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Abstract A greedy algorithm used for the recovery of sparse signals, multiple orthogonal

least squares (MOLS) have recently attracted quite a big of attention. In this paper, we

consider the number of iterations required for the MOLS algorithm for recovery of a K-

sparse signal x ∈ R
n. We show that MOLS provides stable reconstruction of all K-sparse

signals x from y = Ax + w in ⌈ 6K

M
⌉ iterations when the matrix A satisfies the restricted

isometry property (RIP) with isometry constant δ7K ≤ 0.094. Compared with the existing

results, our sufficient condition is not related to the sparsity level K.
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1 Introduction

The orthogonal least squares (OLS) algorithm [1–11] is a classical greedy algorithm for

recovering K-sparse signal x ∈ R
n from

y = Ax + w, (1.1)

where x has at most K nonzero entries (i.e., ‖x‖0 ≤ K), A ∈ R
m×n(m ≪ n) and w is a noise

vector. OLS identifies the support of the underlying sparse signal by adding one index to the

list at a time, and estimates the sparse coefficients over the enlarged support. Specifically, it

adds to the estimated support an index which leads to the maximum reduction of the residual

power in each iteration. The vestige of the active list is then eliminated from y, yielding a

residual update for the next iteration. See [9] for a mathematical description of OLS.

In [6] and [9], we observe that the OLS algorithm has a better convergence property,

while it is computationally more expensive than OMP (orthogonal matching pursuit) (see [12–

17]). The OLS algorithm has attracted much attention over the course of last several years.
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Recently, many efforts have also been made to study an extension of OLS, referred to as multiple

orthogonal least squares (MOLS) (see [6, 7]). Compared to OLS, MOLS selects M indices at

a time (see Table 1), which reduces the computational complexity and greatly improves the

computational speed. An important challenge is to characterize the exact recovery conditions

of MOLS using the properties of measurement matrices such as the restricted isometry property

(RIP). The definition of RIP is as follows:

Definition 1.1 ([18]) A measurement matrix A satisfies the RIP of order K if there

exists a constant δ ∈ (0, 1) such that

(1 − δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 (1.2)

holds for all K-sparse vectors x. The minimum δ satisfying (1.2) is defined as the restricted

isometry constant (RIC) constant δK .

Table 1 The MOLS algorithm

Input: A, y, sparsity level K, residual tolerant ǫ, and selection parameter M ≤ K

Initialization: r0 = y, k = 0, and T 0 = ∅
while k < m

M
and ‖rk‖2 > ǫ do

k = k + 1

Identify Sk = arg min
S:|S|=M

∑

i∈S

‖P⊥
T k−1∪{i}y‖2

2

Enlarge T k = T k−1 ∪ {Sk}
Estimate xk = arg min

supp(u)⊆T k

‖y − Au‖2

Update rk = y − Axk

end while

Output: the estimated support T̂ = argmin
Λ:|Λ|=K

‖xk − xk
Λ‖2 and signal x̂ satisfying

x̂ = arg min
supp(u)⊆T̂

‖y − Au‖2

At present, most studies indicate that MOLS recovers K-sparse signals in at most K iter-

ations. For example, in [6], it was shown that MOLS recovers K-sparse signals in at most K

iterations under

δMK <
1

√

K
M

+ 2
. (1.3)

In [7], the condition was improved to

δMK+1 <
1

√

K
M

+ 2
. (1.4)

Recently, Kim and Shim [8] presented a near-optimal restricted isometry condition (RIC)

of MOLS as follows:

δLK−L+2 <
1

√

K
M

+ 2 − 1
M

. (1.5)
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One can conclude from (1.3)–(1.5) that exact recovery with MOLS can be ensured when RIC

is inversely proportional to
√

K.

In this paper, we go further, and study the performance analysis of the MOLS algorithm.

More specifically, as is shown in Corollary 2.3, MOLS achieves stable recovery of the K-sparse

signal x from y = Ax + w in ⌈ 6K
M

⌉ iterations with

δ7K ≤ 0.094. (1.6)

It is important to stress the novel aspects of our contribution. The works [18, 19] claimed

that a random matrix A ∈ R
m×n with entries drawn i.i.d. from Gaussian distribution N (0, 1

m
)

obeys the RIP with δK ≤ ǫ with overwhelming probability if

m = O
(

K log n
K

ǫ2

)

. (1.7)

The number of required measurements is m = O(K2 log n
K

). On the other hand, our condition

(1.6) requires that m = O(K log n
K

); this is obviously smaller than the previous results, in

particular for large K.

The rest of this paper is organized as follows: in Section 2, we present some observations

and our main results. In Section 3, we provide some technical lemmas that are useful for our

analysis and prove Theorem 2.2. Finally, we summarize our results in Section 4.

Notation: Denote Ω = {1, . . . , n}. Let T = supp(x) = {i|xi 6= 0, i ∈ Ω} be the support

of a K-sparse vector x (i.e., the set of the positions of its K nonzero elements). Let Λ be a

subset of Ω and let |Λ| be the cardinality of Λ. T \Λ = {i|i ∈ T, i /∈ Λ}. xΛ ∈ R
n denotes the

vector equal to x on an index set Λ and zero elsewhere. Throughout the paper, we assume that

A ∈ R
m×n is normalized to have a unit column norm (i.e., ‖Ai‖2 = 1 for i = 1, 2, . . . , n).1 Let

AΛ ∈ R
m×|Λ| be a sub-matrix of A with an index of its columns in set Λ. For any matrix AΛ

of full column-rank, let A
†
Λ = (A′

ΛAΛ)−1A′
Λ be the pseudo-inverse of AΛ, where A′

Λ denotes

the transpose of AΛ. PΛ = AΛA
†
Λ and P⊥

Λ = I − PΛ stand for the projector and orthogonal

complement projector , respectively, onto span(AΛ) (i.e., the column space of AΛ).

