension and

higher dimensions, and obtained the global existence of the solution by using the Schauder-

Tikhonov fixed-point method; they also established the properties (energy and entropy laws,

influence of an external electrical field, Boltzmann distribution) of the global solution. By

employing Schauder’s fixed-point theorem, Hsieh [15] obtained the global existence of the weak

solution for a modified Poisson-Nernst-Planck system with steric effects in a bounded domain

of R
d(d ≤ 3). Ogawa and Shimizu [32] studied the well-posedness for a normalized Poisson-

Nernst-Planck system in a 2D critical Hardy space H1(R2), then Deng and Li [6] considered the

well-posedness and ill-posedness of this system in a 2D Besov space. One can check [3, 12, 27]
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for the well-posedness theories for some other modified systems. There are lots of works on the

stability and the small parameter (as ǫ tends to zero) problems where the boundary layer may

be involved; see [2, 11, 16, 22] and the references therein. The steady problems were investigated

in [1, 10, 24, 33] and the singularly perturbed problems are discussed in [20, 26]. The authors

in [17] consider the global existence of classic solutions to the PNPF system without a solvent

equation.

The well-posedness theory and the problem of the time decay rate are important topics

in the theory of partial differential equations. The continuity and continuous dependence on

initial data of the unique solution are particularly important for problems arising from physical

applications. In addition to this, the asymptotic behavior of the solution also attracts a lot of

attention. In these cases, the primary mathematical tasks are to characterize the solution of

the partial differential equations and show the explicit rate of convergence. While the initial

data is near the constant equilibrium state in three dimensions, based on the energy method

and the interpolation estimates, we want to investigate the global existence and the algebraic

decay rate of the solution. As mentioned before, the purpose of the PNPF system is that it

models the influence of the temperature on the movement of the charges. In particular, the

system includes the solvent equation, which is much more physically accurate. From the point

view of mathematics, the PNPF system couples the drift-diffusion equations with the nonlinear

elliptic equation (1.2); the PNPF system (1.1) cannot be simply seen as the PNP equation and

a temperature equation. This elliptic equation (1.2) brings difficulty to the proof. Indeed, by

the properties of the elliptic operator, we cannot directly get the L2 estimates of u0. During

the process of obtaining the a priori estimates, we need to avoid the presence of the L2 norm

of u0. We will explain these things clearly after stating our main result.

According to [25], the PNPF system is deduced by energy varaiation methods. The free

energy and entropy dissipation can form a closed inequality. When we try to do the estimates

in L2 space, their L2 estimates cannot be closed, but this system can be closed in the H3

norm. The density ρ0 of the solvent is equal to some positive constant. We propose the initial

condition

(ρ+, ρ−, T )(x, 0) = (ρ+(0), ρ−(0), T (0))(x) → (1/2, 1/2, 1) as |x| → ∞.

Before stating the main result, we introduce some notations. ‖f‖L2 denotes the L2 norm

of the function f . In a similar way, we can define the usual Sobolev norm ‖f‖H3 . The notation

‖(f, g)‖H3 means that ‖f‖H3 + ‖g‖H3 . The norm ‖ · ‖Ḣs with s ≤ 0 is defined by ‖f‖Ḣs :=

‖Λsf‖L2, and Λsf := F−1(|ξ|sf̂), where F−1 is the inverse Fourier transform. We denote

a . b if there exists some constant C̃, independent of a and b, but dependent on the coefficients

in (1.1), such that a ≤ C̃b. In addition, in this work, the viscous coefficients ν± are equal and

the valences z+ and z− are opposite. The main result of this work is as follows:

Theorem 1.1 For some constant c̃0 > 0 small enough, which is only dependent on the

coefficients in equations (1.1), if we have the initial data (ρ+(0), ρ−(0), T (0)) ∈ HN with N ≥ 3,

∇φ(0) ∈ L2 and

‖ρ+(0) + ρ−(0) − 1‖2
H3 + ‖ρ+(0) − ρ−(0)‖2

H3 + ‖T (0)− 1‖2
H3 + ‖∇φ(0)‖2

L2 ≤ c̃0, (1.3)

then system (1.1) admits a unique global classical solution which satisfies the following estimates
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for any t > 0:

‖ρ+(t) + ρ−(t) − 1‖2
HN + ‖ρ+(t) − ρ−(t)‖2

HN + ‖T (t) − 1‖2
HN + ‖∇φ‖2

L2

+

∫ t

0

(

‖∇(ρ+(s) + ρ−(s))‖
2
HN + ‖(ρ+(s) − ρ−(s))‖

2
HN+1 + ‖∇T (s)‖

2
HN + ‖∇φ‖

2
L2

)

ds

≤ ‖ρ+(0) + ρ−(0) − 1‖
2
HN + ‖ρ+(0) − ρ−(0)‖

2
HN + ‖T (0)− 1‖

2
HN + ‖∇φ(0)‖

2
L2 . (1.4)

Moreover, if we have the initial data (ρ+(0), ρ−(0), T (0)) ∈ Ḣ−s with 0 ≤ s ≤ 1/2, the solution

has the following time decay rates for t ≥ 0:
∥

∥∇k(ρ+(t) + ρ−(t) − 1, ρ+(t) − ρ−(t), T (t) − 1)
∥

∥

L2

≤ C0(1 + t)−
k+s
2 , for k = 0, 1, 2, . . . , N − 1, (1.5)

and
∥

∥∇k(ρ+(t) − ρ−(t))
∥

∥

L2 ≤ C0(1 + t)−
k+1+s

2 , for k = 0, 1, 2, . . . , N − 2. (1.6)

In the process of getting a priori estimates of the classical solution, the first step is to

deduce the linear equations (A.2). Except for the Poisson equation, the solvent equation (1.2)

is a nonlinear elliptic equation. This brings new difficulty in terms of the linearization and

deducing the energy estimates. Noticing that the solvent equation is a type of steady Stokes

equation, with the help of the Leray projector (see [37]), we can represent u0 by the density

function and the electric field. As in [14, 41, 42], while the initial data is small enough, one can

establish a priori estimates like

d

dt
Ek(t) + Dk(t) ≤ 0, (1.7)

where Ek(t) and Dk are defined in (5.2). Based on (1.7), we can prove that

‖(ρ+(t) + ρ−(t) − 1, ρ+(t) − ρ−(t), T (t) − 1)‖Ḣ−s ≤ C0. (1.8)

Then, with the help of the interpolation between positive and negative Sobolev norms (see

Lemma A.4), one can infer that

d

dt
Ek + (Ek)1+

1
k+s ≤ 0,

and obtain the time decay rates of the solution.

The nonlinear terms containing u0 in the right hand side of (2.1) cannot be absorbed by

the dissipation Dk, since the dissipation Dk does not contain u0. To obtain (1.7) and (1.8), we

must make full use of the structure of equations (2.1). With the help of (1.2) and (1.1)2 and

the Helmholtz projection, we can bound the L2 estimates of ∇u0 by the electic field, which is

the key point for closing the energy estimates. In the whole space, however, by the properties

of elliptic operator, we cannot get the L2 estimates of u0. This is why s is less than one half.

Remark 1.2 This theorem shows that the constant equilibrium state (1/2, 1/2, 1) is sta-

ble in H3 space. Our result can be generalized to the N ions case and to general constant

equilibrium (see [21] for the existence of the general case).

Remark 1.3 This work mainly studies the well-posedness and the time decay rates of

the global solution around the constant equilibrium in R
3. When the equilibrium state is no

longer constant and with a strictly positive lower bound, one can obtain similar results, but the

computation is very complicated and long. We will study this problem in a forthcoming paper.
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The next sections are devoted to proving Theorem (1.1). The uniform estimates are deduced

by the energy method in Section 2. We will construct the local classical solution and then extend

the local solution to a global one in Section 3. The negative Sobolev estimates will be derived

in Section 4. In addition, by a regularity interpolation trick, we get the time decay rates of the

classical solution in Section 5.

2 The Energy Estimates of the Nonlinear Equations in L
2 Norm

In this section, we will try to deduce the linearized equations and then infer the uniform

estimates of the solution to the nonlinear equations (1.1). Motivated by [16], we can set

m = ρ+ − ρ−, p̃ = ρ+ + ρ− = 1 + p, T = 1 + θ,

and denote

a− = (
kB

2ν+
−

kB

2ν−
), a+ = (

kB

2ν+
+

kB

2ν−
), d0 =

C+ + C−

2
+ C0ρ0,

b− = (
z+e

2ν+
+

z−e

2ν−
), b+ = (

z+e

2ν+
−

z−e

2ν−
), a0 = ez+.

