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Abstract In this paper, we aim to derive an averaging principle for stochastic differential

equations driven by time-changed Lévy noise with variable delays. Under certain assump-

tions, we show that the solutions of stochastic differential equations with time-changed Lévy

noise can be approximated by solutions of the associated averaged stochastic differential

equations in mean square convergence and in convergence in probability, respectively. The

convergence order is also estimated in terms of noise intensity. Finally, an example with

numerical simulation is given to illustrate the theoretical result.
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1 Introduction

Non-Gaussian type Lévy processes not only allow their trajectories to change continu-

ously most of the time, but also allow jump discontinuities occurring at random times. Hence,

stochastic differential equations (SDEs) driven by Lévy noise have been utilised to formulate

and to analyse many practical systems arising in many branches of science and engineering (see,

e.g., Applebaum [1]). At the same time, time-changed semimartingales have attracted consid-

erable attention, and their various generalizations have been widely used to model anomalous

diffusions arising in physics, finance, hydrology, and cell biology (see the recent monograph by

Umarov, Hahn and Kobayashi [18]). Kobayashi [8] investigated stochastic integrals with respect

to a time-changed semimartingale and derived the time-changed Itô formula for SDEs driven

by a time-changed semimartingale. When the original semimartingale is a standard Brownian
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motion, then it is well known that the transition probability density of the time-changed Brow-

nian motion satisfies a time-fractional partial differential equation (Nane and Ni [13]). This

is a very interesting feature and it is very useful in modelling and describing phenomena in

applied areas (Mijena and Nane [12]). SDEs driven by time-changed Lévy noise capture more

flexibility in modelling, and thus have become a hot and also very important topic (see, e.g.,

[3, 8, 9, 14, 15]).

Meanwhile, the averaging principle provides a powerful tool in order to strike a balance

between realistically complex models and comparably simpler models which are more amenable

to analysis and simulation. The fundamental idea of the stochastic averaging principle is to

approximate the original stochastic system by a simpler stochastic system; this was initiated

by Khasminskii in the seminal work [7]. To date, the stochastic averaging principle has been

developed for many more general types of stochastic differential equations (see, e.g., [4, 10, 11,

16, 17, 19, 21], just to mention a few).

Although there are many papers in the literature devoted to study of the stochastic averag-

ing principle for stochastic differential equations with or without delays and driven by Brownian

motion, fractional Brownian motion, and Lévy processes, as well as more general stochastic mea-

sures inducing semimartingales and so on (see, e.g., [16] and references therein), as we know,

there has not been any consideration of an averaging principle for stochastic differential equa-

tions driven by time-changed Lévy noise with variable delays. Significantly though, due to their

stochasticity, the stochastic differential equations with delays driven by time-changed Lévy pro-

cesses are potentially useful and important for modelling complex systems in diverse areas of

applications. A typical example is stochastic modelling for ecological systems, wherein time-

changed Lévy processes as well as delay properties capture certain random but non-Markovian

features and phenomena exploited in the real world (see, e.g., [2]). Compared to the classical

stochastic differential equations driven by Brownian motion, fractional Brownian motion, and

Lévy processes, the stochastic differential equations with delays driven by time-changed Lévy

processes are much more complex, therefore, a stochastic averaging principle for such stochastic

equations is naturally interesting and would also be very useful. This is what motivates the

present paper, which aims to establish a stochastic averaging principle for the stochastic differ-

ential equations with delays driven by time-changed Lévy processes. The main difficulty here is

that the scaling properties of the time-changed Lévy processes are intrinsically complicated, so

it is difficult to construct the approximating averaging equations for the general equations. One

remedy for this is to select the involved noises in a proper scaling pattern, and then to establish

the averaging principle by deriving the relevant convergence for the averaging principle. In

this paper, based on our delicate choice of noises, we succeed in showing that the stochastic

differential equations with delays driven by time-changed Lévy processes can be approximated

by the associated averaging stochastic differential equations both in mean square convergence

and in convergence in probability.

