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Abstract In this paper, we study the global existence and decay rates of strong solutions to

the three dimensional compressible Phan-Thein-Tanner model. By a refined energy method,

we prove the global existence under the assumption that the H3 norm of the initial data

is small, but that the higher order derivatives can be large. If the initial data belong to

homogeneous Sobolev spaces or homogeneous Besov spaces, we obtain the time decay rates

of the solution and its higher order spatial derivatives. Moreover, we also obtain the usual

Lp
−L2(1 ≤ p ≤ 2) type of the decay rate without requiring that the Lp norm of initial data

is small.
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1 Introduction

The theory of the Phan-Thein-Tanner model has recently gained quite some attention,

and is derived from network theory for polymeric fluid. This type of fluid is described by the
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following set of equations:


























ρt + div(ρu) = 0,

ρ(ut + u · ∇u) − µ(△u+ ∇divu) + ∇p = µ1divτ,

τt + u · ∇τ +Q(τ,∇u) + (a+ btrτ)τ = µ2D(u),

(ρ, u, τ)|t=0 = (ρ0, u0, τ0), (t, x) ∈ R
+ × R

3.

(1.1)

The unknowns ρ, u, τ, p are the density, velocity, stress tensor and scalar pressure of the

fluid, respectively. D(u) is the symmetric part of ∇u; that is,

D(u) =
1

2
(∇u + (∇u)T ).

Q(τ,∇u) is a given bilinear form

Q(τ,∇u) = τΩ(u) − Ω(u)τ + λ(D(u)τ + τD(u)),

where Ω(u) is the skew-symmetric part of ∇u, namely,

Ω(u) =
1

2
(∇u− (∇u)T ).

µ > 0 is the viscosity coefficient and µ1 is the elastic coefficient. a and µ2 are associated with

the Debroah number De = µ2

a
(which indicates the relation between the characteristic flow time

and elastic time [2]). λ ∈ [−1, 1] is a physical parameter; we call the system a co-rotational case

when λ = 0. b ≥ 0 is a constant related to the rate of creation or destruction for the polymeric

network junctions.

To complete system (1.1), the initial data are given by

(ρ, u, τ)|t=0 = (ρ0, u0, τ0), x ∈ R
3, (1.2)

with the far field behavior

(ρ, u, τ)(t, x) = (ρ̄, 0, 0) as |x| → ∞, t ≥ 0.

Let us review some previous works about model (1.1) and related models. If we ignore the

stress tensor, (1.1) reduces to the compressible Navier-Stokes (NS) equations. The convergence

rates of solutions for the compressible Navier-Stokes equations to the steady state have been

investigated extensively since the first global existence of small solutions in H3 was improved

upon by Matsumura and Nishida [21, 22]. When the initial perturbation is (ρ0 − 1, u0) ∈

Lp ∩HN (N ≥ 3) with p ∈ [1, 2], the L2 optimal decay rate of the solution to the NS system is

‖(ρ− 1, u)(t)‖L2 ≤ C(1 + t)−
3
2
( 1

p
− 1

2
).

For the small initial perturbation belonging to H3 only, Matsumura [20] employed the weighted

energy method to show the L2 decay rates. Ponce [27] obtained the optimal Lp convergence

rate. In [29], Schonbek and Wiegner studied the large time behavior of solutions to the Navier-

Stokes equation in Hm(Rn) for all n ≤ 5. In order to establish optimal decay rates for the

higher order spatial derivatives of solutions, for when the initial perturbation is bounded in

the H−s(s ∈ [0, 3
2 )) norm instead of the L1-norm, Guo and Wang [12] used a general energy

method to develop the time convergence rates

‖∇l(ρ− 1, u)(t)‖HN−l ≤ C(1 + t)−
l+s
2



1060 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

for 0 ≤ l ≤ N − 1. In addition, the decay rate of solutions to the NS system was investigated

in [5, 33] (see also the references therein).

If b = 0, the system (PTT) reduces to the famous Oldroyd-B model (see [25]), which has

been studied widely. Most of the results on Oldroyd-B fluids are about the incompressible

model. C. Guillopé and J.C. Saut [10, 11] proved the existence of local strong solutions and the

global existence of one dimensional shear flows. Later, the smallness restriction on the coupling

constant in [10] was removed by Molinet and Talhouk [23]. In [19], F. Lin, C. Liu and P. Zhang

proved local existence and global existence (with small initial data) of classical solutions for

an Oldroyd system without an artificially postulated damping mechanism. Similar results were

obtained in several papers by virtue of different methods; see Z. Lei, C. Liu and Y. Zhou [17],

T. Zhang and D. Fang [38], Y. Zhu [41]. D. Fang and R. Zi [6] proved the global existence of

strong solutions with a class of large data.

On the other hand, there are relatively few results for the compressible model. Lei [16]

proved the local and global existence of classical solutions for a compressible Oldroyd-B system

in a torus with small initial data. He also studied the incompressible limit problem and showed

that the compressible flows with well-prepared initial data converge to incompressible ones when

the Mach number converges to zero. The case of ill-prepared initial data was considered by

Fang and Zi [8] in the whole space R
d, d ≥ 2. Recently, the smallness restriction on a coupling

constant was removed by Zi in [39]. On the other hand, for suitable Sobolev spaces, Fang and Zi

[7] obtained the unique local strong solution with the initial density vanishing from below and a

blow-up criterion for this solution. Zhou, Zhu and Zi [40] proved the existence of a global strong

solution provided that the initial data are close to the constant equilibrium state in the H2-

framework and obtained the convergence rates of the solutions. For the compressible Oldroyd

type model based on the deformation tensor, see the results [14, 18, 28, 37] and references

therein.

In this paper, we focus on the PTT model (b 6= 0). To our knowledge, there are a lot of

numerical results about the PTT model (see, [1, 9, 26]). Recently, [4] proved that the strong

solution in critical Besov spaces exists globally when the initial data are a small perturbation

over and around the equilibrium. [3] proved that the strong solution will blow up in finite

time and proved the global existence of a strong solution with small initial data. However, to

our knowledge, there are few results on the compressible PTT model, especially regarding the

large-time behavior. Compared with the incompressible models, the compressible equations

of the PTT model are more difficult to deal with because of the strong nonlinearities and

interactions among the physical quantities. The main purpose of this paper is to study the

global existence and decay rates of smooth solutions for the compressible PTT model. We

first establish the global solution of the solutions to (1.1)–(1.2) in the whole space R
3 near

the constant equilibrium state under the assumption that the H3 norm of the initial data is

small, but the higher order derivatives can be arbitrarily large. Then we establish the large

time behavior appealing to the work of Strain et al. [32], Guo et al. [12], Sohinger et al. [30],

Wang [36] and Tan et al. [34, 35]. Moreover, we also obtain the usual Lp −L2(1 ≤ p ≤ 2) type

of decay rate without requiring that the Lp norm of the initial data is small.

Throughout the paper, without loss of generality, we set µ = µ1 = µ2 = a = b = ρ̄ = 1.

Before stating our main results, we explain the notations and conventions used throughout.
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∇l with an integer l ≥ 0 stands for the any spatial derivatives of order l. When l < 0 or

l is not a positive integer, ∇l stands for Λl defined by Λsu := F−1(|ξ|sû(ξ)), where û is the

Fourier transform of u and F−1 its inverse. We use Ḣs(R3) (s ∈ R) to denote the homogeneous

Sobolev spaces on R
3 with the norm ‖ · ‖Ḣs defined by ‖f‖Ḣs = ‖Λsf‖L2 = ‖|ξ|sf̂‖L2 , Hs(R3)

to denote the usual Sobolev spaces with the norm ‖ · ‖Hs , and Lp(1 ≤ p ≤ ∞) to denote the

usual Lp(R3) spaces with the norm ‖ ·‖Lp . Finally, we introduce the homogeneous Besov space,

letting ϕ ∈ C∞
0 (R3

ξ) be a cut-off function such that ϕ(ξ) = 1 with |ξ| ≤ 1, and letting ϕ(ξ) ≤ 2

with |ξ| ≤ 2. Let ψ(ξ) = ϕ(ξ)−ϕ(2ξ) and ψj(ξ) = ψ(2−jξ) for j ∈ Z. Then, by the construction
∑

j∈Z

ψj(ξ) = 1, if ξ 6= 0, we set △̇jf = F−1 ∗ f , so that for s ∈ R, we define the homogeneous

Besov spaces Ḃs
p,q(R

N ) with the norm ‖ · ‖Ḃs
p,q

by

‖f‖Ḃs
p,q

(RN ) =



















(

∑

j∈Z

2jsq‖△̇jf‖
q

Lp(RN )

)
1
q

, 1 ≤ p ≤ ∞, 1 ≤ q <∞,

ess sup
j∈Z

2js‖△̇jf‖Lp(RN ), 1 ≤ p ≤ ∞, q = ∞.