The linearized equations will become






































∂tm − a+∆m +
b+a0

ǫ
m = g1,

∂tp − a+∆p − a+∆θ = g2,

−ǫ∆φ = a0m,

d0∂tθ − a+∆p − (a+ +
k

kB
)∆θ =

7
∑

i=3

gi,

(2.1)

where

g1 = a+∆(mθ) + b+div(p∇φ) − div(mu0),

g2 = a+∆(pθ) + b+div(m∇φ) − div(pu0),

g3 = −
d+p + d−m

d0 + d+p + d−m
(a+∆p + (a+ +

k

kB
)∆θ),

g4 =
d0∇θ

d0 + d+p + d−m

(

a+
2 ∇(p̃T ) + a−

2 ∇(mT ) + b−2 p̃∇φ
)

+
d0∇θ

d0 + d+p + d−m

(

b+
2 m∇φ − (d0 + d+p + d−m)u0

)

,

g5 =
d0

d0 + d+p + d−m
·
(

a+∆(pθ) − a+∇p·∇θ(1 − θ)
)

+
d0

d0 + d+p + d−m

(

a+(θ + pθ)∆θ −
b+a0

ǫ
m2(1 + θ)

)

,

g6 =
d0

d0 + d+p + d−m

[

4(a+∇p·∇θ + b+∇m·∇φ)(1 + θ) + a+|∇θ|2
]

+
d0

d0 + d+p + d−m

[

a+p|∇θ|2 +
zeb+

kB
|∇φ|2(1 + p) + 2b+∇θ ·∇φm

]

,

g7 =
d0λ0

kB(d0 + d+p + d−m)
|∇u0|

2.
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A detailed calculation is included in Appendix A. For convenience, we introduce some

notations, i.e., defining

EN (t) = ‖m‖
2
HN + ‖p‖

2
HN + ‖θ‖

2
HN + ‖∇φ‖

2
L2

and

DN (t) = ‖m‖
2
HN+1 + ‖∇p‖

2
HN + ‖∇θ‖

2
HN + ‖∇φ‖

2
HN .

In order to derive the uniform estimates for the nonlinear system (2.1), we should assume the

following a priori estimates for some sufficiently small c̃0:

E3(t) = ‖(m, p, θ)‖2
H3 + ‖∇φ‖2

L2 ≤ Cc̃0. (2.2)

Since E3(t) is sufficiently small, it is enough to make sure that 1 + p and 1 + θ have the positive

lower and upper bounds.

The main task in this section is to establish the following lemma:

Lemma 2.1 While sup
0≤s≤T

E3(s) ≤ Cc̃0 for some T > 0, there exists some constant cd > 0

independent of T such that

1

2

d

dt

∥

∥

∥
∇l(m, p,

√

d0θ,∇φ)(t)
∥

∥

∥

2

L2
+ cd

(

∥

∥∇l+1p
∥

∥

2

L2 +
∥

∥∇l+1θ
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

H1

)

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1p
∥

∥

2

L2 +
∥

∥∇l+1θ
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

H1 +
∥

∥∇l∇φ
∥

∥

2

L2

)

. (2.3)

Proof We apply the operator ∇l with l ≥ 0 to equations (2.1) and multiply Equations

(2.1)1, (2.1)2 and (2.1)4 by ∇lm, ∇lp and ∇lθ, respectively, then integrate over R
3, to obtain

1

2

d

dt

(

∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇lp
∥

∥

2

L2 + d0

∥

∥∇lθ
∥

∥

2

L2

)

+ a+

∥

∥∇l+1m
∥

∥

2

L2 +
b+a0

ǫ

∥

∥∇lm
∥

∥

2

L2

+ a+

∥

∥∇l+1p
∥

∥

2

L2 +

(

a+ +
k

kB

)

∥

∥∇l+1θ
∥

∥

2

L2 + 2a+

∫

R3

∇l+1p · ∇l+1θdx

=

∫

R3

∇lg1 · ∇
lmdx +

∫

R3

∇lg2 · ∇
lpdx +

7
∑

i=3

∫

R3

∇lgi · ∇
lθdx.

Noticing that

2

∣

∣

∣

∣

∫

R3

∇l+1p∇l+1θdx

∣

∣

∣

∣

≤
a+kB

a+kB + k
2

∥

∥∇l+1p
∥

∥

2

L2 +
a+kB + k

2

a+kB

∥

∥∇l+1θ
∥

∥

2

L2 ,

we get that

a+k

2a+kB + k

∥

∥∇l+1p
∥

∥

2

L2 +
k

2kB

∥

∥∇l+1θ
∥

∥

2

L2

≤ 2a+

∫

R3

∇l+1p∇l+1θdx + a+

∥

∥∇l+1p
∥

∥

2

L2 +

(

a+ +
k

kB

)

∥

∥∇l+1θ
∥

∥

2

L2 .

Let cd be the most minor among a+k
2a+kB+k , k

2kB
, a+ and b+a0

ǫ . It follows that

1

2

d

dt

(

∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇lp
∥

∥

2

L2 + d0

∥

∥∇lθ
∥

∥

2

L2

)

+ cd

(

∥

∥∇lm
∥

∥

2

H1 +
∥

∥∇l+1p
∥

∥

2

L2 +
∥

∥∇l+1θ
∥

∥

2

L2

)

≤

∫

R3

∇lg1 · ∇
lmdx +

∫

R3

∇lg2 · ∇
lpdx +

7
∑

i=3

∫

R3

∇lgi · ∇
lθdx. (2.4)
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Before estimating the nonlinear terms on the right hand side of (2.4), we get the estimates of

u0. By virtue of (1.2) and (1.1)2, we have that

−λ0∆u0 = −∇[P0 + kB(p + θ + pθ)] − a0m∇φ. (2.5)

We can conclude that

‖∇u0‖L2 ≤ C ‖m‖L3 ‖∇φ‖L2 . (2.6)

In fact, we can multiply (2.5) by u0 and employ integration by parts and Young’s inequality to

get

λ0 ‖∇u0‖
2
L2 = a0

∣

∣

∣

∣

∫

R3

m∇φ · u0dx

∣

∣

∣

∣

. ‖m‖L3 ‖∇φ‖L2 ‖u0‖L6

. ‖m‖L3 ‖∇φ‖L2 ‖∇u0‖L2

≤ Cη ‖m‖
2
L3 ‖∇φ‖

2
L2 + η ‖∇u0‖

2
L2 ; (2.7)

the term η ‖∇u0‖
2
L2 can be absorbed by the left side of (2.7), since η is sufficiently small.

By [37], let Ph be the Helmholtz projection from L2(R) to L2
σ(R), where L2

σ(R) is a subspace

of L2(R) with a divergence free vector in the distribution sense. Noticing that u0 is a divergence

free vector, we then get

u0 = Phu0 = −
a0

λ0
(−∆)−1

Ph(m∇φ). (2.8)

In virtue of (2.8), and with the help of the electric field equation, we can get that

∥

∥∇l+1u0

∥

∥

L2 .
∥

∥∇l−1(m · ∇φ)
∥

∥

L2

. ‖m‖L3

∥

∥∇l−1∇φ
∥

∥

L6 + ‖∇φ‖L3

∥

∥∇l−1m
∥

∥

L6

. (‖m‖L3 + ‖∇φ‖L3)
(∥

∥∇lm
∥

∥

L2 +
∥

∥∇l∇φ
∥

∥

L2

)

.
(

‖m‖
1/2
L2 ‖∇m‖

1/2
L2 + ‖∇φ‖

1/2
L2

∥

∥∇2φ
∥

∥

1/2

L2

)

(
∥

∥∇lm
∥

∥

L2 +
∥

∥∇l∇φ
∥

∥

L2

)

.
√

E3(t)
(
∥

∥∇lm
∥

∥

L2 +
∥

∥∇l∇φ
∥

∥

L2

)

. (2.9)

Now, we turn to estimate the nonlinear terms on the right hand side of (2.4). By employing