Take a filtered probability space (Ω,F , P; {Ft}t≥0) satisfying the usual hypotheses of com-

pleteness and right continuity. Fix m, n ∈ N. Let B(t) = (B1(t), B2(t), · · · , Bm(t))T be an

m-dimensional {Ft}t≥0-Brownian motion. Let {D(t), t ≥ 0} be a right continuous left limit

increasing {Ft}t≥0-Lévy process with a Lévy symbol 1 < α < 2, called a subordinator starting

from 0 with the Laplace transform E(e−λD(t)) = e−tφ(λ), λ > 0, where the Laplace exponent
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φ(λ) =
∫ ∞

0 (1−e−λx)µ(dx) with a σ-finite measure µ on (0,∞) is such that
∫ ∞

0 (1∧x)µ(dx) < ∞.

Define its generalized inverse as Et := inf{τ > 0 : D(τ) > t}, which is known as the first hitting

time process. The time change Et is continuous and nondecreasing, however, it is not Marko-

vian. The composition B ◦ E = (BEt
)t≥0, called a time-changed Brownian motion, is a square

integrable martingale with respect to the natural filtration {FEt
}t≥0 for the process {Et}.

Next, recall that a Lévy measure ν on R
n\{0} is a σ-finite measure satisfying

∫
Rn\{0}

(|y|2∧

1)ν(dy) < ∞. In this paper, we specify the Lévy measure on R
n \ {0} by ν(dy) := dy

|y|n+1 ,

let N be the {Ft}t≥0-Poisson random measure associated with ν (see, e.g., [1]), and let

Ñ(dt, dy) := N(dt, dy) − dtdy

|y|n+1 be the compensated {Ft}t≥0-martingale measure; both N and

Ñ are independent of the Brownian motion B. In fact, Ñ is nothing but the 1-stable Lévy mo-

tion or a Cauchy process. Here we would like to point out that the selection of ν(dy) = dy

|y|n+1 is

rather restrictive in terms of the general structure of Lévy processes (see, e.g., [1]), but it turns

out that this is the only proper choice for constructing the right associated averaging stochastic

differential equations in our paper.

Let τ > 0 and C([−τ, 0]; Rn) be the family of continuous R
n-valued functions ϕ defined on

[−τ, 0] with norm ‖ϕ‖ = sup
−τ≤θ≤0

|ϕ(θ)|.

Motivated by the above discussion, in this short paper we want to establish an averaging

principle for SDEs driven by time-changed Lévy noise with variable delays

dx(t) = f(t, Et, x(t−), x(t − δ(t)))dEt + g(t, Et, x(t−), x(t − δ(t)))dBEt

+

∫

|z|<c

h(t, Et, x(t−), x(t − δ(t)), z)Ñ(dEt, dz), t ∈ [0, T ], (1.1)

with the initial value x(0) = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0]; Rn) fulfilling ξ(0) ∈ R
n and

E‖ξ‖2 < ∞, where the functions f : [0, T ]×R
+ × R

n × R
n → R

n, g : [0, T ]×R
+ ×R

n ×R
n →

R
n×m, h : [0, T ] × R

+ × R
n × R

n × (Rn \ {0}) → R
n are measurable continuous functions,

δ : [0, T ] → [0, τ ], and the constant c > 0 is the maximum allowable jump size.

The rest of the paper is organised as follows: in the next section, we will present appropriate

conditions to the relevant SDEs (1.1) and briefly formulate a time-changed Gronwall’s inequality

in our setting for later use. Section 3 is devoted to our main results and their proofs. In Section

4, the last section, an example is given to illustrate the theoretical results in Section 3.