2 Sparse Recovery With MOLS

2.1 Observations

Before giving the details of Theorem 2.2, we obtain an important observation on the MOLS

algorithm. As shown in Table 1, in the (k + 1)-th iteration (k ≥ 0), MOLS adds to T k a set of

M indices that results in the maximum reduction of the residual power, i.e.,

Sk+1 = arg min
S:|S|=M

∑

i∈S

‖P⊥
T k∪{i}y‖2

2. (2.1)

We intuitively observe that it requires the construction of n− Mk different orthogonal projec-

tions (i.e., P⊥
T k∪{i}) to identify Sk+1. This implementation of MOLS is, however, computation-

ally expensive. In order to solve this problem, inspired by the technical report [20], Wang and

1[20] has shown that the behavior of OLS is unchanged whether columns of A are normalized or not. As

MOLS is a direct extension of OLS, one can verify that the normalization does not matter either for the behavior

of MOLS.
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Li [6] presented a cost-effective alternative to (2.1) for the identification step of MOLS. The

result is given in the following lemma:

Lemma 2.1 ([6], Proposition 1) Consider the MOLS algorithm. At the (k + 1)-th itera-

tion, the MOLS algorithm selects the index

Sk+1 = arg max
S:|S|=M

∑

i∈S

|〈Ai, r
k〉|

‖P⊥
T kAi‖2

. (2.2)

We can see from (2.2) that it suffices to find the M largest values in |〈Ai,r
k〉|

‖P⊥

Tk
Ai‖2

, which is

much simpler than (2.1), as it involves only one projection operator (i.e., P⊥
T k). By numerical

experiments, we have indeed confirmed that the simplification offers a massive reduction in

the computational cost. Hence, Lemma 2.1 plays an important role in analyzing the recovery

condition of MOLS.

Moreover, note that the identification rule of MOLS is akin to that of a generalized orthog-

onal matching pursuit (gOMP). Specifically, in the (k +1)-th iteration, gOMP picks a set of M

indices corresponding to the column which is most strongly correlated with the signal residual,

i.e.,

Sk+1 = argmax
S:|S|=M

∑

i∈S

|〈Ai, r
k〉|.

Clearly, the rule of MOLS differs from that of gOMP only in that it has an extra normalization

factor (i.e., ‖P⊥
T kAi‖2). Thus, the greedy selection rule in MOLS can also be viewed as an

extension of the gOMP rule. This argument has been verified (see [6, 20, 21]). However, this

property shows that the rule of MOLS coincides with that of gOMP only in the first iteration

because S0 = ∅ leads to ‖P⊥
S0Ai‖2 = ‖Ai‖2. For the subsequent iterations, MOLS does make

a difference, since ‖P⊥
SkAi‖2 ≤ ‖Ai‖2, ∀k ≥ 1. In fact, as will be seen later, this factor makes

the analysis of MOLS different and more challenging than that of gOMP.

2.2 Main Results

Theorem 2.2 Let y = Ax+w be the noisy measurement, where x ∈ R
n is any K-sparse

signal supported on T , A ∈ R
m×n is a measurement matrix with ℓ2-normalized columns, and

w is a noisy vector. Let θk = |T \Sk| be the index number of a remaining support set after

performing k (k ≥ 0) iterations of MOLS. If A obeys the RIP with the isometry constant

δMk+7θk ≤ 0.094, (2.3)

the residual of MOLS satisfies

‖rk+⌈ 6θk

M
⌉‖2 ≤ ξk‖w‖2, (2.4)

where

ξk = 2

(

1 −
(

4µ(1 − µ)(1 + δMk+7θk)

(1 − δMk+7θk)

)
1
2
)−1

− 1 ≥ 1 (2.5)

is a constant depending only on δMk+7θk , and

µ = e−
3
2
(1−δ

Mk+7θk )2 . (2.6)

Proof See Section III. �
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We observe from Theorem 2.2 that MOLS requires at most ⌈ 6θk

M
⌉ additional iterations after

running k(k ≥ 0) iterations to ensure that the condition in (2.4) is fulfilled. In other words, the

ℓ2-norm of the residual is upper bounded by the product of a constant and ‖w‖2.

In particular, when k = 0 and θ0 = |T \S0| = K in (2.4), we obtain that the ℓ2-norm of the

residual falls below ξ0‖w‖2. The result is as follows:

Corollary 2.3 Let x be any K-sparse signal and let A be a matrix with ℓ2-normalized

columns. If A satisfies the RIP with

δ7K ≤ 0.094, (2.7)

the residual of MOLS satisfies

‖r⌈ 6K
M

⌉‖2 ≤ ξ0‖w‖2, (2.8)

where ξ0 has been defined in (2.5) with k = 0.

Next, we show that the ℓ2-norm of the recovery error is also upper bounded by the product

of a constant and ‖w‖2.

Theorem 2.4 Let x ∈ R
n be any K-sparse signal, let A ∈ R

m×n be a matrix with ℓ2-

normalized columns, and let y = Ax + w be the noisy sampling model. If A obeys RIP with

(2.7), MOLS satisfies

‖x⌈ 6K
M

⌉ − x‖2 ≤ (ξ0 + 1)‖w‖2, (2.9)

and

‖x̂ − x‖2 ≤ 2(1 − δ8K)−
1
2 ((ξ0 + 1)(1 + δ8K)

1
2 + 1)‖w‖2, (2.10)

where ξ0 has been defined in (2.5) with k = 0.