Hölder’s inequality, the product estimates (A.4) of Lemma A.2, and Gagliardo-Nirenberg’s

inequality (A.3), we can deduce that

a+

∫

R3

∇l∆(mθ) · ∇lmdx = −a+

∫

R3

∇l∇(mθ) · ∇l∇mdx

≤ a+

∥

∥∇l+1(mθ)
∥

∥

L2

∥

∥∇l+1m
∥

∥

L2

≤ a+

(

‖θ‖L∞

∥

∥∇l+1m
∥

∥

L2 + ‖m‖L∞

∥

∥∇l+1θ
∥

∥

L2

) ∥

∥∇l+1m
∥

∥

L2

≤ a+ ‖(m, θ)‖L∞

∥

∥∇l+1(m, θ)
∥

∥

2

L2

≤ a+ ‖∇(m, θ)‖
1
2

L2

∥

∥∇2(m, θ)
∥

∥

1
2

L2

∥

∥∇l+1(m, θ)
∥

∥

2

L2

≤ a+

(

‖∇(m, θ)‖L2 +
∥

∥∇2(m, θ)
∥

∥

L2

)
∥

∥∇l+1(m, θ)
∥

∥

2

L2

≤ a+

√

E3(t)
∥

∥∇l+1(m, θ)
∥

∥

2

L2 . (2.10)
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We derive, by using integration by parts, Hölder’s inequality and the product estimates

(A.4) of Lemma A.2, that

b+

∫

R3

∇ldiv(p∇φ) · ∇lmdx ≤ b+

∥

∥∇l(p∇φ)
∥

∥

L2

∥

∥∇l+1m
∥

∥

L2

≤ b+

(

‖p‖L∞

∥

∥∇l∇φ
∥

∥

L2 + ‖∇φ‖L3

∥

∥∇lp
∥

∥

L6

) ∥

∥∇l+1m
∥

∥

L2

≤ b+ (‖p‖L∞ + ‖∇φ‖L3)
(

∥

∥∇l+1(p, m)
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

≤ b+

√

E3(t)
(

∥

∥∇l+1(p, m)
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

. (2.11)

With the help of (2.6) and (2.9), we can deduce that
∫

R3

∇ldiv(mu0) · ∇
lmdx

≤
∥

∥∇l(mu0)
∥

∥

L2

∥

∥∇l+1m
∥

∥

L2 ≤
(

‖m‖L3

∥

∥∇lu0

∥

∥

L6 + ‖u0‖L∞

∥

∥∇lm
∥

∥

L2

) ∥

∥∇l+1m
∥

∥

L2

≤ (‖u0‖L∞ + ‖m‖L3)
(

∥

∥∇l+1(u0, m)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2

)

≤
(

‖∇u0‖
1
2

L2

∥

∥∇2u0

∥

∥

1
2

L2 + ‖m‖
1
2

L2 ‖∇m‖
1
2

L2

) (

∥

∥∇l+1(u0, m)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2

)

≤
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(u0, m)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2

)

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1m
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

. (2.12)

It follows from (2.10)-(2.12) that
∫

R3

∇lg1 · ∇
lmdx .

√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

.

(2.13)

Since the dissipation DN (t) does not contain ∇lp, the term div(pu0) in g2 cannot be esti-

mated the same in (2.12). We must deal with this term carefully. When l = 0, by the fact that

divu0 = 0 and (2.6), we can infer that
∫

R3

div(pu0) · pdx . ‖p‖L3 ‖u0‖L6 ‖∇p‖L2 . ‖p‖L3 ‖∇u0‖L2 ‖∇p‖L2

. E3(t)
(

‖∇p‖
2
L2 + ‖∇φ‖

2
L2

)

. (2.14)

When l ≥ 1, by integration by parts, Hölder’s inequality, the product estimates (A.4) of Lemma

A.2 and Gagliardo-Nirenberg’s inequality (A.3), we get
∫

R3

∇ldiv(pu0) · ∇
lpdx

.
∥

∥∇l(pu0)
∥

∥

L2

∥

∥∇l+1p
∥

∥

L2 .
(

‖p‖L3

∥

∥∇lu0

∥

∥

L6 + ‖u0‖L∞

∥

∥∇lp
∥

∥

L2

)
∥

∥∇l+1p
∥

∥

L2

. ‖p‖
1
2

L2 ‖∇p‖
1
2

L2

∥

∥∇l+1u0

∥

∥

L2

∥

∥∇l+1p
∥

∥

L2 + ‖∇u0‖
1
2

L2

∥

∥∇2u0

∥

∥

1
2

L2

∥

∥∇lp
∥

∥

L2

∥

∥∇l+1p
∥

∥

L2 . (2.15)

By virtue of (2.6) and (2.9) with l = 1, we can deduce that

‖∇u0‖
1
2

L2

∥

∥∇2u0

∥

∥

1
2

L2

∥

∥∇lp
∥

∥

L2

. ‖m‖
1
2

L3 ‖∇φ‖
1
2

L2 ‖m∇φ‖
1
2

L2

∥

∥∇lp
∥

∥

L2 . ‖∇φ‖L2 ‖m‖
1
2

L3 ‖m‖
1
2

L∞

∥

∥∇lp
∥

∥

L2

. ‖∇φ‖L2

∥

∥∇lm
∥

∥

1
4l+4

L2

∥

∥

∥
∇

1
2l+1 m

∥

∥

∥

2l+1

4l+4

L2

∥

∥∇lm
∥

∥

3
4l+4

L2

∥

∥

∥
∇

3
2l−1 m

∥

∥

∥

2l−1

4l+4

L2

∥

∥∇l+1p
∥

∥

l
l+1

L2 ‖p‖
1

l+1

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

(
∥

∥∇l+1p
∥

∥

L2 +
∥

∥∇lm
∥

∥

L2

)

. (2.16)
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Plugging (2.16) into (2.15), together with (2.14), we get for l ≥ 0 that
∫

R3

∇ldiv(pu0) · ∇
lpdx .

√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1p
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

.

(2.17)

The other two terms in g2 can be estimated by an argument similar to that of (2.10) and (2.11).

Thus, we have
∣

∣

∣

∣

∫

R3

∇lg2 · ∇
lmdx

∣

∣

∣

∣

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(p, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

H1 +
∥

∥∇l∇φ
∥

∥

2

L2

)

.

(2.18)

For gi, i ≥ 3, since the denominator contains d0 + d+p + d−m, the strict positive lower

L∞ bound of d0 + d+p + d−m is needed. Under the assumption of the a priori estimates (2.2),

there exists d̃0 such that

d̃0

2
≤ d0 + d+p + d−m ≤ d̃0. (2.19)

In what follows, we deal with gi (i ≥ 3). When l = 0, it holds that
∣

∣

∣

∣

∫

R3

g3θdx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R3

d+p + d−m

d0 + d+p + d−m
(a+∆p + (a+ +

k

kB
)∆θ)θdx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R3

d+p + d−m

d0 + d+p + d−m
[a+∇p + (a+ +

k

kB
)∇θ]∇θdx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R3

∇(
d+p + d−m

d0 + d+p + d−m
)[a+∇p + (a+ +

k

kB
)∇θ]θdx

∣

∣

∣

∣

. ‖p∇p∇θ‖L1 +
∥

∥|∇θ|2p
∥

∥

L1 + ‖m∇p∇θ‖L1 +
∥

∥m|∇θ|2
∥

∥

L1

+
∥

∥|∇p|2θ
∥

∥

L1 + ‖θ∇p∇θ‖L1 + ‖∇m∇pθ‖L1 + ‖θ∇m∇θ‖L1

.
√

E(t)
(

‖∇p‖
2
L2 + ‖∇θ‖

2
L2 + ‖m‖

2
H1

)

. (2.20)

When l ≥ 1, we can use integration by parts, Hölder’s inequality, the product estimates (A.4)

of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3) to give that
∫

R3

∇l

[

d+p + d−m

d0 + d+p + d−m
(a+∆p)

]

· ∇lθdx

= −

∫

R3

∇l

[

d+p + d−m

d0 + d+p + d−m
(a+∇p)

]

· ∇l+1θdx

−

∫

R3

∇l

[

∇

(

d+p + d−m

d0 + d+p + d−m

)

(a+∇p)

]

· ∇lθdx

.

∥

∥

∥

∥

∇l

[

d+p + d−m

d0 + d+p + d−m
∇p

]∥

∥

∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

+

∥

∥

∥

∥

∇l

[

∇

(

d+p + d−m

d0 + d+p + d−m

)

∇p

]∥

∥

∥

∥

L
6
5

∥

∥∇lθ
∥

∥

L6

.