2 Preliminaries

In order to derive the main results of this paper, we require that the functions f(t1, t2, x, y),

g(t1, t2, x, y) and h(t1, t2, x, y, z) satisfy the following assumptions:

Assumption 2.1 For any x1, x2, y1, y2 ∈ R
n, there exists a positive bounded function

ϕ(t) such that

|f(t1, t2, x1, y1) − f(t1, t2, x2, y2)| ∨ |g(t1, t2, x1, y1) − g(t1, t2, x2, y2)|

≤ ϕ(t1)(|x1 − x2| + |y1 − y2|),
(2.1)

and
∫

|z|<c

|h(t1, t2, x1, y1, z)− h(t1, t2, x2, y2, z)|2ν(dz) ≤ ϕ(t)(|x1 − x2|
2 + |y1 − y2|

2), (2.2)
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where |.| denotes the norm of R
n, x ∨ y = max{x, y}, sup

0≤t≤T

ϕ(t) = k and t ∈ [0, T ].

Assumption 2.2 For all T1 ∈ [0, T ], x, y ∈ R
n, there exist several positive bounded

functions λi(T1) ≤ Ci such that

1

T1

∫ T1

0

|f(s, Es, x, y) − f(x, y)|dEs ≤ λ1(T1)(|x| + |y|), (2.3)

1

T1

∫ T1

0

|g(s, Es, x, y) − g(x, y)|2dEs ≤ λ2(T1)(|x|
2 + |y|2), (2.4)

and

1

T1

∫ T1

0

∫

|z|<c

|h(s, Es, x, y, z) − h(x, y, z)|2v(dz)dEs ≤ λ3(T1)(|x|
2 + |y|2), (2.5)

where lim
T1→∞

λi(T1) = 0, i = 1, 2, 3. f : R
n×R

n → R
n, g : R

n×R
n → R

n×m, h : R
n×R

n×Z →

R
n are measurable functions.

Lemma 2.3 (Time-changed Gronwall’s inequality [20]) Suppose that D(t) is a β-stable

subordinator and that Et is the associated inverse stable subordinator. Let T > 0 and x, v :

Ω × [0, T ] → R+ be Ft-measurable functions which are integrable with respect to Et. Assume

that u0 ≥ 0 is a constant. Then, the inequality

x(t) ≤ u0 +

∫ t

0

v(s)x(s)dEs, 0 ≤ t ≤ T (2.6)

implies, almost surely, that x(t) ≤ u0 exp(
∫ t

0
v(s)dEs), 0 ≤ t ≤ T.

3 Main Results

In this section, we will study the averaging principle for stochastic differential equations

driven by time-changed Lévy noise with variable delays. The standard form of equation (1.1)

is

xǫ(t) = ξ(0) +

∫ t

0

f(
s

ǫ
, E s

ǫ
, xǫ(s−), xǫ(s − δ(s)))dEs +

∫ t

0

g(
s

ǫ
, E s

ǫ
, xǫ(s−), xǫ(s − δ(s)))dBEs

+

∫ t

0

∫

|z|<c

h(
s

ǫ
, E s

ǫ
, xǫ(s−), xǫ(s − δ(s)), z)Ñ(dEs, dz), (3.1)

with initial value xǫ(0) = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0]; Rn); the coefficients have the

same definitions and conditions as in Equation (1.1), and ǫ ∈ (0, ǫ0] is a positive parameter

with ǫ0 being a fixed number.

According to Khasminskii type averaging principle, we consider the following averaged

SDEs which correspond to the original standard form (3.1):

x̂(t) = ξ(0) +

∫ t

0

f(x̂(s−), x̂(s − δ(s)))dEs +

∫ t

0

g(x̂(s−), x̂(s − δ(s)))dBEs

+

∫ t

0

∫

|z|<c

h(x̂(s−), x̂(s − δ(s)), z)Ñ(dEs, dz). (3.2)

Here the measurable functions f , g, h satisfy Assumption 2.2.
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Theorem 3.1 Suppose that Assumptions 2.1 and 2.2 hold. Then, for a given arbitrarily

small number δ1 > 0, there exist L > 0, ǫ1 ∈ (0, ǫ0] and β ∈ (0, α − 1) such that, for any

ǫ ∈ (0, ǫ1],

E( sup
t∈[−τ,Lǫ−β]

|xǫ(t) − x̂(t)|2) ≤ δ1.