Proof See Appendix A. �

Remark 2.5 (Comparison with [8]) In [8], the authors showed that the MOLS algorithm

ensures the accurate recovery of any K-sparse signal, provided that A satisfies the restricted

isometry property (RIP) with (1.5), which is the best existing result for MOLS. However, the

sufficient condition (1.5) is inversely proportional to
√

K; it will vanish as K increases. Our

sufficient condition (2.7) is upper bounded by a constant.

Remark 2.6 (Comparison with [22]) The authors in [22] claimed that gOMP can exactly

recover the supports of all K-sparse vectors from the samples y = Ax + w in max{K, ⌊ 8K
M

⌋}
iterations if A satisfies the RIP with

δmax{9K,(M+1)K} ≤ 1

8
= 0.125. (2.11)

It is easy to see that the number of iterative steps in our results are less than those of [22].

Remark 2.7 (Comparison with [23]) In [23], the authors claimed that MOLS ensures

the exact recovery of any K-sparse vector in max{K, ⌊ 8K
M

⌋} iterations under δ⌊7.8K⌋ ≤ 0.155.

According to (2.8), our results show that MOLS can recover any K-sparse signals within ⌈ 6K
M

⌉.
Thus, our result is better than that in [23].

Remark 2.8 (Comparison with [9, 24]) MOLS reduces to OLS when M = 1. From

Corollary 2.3, our result indicates that OLS can exactly recover the K-sparse signals x within
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6K iteration with (2.7). The work [9] stated that OLS exactly recovers the support of any

K-sparse vector x with

δK+1 <
1√

K + 1
. (2.12)

The reference [24] provides a sufficient condition for OLS:

δK+1 =



















































1√
K

, K = 1,

1√
K + 1

4

, K = 2,

1√
K + 1

16

, K = 3,

1√
K

, K ≥ 4.

(2.13)

It is easy to see that the upper bounds of (2.12) and (2.13) are inversely proportional to
√

K,

which requires that m should scale with K2 log n
K

. On the other hand, the upper bound of the

proposed guarantee (2.7) is independent of K.

3 Proof of Theorem 2.2

For the proof of the analysis of Theorem 2.2, our idea is related to [22]. Here, we first

denote F k = T \T k and θk = |F k|. For notational convenience, assume that xi is arranged in

descending order of their magnitudes, i.e., |x1| ≥ |x2| ≥ · · · ≥ |xθk |. Now, we define the subset

F k
j of F k as

F k
j =































∅, j = 0,

{1, . . . , 2jM − 1}, j = 1, . . . ,max

{

0, ⌊log2

θk + 1

M
⌋
}

,

F k, j = max

{

0, ⌊log2

θk + 1

M
⌋
}

+ 1.

(3.1)

Then we observe that the last set

F k

max{0,⌊log2
θk+1

M
⌋}+1

= F k

may have less than 2max{0,⌊log2
θk+1

M
⌋}+1M − 1 elements. On the other hand, we can obtain

2|F k| > 2LM − 1 (3.2)

for L ∈ {1, . . . ,max{0, ⌊log2
θk+1

M
⌋} + 1}.

Next, for constant τ > 1, let L ∈ {1, 2, . . . ,max{0, ⌊log2
θk+1

M
⌋} + 1} be the minimum

positive integer satisfying

‖xF k\F k
0
‖2
2 < τ‖xF k\F k

1
‖2
2, (3.3)

‖xF k\F k
1
‖2
2 < τ‖xF k\F k

2
‖2
2, (3.4)

. . . ,

‖xF k\F k
L−2

‖2
2 < τ‖xF k\F k

L−1
‖2
2, (3.5)
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‖xF k\F k
L−1

‖2
2 ≥ τ‖xF k\F k

L
‖2
2. (3.6)

Then we have

‖xF k\F k
j
‖2
2 < τL−1−j‖xF k\F k

L−1
‖2
2 (3.7)

for j = 0, 1, . . . , L. Here we note that if (3.6) holds true for all L ≥ 1, we ignore (3.3)–(3.5)

and simply take L = 1. In addition, L always exists because
∥

∥xF k\F k

max{0,⌊log2
θk+1

M
⌋}+1

∥

∥

2

2
= 0,

so that (3.6) holds true at least for L = max{0, ⌊log2
θk+1

M
⌋} + 1.

In consideration of the selection rule of MOLS viewed as an extension of the gOMP rule,

we will prove Theorem 2.2 by using mathematical induction in θk. In fact, the mathematical

induction was proposed in [22]. Here, θk stands for the number of remaining indices after k

iterations of MOLS. We first select θk = 0, and then no more iteration is needed, i.e., T ⊆ T k,

so we have

‖rk‖2 = ‖y − Axk‖2 = min
supp(u)=T k

‖y − Au‖2 ≤ ‖y − Ax‖2 = ‖w‖2 ≤ ξk‖w‖2.

Now we suppose that the conclusion holds up to θk − 1, where θk ≥ 1 is a positive integer.

Then, we need to prove that (2.4) holds true, i.e.,

‖rk+⌈ 6θk

M
⌉‖2 ≤ ξk‖w‖2 (3.8)

holds true.

In order to prove (3.8), we will choose a decent number of support indices in F k, which must

be selected within a specified number of additional iterations. Then the number of remaining

support indices is upper bounded.

Now we define that

k0 = 0 (3.9)

and

ki =
3

2

i
∑

j=1

⌈
|F k

j |
M

⌉, i = 1, . . . , L. (3.10)

Because of the definition of F k
j , we have |F k

j | ≤ 2jM − 1 for j = 1, . . . , L, and

ki ≤ kL =
3

2

L
∑

j=1

⌈
|F k

j |
M

⌉ ≤ 3

2

L
∑

j=1

⌈2jM − 1

M
⌉

=
3

2

L
∑

j=1

⌈2j − 1

M
⌉

(a)

≤ 3

2

L
∑

j=1

2j = 3 × 2L − 3, (3.11)

where (a) follows from 0 < 1
M

≤ 1. Let

k′ = 3 × 2L − 3 (3.12)

indicate specified additional iterations after running k iterations of OLS.