We will employ the notation A . B to mean that A ≤ CB for a universal constant C > 0 that

only depends on the parameters coming from the problem. For the sake of concision, we write

‖(A,B)‖X := ‖A‖X + ‖B‖X .

For N ≥ 3, we define the energy functional by

EN (t) :=

N
∑

l=0

‖∇l(̺, u, τ)‖2
L2 ,

and the corresponding dissipation rate by

DN (t) :=

N
∑

l=1

‖∇l̺‖2
L2 +

N
∑

l=0

(‖∇l+1u‖2
L2 + ‖∇lτ‖2

L2).

Now, we state our main result about the global existence and decay properties of a solution

to the system (1.1)–(1.2) in the following theorems:

Theorem 1.1 Letting N ≥ 3, and assuming that (ρ0 − 1, u0, τ0) ∈ HN , there exists a

sufficiently small δ0 > 0 such that if E3(0) ≤ δ0, then the problem (1.1)–(1.2) has a unique

global solution (ρ, u, τ)(t) satisfying

sup
0≤t≤∞

E3(t) +

∫ ∞

0

D3(s)ds ≤ CE3(0). (1.3)

Furthermore, if EN (0) <∞ for any N ≥ 3, then (1.1)–(1.2) admits a unique solution (ρ, u, τ)(t)

satisfying

sup
0≤t≤∞

EN (t) +

∫ ∞

0

DN (s)ds ≤ CEN (0). (1.4)

In addition, if the initial data belong to Negative Sobolev or Besov spaces, based on the

regularity interpolation method and the results in Theorem 1.1, we can derive some further

decay rates of the solution and its higher order spatial derivatives to systems (1.1)–(1.2).

Theorem 1.2 Under all the assumptions in Theorem 1.1, let (ρ, u, τ)(t) be the solution

to the system (1.1)–(1.2) constructed in Theorem 1.1. Suppose that (ρ0 − 1, u0, τ0) ∈ Ḣ−s for
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some s ∈ [0, 3
2 ) or (ρ0 − 1, u0, τ0) ∈ Ḃ−s

2,∞ for some s ∈ (0, 3
2 ]. Then we have

‖(ρ− 1, u, τ)(t)‖Ḣ−s ≤ C0, (1.5)

or

‖(ρ− 1, u, τ)(t)‖Ḃ
−s
2,∞

≤ C0. (1.6)

Moreover, for k ≥ 0, if N ≥ k + 2, it holds that

‖∇k(ρ− 1, u)(t)‖L2 ≤ C0(1 + t)−
k+s
2 . (1.7)

‖∇kτ(t)‖L2 ≤ C0(1 + t)−
k+1+s

2 . (1.8)

Note that the Hardy-Littlewood-Sobolev theorem (cf. Lemma 4.4) implies that for p ∈

(1, 2], Lp ⊂ Ḣ−s with s = 3( 1
p
− 1

2 ) ∈ [0, 3
2 ). This, together with Theorem 1.2, means that

the Lp-L2 type of decay result follows as a corollary. However, the imbedding theorem cannot

cover the case p = 1; to amend this, Sohinger-Strain [30] instead introduced the homogeneous

Besov space Ḃ−s
2,∞, due to the fact that the endpoint imbedding L1 ⊂ Ḃ

− 3
2

2,∞ holds (Lemma 4.5).

At this stage, by Theorem 1.2, we have the following corollary of the usual Lp-L2 type of decay

result:

Corollary 1.3 Under the assumptions of Theorem 1.2, if we replace the Ḣ−s or Ḃ−s
2,∞

assumption by (̺0, u0, τ0) ∈ Lp for some p ∈ [1, 2], then, for any integer k ≥ 0, if N ≥ k + 2,

the following decay result holds:

‖∇k(̺, u)(t)‖L2 ≤ C0(1 + t)−
k+σp

2 , (1.9)

‖∇kτ(t)‖L2 ≤ C0(1 + t)−
k+1+σp

2 . (1.10)

Here σp := 3( 1
p
− 1

2 ).

The rest of our paper is organized as follows: in Section 2, we establish the refined energy

estimates for the solution and derive the negative Sobolev and Besov estimates. Furthermore,

we use this section to prove Theorem 1.1. Finally, we prove Theorem 1.2 in Section 3.

2 The Global Existence of Solution

In this section, we are going to prove our main result. The proof of local well-posedness

for PTT is similar to the Oldroyd-B model (see [7, 13]), so we omit the details here. Theorem

1.1 will be proved by combining the local existence of (̺, u, τ) to (1.1)–(1.2) and some a priori

estimates as well as the communication argument. We first reformulate system (1.1). We set

̺ = ρ− 1. Then the initial value problem (1.1)–(1.2) can be rewritten as














̺t + divu = S1,

ut + γ∇̺− (△u + ∇divu) − divτ = S2,

τt + τ −D(u) = S3,

(2.1)

where the nonlinear terms Si(i = 1, 2, 3) are defined as

S1 = −div(̺u),

S2 = −u · ∇u− f(̺)(△u+ ∇divu) − g(̺)∇̺− f(̺)divτ,

S3 = −u · ∇τ −Q(τ,∇u) − trττ,
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with

(̺, u, τ)(x, 0) = (̺0, u0, τ0) → 0 as |x| → ∞, (2.2)

and here,

γ =
P ′(1)

1
, f(̺) =

̺

̺+ 1
, g(̺) =

P ′(̺+ 1)

̺+ 1
−
P ′(1)

1
. (2.3)

For simplicity, in what follows, we set p′(1) = 1; that is γ = 1.

Then, we will derive the nonlinear energy estimates for system (2.1). Hence, we assume

that, for sufficiently small δ > 0,

‖(̺, u, τ)(t)‖H3 ≤ δ. (2.4)

First of all, by (2.4) and Sobolev’s inequality, we obtain that

1

2
≤ ̺+ 1 ≤ 2.

Hence, we immediately have that

|f(̺)|, |g(̺)| ≤ C|̺|, |f (k)(̺)|, |g(k)(̺)| ≤ C for any k ≥ 1. (2.5)

2.1 Energy estimates

Before establishing the global existence of the solution under the assumption of (2.4), we

derive the basic energy estimates for the solution to systems (2.1)–(2.2). We begin with the

standard energy estimates.

Lemma 2.1 If

sup
0≤t≤T

‖(̺, u, τ)(t)‖H3 ≤ δ, (2.6)

then, for any integers k ≥ 0 and t ≥ 0, we have that

1

2

d

dt
‖(̺, u, τ)‖2

L2 + (‖∇u‖2
L2 + ‖divu‖2

L2 + ‖τ‖2
L2) . δ(‖∇(̺, u)‖2

L2 + ‖τ‖2
L2). (2.7)

Proof For (2.1) on ̺, u, and τ , respectively, we get

1

2

d

dt

∫

R3

(|̺|2 + |u|2 + |τ |2)dx+

∫

R3

(|∇u|2 + |divu|2 + |τ |2)dx

=

∫

R3

{

− (̺divu+ u · ∇̺) · ̺

− [u · ∇u+ f(̺)(△u+ ∇divu) + g(̺)∇̺+ f(̺)divτ ] · u (2.8)

− (u · ∇τ +Q(τ,∇u) + trττ) · τ
}

dx

:=

9
∑

i=1

Mi.

We shall estimate each term on the right hand side of (2.8). First, for the term M1, it is

obvious that

M1 = −

∫

R3

̺divu · ̺dx . ‖̺‖L6‖∇u‖L2‖̺‖L3 . δ(‖∇̺‖2
L2 + ‖∇u‖2

L2). (2.9)

M2 = −

∫

R3

u · ∇̺ · ̺dx . ‖u‖L3‖∇̺‖L2‖̺‖L6 . δ‖∇̺‖2
L2 . (2.10)
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M3 = −

∫

R3

u · ∇u · udx . ‖u‖L3‖∇u‖L2‖u‖L6 . δ‖∇u‖2
L2. (2.11)

Appealing to Hölder’s inequality, Lemma 4.1, Lemma 4.3 and Cauchy’s inequality, we obtain

that

M4 ≈ −

∫

R3

f(̺)∇2u · udx . ‖f(̺)‖L6‖∇2u‖
L

3
2
‖u‖L6

. ‖f(̺)‖L6‖∇u‖
3
4

L2‖∇
3u‖

1
4

L2‖u‖L6 . δ(‖∇̺‖2
L2 + ‖∇u‖2

L2). (2.12)

By the fact of (2.6) and Hölder’s and Cauchy’s inequalities, we obtain that

M5 = −

∫

R3

g(̺)∇̺ · udx . ‖g(̺)‖L3‖∇̺‖L2‖u‖L6 . δ(‖∇̺‖2
L2 + ‖∇u‖2

L2). (2.13)

We integrate by parts and by Lemma 4.3 and Hölder’s inequality to get that

M6 = −

∫

R3

f(̺)divτ · udx . ‖f(̺)‖L6‖divτ‖
L

3
2
‖u‖L6

. ‖f(̺)‖L6‖τ‖
3
4

L2‖∇
2τ‖

1
4

L2‖u‖L6 . δ(‖∇̺‖2
L2 + ‖∇u‖2

L2). (2.14)

M7 = −

∫

R3

u · ∇τ · τdx . ‖u‖L6‖∇τ‖L3‖τ‖L2 . δ(‖∇u‖2
L2 + ‖τ‖2

L2). (2.15)

M8 = −

∫

R3

Q(τ,∇u) · τdx . ‖τ‖L∞‖∇u‖L2‖τ‖L2 . δ(‖∇u‖2
L2 + ‖τ‖2

L2). (2.16)

M9 = −

∫

R3

trττ · τdx . ‖trτ‖L∞‖τ‖2
L2 . δ‖τ‖2

L2 . (2.17)

Summing up the estimates for M1–M9, we deduce (2.7), which yields the desired result.