∥

∥

∥

∥

d+p + d−m

d0 + d+p + d−m

∥

∥

∥

∥

L∞

∥

∥∇l∇p
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

+

∥

∥

∥

∥

∇l

(

d+p + d−m

d0 + d+p + d−m

)∥

∥

∥

∥

L6

‖∇p‖L3

∥

∥∇l+1θ
∥

∥

L2

+

∥

∥

∥

∥

∇l+1

(

d+p + d−m

d0 + d+p + d−m

)∥

∥

∥

∥

L2

‖∇p‖L3

∥

∥∇l+1θ
∥

∥

L2
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+

∥

∥

∥

∥

∇

(

d+p + d−m

d0 + d+p + d−m

)∥

∥

∥

∥

L3

∥

∥∇l+1p
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

. ‖(m, p)‖L∞

∥

∥∇l+1p
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2 + ‖∇p‖L3

∥

∥∇l+1(m, p)
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

+ ‖∇ (m, p)‖L3

∥

∥∇l+1p
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

.
√

E3(t)
∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 . (2.21)

The second term in g3 can be estimated by the same argument as that in (2.21). Thus, for

l ≥ 0, we finally have
∣

∣

∣

∫

R3

∇lg3 · ∇
lθdx

∣

∣

∣
.

√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2

)

. (2.22)

For the term g4, when l = 0, by the facts (2.19) and (2.6), we have that
∫

R3

g4θdx . ‖∇θ‖L2 ‖∇(p̃T ) + ∇(mT ) + p̃∇φ‖L2 ‖θ‖L∞ + ‖∇θ‖L2 ‖m∇φ‖L2 ‖θ‖L∞

+ ‖∇θ‖L2 ‖u0‖L6 ‖θ‖L3

. ‖∇θ‖L2 ‖(m, p̃, T )‖L∞ ‖∇(m, p, θ)‖L2 ‖θ‖L∞ + ‖∇θ‖L2 ‖p̃‖L∞ ‖∇φ‖L2 ‖θ‖L∞

+ ‖∇θ‖L2 ‖m‖L∞ ‖∇φ‖L2 ‖θ‖L∞ + ‖∇θ‖L2 ‖∇u0‖L2 ‖θ‖L3

. ‖∇θ‖L2 ‖∇(m, p, θ)‖L2 ‖θ‖L∞ + ‖∇θ‖L2 ‖∇φ‖L2 ‖θ‖L∞

+ ‖∇θ‖L2 ‖m‖L∞ ‖∇φ‖L2 ‖θ‖L∞ + ‖∇θ‖L2 ‖∇u0‖L2 ‖θ‖L3

. E3(t)
(

‖∇(m, p, θ)‖
2
L2 + ‖∇φ‖

2
L2

)

. (2.23)

For when l ≥ 1, we will estimate each term of g4. By Hölder’s inequality, we get that
∫

R3

∇lg4 · ∇
lθdx .

∥

∥∇lg4

∥

∥

L
6
5

∥

∥∇lθ
∥

∥

L6 .
∥

∥∇lg4

∥

∥

L
6
5

∥

∥∇l+1θ
∥

∥

L2 . (2.24)

Since p̃ = 1 + p and T = 1 + θ, we can easily get that
∥

∥

∥

∥

∇l

[

d0∇θ

d0 + d+p + d−m
a+
2 ∇(p̃T )

]∥

∥

∥

∥

L
6
5

=

∥

∥

∥

∥

∇l

[

d0∇θ

d0 + d+p + d−m
a+
2 ∇(p + θ + pθ)

]
∥

∥

∥

∥

L
6
5

.

∥

∥

∥

∥

∇l

[

d0∇θ

d0 + d+p + d−m
∇p

]∥

∥

∥

∥

L
6
5

+

∥

∥

∥

∥

∇l

[

d0∇θ

d0 + d+p + d−m
∇θ

]∥

∥

∥

∥

L
6
5

+

∥

∥

∥

∥

∇l

[

d0∇θ

d0 + d+p + d−m
∇(pθ)

]
∥

∥

∥

∥

L
6
5

. (2.25)

By the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3), we

have that
∥

∥

∥

∥

∇l

[

d0∇θ

d0 + d+p + d−m
∇p

]∥

∥

∥

∥

L
6
5

.

∥

∥

∥

∥

d0∇θ

d0 + d+p + d−m

∥

∥

∥

∥

L3

∥

∥∇l+1p
∥

∥

L2 + ‖∇p‖L3

∥

∥

∥

∥

∇l

(

d0∇θ

d0 + d+p + d−m

)
∥

∥

∥

∥

L2

. ‖∇θ‖L3

∥

∥∇l+1p
∥

∥

L2 + ‖∇p‖L3

∥

∥

∥

∥

(

d0

d0 + d+p + d−m

)∥

∥

∥

∥

L∞

∥

∥∇l+1θ
∥

∥

L2

+ ‖∇p‖L3 ‖∇θ‖L3

∥

∥

∥

∥

∇l

(

d0

d0 + d+p + d−m

)∥

∥

∥

∥

L6



No.3 L.L. Tong et al:DECAY RATES OF POISSON-NERNST-PLANCK-FOURIER SYSTEM 1091

. ‖∇θ‖L3

∥

∥∇l+1p
∥

∥

L2 + ‖∇p‖L3

∥

∥∇l+1θ
∥

∥

L2 + ‖∇p‖L3 ‖∇θ‖L3

∥

∥∇l+1(m, p)
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(p, θ, m)
∥

∥

L2 (2.26)

and
∥

∥

∥

∥

∇l

[

d0∇θ

d0 + d+p + d−m
∇(pθ)

]∥

∥

∥

∥

L
6
5

.

∥

∥

∥

∥

d0∇θ

d0 + d+p + d−m

∥

∥

∥

∥

L3

∥

∥∇l+1(pθ)
∥

∥

L2 + ‖∇(pθ)‖L3

∥

∥

∥

∥

∇l

(

d0∇θ

d0 + d+p + d−m

)
∥

∥

∥

∥

L2

. ‖∇θ‖L3

∥

∥∇l+1(pθ)
∥

∥

L2 + ‖∇(pθ)‖L3

∥

∥

∥

∥

(

d0

d0 + d+p + d−m

)∥

∥

∥

∥

L∞

∥

∥∇l+1θ
∥

∥

L2

+ ‖∇(pθ)‖L3 ‖∇θ‖L3

∥

∥

∥

∥

∇l

(

d0

d0 + d+p + d−m

)∥

∥

∥

∥

L6

. ‖∇θ‖L3 ‖(p, θ)‖L∞

∥

∥∇l+1(p, θ)
∥

∥

L2 + ‖(p, θ)‖L∞ ‖∇(p, θ)‖L3

∥

∥∇l+1θ
∥

∥

L2

+ ‖(p, θ)‖L∞ ‖∇(p, θ)‖L3 ‖∇θ‖L3

∥

∥∇l+1(m, p)
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(p, θ, m)
∥

∥

L2 . (2.27)

We can estimate the rest of the terms of g4 by arguments similar to those in (2.26)–(2.27) and

(2.15)–(2.17). Thus, we have
∫

R3

∇lg4 · ∇
lθdx .

√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(p, θ, m)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

.

(2.28)

In what follows, we will estimate the term g5. The term g5 will be divided into four terms.

First of all, we want to get the estimates of the first term of g5. By employing integration by

parts and Hölder’s inequality, it follows that
∫

R3

∇l

[

d0

d0 + d+p + d−m
∆(pθ)

]

· ∇lθdx

= −

∫

R3

∇l

[

d0

d0 + d+p + d−m
∇(pθ)

]

· ∇l+1θdx

−

∫

R3

∇l

[

∇

(

d0

d0 + d+p + d−m

)

∇(pθ)

]

· ∇lθdx

.

∥

∥

∥

∥

∇l

[

d0

d0 + d+p + d−m
∇(pθ)

]
∥

∥

∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

+

∥

∥

∥

∥

∇l

[

∇

(

d0

d0 + d+p + d−m

)

∇(pθ)

]∥

∥

∥

∥

L
6
5

∥

∥∇lθ
∥

∥

L6 . (2.29)

From (2.29), for l = 0, it is clear that
∫

R3

[

d0

d0 + d+p + d−m
(a+∆(pθ))

]

θdx

. ‖∇(pθ)‖L2 ‖∇θ‖L2 +

∥

∥

∥

∥

[

∇

(

d0

d0 + d+p + d−m

)

∇(pθ)

]∥

∥

∥

∥

L
6
5

‖θ‖L6

. ‖(p, θ)‖L∞ ‖∇(p, θ)‖L2 ‖∇θ‖L2 + ‖∇(p, m)‖L2 ‖∇(pθ)‖L3 ‖∇θ‖L2

.
√

E3(t)
(

1 +
√

E3(t)
)

‖∇(p, θ, m)‖
2
L2 . (2.30)

For l ≥ 1, by employing the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s
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inequality (A.3), we can deduce that
∥

∥

∥

∥

∇l

[

d0

d0 + d+p + d−m
∇(pθ)

]∥

∥

∥

∥

L2

.