Now if we suppose that the number of remaining support indices satisfies

θk+k′

= |F k+k′ | ≤ θk − 2L−1M (3.13)
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after running k + k′ iterations, then inequality (3.8) holds when we require at most ⌈ 6θk+k′

M
⌉

additional iterations. Our proof is completed. In fact, the total number of iterations of MOLS

is

k + k′ + ⌈6θk+k′

M
⌉ ≤ k + 3 × 2L − 3 + ⌈ 6

M
(θk − 2L−1M)⌉

≤ k + 3 × 2L − 3 + ⌈6θk

M
⌉ − 3 × 2L + 1 < k + ⌈6θk

M
⌉. (3.14)

Then we obtain

‖rk+⌈ 6θk

M
⌉‖2 ≤ ‖rk+k′+⌈ 6θk

M
⌉‖2. (3.15)

Since the index number of remaining support is no more than θk − 1, i.e.,

θk+k′

= |F k+k′ | ≤ θk − 2L−1M ≤ θk − 1,

by the induction hypothesis we have that

‖rk+k′‖2 ≤ ξk‖w‖2. (3.16)

Then we combine (3.15) with (3.16) and get

‖rk+⌈ 6θk

M
⌉‖2 ≤ ‖rk+k′‖2 ≤ ξk‖w‖2.

Thus, we require it to be ensured that (3.13) holds true. By the definition of F k
j in (3.1),

we have

F k
L−1 = {1, 2, . . . , 2L−1M − 1}

and

|F k \ F k
L−1| = |{2L−1M, 2L−1 + 1, . . . , θk}| = θk − 2L−1M + 1.

Then (3.13) can be rewritten as

θk+k′

= |F k+k′ | < |F k\F k
L−1|. (3.17)

Since xF k\F k
L−1

consists of |F k\F k
L−1| smallest non-zero elements (in magnitude) of xF k ,

instead of proving things directly, we show that a sufficient condition of (3.17) is true; that is,

‖xF k+k′ ‖2 < ‖xF k\F k
L−1

‖2. (3.18)

Hence, we need to prove that inequality (3.18) holds true.

We have, by the result in Proposition E.6 (see Appendix E),

‖xF k+k′ ‖2 < α‖xF k\F k
L−1

‖2 + β‖w‖2, (3.19)

where α and β are defined in (E.1) and (E.2), respectively.

It follows from (2.7) that α < 1. Then we discuss two cases.

If β‖w‖2 < (1 − α)‖xF k\F k
L−1

‖2, it is easy to see that (3.18) holds true.

If β‖w‖2 ≥ (1 − α)‖xF k\F k
L−1

‖2, (3.8) holds true directly, due to

‖rk+⌈ 6θk

M
⌉‖2

(3.15)

≤ ‖rk+k′+⌈ 6θk

M
⌉‖2

(a)

≤ ‖rk+k′‖2

(E.14)
<

√

4µ(1 − µ)(1 + δMk+7θk)‖xF k\F k
L−1

‖2 + ‖w‖2

(E.1)
= α

√

1 − δMk+7θk‖xF k\F k
L−1

‖2 + ‖w‖2
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≤ α
√

1 − δMk+7θk × β

1 − α
‖w‖2 + ‖w‖2

(E.2)
= (

2

1 − α
− 1)‖w‖2 = ξk‖w‖2, (3.20)

where (a) follows from the fact that the residual power of MOLS is non-increasing, and where

ξk has been defined in (2.5).

4 Conclusion

As an extension of OLS, MOLS is effective in reconstructing sparse signals and enhancing

recovery performance. In this paper, we have presented an improved recovery guarantee of

MOLS, which can stability recover K-sparse signals from the noisy measurements in ⌈ 6K
M

⌉
iterations under δ7K ≤ 0.094.

Appendix A

Proof of Theorem 2.4 Since r⌈
6K
M

⌉ = y − Ax⌈ 6K
M

⌉ = A(x − x⌈ 6K
M

⌉) + w, we have

‖x⌈ 6K
M

⌉ − x‖2 = ‖x− x⌈ 6K
M

⌉‖2

(a)

≤ (1 − δ
|T∪T

⌈ 6K
M

⌉|
)−

1
2 ‖A(x− x⌈ 6K

M
⌉)‖2

= (1 − δ
|T∪T

⌈ 6K
M

⌉|
)−

1
2 ‖r⌈ 6K

M
⌉ − w‖2

(b)

≤ (1 − δ8K)−
1
2 (‖r⌈ 6K

M
⌉‖2 + ‖w‖2)

(c)

≤ (1 − δ8K)−
1
2 (ξ0‖w‖2 + ‖w‖2) = (1 − δ8K)−

1
2 (ξ0 + 1)‖w‖2, (A.1)

where (a) is based on the RIP, (b) uses the norm inequality and |T ∪ T ⌈ 6K
M

⌉| ≤ K + ⌈ 6K
M

⌉M ≤
7K + M ≤ 8K, and (c) is according to Corollary 2.3.