Proof For any t′ ∈ [0, T ], we have

xǫ(t′) − x̂(t′)

=

∫ t′

0

[f(
s′

ǫ
, E s′

ǫ

, xǫ(s′−), xǫ(s′ − δ(s′))) − f(x̂(s′−), x̂(s′ − δ(s′)))]dEs′

+

∫ t′

0

[g(
s′

ǫ
, E s′

ǫ

, xǫ(s′−), xǫ(s′ − δ(s′))) − g(x̂(s′−), x̂(s′ − δ(s′)))]dBEs′

+

∫ t′

0

∫

|z|<c

[h(
s′

ǫ
, E s′

ǫ

, xǫ(s′−), xǫ(s′ − δ(s′)), z) − h(x̂(s′−), x̂(s′ − δ(s′)), z)]Ñ(dEs′ , dz).

(3.3)

Letting s = s′

ǫ
, t = t′

ǫ
, we can rewrite (3.3) as

xǫ(ǫt) − x̂(ǫt)

= ǫα

∫ t

0

[f(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ))) − f(x̂(sǫ−), x̂(sǫ − δ(sǫ)))]dEs

+ ǫ
α
2

∫ t

0

[g(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ))) − g(x̂(sǫ−), x̂(sǫ − δ(sǫ)))]dBEs

+ ǫ
α
2

∫ t

0

∫

|z|<c

[h(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ)), z) − h(x̂(sǫ−), x̂(sǫ − δ(sǫ)), z)]Ñ(dEs, dz).

(3.4)

It follows from Jensen’s inequality that for any 0 < u < T , we have

E( sup
0≤tǫ≤u

|xǫ(ǫt) − x̂(ǫt)|2)

≤ 3ǫ2α
E( sup

0≤tǫ≤u

|

∫ t

0

[f(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ))) − f(x̂(sǫ−), x̂(sǫ − δ(sǫ)))]dEs|

2)

+ 3ǫα
E( sup

0≤tǫ≤u

|

∫ t

0

[g(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ))) − g(x̂(sǫ−), x̂(sǫ − δ(sǫ)))]dBEs

|2)

+ 3ǫα
E( sup

0≤tǫ≤u

|

∫ t

0

∫

|z|<c

[h(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ)), z)

− h(x̂(sǫ−), x̂(sǫ − δ(sǫ)), z)]Ñ(dEs, dz)|2)

=: I1 + I2 + I3. (3.5)

Now we present some useful estimates for Ii, i = 1, 2, 3. First, for the term I1, we have

I1 ≤ 6ǫ2α
E( sup

0≤tǫ≤u

|

∫ t

0

(f(s, Es, x
ǫ(sǫ−), xǫ(sǫ−δ(sǫ)))−f(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))))dEs|

2)

+ 6ǫ2α
E( sup

0≤tǫ≤u

|

∫ t

0

(f(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))) − f(x̂(sǫ−), x̂(sǫ − δ(sǫ))))dEs|
2)

=: I11 + I12.



No.2 G.J. Shen et al: AVERAGING PRINCIPLE FOR SDDES 545

By Assumption 2.1, Jensen’s inequality and the Cauchy-Schwarz inequality, we have

I11 = 6ǫ2α
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

(f(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ)))

− f(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))))dEs

∣∣∣
2)

≤ 6ǫ2α
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

ϕ(s)(|xǫ(sǫ−) − x̂(sǫ−)| + |xǫ(sǫ − δ(sǫ)) − x̂(sǫ − δ(sǫ))|)dEs

∣∣∣
2)