�

Lemma 2.2 Letting all of the assumptions in Lemma 2.1 be in force, for any k ≥ 0, it

holds that

1

2

d

dt

k+2
∑

l=k+1

‖∇l(̺, u, τ)‖2
L2 +

k+2
∑

l=k+1

(‖∇l+1u‖2
L2 + ‖∇ldivu‖2

L2 + ‖∇lτ‖2
L2)

. δ

k+2
∑

l=k+1

(‖∇l̺‖2
L2 + ‖∇l+1u‖2

L2 + ‖∇lτ‖2
L2). (2.18)

Proof For any integer k ≥ 0, by the ∇l(l = k + 1, k + 2) energy estimate, for (2.1) on

̺, u, and τ , respectively, we get that

1

2

d

dt

∫

R3

(|∇l̺|2 + |∇lu|2 + |∇lτ |2)dx+

∫

R3

(|∇l+1u|2 + |∇ldivu|2 + |∇lτ |2)dx

=

∫

R3

{

−∇l(̺divu+ u · ∇̺) · ∇l̺

−∇l[u · ∇u+ f(̺)(△u+ ∇divu) + g(̺)∇̺+ f(̺)divτ ] · ∇lu

−∇l(u · ∇τ +Q(τ,∇u) + trττ) · ∇lτ
}

dx

:=

9
∑

i=1

Ii. (2.19)
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We shall estimate each term on the right hand side of (2.19). First, for the term I1, if l = 1,

we further obtain that

I1 = −

∫

R3

(∇̺divu) · ∇̺dx−

∫

R3

(̺∇divu) · ∇̺dx

. ‖∇̺‖L3‖∇̺‖L2‖divu‖L6 + ‖̺‖L∞‖∇divu‖L2‖∇̺‖L2

. δ(‖∇̺‖2
L2 + ‖∇2u‖2

L2). (2.20)

If l ≥ 2, then employing the Leibniz formula and by Hölder’s inequality we obtain that

I1 = −

∫

R3

∇l(̺divu) · ∇l̺dx

= −

∫

R3

l
∑

s=0

Cs
l ∇

s̺∇l−sdivu · ∇l̺dx

.

l
∑

s=0

Cs
l ‖∇

s̺∇l−sdivu‖L2‖∇l̺‖L2. (2.21)

If 0 ≤ s ≤ [ l
2 ], by using Lemma 4.1, we estimate the first factor in the above to get that

‖∇s̺∇l−sdivu‖L2 . ‖∇s̺‖L∞‖∇l−s+1u‖L2

. ‖∇α̺‖
1− s

l

L2 ‖∇l̺‖
s
l

L2‖∇u‖
s
l

L2‖∇
l+1u‖

1− s
l

L2

. δ(‖∇l̺‖L2 + ‖∇l+1u‖L2), (2.22)

where α is defined by
s

3
= (

α

3
−

1

2
) × (1 −

s

l
) + (

l

3
−

1

2
) ×

s

l
.

Since 0 ≤ s ≤ [ l
2 ], we have that α = 3l

2(l−s) ∈ [32 , 3].

If [ l
2 ]+ 1 ≤ s ≤ l, by using Lemma 4.1 again, we estimate the first factor in the inequalities

(2.21) as follows:

‖∇s̺∇l−sdivu‖L2 . ‖∇s̺‖L2‖∇l−s+1u‖L∞

. ‖∇̺‖
l−s
l−1

L2 ‖∇l̺‖
1− l−s

l−1

L2 ‖∇αu‖
1− l−s

l−1

L2 ‖∇l+1u‖
l−s
l−1

L2

. δ(‖∇l̺‖L2 + ‖∇l+1u‖L2). (2.23)

Here α is defined by

l − s+ 1

3
= (

α

3
−

1

2
) × (1 −

l − s

l− 1
) + (

l + 1

3
−

1

2
) ×

l − s

l − 1
.

Since [ l
2 ] + 1 ≤ s ≤ l, we have that α = l−1

2(s−1) + 2 ∈ [52 , 3].

Combining (2.20)–(2.23), and by Cauchy’s inequality, we deduce that

I1 . δ(‖∇l̺‖2
L2 + ‖∇l+1u‖2

L2). (2.24)

For the term I2, employing Lemma 4.2, we infer that

I2 = −

∫

R3

(u · ∇∇l̺+ [∇l, u]∇̺) · ∇l̺dx

. ‖∇u‖L∞‖∇l̺‖2
L2 + ‖∇u‖L∞‖∇l̺‖2

L2 + ‖∇lu‖L6‖∇̺‖L3‖∇l̺‖L2

. δ(‖∇l̺‖2
L2 + ‖∇l+1u‖2

L2). (2.25)
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For the term I3,

I3 = −

∫

R3

∇l(u · ∇u) · ∇ludx

= −

∫

R3

l
∑

s=0

Cs
l ∇

su · ∇l−s∇u · ∇ludx

.

l
∑

s=0

‖∇su∇l−s+1u‖
L

6
5
‖∇lu‖L6 . (2.26)

If 0 ≤ s ≤ [ l
2 ], by using Lemma 4.1, we estimate the first factor in the above to get that

‖∇su∇l−s+1u‖
L

6
5

. ‖∇su‖L3‖∇l+1−su‖L2

. ‖∇αu‖
1− s

l+1

L2 ‖∇l+1u‖
s

l+1

L2 ‖u‖
s

l+1

L2 ‖∇l+1u‖
1− s

l+1

L2

. δ‖∇l+1u‖L2, (2.27)

where α is defined by

s

3
−

1

3
= (

α

3
−

1

2
) × (1 −

s

l + 1
) + (

l + 1

3
−

1

2
) ×

s

l + 1
.

Since 0 ≤ s ≤ [ l
2 ], we have that α = l+1

2(l+1−s) ∈ [12 , 1).

If [ l
2 ]+ 1 ≤ s ≤ l, by using Lemma 4.1 again, we estimate the first factor in the inequalities

(2.26) to get that

‖∇su∇l−s+1u‖
L

6
5

. ‖∇su‖L2‖∇l−s+1u‖L3

. ‖u‖
1− s

l+1

L2 ‖∇l+1u‖
s

l+1

L2 ‖∇αu‖
s

l+1

L2 ‖∇l+1u‖
1− s

l+1

L2

. δ‖∇l+1u‖L2, (2.28)

where α is defined by

l − s+ 1

3
−

1

3
= (

α

3
−

1

2
) ×

s

l + 1
+ (

l + 1

3
−

1

2
) × (1 −

s

l + 1
).

Since [ l
2 ] + 1 ≤ s ≤ l, we have that α = l+1

2s
∈ (1

2 , 1].

Combining (2.27)–(2.28) and by using Cauchy’s inequality, we deduce that

I3 . δ‖∇l+1u‖2
L2. (2.29)

Now, we estimate the term I4. If l = 1, we integrate by parts and use Lemma 4.2 and

Hölder’s inequality to get that

I4 ≈

∫

R3

f(̺)∇2u · ∇2udx . ‖f(̺)‖L6‖∇2u‖L3‖∇2u‖L2 . δ(‖∇̺‖2
L2 + ‖∇2u‖2

L2). (2.30)

If l ≥ 2, we integrate by parts and employ the Leibniz formula and Hölder’s inequality to

obtain

I4 ≈

∫

R3

∇l−1[f(̺)∇2u] · ∇l+1udx

=

∫

R3

l−1
∑

s=0

Cs
l−1∇

sf(̺)∇l+1−su · ∇l+1udx

.

l−1
∑

s=0

‖∇sf(̺)∇l+1−su‖L2‖∇l+1u‖L2. (2.31)
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If 0 ≤ s ≤ [ l
2 ], by using Lemma 4.1 and Lemma 4.3 we estimate the first factor in the above

to be

‖∇sf(̺)∇l+1−su‖L2 . ‖∇sf(̺)‖L∞‖∇l+1−su‖L2

. ‖∇α̺‖
l−s
l−1

L2 ‖∇l̺‖
1− l−s

l−1

L2 ‖∇u‖
1− l−s

l−1

L2 ‖∇l̺‖
l−s
l−1

L2

. δ(‖∇l̺‖L2 + ‖∇l+1u‖L2), (2.32)

where α is defined by

s

3
= (

α

3
−

1

2
) ×

l − s

l − 1
+ (

l

3
−

1

2
) × (1 −

l − s

l− 1
).