∥

∥

∥

∥

d0

d0 + d+p + d−m

∥

∥

∥

∥

L∞

∥

∥∇l+1(pθ)
∥

∥

L2 +

∥

∥

∥

∥

∇l

(

d0

d0 + d+p + d−m

)
∥

∥

∥

∥

L6

‖∇(pθ)‖L3

. ‖(p, θ)‖L∞

∥

∥∇l+1(p, θ)
∥

∥

L2 + ‖∇(p, θ)‖L3 ‖(p, θ)‖L∞

∥

∥∇l+1(m, p)
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

L2 , (2.31)

and
∥

∥

∥

∥

∇l

[

∇

(

d0

d0 + d+p + d−m

)

· ∇(pθ)

]
∥

∥

∥

∥

L
6
5

. ‖∇(pθ)‖L3

∥

∥

∥

∥

∇l+1

(

d0

d0 + d+p + d−m

)∥

∥

∥

∥

L2

+

∥

∥

∥

∥

∇

(

d0

d0 + d+p + d−m

)∥

∥

∥

∥

L3

∥

∥∇l+1(pθ)
∥

∥

L2

. ‖(p, θ)‖L∞ ‖∇(p, θ)‖L3

∥

∥∇l+1(p, m)
∥

∥

L2 + ‖∇(p, m)‖L3 ‖(p, θ)‖L∞

∥

∥∇l+1(p, θ)
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

L2 . (2.32)

The estimates (2.31)–(2.32), together with (2.30), finally give that
∫

R3

∇l

[

d0

d0 + d+p + d−m
(a+∆(pθ))

]

· ∇lθdx .
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 .

(2.33)

Second, for the second term of g5, with the help of (2.19), it is clear that for l = 0,
∫

R3

[

d0

d0 + d+p + d−m
(a+∇p · ∇θ(1 − θ))

]

θdx . ‖∇p‖L2 ‖∇θ‖L2 ‖θ‖L∞

.
√

E3(t) ‖∇(p, θ)‖
2
L2 . (2.34)

While l ≥ 1, we can use Hölder’s inequality, the product estimates (A.4) of Lemma A.2 and

Gagliardo-Nirenberg’s inequality (A.3) to obtain that
∫

R3

∇l

[

d0

d0 + d+p + d−m
(a+∇p · ∇θ(1 − θ))

]

· ∇lθdx

.

∥

∥

∥

∥

∇l

[

d0

d0 + d+p + d−m
(a+∇p · ∇θ(1 − θ))

]∥

∥

∥

∥

L
6
5

∥

∥∇lθ
∥

∥

L6

.

∥

∥

∥

∥

1 − θ

d0 + d+p + d−m

∥

∥

∥

∥

L∞

∥

∥∇l(∇p · ∇θ)
∥

∥

L
6
5

∥

∥∇l+1θ
∥

∥

L2

+

∥

∥

∥

∥

∇l

(

1 − θ

d0 + d+p + d−m

)∥

∥

∥

∥

L2

‖∇p · ∇θ‖L3

∥

∥∇l+1θ
∥

∥

L2

. ‖∇(p, θ)‖L3

∥

∥∇l+1(p, θ)
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2 + ‖∇p‖L∞ ‖∇θ‖L3

∥

∥∇l(m, p, θ)
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

. ‖∇(p, θ)‖L3

∥

∥∇l+1(p, θ)
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

+ ‖∇p‖L∞

∥

∥

∥
∇

l+1

2l θ
∥

∥

∥

l
l+1

L2

∥

∥∇l+1θ
∥

∥

1
l+1

L2 ‖(m, p, θ)‖
1

l+1

L2

∥

∥∇l+1(m, p, θ)
∥

∥

l
l+1

L2

∥

∥∇l+1θ
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 . (2.35)

From (2.34) and (2.35), it holds for l ≥ 0 that
∫

R3

∇l

[

d0

d0 + d+p + d−m
(a+∇p · ∇θ(1 − θ))

]

· ∇lθdx
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.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 . (2.36)

Next, we estimate the third term of g5. It holds, by employing integration by parts, that
∫

R3

∇l

[

d0

d0 + d+p + d−m
(a+(1 + p)θ∆θ)

]

· ∇lθdx

=

∫

R3

∇l

[

d0a+(1 + p)

d0 + d+p + d−m
(θ∆θ)

]

· ∇lθdx

= −

∫

R3

∇l

[

d0a+(1 + p)

d0 + d+p + d−m
(θ∇θ)

]

· ∇l+1θdx −

∫

R3

∇l

[

d0a+(1 + p)

d0 + d+p + d−m
(∇θ∇θ)

]

· ∇lθdx

−

∫

R3

∇l

[

∇

(

d0a+(1 + p)

d0 + d+p + d−m

)

(∇θ∇θ)

]

· ∇lθdx. (2.37)

For when l = 0, it is clear that
∫

R3

[

d0

d0 + d+p + d−m
(a+(1 + p)θ∆θ)

]

θdx

. ‖θ‖L∞ ‖∇θ‖L2 ‖∇θ‖L2 + ‖θ‖L∞ ‖∇(m, p)‖L∞ ‖∇θ‖L2 ‖∇θ‖L2

.
√

E3(t)
(

1 +
√

E3(t)
)

‖∇θ‖
2
L2 . (2.38)

For l ≥ 1, by using Hölder’s inequality, the product estimates (A.4) of Lemma A.2 and

Gagliardo-Nirenberg’s inequality (A.3), we get that
∫

R3

∇l

[

d0a+(1 + p)

d0 + d+p + d−m
(θ∇θ)

]

· ∇l+1θdx

.

∥

∥

∥

∥

∇l

[

d0a+(1 + p)

d0 + d+p + d−m
(θ∇θ)

]∥

∥

∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

.

(∥

∥

∥

∥

d0a+(1 + p)

d0 + d+p + d−m

∥

∥

∥

∥

L∞

∥

∥∇l(θ∇θ)
∥

∥

L2 +

∥

∥

∥

∥

∇l

(

d0a+(1 + p)

d0 + d+p + d−m

)∥

∥

∥

∥

L6

‖θ∇θ‖L3

)

∥

∥∇l+1θ
∥

∥

L2

.
(
∥

∥∇l(θ∇θ)
∥

∥

L2 +
∥

∥∇l+1(m, p)
∥

∥

L2 ‖θ‖L∞ ‖∇θ‖L3

)
∥

∥∇l+1θ
∥

∥

L2

.
(

‖θ‖L∞

∥

∥∇l+1θ
∥

∥

L2 + ‖∇θ‖L3

∥

∥∇lθ
∥

∥

L6 +
∥

∥∇l+1(m, p)
∥

∥

L2 ‖θ‖L∞ ‖∇θ‖L3

) ∥

∥∇l+1θ
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 . (2.39)

The other two terms in (2.37) can be dealt with by the routine of using Hölder’s inequality and

Gagliardo-Nirenberg’s inequality (A.3). We can employ an argument similar to that of (2.39)

to deduce that
∫

R3

∇l

[

d0a+(1 + p)

d0 + d+p + d−m
(∇θ∇θ)

]

· ∇lθdx

.

∥

∥

∥

∥

∇l

[

d0a+(1 + p)

d0 + d+p + d−m
(∇θ∇θ)

]
∥

∥

∥

∥

L
6
5

∥

∥∇lθ
∥

∥

L6

.

∥

∥

∥

∥

d0a+(1 + p)

d0 + d+p + d−m

∥

∥

∥

∥

L∞

∥

∥∇l(∇θ∇θ)
∥

∥

L
6
5

∥

∥∇l+1θ
∥

∥

L2

+ ‖∇θ∇θ‖L3

∥

∥

∥

∥

∇l

(

d0a+(1 + p)

d0 + d+p + d−m

)∥

∥

∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

. ‖∇θ‖L3

∥

∥∇l+1θ
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2 + ‖∇θ‖L∞ ‖∇θ‖L3

∥

∥∇l(p, m)
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 (2.40)
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and
∫

R3

∇l

[

∇

(

d0a+(1 + p)

d0 + d+p + d−m

)

(∇θ∇θ)

]

· ∇lθdx

.

∥

∥

∥

∥

∇l

[

∇

(

d0a+(1 + p)

d0 + d+p + d−m

)

(∇θ∇θ)

]
∥

∥

∥

∥

L
6
5

∥

∥∇lθ
∥

∥

L6

.