≤ 12ǫ2α
E

(
sup

0≤tǫ≤u

(∣∣∣
∫ t

0

ϕ(s)|xǫ(sǫ−) − x̂(sǫ−)|dEs

∣∣∣
2

+
∣∣∣
∫ t

0

ϕ(s)|xǫ(sǫ − δ(sǫ)) − x̂(sǫ − δ(sǫ))|dEs

∣∣∣
2))

≤ 12ǫ2αk2ET E

(
sup

0≤tǫ≤u

(∫ t

0

|xǫ(sǫ−) − x̂(sǫ−)|2dEs

+

∫ t

0

|xǫ(sǫ − δ(sǫ)) − x̂(sǫ − δ(sǫ))|2dEs

))

≤ 12ǫ2αk2ET

( ∫ u
ǫ

0

E

(
sup

0≤r≤s

|xǫ(rǫ) − x̂(ǫr)|2
)
dEs

+

∫ u
ǫ

0

E

(
sup

0≤r≤s

|xǫ(rǫ − δ(rǫ)) − x̂(rǫ − δ(rǫ))|2
)
dEs

)
. (3.6)

By Assumption 2.2, we can get

I12 = 6ǫ2α
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

(f(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))) − f(x̂(sǫ−), x̂(sǫ − δ(sǫ))))dEs

∣∣∣
2)

≤ 6ǫ2α sup
0≤tǫ≤u

{
t2λ2

1(t)E
(
( sup
0≤s≤t

|x̂(sǫ)| + sup
0≤s≤t

|x̂(sǫ − δ(sǫ))|)2
)}

≤ 12ǫ2α sup
0≤tǫ≤u

{
t2λ2

1(t)E
(

sup
0≤s≤t

|x̂(sǫ)|2 + sup
0≤s≤t

|x̂(sǫ − δ(sǫ))|2
)}

≤ 12ǫ2α−2u2C2
1E

{(
sup

0≤s≤ u
ǫ

|x̂(ǫs)|2 + sup
0≤s≤u

ǫ

|x̂(sǫ − δ(sǫ))|2
)}

. (3.7)

Second, for the term I2, we have

I2 = 3ǫα
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

[(g(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ))) − g(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))))

+ (g(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))) − g(x̂(sǫ−), x̂(sǫ − δ(sǫ))))]dBEs

∣∣∣
2)

≤ 6ǫα
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

(g(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ)))

− g(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))))dBEs

∣∣∣
2)

+ 6ǫα
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

(g(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))) − g(x̂(sǫ−), x̂(sǫ − δ(sǫ))))dBEs

∣∣∣
2)

=: I21 + I22.

By Assumption 2.1 and the Burkholder-Davis-Gundy inequality (Jin and Kobayashi [6]), we
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have

I21 = 6ǫα
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

(g(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ)))

− g(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ))))dBEs

∣∣∣
2)

≤ 6ǫαk2b2E

( ∫ u
ǫ

0

(|xǫ(ǫt−) − x̂(tǫ−)| + |xǫ(tǫ − δ(tǫ)) − x̂(tǫ − δ(tǫ))|)2dEt

)

≤ 12ǫαk2b2

(∫ u
ǫ

0

E

(
sup

0≤r≤s

|xǫ(rǫ) − x̂(rǫ)|2
)
dEs

+

∫ u
ǫ

0

E

(
sup

0≤r≤s

|xǫ(rǫ − δ(rǫ)) − x̂(r − δ(r))|2
)
dEs

)
, (3.8)

where the positive constant b2 comes from [6]. According to Assumption 2.2 and the Burkholder-

Davis-Gundy inequality, we have

I22 =6ǫα
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

(g(s, Es, x̂(sǫ−), x̂(s − δ(s))) − g(x̂(sǫ−), x̂(s − δ(s))))dBEs

∣∣∣
2)

≤6ǫαb2E

( ∫ u
ǫ

0

|g(s, Es, x̂(sǫ−), x̂(s − δ(s))) − g(x̂(sǫ−), x̂(s − δ(s)))|2dEs

)