Now, we need to prove that (2.10) is true. Since the best K-term approximation (x⌈ 6K
M

⌉)K

of x⌈ 6K
M

⌉ is supported on T̂ and

x̂ = argmin
supp(u)=T̂

‖y − Au‖2, (A.2)

we have

‖x̂− x‖2

(a)

≤ (1 − δ2K)−
1
2 ‖A(x̂ − x)‖2 = (1 − δ2K)−

1
2 ‖Ax̂ − y + w‖2

≤ (1 − δ2K)−
1
2 (‖Ax̂ − y‖2 + ‖w‖2)

(b)

≤ (1 − δ2K)−
1
2 (‖A(x⌈ 6K

M
⌉)K − y‖2 + ‖w‖2)

= (1 − δ2K)−
1
2 (‖A(x⌈ 6K

M
⌉)K − Ax − w‖2 + ‖w‖2)

≤ (1 − δ2K)−
1
2 (‖A(x⌈ 6K

M
⌉)K − Ax‖2 + 2‖w‖2), (A.3)

where (a) is based on RIP, and (b) is from (A.2).

Using the RIP and the property of norm, (A.3) can be changed into

‖x̂ − x‖2 ≤ (1 − δ2K)−
1
2 ((1 + δ2K)

1
2 ‖(x⌈ 6K

M
⌉)K − x‖2 + 2‖w‖2)

= (1 − δ2K)−
1
2 ((1 + δ2K)

1
2 ‖(x⌈ 6K

M
⌉)K − x⌈ 6K

M
⌉ + x⌈ 6K

M
⌉ − x‖2 + 2‖w‖2)

≤ (1 − δ2K)−
1
2 ((1 + δ2K)

1
2 (‖(x⌈ 6K

M
⌉)K − x⌈ 6K

M
⌉‖2 + ‖x⌈ 6K

M
⌉ − x‖2) + 2‖w‖2)

(a)

≤ (1 − δ2K)−
1
2 (2(1 + δ2K)

1
2 ‖x⌈ 6K

M
⌉ − x‖2 + 2‖w‖2)
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(b)

≤ (1 − δ2K)−
1
2 (2(1 + δ2K)

1
2 (ξ0 + 1)‖w‖2 + 2‖w‖2)

≤ (1 − δ8K)−
1
2 (2(1 + δ8K)

1
2 (ξ0 + 1)‖w‖2 + 2‖w‖2)

= 2(1 − δ8K)−
1
2 ((ξ0 + 1)(1 + δ8K)

1
2 + 1)‖w‖2, (A.4)

where (a) is because (x⌈ 6K
M

⌉)K is the best K-term approximation of x⌈ 6K
M

⌉, and (b) follows from

(2.9). �

Appendix B

Lemma B.1 ([9], Lemma 3) Suppose that Λ ⊆ Ω and A ∈ R
m×n satisfy the RIP of order

|Λ| + 1. Then, for any i ∈ Ω\Λ,

‖P⊥
ΛAi‖2 ≥

√

1 − δ2
|Λ|+1.

Lemma B.2 ([22], Lemma 1) Let u,v ∈ R
n be two distinct vectors and let W = supp(u)∩

supp(v). Let U be the set of M indices corresponding to the M most significant elements in u.

For any integer M ≥ 1 , we have

〈u,v〉 ≤
(

⌈ |W |
M

⌉
)

1
2 ‖uU‖2‖vW ‖2.

Lemma B.3 Let A ∈ R
m×n be a matrix with ℓ2-normalized columns. According to

Lemma 2.1, for the (ℓ + 1)-th (ℓ ≥ k) iteration of MOLS, we have
∑

i∈Sℓ+1

|〈Ai, r
ℓ〉|2 ≥ (1 − δ2

|T ℓ|+1)‖A′
S∗r

ℓ‖2
2,

where

S∗ = argmax
S:|S|=M

‖A′
Srℓ‖2

2. (B.1)

Proof Note that this proof technique is similar in spirit to the work of [23, Lemma 8].

By Lemma 2.1, we have

∑

i∈Sℓ+1

|〈Ai, r
ℓ〉|2

(a)

≥ min
i∈Sℓ+1

‖P⊥
T ℓAi‖2

2

∑

i∈Sℓ+1

|〈Ai, r
ℓ〉|2

‖P⊥
T ℓAi‖2

2

(b)

≥ (1 − δ2
|T ℓ|+1)

∑

i∈Sℓ+1

|〈Ai, r
ℓ〉|2

‖P⊥
T ℓAi‖2

2

(c)
= (1 − δ2

|T ℓ|+1) max
S:|S|=M

∑

i∈S

|〈Ai, r
ℓ〉|2

‖P⊥
T ℓAi‖2

2

≥ (1 − δ2
|T ℓ|+1)

∑

i∈S∗

|〈Ai, r
ℓ〉|2

‖P⊥
T ℓAi‖2

2

(d)

≥ (1 − δ2
|T ℓ|+1)

∑

i∈S∗

|〈Ai, r
ℓ〉|2

= (1 − δ2
|T ℓ|+1) max

S:|S|=M
‖A′

Srℓ‖2
2

(e)
= (1 − δ2

|T ℓ|+1)‖A′
S∗r

ℓ‖2
2,

where (a) is because

∑

i∈Sℓ+1

|〈Ai, r
ℓ〉|2

‖P⊥
T ℓAi‖2

2

≤

∑

i∈Sℓ+1

|〈Ai, r
ℓ〉|2

min
i∈Sℓ+1

‖P⊥
T ℓAi‖2

2

,

(b) follows from Lemma B.1, (c) is from Lemma 2.1, (d) is according to ‖P⊥
T ℓAi‖2

2 ≤ ‖Ai‖2
2 = 1,

and (e) is based on (B.1). �
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Appendix C

Lemma C.4 For the (ℓ + 1)-th (ℓ ≥ k) iteration of the MOLS Algorithm, the residual of

MOLS has ‖rℓ‖2
2 − ‖rℓ+1‖2

2 ≥ 1−δ2

|T ℓ|+1

1+δ
|Sℓ+1|

‖A′
S∗rℓ‖2

2.

Proof Note that this proof technique is similar in spirit to the work of [23, Lemma 8].