Since 0 ≤ s ≤ [ l
2 ], we have that α = 1 + 3(l−1)

2(l−s) ∈ (3
4 , 3].

If [ l
2 ] + 1 ≤ s ≤ l − 1, by using Lemma 4.1 and Lemma 4.3 again, we obtain that

‖∇sf(̺)∇l+1−su‖L2 . ‖∇sf(̺)‖L2‖∇l+1−su‖L∞

. ‖∇̺‖
l−s
l−1

L2 ‖∇l̺‖
1− l−s

l−1

L2 ‖∇αu‖
1− l−s

l−1

L2 ‖∇l+1u‖
l−s
l−1

L2

. δ(‖∇l̺‖L2 + ‖∇l+1u‖L2), (2.33)

where α is defined by

l − s+ 1

3
= (

α

3
−

1

2
) × (1 −

l − s

l− 1
) + (

l + 1

3
−

1

2
) ×

l − s

l − 1
.

Since [ l
2 ] + 1 ≤ s ≤ l, we have that α = l−1

2(s−1) + 2 ∈ (5
2 , 3].

Combining (2.30)–(2.33), we deduce that

I4 . δ(‖∇l̺‖2
L2 + ‖∇l+1u‖2

L2). (2.34)

Next, we estimate the term I5. If l = 1, we integrate by parts and use Lemma 4.3 and

Hölder’s inequality to get that

I5 =

∫

R3

(g(̺)∇̺) · ∇2udx . ‖g(̺)‖L6‖∇̺‖L3‖∇2u‖L2 . δ(‖∇̺‖2
L2 + ‖∇2u‖2

L2). (2.35)

If l ≥ 2, we integrate by parts to find that

I5 =

∫

R3

∇l−1[g(̺)∇̺] · ∇l+1udx

=

∫

R3

l−1
∑

s=0

Cs
l−1∇

sg(̺)∇l−1−s∇̺ · ∇l+1udx

.

l−1
∑

s=0

‖∇sg(̺)∇l−s̺‖L2‖∇l+1u‖L2. (2.36)

If 0 ≤ s ≤ [ l
2 ], by using Lemma 4.1 and Lemma 4.3, we estimate the first factor in the

above to get that

‖∇sg(̺)∇l−s̺‖L2 . ‖∇sg(̺)‖L∞‖∇l−s̺‖L2

. ‖∇α̺‖
1− s

l

L2 ‖∇l̺‖
s
l

L2‖̺‖
s
l

L2‖∇
l̺‖

1− s
l

L2

. δ‖∇l̺‖L2, (2.37)

where α is defined by
s

3
= (

α

3
−

1

2
) × (1 −

s

l
) + (

l

3
−

1

2
) ×

s

l
.
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Since 0 ≤ s ≤ [ l
2 ], we have that α = 3l

2(l−s) ∈ [32 , 3].

If [ l
2 ] + 1 ≤ s ≤ l − 1, by using Lemma 4.1 and Lemma 4.3, we get that

‖∇sg(̺)∇l−s̺‖L2‖L2 . ‖∇l+1̺‖L6‖∇k−l−1g(̺)‖L3

. ‖∇̺‖
l−s
l−1

L2 ‖∇l̺‖
1− l−s

l−1

L2 ‖∇α̺‖
1− l−s

l−1

L2 ‖∇l̺‖
l−s
l−1

L2

. δ‖∇l̺‖L2 , (2.38)

where α is defined by

l − s

3
= (

α

3
−

1

2
) × (1 −

l − s

l − 1
) + (

l

3
−

1

2
) ×

l − s

l− 1
.

Since [ l
2 ] + 1 ≤ s ≤ l, we have that α = l−1

2(s−1) + 2 ∈ [52 , 3].

Combining (2.35)–(2.38), we deduce that

I5 . δ(‖∇l̺‖2
L2 + ‖∇l+1u‖2

L2). (2.39)

We now estimate the term I6. If l = 1, by Hölder’s inequality we get that

I6 =

∫

R3

f(̺)divτ · udx ≤ ‖f(̺)‖L∞‖divτ‖L2‖u‖L2 . δ(‖∇τ‖2
L2 + ‖∇2u‖2

L2). (2.40)

If l ≥ 2, we integrate by parts and employ the Leibniz formula and Hölder’s inequality to

obtain that

I6 =

∫

R3

∇l−1[f(̺)divτ ] · ∇l+1udx

=

∫

R3

l−1
∑

s=0

Cs
l−1∇

sf(̺) · ∇l−1−sdivτ · ∇l+1udx

.

l−1
∑

s=0

‖∇sf(̺)∇l−1−sdivτ‖L2‖∇l+1u‖L2. (2.41)

If 0 ≤ l ≤ [ l
2 ], by using Lemma 4.1 and Lemma 4.3, we estimate the first factor in the

above to establish that

‖∇sf(̺)∇l−1−sdivτ‖L2 . ‖∇sf(̺)‖L∞‖∇l−sτ‖L2

. ‖∇α̺‖
1− s

l

L2 ‖∇l+1̺‖
s
l

L2‖τ‖
s
l

L2‖∇
lτ‖

1− s
l

L2

. δ(‖∇l̺‖L2 + ‖∇lτ‖L2), (2.42)

where α is defined by
s

3
= (

α

3
−

1

2
) × (1 −

s

l
) + (

l

3
−

1

2
) ×

s

l
.

Since 0 ≤ s ≤ [ l
2 ], we have that α = 3l

2(l−s) ∈ [32 , 1].

If [ l
2 ] + 1 ≤ s ≤ l − 1, by using Lemma 4.1 and Lemma 4.3 again, we obtain that

‖∇sf(̺)∇l−1−sdivτ‖L2 . ‖∇sf(̺)‖L2‖∇l−sτ‖L∞

. ‖∇̺‖
l−s
l−1

L2 ‖∇l̺‖
1− l−s

l−1

L2 ‖∇ατ‖
1− l−s

l−1

L2 ‖∇lτ‖
l−s
l−1

L2

. δ(‖∇l̺‖L2 + ‖∇lτ‖L2), (2.43)

where α is defined by

l − s

3
= (

α

3
−

1

2
) × (1 −

l − s

l − 1
) + (

l

3
−

1

2
) ×

l − s

l− 1
.
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Since [ l
2 ] + 1 ≤ s ≤ l − 1, we have that α = 1 + l−1

2(s−1) ∈ (3
2 , 2].

Combining (2.41)–(2.43), we deduce that

I6 . δ(‖∇l̺‖2
L2 + ‖∇lτ‖2

L2 + ‖∇l+1u‖2
L2). (2.44)

We now estimate the term I7. Using Lemma 4.2 and Hölder’s inequality, we get that

I7 = −

∫

R3

∇l(u · ∇τ) · ∇lτdx

= −

∫

R3

∇l(u · ∇∇lτ + [∇l, u]∇τ) · ∇lτdx

. ‖∇u‖L∞‖∇lτ‖2
L2 + ‖∇lu‖L6‖∇τ‖L3‖∇lτ‖L2

. δ(‖∇l+1u‖2
L2 + ‖∇lτ‖2

L2). (2.45)

Similarly to I1, we can bound

I8 . δ(‖∇l+1u‖2
L2 + ‖∇lτ‖2

L2). (2.46)

We now estimate the term I9. If l = 1, we further obtain that

I9 = −

∫

R3

∇(trττ) · ∇τdx . ‖∇τ‖L∞‖τ‖2
L2 . δ‖∇τ‖2

L2 . (2.47)

If l ≥ 2, by Hölder’s inequality, we get that

I9 = −

∫

R3

∇l(trττ) · ∇lτdx

=

∫

R3

l
∑

s=0

Cs
l ∇

strτ∇l−sτ · ∇lτdx

.

l
∑

s=0

‖∇strτ∇l−sτ‖L2‖∇lτ‖L2 . (2.48)

If 0 ≤ s ≤ [ l
2 ], by using Lemma 4.1, we estimate the first factor in the above to get that

‖∇strτ∇l−sτ‖L2 . ‖∇strτ‖L∞‖∇l−sτ‖L2

. ‖∇ατ‖
1− s

l

L2 ‖∇lτ‖
s
l

L2‖τ‖
s
l

L2‖∇
lτ‖

1− s
l

L2

. δ‖∇lτ‖L2 , (2.49)

where α is defined by
s

3
= (

α

3
−

1

2
) × (1 −

s

l
) + (

l

3
−

1

2
) ×

s

l
.

Since 0 ≤ s ≤ [ l
2 ], we have that α = 3l

2(l−s) ∈ [32 , 3].