∥

∥

∥

∥

∇

(

d0a+(1 + p)

d0 + d+p + d−m

)∥

∥

∥

∥

L3

∥

∥∇l(∇θ∇θ)
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

+ ‖∇θ∇θ‖L3

∥

∥

∥

∥

∇l+1

(

d0a+(1 + p)

d0 + d+p + d−m

)∥

∥

∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

. ‖∇(p, m)‖L3 ‖∇θ‖L∞

∥

∥∇l+1θ
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

+ ‖∇θ‖L∞ ‖∇θ‖L3

∥

∥∇l+1 (m, p)
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 . (2.41)

Plugging (2.39)-(2.41) into (2.37), together with (2.38), it holds for l ≥ 0 that
∫

R3

∇l

[

d0

d0 + d+p + d−m
(a+(1 + p)θ∆θ)

]

· ∇lθdx

.
√

E3(t)
(

1 +
√

E3(t)
)

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 . (2.42)

Finally, we deal with the last term of g5. For l = 0, we have that
∫

R3

[

d0

d0 + d+p + d−m

b+a0

ǫ
(1 + θ)m2

]

θdx

. ‖m‖L2 ‖m‖L3 ‖θ‖L6 .
√

E3(t)
(

‖∇θ‖
2
L2 + ‖m‖

2
L2

)

.

When l ≥ 1, by employing Hölder’s inequality, the product estimates (A.4) of Lemma A.2 and

Gagliardo-Nirenberg’s inequality (A.3), we have that
∫

R3

∇l

[

d0

d0 + d+p + d−m

b+a0

ǫ
(1 + θ)m2

]

· ∇lθdx

.

∥

∥

∥

∥

∇l

[

d0

d0 + d+p + d−m

b+a0

ǫ
(1 + θ)m2

]
∥

∥

∥

∥

L
6
5

∥

∥∇lθ
∥

∥

L6

.

∥

∥

∥

∥

d0b+a0(1 + θ)

ǫ(d0 + d+p + d−m)

∥

∥

∥

∥

L∞

∥

∥∇l(m2)
∥

∥

L
6
5

∥

∥∇l+1θ
∥

∥

L2

+
∥

∥m2
∥

∥

L3

∥

∥

∥

∥

∇l

(

d0b+a0(1 + θ)

ǫ(d0 + d+p + d−m)

)
∥

∥

∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

. ‖m‖L3

∥

∥∇lm
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2 + ‖m‖L3 ‖m‖L∞

∥

∥∇l(m, p, θ)
∥

∥

L2

∥

∥∇l+1θ
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2

)

.

Thus, for l ≥ 0, we finally get that
∫

R3

∇l

[

d0

d0 + d+p + d−m

b+a0

ǫ
(1 + θ)m2

]

· ∇lθdx

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2

)

. (2.43)

In terms of (2.33), (2.36), (2.42) and (2.43), we get that
∫

R3

∇lg5 · ∇
lθdx .

√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(m, p, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2

)

. (2.44)
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By an argument similar to that for estimates (2.40), we can get that
∫

R3

∇lg6 · ∇
lθdx +

∫

R3

∇lg7 · ∇
lθdx

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(p, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

H1 +
∥

∥∇l∇φ
∥

∥

2

L2

)

. (2.45)

In light of (2.13), (2.18), (2.22), (2.28), (2.44) and (2.45), we obtain that

1

2

d

dt

(

∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇lp
∥

∥

2

L2 + d0

∥

∥∇lθ
∥

∥

2

L2

)

+ cd

(

∥

∥∇lm
∥

∥

2

H1 +
∥

∥∇l+1p
∥

∥

2

L2 +
∥

∥∇l+1θ
∥

∥

2

L2

)

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(p, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

H1 +
∥

∥∇l∇φ
∥

∥

2

L2

)

. (2.46)

Unfortunately, we note that the term ∇l∇φ appearing on the right hand side of (2.46)

can not be absorbed by the left hand side; that is, the energy estimates cannot be closed.

Therefore, we must obtain the estimates of ∇φ, since this is necessary to close the energy

estimates. Plugging (2.1)3 into equation (2.1)1, we get that

∂t∆φ − a+∆(∆φ) +
a0b+

ǫ
∆φ = −

a0

ǫ
g1. (2.47)

We can apply the operator ∇l with l ≥ 0 to equations (2.47) and multiply by ∇lφ to deduce

that

1

2

d

dt

∥

∥∇l∇φ
∥

∥

2

L2 + a+

∥

∥∇lm
∥

∥

2

L2 +
a0b+

ǫ

∥

∥∇l∇φ
∥

∥

2

L2 =
a0

ǫ

∫

R3

∇lg1 · ∇
lφdx. (2.48)

Integration by parts, together with Hölder’s inequality, implies that
∫

R3

∇l∆(mθ) · ∇lφdx .
∥

∥∇l+1(mθ)
∥

∥

L2

∥

∥∇l∇φ
∥

∥

L2

. ‖(m, θ)‖L∞

∥

∥∇l+1(m, θ)
∥

∥

L2

∥

∥∇l∇φ
∥

∥

L2

.
√

E3(t)
(

∥

∥∇l+1(m, θ)
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

. (2.49)

A similar argument to that of (2.49) gives rise to
∫

R3

∇ldiv(p∇φ) · ∇lφdx .
∥

∥∇l(p∇φ)
∥

∥

L2

∥

∥∇l∇φ
∥

∥

L2

. ‖p‖L∞

∥

∥∇l∇φ
∥

∥

2

L2 + ‖∇φ‖L3

∥

∥∇lp
∥

∥

L6

∥

∥∇l∇φ
∥

∥

L2

.
√

E3(t)
(

∥

∥∇l+1p
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

(2.50)

and
∫

R3

∇ldiv(mu0) · ∇
lφdx .

∥

∥∇l(mu0)
∥

∥

L2

∥

∥∇l∇φ
∥

∥

L2

. ‖u0‖L∞

∥

∥∇lm
∥

∥

L2

∥

∥∇l∇φ
∥

∥

L2 + ‖m‖L3

∥

∥∇lu0

∥

∥

L6

∥

∥∇l∇φ
∥

∥

L2

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

. (2.51)

It follows from (2.48)–(2.51) that

1

2

d

dt

∥

∥∇l∇φ
∥

∥

2

L2 + a+

∥

∥∇lm
∥

∥

2

L2 +
a0b+

ǫ

∥

∥∇l∇φ
∥

∥

2

L2

.
√

E3(t)
(

1 +
√

E3(t)
) (

∥

∥∇l+1(p, m, θ)
∥

∥

2

L2 +
∥

∥∇lm
∥

∥

2

L2 +
∥

∥∇l∇φ
∥

∥

2

L2

)

. (2.52)

Summing up (2.52) and (2.46), we can obtain (2.3). �

From Lemma 2.1, we directly obtain the uniform estimates as follows:
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Proposition 2.2 If there is some sufficiently small c̃ > 0 and some T > 0 such that

sup
0≤t≤T

E3(t) ≤ c̃, (2.53)

then it holds for N ≥ 3 that

EN (t) +

∫ t

0

DN (s)ds ≤ CEN (0), (2.54)

which proves (1.4) of Theorem 1.1. By a standard continuity argument, the a priori estimates

(2.2) can be closed when we take N = 3.

3 Approximate Solutions and Global in Time Solution

3.1 Local in time solution

In this section, we will try to construct the local in time solution to (1.1) under the as-

sumptions of Theorem 1.1. We shall sketch the idea of constructing the approximate solutions

by an iteration method. These processes are routine. The approximate system is as follows:


































∂

∂t
mn − a+∆mn +

b+a0

ǫ
mn = gn−1,1

∂

∂t
pn − a+∆pn − a+∆θn = gn−1,2,

d0
∂

∂t
θn − a+∆pn − (a+ +

k

kB
)∆θn =

7
∑

i=3

gn−1,i.

(3.1)

Here gn−1,i (1 ≤ i ≤ 7) are like gi, in which the unknowns p, m, θ, φ, u0 are replaced by pn−1,

mn−1, θn−1, φn−1, u0,n−1. In particular, u0,n−1 = Phu0,n−1 = − ze
λ0

(−∆)−1
Ph(mn−1∇φn−1).

Let p0 = 0, m0 = 0, θ0 = 0, u0,0 = 0, and

pn(0) = ρ+(0) + ρ−(0) − 1, mn(0) = ρ+(0) − ρ−(0), θn(0) = T (0)− 1, ∀n ∈ N
+.