For any integer ℓ ≥ k, we have

‖rℓ‖2
2 − ‖rℓ+1‖2

2

(a)

≥ ‖A′
Sℓ+1r

ℓ‖2
2

1 + δ|Sℓ+1|

=

∑

i∈Sℓ+1

|〈Ai, r
ℓ〉|2

1 + δ|Sℓ+1|

(b)

≥
(1 − δ2

|T ℓ|+1)

1 + δ|Sℓ+1|‖A′
S∗rℓ‖2

2

, (C.1)

where (a) follows from [6, (E.4)], and (b) follows from Lemma B.3. �

Appendix D

Lemma D.5 Let A ∈ R
m×n be a matrix with ℓ2-normalized columns. For the (ℓ + 1)-th

(ℓ ≥ k) iteration of MOLS, we have

‖rℓ‖2
2 − ‖rℓ+1‖2

2 ≥
(1 − δ2

|T ℓ|+1)(1 − δ|F k
j
∪T ℓ|)

(1 + δ|Sℓ+1|)⌈
|F k

j
|

M
⌉

(

‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2

)

. (D.1)

Proof Note that this proof technique is similar in spirit to the work of [23, Lemma 8].

According to Lemma C.4, we only give that

‖A′
S∗r

ℓ‖2
2 ≥

1 − δ|F k
j
∪T ℓ|

⌈ |F k
j
|

M
⌉

(

‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2

)

. (D.2)

Let u = A′rℓ and v ∈ R
n be the vectors satisfying vT∩T k∪F k

j
= xT∩T k∪F k

j
and vΩ\(T∩T k∪F k

j
)

= 0. Note that supp(u) = Ω\T ℓ, supp(v) = T ∩ T k ∪ F k
j and T k ⊆ T ℓ. Then we have

W = supp(u) ∩ supp(v) = F k
j \T ℓ. Recall that S∗ contains the indices corresponding to the M

most significant elements in u = A′rℓ. According to Lemma B.2, we have

〈A′rℓ,v〉 ≤ (⌈
|F k

j \T ℓ|
M

⌉) 1
2 ‖A′

S∗r
ℓ‖2‖vF k

j
\T ℓ‖2 ≤ (⌈

|F k
j \T ℓ|
M

⌉) 1
2 ‖A′

S∗r
ℓ‖2‖vΩ\T ℓ‖2

≤ (⌈
|F k

j |
M

⌉) 1
2 ‖A′

S∗r
ℓ‖2‖vΩ\T ℓ‖2. (D.3)

On the other hand, We observe further that

〈A′rℓ,v〉 (a)
= 〈A′rℓ,v − xℓ〉 = 〈rℓ,A(v − xℓ)〉

=
1

2
(‖A(v − xℓ)‖2

2 + ‖rℓ‖2
2 − ‖rℓ − A(v − xℓ)‖2

2)

(b)
=

1

2
(‖A(v − xℓ)‖2

2 + ‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2)

(c)

≥ ‖A(v − xℓ)‖2

√

‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2

(d)

≥
√

1 − δ|F k
j
∪T ℓ|‖v − xℓ‖2

√

‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2

≥
√

(1 − δ|F k
j
∪T ℓ|)(‖rℓ‖2

2 − ‖AxF k\F k
j

+ w‖2
2) × ‖(v − xℓ)Ω\T ℓ‖2

(e)
= ‖vΩ\T ℓ‖2

√

(1 − δ|F k
j
∪T ℓ|)(‖rℓ‖2

2 − ‖AxF k\F k
j

+ w‖2
2), (D.4)
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where (a) is because supp(A′rℓ) ∩ supp(xℓ) = ∅ so that 〈A′rℓ,xℓ〉 = 0, (b) is according to

rℓ = y − Axℓ = A(x − xℓ) + w = A(x − ν + ν − xℓ) + w

= A(ν − xℓ + xF k\F k
j
) + w = A(ν − xℓ) + AxF k\F k

j
+ w,

(c) is true since we only consider ‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2 ≥ 0 and use a2 + b2 ≥ 2ab (when

‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2 < 0, (D.2) holds trivially because of ‖A′
S∗rℓ‖2

2 ≥ 0), (d) uses the

condition of RIP and supp(v − xℓ) = (T ∩ T k ∪ F k
j ) ∪ T ℓ ⊆ F k

j ∪ T ℓ, and (e) is due to

(xℓ)Ω\T ℓ = 0.

Finally, by combining (D.3) with (D.4), we have

‖A′
S∗r

ℓ‖2 ≥ 〈A′rℓ,v〉
√

⌈ |F k
j
|

M
⌉‖vΩ\T ℓ‖2

≥

√

1 − δ|F k
j ∪T ℓ|‖vΩ\T ℓ‖2

√

⌈ |F k
j
|

M
⌉‖vΩ\T ℓ‖2

√

‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2

=

√

1 − δ|F k
j
∪T ℓ|

√

⌈ |F k
j
|

M
⌉

√

‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2.

This completes the proof. �

Appendix E

Proposition E.6 Let A ∈ R
m×n be a matrix. Let θk = |F k| = |T \T k| be the index

number of a remaining support set after running k (k ≥ 0) iterations of MOLS. Let xF k+k′ and

xF k\F k
L−1

be two truncated vectors of x, where k′ indicates specified additional iterations after

running k iterations and L ∈ {1, 2, . . . ,max{0, ⌊log2
θk+1

M
⌋} + 1}. Then we have

‖xF k+k′ ‖2 < α‖xF k\F k
L−1

‖2 + β‖w‖2,

where

α =

√

4µ(1 − µ)(1 + δMk+7θk)

(1 − δMk+7θk)
, (E.1)

β =
2

√

1 − δMk+7θk

, (E.2)

and µ has been defined in (2.6).