If [ l
2 ] + 1 ≤ s ≤ l, by using Lemma 4.1, we get that

‖∇strτ∇l−sτ‖L2 . ‖∇sτ‖L2‖∇l−sτ‖L∞

. ‖∇τ‖
l−s
l−1

L2 ‖∇lτ‖
1− l−s

l−1

L2 ‖∇ατ‖
1− l−s

l−1

L2 ‖∇lτ‖
l−s
l−1

L2

. δ‖∇lτ‖L2 , (2.50)

where α is defined by

l − s

3
= (

α

3
−

1

2
) × (1 −

l − s

l − 1
) + (

l

3
−

1

2
) ×

l − s

l− 1
.
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Since [ l
2 ] + 1 ≤ s ≤ l, we have that α = l−1

2(s−1) + 1 ∈ [32 , 2).

Combining (2.47)–(2.50), we deduce that

I9 . δ‖∇lτ‖2
L2 . (2.51)

Summing up the estimates for I1–I9, i.e., (2.24), (2.25), (2.29), (2.34), (2.39), (2.44), (2.45),

(2.46) and (2.51), we deduce (2.18), which yields the desired result. �

We now recover the dissipative estimates of ̺ by constructing some interactive energy

functionals in the following lemma:

Lemma 2.3 Let all of the assumptions in Lemma 2.1 be in force. Then, for any k ≥ 0,

it holds that

d

dt

k+1
∑

l=k

∫

R3

∇lu · ∇l+1̺dx+
1

2

k+1
∑

l=k

‖∇l+1̺‖2
L2

≤ Clδ

k+1
∑

l=k

(‖∇l+1̺‖2
L2 + ‖∇l+2u‖2

L2 + ‖∇l+1τ‖2
L2)

+

k+1
∑

l=k

(‖∇l+1u‖2
L2 + 4‖∇l+2u‖2

L2 + 2‖∇l+1τ‖2
L2). (2.52)

Proof Applying ∇l(l = k, k + 1) to (2.1)2, multiplying ∇l+1̺, and integrating by parts,

we get that
∫

R3

∇lut · ∇
l+1̺dx+ ‖∇l+1̺‖2

L2

=

∫

R3

∇l△u · ∇l+1̺dx+

∫

R3

∇l∇divu · ∇l+1̺dx+

∫

R3

∇ldivτ · ∇l+1̺dx

−

∫

R3

∇l(u · ∇u) · ∇l+1̺dx−

∫

R3

∇l(f(̺)△u) · ∇l+1̺dx−

∫

R3

∇l(f(̺)∇divu) · ∇l+1̺dx

−

∫

R3

∇l(g(̺)∇̺) · ∇l+1̺dx−

∫

R3

∇l(f(̺)∇divτ) · ∇l+1̺dx

:=

8
∑

i=1

Ji. (2.53)

For the first term on the left-hand side of (2.53), by (2.1)1 and integrating by parts for both

the t-and x-variables, we may estimate

−

∫

R3

∇lut · ∇
l+1̺dx

= −
d

dt

∫

R3

∇lu · ∇l+1̺dx−

∫

R3

∇ldivu · ∇l̺tdx

= −
d

dt

∫

R3

∇lu · ∇l+1̺dx+ ‖∇ldivu‖2
L2 +

∫

R3

∇ldivu · ∇ldiv(̺u)dx. (2.54)

Thus,

d

dt

∫

R3

∇lu · ∇l+1̺dx+ ‖∇l+1̺‖2
L2

=

8
∑

i=1

Ji + ‖∇ldivu‖2
L2 +

∫

R3

∇ldivu · ∇ldiv(̺u)dx
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:=
8

∑

i=1

Ji + ‖∇ldivu‖2
L2 + J9. (2.55)

Now, we concentrate our attention on estimating the terms J1–J9. First, employing

Cauchy’s inequality, it holds that

J1 + J2 ≤
1

4
‖∇l+1̺‖2

L2 + 4‖∇l+2u‖2
L2. (2.56)

J3 ≤
1

4
‖∇l+1̺‖2

L2 + 2‖∇l+1τ‖2
L2 . (2.57)

Moreover, taking into account (2.27)–(2.28), we are in a position to obtain that

J4 =

∫

R3

div∇l(u · ∇u) · ∇l̺dx . ‖div∇l(u · ∇u)‖
L

6
5
‖∇l̺‖L6

. δ(‖∇l+1̺‖2
L2 + ‖∇l+2u‖2

L2). (2.58)

Similarly to (2.30)–(2.33), using Hölder’s inequality, Lemma 4.1 and Lemma 4.3, the terms

J5, J6 can be estimated as follows:

J5 . ‖
l

∑

s=0

Cl
s∇

sf(̺)∇l−s△u‖L2‖∇l+1̺‖L2 . δ(‖∇l+1̺‖2
L2 + ‖∇l+2u‖2

L2). (2.59)

J6 . ‖

l
∑

s=0

Cl
s∇

sf(̺)∇l−s∇divu‖L2‖∇l+1̺‖L2 . δ(‖∇l+1̺‖2
L2 + ‖∇l+2u‖2

L2). (2.60)

Furthermore, taking into account (2.35)–(2.38), applying Hölder’s inequality, Lemma 4.1

and Lemma 4.3, we obtain that

J7 . ‖

l
∑

s=0

Cl
s∇

sg(̺)∇l−s∇̺‖L2‖∇l+1̺‖L2 . δ‖∇l+1̺‖2
L2. (2.61)

Similarly to the estimates of (2.42)–(2.43), we further obtain that

J8 . ‖

l
∑

s=0

Cl
s∇

sf(̺)∇l−sdivτ‖L2‖∇l+1̺‖L2 . δ(‖∇l+1̺‖2
L2 + ‖∇l+1τ‖2

L2). (2.62)

Finally, similarly to I9, by integration by parts and Lemma 4.1, we get that

J9 =

∫

R3

∇ldiv(̺u) · ∇ldivudx . δ(‖∇l+1̺‖2
L2 + ‖∇l+1u‖2

L2). (2.63)

Putting these estimates into (2.55), and summing up with l = k, k + 1, we finally obtain

that

d

dt

k+1
∑

l=k

∫

R3

∇lu · ∇l+1̺dx+
1

2

k+1
∑

l=k

‖∇l+1̺‖2
L2

≤ Clδ

k+1
∑

l=k

(‖∇l+1̺‖2
L2 + ‖∇l+2u‖2

L2 + ‖∇l+1τ‖2
L2)

+
k+1
∑

l=k

(‖∇l+1u‖2
L2 + 4‖∇l+2u‖2

L2 + 2‖∇l+1τ‖2
L2).

Thus, we have completed the proof of Lemma 2.2. �
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2.2 Negative Sobolev estimates

In this subsection, we will derive the evolution of the negative Sobolev norms and Besov

norms of the solution. In order to estimate the nonlinear terms, we need to restrict ourselves

to the fact that s ∈ (0, 3
2 ]. First, for the homogeneous Sobolev space, we will establish the

following lemma:

Lemma 2.4 For s ∈ (0, 1
2 ], we have that

1

2

d

dt
‖(̺, u, τ)‖2

Ḣ−s + 2‖∇u‖2
Ḣ−s + ‖τ‖2

Ḣ−s

. ‖∇(̺, u)‖2
H1‖̺‖Ḣ−s + (‖∇(̺, u)‖2

H1 + ‖∇τ‖2
L2)‖u‖Ḣ−s + (‖∇u‖2

H1 + ‖τ‖2
H2 )‖τ‖Ḣ−s ,

(2.64)

and for s ∈ (1
2 ,

3
2 ), we have that

1

2

d

dt
‖(̺, u, τ)‖2

Ḣ−s + 2‖∇u‖2
Ḣ−s + ‖τ‖2

Ḣ−s

. ‖(̺, u, τ)‖
s− 1

2

L2 ‖∇(̺, u, τ)‖
3
2
−s

L2 ‖(∇̺,∇u,∇2u, τ)‖L2‖(̺, u, τ)‖Ḣ−s . (2.65)

Proof Applying Λ−s to (2.1), and multiplying the resulting identities by Λ−s̺, Λ−su and

Λ−sτ , respectively, summing up them and then integrating over R
3 by parts, we get that

1

2

d

dt

∫

R3

(|Λ−s̺|2 + |Λ−su|2 + |Λ−sτ |2)dx+

∫

R3

(|∇Λ−su|2 + |divΛ−su|2 + |Λ−sτ |2)dx

=

∫

R3

Λ−s(−̺divu− u · ∇̺) · Λ−s̺

− Λ−s[u · ∇u+ f(̺)(△u+ ∇divu) + g(̺)∇̺+ f(̺)divτ ] · Λ−su

− Λ−s[u · ∇τ +Q(τ,∇u) + trττ ] · Λ−sτdx,

:=

9
∑

i=1

Ki. (2.66)