For each n ∈ N
+, system (3.1) is reduced to the linear parabolic one with source terms. By

the parabolic theorem, the existence of a H3 solution to system (3.1) can be established while

the source terms belong to the H2 space. In what follows, we will show how to deduce the H2

bound of the source terms for each n ∈ N
+.

Let

Ėn(t) :=
(

∥

∥∇3mn

∥

∥

2

L2 +
∥

∥∇3pn

∥

∥

2

L2 + d0

∥

∥∇3θn

∥

∥

2

L2

)

(t),

and

Ḋn(t) =
(

∥

∥∇4mn

∥

∥

2

L2 +
∥

∥∇4pn

∥

∥

2

L2 +
∥

∥∇3θn

∥

∥

2

H1

)

(t).

When n = 1, the source terms vanish. In a manner similar to that used to deduce (2.4), we

obtain that

sup
0≤s≤t

Ė1(s) + 2

∫ t

0

Ḋ1(s)ds ≤ Ė1(0).

By arguments similar to (2.13), (2.18), (2.22), (2.28), (2.44) and (2.45), and according to (2.54),

we can deduce that
∫ t

0

7
∑

i=1

∥

∥∇2g1,i(s)
∥

∥

2

L2 ds < ∞.
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By induction, we can infer that, for any n ∈ N
+ and t > 0,

∫ t

0

7
∑

i=1

∥

∥∇2gn,i(s)
∥

∥

2

L2 ds < ∞.

Recalling that there exists the denominator d0 + d+p + d−m in each gn,i(3 ≤ i ≤ 7, we have

that the denominator must be positive with a strict lower bound. This also requires that the

initial data should be small in the H3 sense. With the help of (2.13), (2.18), (2.22), (2.28),

(2.44), (2.45) and (2.54), by employing the Picard iteration method and the induction method,

we can deduce the uniform upper bound of the H3 bound of approximate solutions with respect

to n ∈ N
+ for small enough T > 0; by the Sobolev embedding inequality, their H3 norm can

be obtained. Then for small enough time, we can prove that (pn, mn, θn) is a Cauchy sequence

in the H3 norm and the uniqueness of the local in time solution can be obtained.

3.2 Global solution

By combining the local in time existence and the uniform estimates (2.54), we can get the

global classical solution in the framework of [28].

4 The Estimates in Ḣ
−s Norms

In this section, we are trying to deduce some useful estimates of the solution in the negative

Sobolev norms. These estimates will be very helpful in the process of deducing the time decay

estimates of the solution.

Lemma 4.1 It holds for s ∈ [0, 1/2] that

1

2

d

dt

∥

∥

∥
Λ−s(m, p,

√

d0θ,∇φ)(t)
∥

∥

∥

2

L2
+ cd

(

∥

∥Λ−s(∇p,∇θ,∇φ)
∥

∥

2

L2 +
∥

∥Λ−sm
∥

∥

2

H1

)

.
(

‖m‖
2
H3 + ‖∇p, θ‖

2
H2 + ‖∇φ‖

2
L2

)

∥

∥Λ−s(m, p, θ,∇φ)(t)
∥

∥

2

L2 , (4.1)

and
∥

∥

∥
Λ−s(m, p,

√

d0θ,∇φ)
∥

∥

∥

L2
≤ C0. (4.2)

Proof We apply the operator Λ−s to equations (2.1)1, (2.1)2 and (2.1)4, and multiply by

Λ−sm, Λ−sp and Λ−sθ, respectively, then integrate over R
3, to deduce that

1

2

d

dt

(

∥

∥Λ−sm
∥

∥

2

L2 +
∥

∥Λ−sp
∥

∥

2

L2 + d0

∥

∥Λ−sθ
∥

∥

2

L2

)

+ a+

∥

∥Λ−s∇m
∥

∥

2

L2 +
b+a0

ǫ

∥

∥Λ−sm
∥

∥

2

L2

+ a+

∥

∥Λ−s∇p
∥

∥

2

L2 +

(

a+ +
k

kB

)

∥

∥Λ−s∇θ
∥

∥

2

L2 + 2a+

∫

R3

Λ−s∇p · Λ−s∇θdx

=

∫

R3

Λ−sg1 · Λ
−smdx +

∫

R3

Λ−sg2 · Λ
−spdx +

7
∑

i=3

∫

R3

Λ−sgi · Λ
−sθdx.

Note that

2

∫

R3

Λ−s∇pΛ−s∇θdx + a+

∥

∥Λ−s∇p
∥

∥

2

L2 +

(

a+ +
k

kB

)

∥

∥Λ−s∇θ
∥

∥

2

L2

≥
a+k

2a+kB + k

∥

∥Λ−s∇p
∥

∥

2

L2 +
k

2kB

∥

∥Λ−s∇θ
∥

∥

2

L2 .
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It follows that

1

2

d

dt

(

∥

∥Λ−sm
∥

∥

2

L2 +
∥

∥Λ−sp
∥

∥

2

L2 + d0

∥

∥Λ−sθ
∥

∥

2

L2

)

+ cd

(

∥

∥Λ−sm
∥

∥

2

H1 +
∥

∥Λ−s∇p
∥

∥

2

L2 +
∥

∥Λ−s∇θ
∥

∥

2

L2

)

≤

∫

R3

Λ−sg1 · Λ
−smdx +

∫

R3

Λ−sg2 · Λ
−spdx +

7
∑

i=3

∫

R3

Λ−sgi · Λ
−sθdx

.
∥

∥Λ−sg1

∥

∥

L2

∥

∥Λ−sm
∥

∥

L2 +
∥

∥Λ−sg2

∥

∥

L2

∥

∥Λ−sp
∥

∥

L2 +
7

∑

i=3

∥

∥Λ−sgi

∥

∥

L2

∥

∥Λ−sθ
∥

∥

L2 . (4.3)

Now, we estimate the nonlinear terms on the right-hand side of (4.3). Employing estimates

(A.5) in Lemma A.3 and Gagliardo-Nirenberg’s inequality (A.3), we can get that
∥

∥Λ−s∆(mθ)
∥

∥

L2 .
∥

∥m∇2θ + ∇m∇θ + θ∇2m
∥

∥

L
1

1/2+s/3

. ‖m‖L3/s

∥

∥∇2θ
∥

∥

L2 + ‖∇m‖L3/s ‖∇θ‖L2 + ‖θ‖L3/s

∥

∥∇2m
∥

∥

L2

. ‖∇(m, θ)‖
1/2+s
L2

∥

∥∇2(m, θ)
∥

∥

1/2−s

L2

∥

∥∇2(m, θ)
∥

∥

L2

+
∥

∥∇2m
∥

∥

1/2+s

L2

∥

∥∇3m
∥

∥

1/2−s

L2 ‖∇θ‖L2

. ‖∇(m, θ)‖2
H2 . (4.4)

An argument similar to that of (4.4) gives that
∥

∥Λ−sdiv(p∇φ)
∥

∥

L2 .
∥

∥p∇2φ + ∇p∇φ
∥

∥

L
1

1/2+s/3
. ‖p‖L3/s

∥

∥∇2φ
∥

∥

L2 + ‖∇φ‖L3/s ‖∇p‖L2

. ‖∇p‖
1/2+s
L2

∥

∥∇2p
∥

∥

1/2−s

L2 ‖m‖L2 +
∥

∥∇2φ
∥

∥

1/2+s

L2

∥

∥∇3φ
∥

∥

1/2−s

L2 ‖∇p‖L2

. ‖∇p‖
2
H1 + ‖m‖

2
H1 (4.5)

and
∥

∥

∥

∥

Λ−s

[

d0∇θ

d0 + d+p + d−m
a+
2 ∇(p̃T )

]
∥

∥

∥

∥

L2

.

∥

∥

∥

∥

[

∇θ

d0 + d+p + d−m
a+
2 ∇(p̃T )

]
∥

∥

∥

∥

L
1

1/2+s/3

.