≤6ǫα−1b2C2E

(
sup

0≤s≤ u
ǫ

|x̂(sǫ)|2 + sup
0≤s≤u

ǫ

|x̂(sǫ − δ(sǫ))|2
)
. (3.9)

Finally, for the term I3, by Doob’s martingale inequality and Itô isometry, we have

I3 = 3ǫα
E

(
sup

0≤tǫ≤u

∣∣∣
∫ t

0

∫

|z|<c

[h(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ)), z)

− h(x̂(sǫ−), x̂(s − δ(s)), z)]Ñ(dEs, dz)
∣∣∣
2)

≤ 12ǫα
E

∣∣∣
∫ u

ǫ

0

∫

|z|<c

[h(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ)), z)

− h(x̂(sǫ−), x̂(s − δ(s)), z)]Ñ(dEs, dz)
∣∣∣
2

≤ 24ǫα
E

∫ u
ǫ

0

∫

|z|<c

|h(s, Es, x
ǫ(sǫ−), xǫ(sǫ − δ(sǫ)), z)

− h(s, Es, x̂(sǫ−), x̂(s − δ(s)), z)|2v(dz)dEs

+ 24ǫα
E

∫ u
ǫ

0

∫

|z|<c

|h(s, Es, x̂(sǫ−), x̂(s − δ(s)), z)

− h(x̂(sǫ−), x̂(s − δ(s)), z)|2v(dz)dEs

=: I31 + I32.

By Assumption 2.1, we have

I31 ≤ 24ǫα
E

∫ u
ǫ

0

ϕ(s)(|xǫ(sǫ−) − x̂(sǫ−)|2 + |xǫ(sǫ − δ(sǫ)) − x̂(s − δ(s))|2)dEs

≤ 24ǫαk
(∫ u

ǫ

0

E

(
sup

0≤r≤s

|xǫ(rǫ) − x̂(rǫ)|2
)
dEs

+

∫ u
ǫ

0

E

(
sup

0≤r≤s

|xǫ(rǫ − δ(rǫ)) − x̂(r − δ(r))|2
)
dEs

)
. (3.10)



No.2 G.J. Shen et al: AVERAGING PRINCIPLE FOR SDDES 547

By Assumption 2.2, we have

I32 = 24ǫα
E

∫ u
ǫ

0

∫

|z|<c

|h(s, Es, x̂(sǫ−), x̂(sǫ − δ(sǫ)), z)

− h(x̂(sǫ−), x̂(sǫ − δ(sǫ)), z)|2v(dz)dEs

≤ 24ǫα−1uC3E

(
sup

0≤s≤u
ǫ

|x̂(sǫ)|2 + sup
0≤s≤u

ǫ

|x̂(sǫ − δ(sǫ))|2
)
. (3.11)

Consequently, combining (3.6)-(3.11), we have

E

(
sup

0≤tǫ≤u

|xǫ(tǫ) − x̂(tǫ)|2
)

≤
(
12ǫ2α−2u2C2

1 + 6ǫα−1b2uC2 + 24ǫα−1uC3

)
E

(
sup

0≤tǫ≤u

|x̂(ǫt)|2 + sup
0≤tǫ≤u

|x̂(tǫ − δ(tǫ))|2
)

+ (12ǫ2αk2ET + 12ǫ2αk2b2 + 24ǫαk)
( ∫ u

ǫ

0

E

(
sup

0≤r≤s

|xǫ(ǫr) − x̂(ǫr)|2
)
dEs

+

∫ u
ǫ

0

E

(
sup

0≤r≤s

|xǫ(rǫ − δ(rǫ)) − x̂(rǫ − δ(rǫ))|2
)
dEs

)
. (3.12)

Set

Λ
(u

ǫ

)
:= E

(
sup

0≤t≤u
ǫ

|xǫ(tǫ) − x̂(tǫ)|2
)
.