If s ∈ (0, 1
2 ], then 1

2 + s
3 < 1 and 3

s
≥ 6. Then, using Lemma 4.4, together with Hölder’s

and Young’s inequalities, we obtain that

K1 = −

∫

R3

Λ−s(̺divu) · Λ−s̺dx . ‖̺divu‖Ḣ−s‖̺‖Ḣ−s

. ‖̺divu‖
L

1
1
2
+ s

3

‖̺‖Ḣ−s . ‖̺‖
L

3
s
‖∇u‖L2‖̺‖Ḣ−s

. ‖∇̺‖
s+ 1

2

L2 ‖∇2̺‖
1
2
−s

L2 ‖∇u‖L2‖̺‖Ḣ−s

. (‖∇̺‖2
L2 + ‖∇2̺‖2

L2 + ‖∇u‖2
L2)‖̺‖Ḣ−s . (2.67)

Similarly, we can bound the terms K2–K5 by

K2 = −

∫

R3

Λ−s(u · ∇̺) · Λ−s̺dx . (‖∇u‖2
L2 + ‖∇2u‖2

L2 + ‖∇̺‖2
L2)‖̺‖Ḣ−s . (2.68)

K3 = −

∫

R3

Λ−s(u · ∇u) · Λ−sudx . (‖∇u‖2
L2 + ‖∇2u‖2

L2)‖u‖Ḣ−s . (2.69)

K4 = −

∫

R3

Λ−s(f(̺)(△u + ▽divu)) · Λ−s̺dx

. (‖∇̺‖2
L2 + ‖∇2̺‖2

L2 + ‖∇2u‖2
L2)‖u‖Ḣ−s . (2.70)
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K5 = −

∫

R3

Λ−s(g(̺)∇̺) · Λ−sudx . (‖∇̺‖2
L2 + ‖∇2̺‖2

L2)‖u‖Ḣ−s . (2.71)

K6 = −

∫

R3

Λ−s(f(̺)divτ) · Λ−sudx . (‖∇̺‖2
L2 + ‖∇2̺‖2

L2 + ‖∇τ‖2
L2)‖u‖Ḣ−s . (2.72)

K7 = −

∫

R3

Λ−s(u · ∇τ) · Λ−sτdx . (‖∇u‖2
L2 + ‖∇2u‖2

L2 + ‖∇τ‖2
L2)‖τ‖Ḣ−s . (2.73)

K8 = −

∫

R3

Λ−s(Q(τ,∇u)) · Λ−sτdx . (‖∇τ‖2
L2 + ‖∇2τ‖2

L2 + ‖∇u‖2
L2)‖τ‖Ḣ−s . (2.74)

K9 = −

∫

R3

Λ−s(trττ) · Λ−sτdx . (‖∇τ‖2
L2 + ‖∇2τ‖2

L2 + ‖τ‖2
L2)‖τ‖Ḣ−s . (2.75)

Hence, plugging the estimates (2.67)–(2.75) into (2.66), we deduce (2.64).

Now if s ∈ (1
2 ,

3
2 ), we shall estimate the right-hand side of (2.66) in a different way. Since

s ∈ (1
2 ,

3
2 ), we have that 1

2 + s
3 < 1 and 2 < 3

s
< 6. Then, by Lemmas 4.5 and 4.1, we obtain

that

K1 = −

∫

R3

Λ−s(̺divu) · Λ−s̺dx . ‖Λ−s(̺divu)‖L2‖̺‖Ḣ−s

. ‖̺divu‖
L

1
1
2
+ s

3

‖Λ−s̺‖L2 . ‖̺‖
L

3
s
‖∇u‖L2‖̺‖Ḣ−s

. ‖̺‖
s− 1

2

L2 ‖∇̺‖
3
2
−s

L2 ‖∇u‖L2‖̺‖Ḣ−s . (2.76)

Similarly, we can bound the remaining terms by

K2 = −

∫

R3

Λ−s(u · ∇̺) · Λ−s̺dx . ‖u‖
s− 1

2

L2 ‖∇u‖
3
2
−s

L2 ‖∇̺‖L2‖̺‖Ḣ−s . (2.77)

K3 = −

∫

R3

Λ−s(u · ∇u) · Λ−sudx . ‖u‖
s− 1

2

L2 ‖∇u‖
3
2
−s

L2 ‖∇u‖L2‖u‖Ḣ−s . (2.78)

K4 = −

∫

R3

Λ−s(f(̺)(△u+ ∇divu)) · Λ−sudx . ‖̺‖
s− 1

2

L2 ‖∇̺‖
3
2
−s

L2 ‖∇2u‖L2‖u‖Ḣ−s . (2.79)

K5 = −

∫

R3

Λ−s(g(̺)∇̺) · Λ−sudx . ‖̺‖
s− 1

2

L2 ‖∇̺‖
3
2
−s

L2 ‖∇̺‖L2‖u‖Ḣ−s . (2.80)

K6 = −

∫

R3

Λ−s(f(̺)divτ) · Λ−sudx . ‖̺‖
s− 1

2

L2 ‖∇̺‖
3
2
−s

L2 ‖∇τ‖L2‖u‖Ḣ−s . (2.81)

K7 = −

∫

R3

Λ−s(u · ∇τ) · Λ−sτdx . ‖u‖
s− 1

2

L2 ‖∇u‖
3
2
−s

L2 ‖∇τ‖L2‖τ‖Ḣ−s . (2.82)

K8 = −

∫

R3

Λ−s(Q(τ,∇u)) · Λ−sτdx . ‖τ‖
s− 1

2

L2 ‖∇τ‖
3
2
−s

L2 ‖∇u‖L2‖τ‖Ḣ−s . (2.83)

K9 = −

∫

R3

Λ−s(trττ) · Λ−sτdx . ‖τ‖
s− 1

2

L2 ‖∇τ‖
3
2
−s

L2 ‖τ‖L2‖τ‖Ḣ−s . (2.84)

Hence, plugging estimates (2.76)–(2.84) into (2.66), we deduce (2.65). �

2.3 Negative Besov estimates

We replace the homogeneous Sobolev space by the homogeneous Besov space. Now, we will

derive the evolution of the negative Besov norms of the solution (̺, u, τ) to (2.1)–(2.2). More

precisely, we have

Lemma 2.5 Let all of the assumptions in Lemma 2.1 hold. Then, for s ∈ (0, 1
2 ], we have

that
1

2

d

dt
‖(̺, u, τ)‖2

Ḃ
−s
2,∞

+ 2‖∇u‖2
Ḃ

−s
2,∞

+ ‖τ‖2
Ḃ

−s
2,∞

) . ‖∇(̺, u, τ)‖2
H1‖(̺, u, τ)‖Ḃ

−s
2,∞

, (2.85)
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and for s ∈ (1
2 ,

3
2 ], we have that

1

2

d

dt
‖(̺, u, τ)‖2

Ḃ
−s
2,∞

+ 2‖∇u‖2
Ḃ

−s
2,∞

+ ‖τ‖2
Ḃ

−s
2,∞

)

. ‖(̺, u, τ)‖
s− 1

2

L2 ‖∇(̺, u, τ)‖
3
2
−s

L2 ‖(∇̺,∇u,∇2u, τ)‖L2‖(̺, u, τ)‖Ḃ
−s
2,∞

. (2.86)

Proof Applying the △̇j energy estimate of (2.1) with a multiplication of 2−2sj and then

taking the supremum over j ∈ Z, we infer that

1

2

d

dt
‖(̺, u, τ)‖2

Ḃ
−s
2,∞

+ 2‖∇u‖2
Ḃ

−s
2,∞

+ ‖τ‖2
Ḃ

−s
2,∞

)

. − sup
j∈Z

2−2sj

∫

R3

△̇j [divu+ div(̺u)] · △̇j̺dx

− sup
j∈Z

2−2sj

∫

R3

△̇j [∇̺+ u · ∇u+ f(̺)(△u+ ∇divu) + g(̺)∇̺+ f(̺)divτ ] · △̇judx

− sup
j∈Z

2−2sj

∫

R3

△̇j [u · ∇τ +Q(τ,∇u) + trττ ] · △̇judx

. ‖div(̺u)‖Ḃ
−s
2,∞

‖̺‖Ḃ
−s
2,∞

+ ‖u · ∇u+ f(̺)(△u+ ∇divu) + g(̺)∇̺

+ f(̺)divτ‖Ḃ
−s
2,∞

‖u‖Ḃ
−s
2,∞

+ ‖u · ∇τ +Q(τ,∇u) + trττ‖Ḃ
−s
2,∞

‖u‖Ḃ
−s
2,∞

. (2.87)

According to Lemma 4.5 and (2.87), the remaining proof of Lemma 2.5 is exactly the same

with the proof of Lemma 2.4, except that we allow that s = 3
2 and replace Lemma 4.4 with

Lemma 4.5, and the Ḣ−s norm by the Ḃ−s
2,∞ norm. �

Next, we will combine all the energy estimates that we have derived in order to prove

Theorem 1.1; the key point here is that we only assume that the H3 norm of initial data is

small.