Proof According to (D.1), let

βℓ =
(1 − δ2

|T ℓ|+1)(1 − δ|F k
j
∪T ℓ|)

(1 + δ|Sℓ+1|)⌈
|F k

j
|

M
⌉

. (E.3)

Then, (D.1) can be rewritten as

‖rℓ+1‖2
2 − ‖AxF k\F k

j
+ w‖2

2 ≤ (1 − βℓ)(‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2).

Using 1 − βℓ ≤ e−βℓ , we have

‖rℓ+1‖2
2 − ‖AxF k\F k

j
+ w‖2

2 ≤ exp(−βℓ)(‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2), (E.4)

and for ℓ′ > ℓ ≥ k, we also have

‖rℓ′‖2
2 − ‖AxF k\F k

j
+ w‖2

2 ≤ exp(−βℓ′−1)(‖rℓ′−1‖2
2 − ‖AxF k\F k

j
+ w‖2

2), (E.5)
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. . . ,

‖rℓ+2‖2
2 − ‖AxF k\F k

j
+ w‖2

2 ≤ exp(−βℓ+1)(‖rℓ+1‖2
2 − ‖AxF k\F k

j
+ w‖2

2). (E.6)

Thus, from (E.4)-(E.6), we have, further, that

‖rℓ′‖2
2 − ‖AxF k\F k

j
+ w‖2

2 ≤
ℓ′−1
∏

η=ℓ

exp(−βη)(‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2)

(a)

≤ exp(−(ℓ′ − ℓ)βℓ′−1)(‖rℓ‖2
2 − ‖AxF k\F k

j
+ w‖2

2),

where (a) holds, since βη is non-increasing.

Let ℓ′ = k + ki and ℓ = k + ki−1, i = 1, . . . , L. Then we have

‖rk+ki‖2
2 − ‖AxF k\F k

j
+ w‖2

2

(a)

≤ exp

(

−
(ki − ki−1)(1 − δ2

|T k+ki−1|+1
)(1 − δ|F k

j
∪T k+ki−1|)

(1 + δ|Sk+ki |)⌈
|F k

j
|

M
⌉

)

×
(

‖rk+ki−1‖2
2 − ‖AxF k\F k

j
+ w‖2

2

)

(b)

≤ exp

(

−
(ki − ki−1)(1 − δ2

|T k+ki−1|+1
)(1 − δ|F k

i
∪T k+ki−1|)

(1 + δ|Sk+ki |)⌈ |F k
i
|

M
⌉

)

×
(

‖rk+ki−1‖2
2 − ‖AxF k\F k

j
+ w‖2

2

)

(c)

≤ exp

(

−
3
2 (1 − δ2

|T k+ki−1|+1
)(1 − δ|F k

i
∪T k+ki−1|)

(1 + δ|Sk+ki |)

)

×
(

‖rk+ki−1‖2
2 − ‖AxF k\F k

j
+ w‖2

2

)

(d)

≤ exp

(

−
3
2 (1 − δ2

Mk+7θk)(1 − δMk+7θk)

(1 + δMk+7θk)

)

×
(

‖rk+ki−1‖2
2 − ‖AxF k\F k

j
+ w‖2

2

)

= e−
3
2
(1−δ

Mk+7θk )2
(

‖rk+ki−1‖2
2 − ‖AxF k\F k

j
+ w‖2

2

)

, (E.7)

where (a) is due to (E.3), (b) is from j ≤ i, (c) is true since (3.10), (d) is because

|F k
i ∪ T k+ki−1|

(3.11)

≤ |T ∪ T k+k′ | = |T k+k′ | + |F k+k′ | ≤ M(k + k′) + |F k|
(3.12)
= Mk + (3 × 2L − 3)M + θk = Mk + 3 × 2LM + θk − 3M

(3.2)
< Mk + 3(2θk + 1) + θk − 3M = Mk + 7θk + 3 − 3M ≤ Mk + 7θk,

|T k+ki−1| + 1 ≤ |T k+k′ | + 1 ≤ M(k + k′) + 1
(3.12)
= Mk + (3 × 2L − 3)M + 1

= Mk + 3 × 2LM + 1 − 3M
(3.2)
< Mk + 3(2θk + 1) + 1 − 3M

= Mk + 6θk + 4 − 3M ≤ Mk + 6θk + 1 ≤ Mk + 7θk, (E.8)

and |Sk+ki | = M < Mk + 7θk.

According to (2.6), (E.7) can be rewritten as

‖rk+ki‖2
2 ≤ µ‖rk+ki−1‖2

2 + (1 − µ)‖AxF k\F k
j

+ w‖2
2,

where i = 1, . . . , L.

Note that k0 = 0. Then we have

‖rk+kL‖2
2 ≤ µ‖rk+kL−1‖2

2 + (1 − µ)‖AxF k\F k
j

+ w‖2
2, (E.9)
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. . . ,

‖rk+k1‖2
2 ≤ µ‖rk‖2

2 + (1 − µ)‖AxF k\F k
j

+ w‖2
2. (E.10)

From (E.9)–(E.10), we get that

‖rk+kL‖2
2 ≤ µL‖rk‖2

2 + (1 − µ)

L
∑

j=1

µL−j‖AxF k\F k
j

+ w‖2
2

(a)

≤ µL‖AxF k + w‖2
2 + (1 − µ)

L
∑

j=1

µL−j‖AxF k\F k
j

+ w‖2
2

≤ µL(‖AxF k‖2 + ‖w‖2)
2 + (1 − µ)

L
∑

j=1

µL−j × (‖AxF k\F k
j
‖2 + ‖w‖2)

2, (E.11)

where (a) is due to ‖rk‖2
2 ≤ ‖AxF k + w‖2

2, which is from Proposition 1 in [22].