Observe that E( sup
−τ≤t≤0

|xǫ(t) − x̂(t)|2) = 0. Then, we have

E

(
sup

0≤r≤s

|xǫ(rǫ − δ(rǫ)) − x̂(rǫ − δ(rǫ))|2
)

= Λ(s − δ(s)). (3.13)

Thus, inequality (3.12) can be reformulated as follows:

Λ(
u

ǫ
) ≤

(
12ǫ2α−2u2C2

1 + 6ǫα−1b2uC2 + 24ǫα−1uC3

)

× E

(
sup

0≤tǫ≤u

|x̂(tǫ)|2 + sup
0≤tǫ≤u

|x̂(tǫ − δ(tǫ))|2
)

+ (12ǫ2αk2ET + 12ǫ2αk2b2 + 24ǫαk)
( ∫ u

ǫ

0

Λ(s)dEs +

∫ u
ǫ

0

Λ(s − δ(s))dEs

)
. (3.14)

Next, we let Θ(u) := sup
θ∈[−τ,u]

Λ(θ), for every u ∈ [0, T ], then Λ(s) ≤ Θ(s) and Λ(s−δ(s)) ≤ Θ(s).

Thus,

Λ(
u

ǫ
) ≤

(
12ǫ2α−2u2C2

1 + 6ǫα−1b2uC2 + 24ǫα−1uC3

)

× E

(
sup

0≤tǫ≤u

|x̂(tǫ)|2 + sup
0≤tǫ≤u

|x̂(tǫ − δ(tǫ))|2
)

+ 2(12ǫ2αk2ET + 12ǫ2αk2b2 + 24ǫαk)

∫ u
ǫ

0

Θ(s)dEs. (3.15)

Then,

Θ(
u

ǫ
) = sup

θ∈[−τ, u
ǫ
]

Λ(θ) ≤ max
{

sup
θ∈[−τ,0]

Λ(θ), sup
θ∈[0, u

ǫ
]

Λ(θ)
}

≤
(
12ǫ2α−2u2C2

1 + 6ǫα−1b2uC2 + 24ǫα−1uC3

)

× E

(
sup

0≤tǫ≤u

|x̂(tǫ)|2 + sup
0≤tǫ≤u

|x̂(tǫ − δ(tǫ))|2
)
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+ 2(12ǫ2αk2ET + 12ǫ2αk2b2 + 24ǫαk)

∫ u
ǫ

0

Θ(s)dEs. (3.16)

By using the time-changed Gronwall’s inequality, we get

Θ(
u

ǫ
) ≤

(
12ǫ2α−2u2C2

1 + 6ǫα−1b2uC2 + 24ǫα−1uC3

)

× E

(
sup

0≤tǫ≤u

|x̂(tǫ)|2 + sup
0≤tǫ≤u

|x̂(tǫ − δ(tǫ))|2
)
e
2(12ǫ2αk2ET +12ǫ2αk2b2+24ǫαk)E u

ǫ . (3.17)

Furthermore, we have

E

(
sup

0≤tǫ≤u

|xǫ(tǫ) − x̂(tǫ)|2
)
≤

(
12ǫ2α−2u2C2

1 + 6ǫα−1b2uC2 + 24ǫα−1uC3

)

× E

(
sup

0≤tǫ≤u

|x̂(tǫ)|2 + sup
0≤tǫ≤u

|x̂(tǫ − δ(tǫ))|2
)

× e2(12ǫαk2ET +12ǫαk2b2+24k)ET . (3.18)

Select β ∈ (0, α − 1) and L > 0 such that, for any t ∈ [0, Lǫ−β−1] ⊆ [0, T
ǫ
], we have

E

(
sup

0≤tǫ≤Lǫ−β

|xǫ(tǫ) − x̂(tǫ)|2
)
≤ ξǫα−β−1, (3.19)

where we have the constant

ξ :=
(
12L2ǫα−β−1C2

1 + 6b2LC2 + 24LC3

)

× E

(
sup

0≤tǫ≤Lǫ−β

|x̂(tǫ)|2 + sup
0≤tǫ≤Lǫ−β

|x̂(tǫ − δ(tǫ))|2
)
e2(12ǫαk2ET +12ǫαk2b2+24k)ET .