Proof We first close the energy estimates at the H3-level by assuming that
√

E3(t) ≤ δ

is sufficiently small. From Lemma 2.2, taking k = 0, 1 in (2.18) and summing up, we deduce

that, for any t ∈ [0, T ],

1

2

d

dt

3
∑

l=1

‖∇l(̺, u, τ)‖2
L2 +

3
∑

l=1

(‖∇l+1u‖2
L2 + ‖∇ldivu‖2

L2 + ‖∇lτ‖2
L2)

. δ

3
∑

l=1

(‖∇l̺‖2
L2 + ‖∇l+1u‖2

L2 + ‖∇lτ‖2
L2). (2.88)

From this, together with Lemma 2.1, we deduce that, for any t ∈ [0, T ],

1

2

d

dt

3
∑

l=0

‖∇l(̺, u, τ)‖2
L2 +

3
∑

l=0

(‖∇l+1u‖2
L2 + ‖∇ldivu‖2

L2 + ‖∇lτ‖2
L2)

. δ

3
∑

l=1

‖∇l̺‖2
L2 + δ

3
∑

l=0

(‖∇l+1u‖2
L2 + ‖∇lτ‖2

L2). (2.89)

In addition, taking the k = 0, 1 in (2.52) of Lemma 2.3 and summing up, we obtain that

d

dt

2
∑

l=0

∫

R3

∇lu · ∇l+1̺dx+
1

2

2
∑

l=0

‖∇l+1̺‖2
L2

≤ Clδ

2
∑

l=0

(‖∇l+1̺‖2
L2 + ‖∇l+2u‖2

L2 + ‖∇l+1τ‖2
L2)
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+
2

∑

l=0

(‖∇l+1u‖2
L2 + 4‖∇l+2u‖2

L2 + 2‖∇l+1τ‖2
L2). (2.90)

Taking into account the smallness of δ, by a linear combination of (2.89) and (2.90), we

deduce that there exists an instant energy functional Ẽ3(t) equivalent to E3(t) such that

Ẽ3(t) +

∫ t

0

D3(s)ds ≤ CẼ3(0), ∀t ∈ [0, T ]. (2.91)

By a standard continuity argument, we then close the a priori estimates if we assume, at the

initial time, that Ẽ3(0) ≤ δ0 is sufficiently small. This concludes the unique global small Ẽ3

solution.

From the global existence of the Ẽ3 solution, we shall deduce the global existence of the ẼN

solution. For N ≥ 3, t ∈ [0,∞], applying Lemma 2.2 and taking k = 0, 1, . . . , N − 2, we infer

that

1

2

d

dt

N
∑

l=1

‖∇l(̺, u, τ)‖2
L2 +

N
∑

l=1

(‖∇l+1u‖2
L2 + ‖∇ldivu‖2

L2 + ‖∇lτ‖2
L2)

. δ

N
∑

l=1

(‖∇l̺‖2
L2 + ‖∇l+1u‖2

L2 + ‖∇lτ‖2
L2). (2.92)

From this, together with Lemma 2.1, we deduce that

1

2

d

dt

N
∑

l=0

‖∇l(̺, u, τ)‖2
L2 +

N
∑

l=0

(‖∇l+1u‖2
L2 + ‖∇ldivu‖2

L2 + ‖∇lτ‖2
L2)

. δ

N
∑

l=1

‖∇l̺‖2
L2 + δ

N
∑

l=0

(‖∇l+1u‖2
L2 + ‖∇lτ‖2

L2). (2.93)

Furthermore, by Lemma 2.3, and taking k = 0, 1, . . . , N − 2, we have that

d

dt

N−1
∑

l=0

∫

R3

∇lu · ∇l+1̺dx+
1

2

N−1
∑

l=0

‖∇l+1̺‖2
L2

≤ Clδ

N−1
∑

l=0

(‖∇l+1̺‖2
L2 + ‖∇l+2u‖2

L2 + ‖∇l+1τ‖2
L2)

+

N−1
∑

l=0

(‖∇l+1u‖2
L2 + 4‖∇l+2u‖2

L2 + 2‖∇l+1τ‖2
L2). (2.94)

By a linear combination of (2.93) and (2.94), we infer that there exists an instant energy

functional ẼN(t) taht is equivalent to EN(t) such that

d

dt
ẼN (t) + λ̄DN (t) ≤ 0 (2.95)

for some λ̄ ∈ (0, 1). This implies (1.4). Thus, we have completed the proof of Theorem 1.1. �

3 Convergence Rate of the Solution

Having in hand the conclusion of Theorem 1.1, Lemma 2.4 and Lemma 2.5, we now proceed

to prove the various time decay rates of the unique global solution to (2.1)–(2.2).
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Proof of Theorem 1.2 In what follows, for convenience of presentation, we define a

family of energy functionals and the corresponding dissipation rates as

Ek+2
k :=

k+2
∑

l=k

‖∇l(̺, u, τ)‖2
L2 , (3.1)

and

Dk+2
k (t) :=

k+2
∑

l=k+1

‖∇l̺‖2
L2 +

k+2
∑

l=k

(‖∇l+1u‖2
L2 + ‖∇lτ‖2

L2). (3.2)

Taking into accounts Lemmas 2.1–2.3, we have that, for k − 0, 1, . . . , N − 2,

1

2

d

dt

k+2
∑

l=k

‖∇l(̺, u, τ)‖2
L2 +

k+2
∑

l=k

(‖∇l+1u‖2
L2 + ‖∇ldivu‖2

L2 + ‖∇lτ‖2
L2)

. δ

k+2
∑

l=k+1

‖∇l̺‖2
L2 + δ

k+2
∑

l=k

(‖∇l+1u‖2
L2 + ‖∇lτ‖2

L2), (3.3)

and

d

dt

k+1
∑

l=k

∫

R3

∇lu · ∇l+1̺dx+
1

2

k+1
∑

l=k

‖∇l+1̺‖2
L2

≤ Cδ

k+1
∑

l=k

(‖∇l+1̺‖2
L2 + ‖∇l+2u‖2

L2 + ‖∇l+1τ‖2
L2)

+

k+1
∑

l=k

(‖∇l+1u‖2
L2 + 4‖∇l+2u‖2

L2 + 2‖∇l+1τ‖2
L2). (3.4)

By a linear combination of (3.3) and (3.4), since δ is small, we deduce that there exists an

instant energy functional Ẽk+2
k that is equivalent to Ek+2

k such that

d

dt
Ẽk+2

k (t) + Dk+2
k (t) ≤ 0. (3.5)

We note that Dk+2
k is weaker than Ẽk+2

k , which prevents the exponential decay of the solution.

We need to bound the missing terms in the energy; that is, bound ‖∇l(̺, u)‖2
L2 in terms of

Dk+2
k . From this, we can then derive the time decay rate from (3.5). To this end, we need the

Sobolev interpolation between the negative and positive Sobolev norms. We assume for the

moment that we have proved (1.5) and (1.6). Using Lemma 4.6 for s > 0 and k + s ≥ 0, we

have that

‖∇k(̺, u)‖L2 ≤ C‖(̺, u)‖
1

k+s+1

Ḣ−s
‖∇k+1(̺, u)‖

k+s
k+s+1

L2 ≤ C‖∇k+1(̺, u)‖
k+s

k+s+1

L2 . (3.6)

Similarly, applying Lemma 4.7, for s > 0 and k + s ≥ 0, we have that

‖∇k(̺, u)‖L2 ≤ C‖(̺, u)‖
1

k+s+1

Ḃ
−s
2,∞

‖∇k+1(̺, u)‖
k+s

k+s+1

L2 ≤ C‖∇k+1(̺, u)‖
k+s

k+s+1

L2 . (3.7)

As a consequence, from (3.6)–(3.7), it follows that

d

dt
Ek+2

k (t) + (Ek+2
k )1+α(t) ≤ 0, (3.8)

where α = 1
k+s

, k = 0, 1, . . . , N − 2. Solving this inequality directly, we are in a position to

obtain that

Ek+2
k (t) ≤ ((Ek+2

k (0))−α + αt)−
1
α = C0(1 + t)−(k+s).
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This proves the decay (1.7). Regarding (1.8), applying ∇k to (2.1)3 and multiplying the resulting

identity by ∇kτ , then integrating over R
3, we have that

1

2

d

dt

∫

R3

|∇kτ |2dx+

∫

R3

|∇kτ |2dx = −

∫

R3

∇k(u · ∇τ +Q(τ,∇u) + trττ) · ∇kτdx

:=

3
∑

i=1

Pi. (3.9)

For the term P1, similarly as to I7, using (1.7), we deduce that

P1 . δ(‖∇k+1u‖2
L2 + ‖∇kτ‖2

L2) . δ‖∇kτ‖2
L2 + (1 + t)−(k+1+s). (3.10)

Similarly as for P1, the term P2 can be estimated as

P2 . δ(‖∇k+1u‖2
L2 + ‖∇kτ‖2

L2) . δ‖∇kτ‖2
L2 + (1 + t)−(k+1+s). (3.11)

For the term P3, similarly as to I9, we deduce that

P3 . δ‖∇kτ‖2
L2 . (3.12)

Combining (3.10)–(3.12), we deduce from (3.9) that

d

dt
‖∇kτ‖2

L2 + ‖∇kτ‖2
L2 ≤ C(1 + t)−(k+1+s).