According to the RIP and F k
0 = ∅, (E.11) can be changed into

‖rk+kL‖2
2≤µL

(√

1 + δ|F k|‖xF k\F k
0
‖2 + ‖w‖2

)2

+ (1 − µ)

L
∑

j=1

µL−j
(
√

1 + δ|F k\F k
j
|‖xF k\F k

j
‖2 + ‖w‖2

)2

(a)

≤ µL
(

√

1 + δθk‖xF k\F k
0
‖2 + ‖w‖2

)2

+ (1 − µ)

L
∑

j=1

µL−j
(

√

1 + δθk‖xF k\F k
j
‖2 + ‖w‖2

)2

(b)
< µL

(

√

(1 + δθk)τL−1‖xF k\F k
L−1

‖2 + ‖w‖2

)2

+ (1 − µ)

L
∑

j=1

µL−j
(

√

(1 + δθk)τL−j−1‖xF k\F k
L−1

‖2 + ‖w‖2

)2

=
(

(τµ)L + (1 − µ)
L

∑

j=1

(τµ)L−j
)1 + δθk

τ
‖xF k\F k

L−1
‖2
2

+
(

µL + (1 − µ)

L
∑

j=1

µL−j
)

‖w‖2
2 + 2

(

(
√

τµ)L + (1 − µ)

L
∑

j=1

(
√

τµ)L−j
)

×
√

1 + δθk

τ
‖xF k\F k

L−1
‖2‖w‖2, (E.12)

where (a) is according to |F k\F k
j | < |F k| = θk for j = 1, . . . , L, and (b) is from (3.7).

Note that

(τµ)L <
1 − µ

1 − τµ
(τµ)L = (1 − µ)

∞
∑

j=L

(τµ)j ,

µL = (1 − µ)
∞
∑

j=L

µj ,

(
√

τµ)L <
1 − µ

1 −√
τµ

(
√

τµ)L = (1 − µ)

∞
∑

j=L

(
√

τµ)j ,



No.3 H.F. Li & J. Zhang: MULTIPLE ORTHOGONAL LEAST SQUARES 955

when τ > 1, τµ < 1, and µ < 1. Thus, (E.12) can be changed into

‖rk+kL‖2
2<

(

(1 − µ)
∞
∑

j=L

(τµ)j + (1 − µ)
L−1
∑

j=0

(τµ)j
)1 + δθk

τ
‖xF k\F k

L−1
‖2
2

+
(

(1 − µ)

∞
∑

j=L

µj + (1 − µ)

L−1
∑

j=0

µj
)

‖w‖2
2

+ 2
(

(1 − µ)

∞
∑

j=L

(
√

τµ)L−j + (1 − µ)

L
∑

j=1

(
√

τµ)L−j
)

√

1 + δθk

τ
‖xF k\F k

L−1
‖2‖w‖2

=
1 − µ

1 − τµ

1 + δθk

τ
‖xF k\F k

L−1
‖2
2 + ‖w‖2

2 + 2
1 − µ

1 −√
τµ

√

1 + δθk

τ
‖xF k\F k

L−1
‖2‖w‖2

2

(a)
<

1 − µ

1 − τµ

1 + δθk

τ
‖xF k\F k

L−1
‖2
2 + ‖w‖2

2 + 2

√

1 − µ

1 − τµ

√

1 + δθk

τ
‖xF k\F k

L−1
‖2‖w‖2

2

=

(
√

1 − µ

1 − τµ

√

1 + δθk

τ
‖xF k\F k

L−1
‖2 + ‖w‖2

)2

(b)

≤
(
√

4µ(1 − µ)(1 + δMk+7θk)‖xF k\F k
L−1

‖2 + ‖w‖2

)2

, (E.13)

where (a) is from
( 1 − µ

1 −√
τµ

)2

−
(

√

1 − µ

1 − τµ

)2

=
(1 − µ)2

(1 −√
τµ)2

− 1 − µ

1 − τµ

=
(1 − µ)2(1 − τµ) − (1 − µ)(1 −√

τµ)2

(1 −√
τµ)2(1 − τµ)

=
−µ(1 − µ)(

√
τ − 1)2

(1 −√
τµ)2(1 − τµ)

< 0,

(b) chooses τ = 1
2µ

, and θk = |T \T k| ≤ |T ∪ T k+k′ | < Mk + 7θk.

Since k + kL

(3.11)

≤ k + k′, we have that

‖rk+k′‖2 ≤ ‖rk+kL‖2 <
√

4µ(1 − µ)(1 + δMk+7θk)‖xF k\F k
L−1

‖2 + ‖w‖2. (E.14)

On the other hand, we have that

‖rk+k′‖2 = ‖y − Axk+k′‖2 = ‖A(x− xk+k′

) + w‖2

≥ ‖A(x − xk+k′

)‖2 − ‖w‖2

(a)

≥
√

1 − δ|T∪T k+k′ |‖x − xk+k′‖2 − ‖w‖2

≥
√

1 − δ|T∪T k+k′ |‖xF k+k′ ‖2 − ‖w‖2

(b)

≥
√

1 − δMk+7θk‖xF k+k′‖2 − ‖w‖2, (E.15)

where (a) is due to the RIP, and (b) follows from (E.8).

By relating (E.14) and (E.15), we obtain that

‖xF k+k′ ‖2 ≤ 1
√

1 − δMk+7θk

(‖rk+k′‖2 + ‖w‖2)

<

√

4µ(1 − µ)(1 + δMk+7θk )

(1 − δMk+7θk)
‖xF k\F k

L−1
‖2 +

2
√

1 − δMk+7θk

‖w‖2

= α‖xF k\F k
L−1

‖2 + β‖w‖2, (E.16)

where α and β are as defined in (E.1) and (E.2), respectively. �
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