Consequently, for any given δ1 > 0, there exists a ǫ1 ∈ (0, ǫ0] such that, for each ǫ ∈ (0, ǫ1] and

t ∈ [−τ, Lǫ−β],

E

(
sup

−τ≤t≤Lǫ−β

|xǫ(t) − x̂(t)|2
)
≤ δ1. (3.20)

This completes the proof. �

Remark 3.2 We would like to point out that the classical stochastic averaging principle

for SDEs driven by Brownian motion deals with the time interval [0, ǫ−1], while what we have

discussed here was a strictly shorter time horizon [0, ǫ−β] ⊂ [0, ǫ−1] for β ∈ (0, α − 1). In

other words, the order of convergence here is ǫ−β, which is weaker than the classical order of

convergence ǫ−1. Thus, our averaging principle is a weaker averaging principle. This weaker

type averaging principle has been examined for various SDEs by many authors. Essentially,

this is due to the fact that the regularity of trajectories of the solutions of SDEs with more

general noises is weaker than that of the solutions of SDEs driven by Brownian motion. It is

clear that the classical averaging principle for our equation cannot be derived by the method we

used here. Of course, to establish a classical averaging principle for our equation is interesting

but challenging, so one needs to seek an entirely new approach. We postpone this task to a

future work.
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4 Example

We consider the stochastic differential equations driven by time-changed Lévy noise with

time-delays:

dxǫ(t) = ǫα(xǫ cos2(Et) − Etxǫ sin(Et − 1))dEt + ǫ
α
2 λdBEt

+ ǫ
α
2

∫

|z|<c

1Ñ(dEt, dz) (4.1)

for t ∈ [0, T ], with initial value xǫ(t) = 1 + t, t ∈ [−1, 0], v(z)dz = |z|−2 and λ ∈ R; here

f(t, Et, xǫ(t), xǫ(t − τ)) = xǫ cos2(Et) − Etxǫ sin(Et − 1),

g(t, Et, xǫ(t), xǫ(t − τ)) = λ, h(t, Et, xǫ(t), xǫ(t − τ), z) = 1.

Let

f(x̂(s), x̂(s − τ)) =

∫ 1

0

f(t, Et, xǫ(t), xǫ(t − τ))dEt

=
(1

2
E1 +

sin 2E1

4
+ E1 cos(E1 − 1) − sin(E1 − 1)

)
xǫ,

and

g(x̂(s), x̂(s − τ)) = λ, h(x̂(s), x̂(s − τ), z) = 1.

We have the following corresponding averaged stochastic differential equations driven by time-

changed Lévy noise with variable delays:

dx̂(t) = ǫα
(1

2
E1 +

sin 2E1

4
+ E1 cos(E1 − 1) − sin(E1 − 1)

)
x̂dEt

+ ǫ
α
2 λdBEt

+ ǫ
α
2

∫

|z|<c

1Ñ(dEt, dz). (4.2)

Define the error Err = [|xǫ(t) − xǫ(t)|
2]

1
2 . We carry out the numerical simulation to get the

solutions (4.1) and (4.2) under the conditions that α = 1.2, ǫ = 0.001, λ = 1 and α = 1.2,

ǫ = 0.001, and λ = −1 (Figure 1 and Figure 2). One can see a good agreement between the

solutions of the original equation and the averaged equation.
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Figure 1 Comparison of the original solution Figure 2 Comparison of the original solution

xǫ(t) with the averaged solution xǫ(t) with the averaged solution

x̂(t) with ǫ = 0.001, λ = 1 x̂(t) with ǫ = 0.001, λ = −1



550 ACTA MATHEMATICA SCIENTIA Vol.42 Ser.B

References
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