This, together with Gronwall’s inequality, implies (1.8).

Finally, we turn back to the proof of (1.5) and (1.6). First, we propose to prove (1.5) by

Lemma 2.4. However, we are not able to prove it for all s ∈ [0, 3
2 ] at this moment, so we must

distinguish the argument by the value of s. First, this is trivial for the case s = 0, then, for

s ∈ (0, 1
2 ], integrating (2.64) in time, and by (1.3), we obtain that

‖(̺, u, τ)‖2
Ḣ−s . ‖(̺0, u0, τ0)‖

2
Ḣ−s +

∫ t

0

D3(υ)‖(̺, u, τ)‖Ḣ−sdυ

≤ C(1 + sup
0≤υ≤t

‖(̺, u, τ)‖Ḣ−s). (3.13)

This, together with Cauchy’s inequality, implies (1.5) for s ∈ (0, 1
2 ], and thus verifies (1.7) for

s ∈ (0, 1
2 ]. Next, let s ∈ (1

2 , 1), though note that the arguments for the case s ∈ (0, 1
2 ] cannot

be applied to this case. However, observe that we have (̺0, u0, τ0) ∈ Ḣ− 1
2 , due to the fact

that Ḣ−s ∩ L2 ∈ Ḣ−q for any q ∈ [0, s]. At this stage, from (1.7), it holds that for k ≥ 0 and

N ≥ k + 2,

‖∇k(ρ− 1, u, τ)(t)‖L2 ≤ C0(1 + t)−
k+ 1

2
2 . (3.14)

Thus, integrating (2.65) in time for s ∈ (1
2 , 1) and applying (3.14) yields that

‖(̺, u, τ)‖2
Ḣ−s . ‖(̺0, u0, τ0)‖

2
Ḣ−s +

∫ t

0

√

D3(υ)‖(̺, u, τ)(υ)‖
s− 1

2

L2

× ‖∇(̺, u, τ)(υ)‖
3
2
−s

L2 ‖(̺, u, τ)(υ)‖Ḣ−sdυ

≤ C(1 + sup
0≤υ≤t

‖(̺, u, τ)‖Ḣ−s

∫ t

0

(1 + υ)−2(1− s
2
)dυ)

≤ C(1 + sup
0≤υ≤t

‖(̺, u, τ)‖Ḣ−s). (3.15)
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In the last inequality, we used the fact that s ∈ (1
2 , 1), so the time integral is finite. By Cauchy’s

inequality, this implies (1.5) for s ∈ (1
2 , 1). From this, we also verify (1.7) for s ∈ (1

2 , 1). Finally,

letting s ∈ [1, 3
2 ), we choose s0 such that s − 1

2 < s0 < 1. Then (̺0, u0, τ0) ∈ Ḣ−s0 , and from

(1.7), it holds that

‖∇k(ρ− 1, u, τ)(t)‖L2 ≤ C0(1 + t)−
k+s0

2 (3.16)

for k ≥ 0 and N ≥ k + 2. Therefore, similarly to (3.15), using (3.16) and (2.65) for s ∈ (1, 3
2 ),

we conclude that

‖(̺, u, τ)‖2
Ḣ−s ≤ C(1 + sup

0≤υ≤t

‖(̺, u, τ)‖Ḣ−s

∫ t

0

(1 + υ)−(s0+ 3
2
−s)dυ)

≤ C(1 + sup
0≤υ≤t

‖(̺, u, τ)‖Ḣ−s). (3.17)

Here, we have taken into account the fact that s − s0 <
1
2 , so the time integral in (3.17) is

finite. This implies (3.14) for s ∈ (1, 3
2 ), and thus we have proved (1.7) for s ∈ (1, 3

2 ). The rest

of the proof is exactly same as above; we only need to replace Lemma 4.6 and Lemma 2.4 by

Lemma 4.7 and Lemma 2.5, respectively. Then we can deduce (1.6) for s ∈ (0, 3
2 ]. For the sake

of brevity, we omit the details here. Thus, we have completed the proof of Theorem 1.2. �

4 Appendix: Analysis Tools

In this subsection we collect some auxiliary results. First, we will extensively use the

Sobolev interpolation of the Gagliardo-Nirenberg inequality.

Lemma 4.1 ([24]) Letting 0 ≤ m,α ≤ l, we have that

‖∇αf‖Lp . ‖∇mf‖1−θ
Lq ‖∇lf‖θ

Lr , (4.1)

where 0 ≤ θ ≤ 1 and α satisfies that

α

3
−

1

p
= (

m

3
−

1

q
)(1 − θ) + (

l

3
−

1

r
)θ.

Here, when p = ∞, we require that 0 < θ < 1.

We recall the following commutator estimate:

Lemma 4.2 ([15]) Letting m ≥ 1 be an integer and defining the commutator

[∇m, f ]g = ∇m(fg) − f∇mg,

we have that

‖[∇m, f ]g‖Lp . ‖∇f‖Lp1‖∇m−1g‖Lp2 + ‖∇mf‖Lp3‖g‖Lp4 , (4.2)

and for m ≥ 0, that

‖∇m(fg)‖Lp . ‖f‖Lp1‖∇mg‖Lp2 + ‖∇mf‖Lp3‖g‖Lp4 , (4.3)

where p, p2, p3 ∈ (1,∞) and 1
p

= 1
p1

+ 1
p2

= 1
p3

+ 1
p4
.

We now recall the following elementary but useful inequality:

Lemma 4.3 ([36]) Assume that ‖̺‖L∞ ≤ 1 and p > 1. Let g(̺) be a smooth function of

̺ with bounded derivatives of any order. Then, for any integer m ≥ 1, we have that

‖∇mg(̺)‖Lp . ‖∇m̺‖Lp . (4.4)
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If s ∈ [0, 3
2 ), the Hardy-Littlewood-Sobolev theorem implies the following Lp type inequal-

ity:

Lemma 4.4 ([31]) Let 0 ≤ s < 3
2 , 1 < p ≤ 2, 1

2 + s
3 = 1

p
. Then

‖f‖Ḣ−s . ‖f‖Lp. (4.5)

In addition, for s ∈ (0, 3
2 ], we will use the following result:

Lemma 4.5 ([12]) Let 0 < s ≤ 3
2 , 1 ≤ p < 2, 1

2 + s
3 = 1

p
. Then,

‖f‖Ḃ
−s
2,∞

. ‖f‖Lp. (4.6)

We will employ the following special Sobolev interpolation:

Lemma 4.6 ([37]) Letting s ≥ 0 and l ≥ 0, we have that

‖∇lf‖L2 ≤ ‖∇l+1f‖1−θ
L2 ‖f‖θ

Ḣ−s , where θ =
1

l + 1 + s
. (4.7)

Lemma 4.7 ([30]) Letting s ≥ 0 and l ≥ 0, we have that

‖∇lf‖L2 ≤ ‖∇l+1f‖1−θ
L2 ‖f‖θ

Ḃ
−s
2,∞

, where θ =
1

l+ 1 + s
. (4.8)

References

[1] Bautista O, Sánchez S, Arcos J C, Méndez F. Lubrication theory for electro-osmotic flow in a slit mi-

crochannel with the Phan-Thien and Tanner model. J Fluid Mech, 2013, 722: 496–532

[2] Bird R B, Armstrong R C, Hassager O. Dynamics of Polymeric Liquids. Volume 1. New York: Wiley, 1977

[3] Chen Y H, Luo W, Yao Z A. Blow up and global existence for the periodic Phan-Thein-Tanner model. J

Differential Equations, 2019, 267: 6758–6782

[4] Chen Y H, Luo W, Zhai X P. Global well-posedness for the Phan-Thein-Tanner model in critical Besov

spaceswithout damping. J Math Phys, 2019, 60: 061503

[5] Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rate for compressible Navier-Stokes equations

with potential force. Math Models Methods Appl Sci, 2007, 17: 737–758

[6] Fang D Y, Zi R Z. Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J Math

Anal, 2016, 48: 1054–1084

[7] Fang D Y, Zi R Z. Strong solutions of 3D compressible Oldroyd-B fluids. Math Methods Appl Sci, 2013,

36: 1423–1439

[8] Fang D Y, Zi R Z. Incompressible limit of Oldroyd-B fluids in the whole space. J Differential Equations,

2014, 256: 2559–2602

[9] Garduño I E, Tamaddon-Jahromi H R, Walters K, Webster M F. The interpretation of a long-standing

rheological flow problem using computational rheology and a PTT constitutive model. J Non-Newton Fluid

Mech, 2016, 233: 27–36
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