∥

∥

∥

∥

∇θ

d0 + d+p + d−m

∥

∥

∥

∥

L3/s

‖∇(p̃T )‖L2 . ‖∇θ‖L3/s ‖∇(p + θ + pθ)‖L2

. ‖∇θ‖L3/s ‖∇(p + θ)‖L2 + ‖∇θ‖L3/s ‖∇(pθ)‖L2

.
∥

∥∇2θ
∥

∥

1/2+s

L2

∥

∥∇3θ
∥

∥

1/2−s

L2 ‖∇(p, θ)‖L2 + ‖p‖L∞

∥

∥∇2θ
∥

∥

1/2+s

L2

∥

∥∇3θ
∥

∥

1/2−s

L2 ‖∇(p, θ)‖L2

. ‖∇(p, θ)‖
2
H2 . (4.6)

Because divu0 = 0, we can obtain that
∥

∥Λ−sdiv(mu0)
∥

∥

L2 . ‖u0∇m‖
L

1
1/2+s/3

. ‖u0‖L3/s ‖∇m‖L2

. ‖∇u0‖
1/2+s
L2

∥

∥∇2u0

∥

∥

1/2−s

L2 ‖∇m‖L2

. ‖m‖
2
H1 + ‖∇φ‖

2
L2 . (4.7)

The rest of the terms in gi can be estimated in a manner similar to (4.4)–(4.7). Then, we get

that
∥

∥Λ−sgi

∥

∥

L2 . ‖m‖
2
H3 + ‖∇p, θ‖

2
H2 + ‖∇φ‖

2
L2 . (4.8)

By (4.8) and (4.3), we can deduce (4.1).
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We denote E−s(t) to be equivalent to ‖Λ−s(m, p, θ,∇Φ)(t)‖
2
L2 . From (2.54), we can take

N = 3 to get that
∫ t

0

(

‖∇p‖
2
H3 + ‖∇θ‖

2
H3 + ‖∇φ‖

2
L2 + ‖m‖

2
H4

)

ds ≤ C0. (4.9)

With this fact, we can integrate (4.1) in time to obtain that

E−s(t) ≤ E−s(0) + C

∫ t

0

(

‖m‖
2
H3 + ‖∇p, θ‖

2
H2 + ‖∇φ‖

2
L2

)

√

E−s(τ)dτ

≤ C0

(

1 + sup
0≤τ≤t

√

E−s(τ)
)

.

This implies (4.2) for s ∈ [0, 1/2]. �

5 Time Decay Rates of the Global Solution

In this section, we will prove the decay rates. First, we use (A.6) of Lemma A.4 and (4.2)

to obtain, for s ∈ [0, 1/2] and k + s > 0, that

∥

∥∇k(m, p, θ,∇φ)
∥

∥

L2 . ‖(m, p, θ,∇φ)‖
1

k+1+s

Ḣ−s

∥

∥∇k+1(m, p, θ,∇φ)
∥

∥

k+s
k+1+s

L2

≤ C0

∥

∥∇k+1(m, p, θ,∇φ)
∥

∥

k+s
k+1+s

L2 . (5.1)

We take

Ek =
∥

∥∇km
∥

∥

2

L2 +
∥

∥∇kp
∥

∥

2

L2 +
∥

∥∇kθ
∥

∥

2

L2 +
∥

∥∇k∇φ
∥

∥

2

L2 ,

Dk =
∥

∥∇k+1m
∥

∥

2

L2 +
∥

∥∇k+1p
∥

∥

2

L2 +
∥

∥∇k+1θ
∥

∥

2

L2 +
∥

∥∇k∇φ
∥

∥

2

L2 . (5.2)

By (5.1), we obtain that

Dk ≥ C0 (Ek))1+
1

k+s . (5.3)

By (2.3) and (5.3), we deduce that

d

dt
Ek + (Ek)1+

1
k+s ≤ 0.

By solving the inequality above, we obtain that

Ek ≤ C0(1 + t)−(k+s). (5.4)

Then we prove (1.5). With the help of the electric field equation, we can easily get (1.6) from

(1.5). The proof of Theorem 1.1 is completed.

Appendix

In this appendix, we give the main steps for deducing the linearized equations (2.1).

Let

d+ =
C+ + C−

2
, d− =

C+ − C−

2
.

Then

C+ρ+ + C−ρ− + C0ρ0 =
C+ + C−

2
p̃ +

C+ − C−

2
m + C0ρ0 = d+p̃ + d−m + C0ρ0. (A.1)
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Let

a− =

(

kB

2ν+
−

kB

2ν−

)

, a+ =

(

kB

2ν+
+

kB

2ν−

)

, b− =
zea−

kB
, b+ =

zea+

kB
, a0 = 4ze,

a−
2 =

(

C+kB

2ν+
−

C−kB

2ν−

)

, a+
2 =

(

C+kB

2ν+
+

C−kB

2ν−

)

, b−2 =
zea−

2

kB
, b+

2 =
zea+

2

kB
,

and then, by (A.1) and (1.1)2, we have that
∑

i=0,±

Ciρiui = −a+
2 ∇(p̃T )− a−

2 ∇(mT ) − b−2 p̃∇φ − b+
2 m∇φ + (d0 + d+p + d−m)u0.

Let

G =
kB|∇ρ+|

2

ν+ρ+
+

kB |∇ρ−|
2

ν−ρ−
,

and by (1.1)2, we have that
∑

i=±

ρiTdivui = −(a+∆p̃ + a−∆m)T + GT 2 − (a+∇p̃ + a−∇m)T∇T

− T (a+p̃ + a−m)∆T − (b−p̃ + b+m)T∆φ.

It is likely that we can get that

ν+ρ+|u+ − u0|
2 =

k2
B

ν+

|∇ρ+T |2

ρ+
+

2kB

ν+
∇ρ+T∇(kBT + zeφ) + ρ+

|∇(kBT + zeφ)|2

ν+
,

and

ν−ρ−|u− − u0|
2 =

k2
B

ν−

|∇ρ−T |2

ρ−
+

2kB

ν−
∇ρ−T∇(kBT − zeφ) + ρ−

|∇(kBT − zeφ)|2

ν−
,

which imply that

ν+ρ+|u+ − u0|
2 + ν−ρ−|u− − u0|

2

= GkBT 2 + 4kB[(a+∇p̃ + a−∇m)T∇T + (b−∇p̃ + b+∇m)T∇φ]

+ kB|∇T |2(a+p̃ + a−m̃) + ze|∇φ|2(b+p̃ + b−m) + 2kB∇T∇φ(b−p̃ + b+m).

Letting d0 = d+ + C0ρ0, T = 1 + θ, and p̃ = p + 1, the linearized system becomes






























∂

∂t
m − a+∆m − a−∆(p + θ) +

b+a0

ǫ
m = 0,

∂

∂t
p − a+∆(p + θ) − a−∆m +

b−a0

ǫ
m = 0,

d0
∂

∂t
θ − a+∆(p + θ) −

k

kB
∆θ − a−∆m +

b−a0

ǫ
m = 0.

(A.2)

From the solvent equation (1.2), we have that −λ0∆u0 = −[∇(P0+kB p̃T )+a0m∇φ]. By virtue

of the Leray project operator, no linear term can be split from u0. When b− = 0, we can get

the closed L2 estimates for any ǫ.

In what follows, we list some useful inequalities which are frequently used for obtaining the

energy estimates of the solution.

Lemma A.1 (Gagliardo-Nirenberg’s inequality) The parameters satisfy that 0 ≤ k, m ≤ l

and 2 ≤ p ≤ ∞, so we have that

‖∇mf‖Lp .
∥

∥∇kf
∥

∥

1−ϑ

L2

∥

∥∇lf
∥

∥

ϑ

L2 , (A.3)
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where 0 ≤ ϑ ≤ 1 and m satisfies

m + 3
(1

2
−

1

p

)

= k(1 − ϑ) + lϑ.

Notice that if p = ∞, we require that 0 < ϑ < 1.

Proof The detailed proof can be seen in [30], p.125. �

Lemma A.2 (Product estimates) For the integer l ≥ 0, we have that
∥

∥∇l(fg)
∥

∥

Lp . ‖g‖Lp0

∥

∥∇lf
∥

∥

Lp1
+

∥

∥∇lg
∥

∥

Lp2
‖f‖Lp3

. (A.4)

The parameters p, p1, p2 and p3 ∈ [1, +∞] satisfy 1/p = 1/p0 + 1/p1 = 1/p2 + 1/p3.

Proof We can prove this lemma in the same way as Lemma A.1 in [7]. �

Lemma A.3 (Sobolev embeding inequality) If 0 ≤ s < 3/2, it holds that

‖f‖Ḣ−s . ‖f‖Lp , (A.5)

where 1 < p ≤ 2 and 1/2 + s/3 = 1/p.

Proof See [36] p.119, Theorem 1. �

Lemma A.4 Suppose that s, ℓ ≥ 0. Then we have

∥

∥∇ℓf
∥

∥

L2 .
∥

∥∇ℓ+1f
∥

∥

1−ϑ

L2 ‖f‖ϑ
Ḣ−s , where ϑ =

1

ℓ + 1 + s
. (A.6)

Proof One can see Lemma A.4 in [14] for the detailed proof. �
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