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Abstract This paper consider the penalized least squares estimators with convex penalties

or regularization norms. We provide sparsity oracle inequalities for the prediction error for a

general convex penalty and for the particular cases of Lasso and Group Lasso estimators in

a regression setting. The main contribution is that our oracle inequalities are established for

the more general case where the observations noise is issued from probability measures that

satisfy a weak spectral gap (or Poincaré) inequality instead of Gaussian distributions. We

illustrate our results on a heavy tailed example and a sub Gaussian one; we especially give

the explicit bounds of the oracle inequalities for these two special examples.
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1 Introduction

High-dimensional statistical models have been thoroughly studied in recent research and

literatures. In particular, penalized Least Square (LS) estimators have been proposed and

extensively investigated; for example the ℓ1 norm penalized estimator LASSO and its extensions.

A common feature of these estimators is the fact that the penalty is a norm satisfying some

specific decomposability conditions. As shown in [5], the two main ingredients of the analysis are

based on the restricted eigenvalue compatibility property, and the empirical process bounding
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the stochastic error. With this approach, several techniques have been proposed for a unified

treatment of LS estimators with decomposable penalties, a wide overview can be found in

[8, 13, 15]. Classical results were derived via oracle inequalities depending on unspecified

compatibility parameters. On the other hand the penalties (and thus, the estimators) depend

on the distribution with which the oracle inequality holds. To overcome these problems, a

tentative for a general solution was achieved by the small ball method see for instance [10, 12].

Under Gaussian noise, many results have been established for the sparsity oracle inequalities

for LASSO estimators in different situations: (1) the fixed design case [1, 3–6, 8, 9] (2) results

based on confidence level tied to the tuning parameter see for instance [5, 6, 8, 9] (3) in the case

where the noise are i.i.d. sub-exponential. For instance, in [3, 14], sparsity oracle inequalities

for the LASSO estimators are obtained in random design regression especially when all entries

of the design matrix are i.i.d. standard Gaussian independent of the observations errors. In

this work, we consider the classical general framework of regression model. Using the same

notations as in [1, 8] it is expressed by the following:

Y = f + ξ. (1.1)

We assume in this paper that the distribution of the noise random vector ξ satisfies a weak

spectral gap inequality. Following the definition and notations in [2, 7], a probability measure

µ satisfies a weak spectral gap (or a weak Poincaré) inequality if there exists a function γ :

(0,+∞) −→ R+ such that every locally lipschitz function h : M −→ R satisfies for all s > 0

the inequality:

Varµ(h) ≤ γ(s)

∫
|∇h|2 dµ+ sOsc(h)2, (1.2)

where Osc(h) = suph − inf h is the total oscillation of the function h. We place ourselves in

high-dimensional statistics setting, by considering a design matrix X ∈ Rn×p with p >> n. We

consider to generalize, to Hilbert spaces, the following classical estimation problem of f by Xβ̂

where:

β̂ ∈ arg min
β∈Rp

‖Y− Xβ‖2
n + F (β). (1.3)

The empirical norm ‖·‖n is defined by ‖u‖2
n = 1

n

n∑
i=1

u2
i and F : Rp → R+ is a convex penalty

function.

The main result of this paper, is to derive oracle inequalities for the prediction error of

the penalized estimator β̂ (1.3) under the assumption that the noise random vector ξ in (1.1)

follows a probability measure that satisfies a weak spectral gap inequality [2]. Our result is

based on a compatibility constant defined as follows:

µ̄c0(β) = inf




µ > 0 :
1

c0
×
c0 |Pβu|1 −

∣∣∣P⊥
β u
∣∣∣
1

‖Xu‖n
≤ µ, ∀u ∈ Rp :

∣∣P⊥
β u
∣∣
1
≤ c0 |Pβu|1




 . (1.4)

It is a modified version of the so-called compatibility that have been introduced in [1, 8]:

µc0(β) = inf
{
µ > 0 : ‖Pβu‖ ≤ µ ‖Xu‖n , ∀u :

∥∥P⊥
β u
∥∥ ≤ c0 ‖Pβu‖

}
,

where Pβ is an operator associated with the linear span{β} and verifying a decomposabil-

ity condition given bellow in Assumption 2.1; as an example we use orthogonal projector for
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LASSO application. Without loss of generality, we illustrate our result on regression model

(1.1) where the noise vector ξ follow a heavy tailed distribution expressed as the product mea-

sure of dµα(t) = α(1+|t|)−1−α

2 dt for α > 2 which satisfies a weak spectral gap inequality with

γ(s) = cα(s/n)−2/α, s ∈ (0, 1/4) [2, 7, Example 5.3]. Furthermore, in LASSO setting, we es-

tablish an explicit upper bound for the compatibility constant depending on the sparsity s and

κ the maximal correlation between columns of X; namely µc0(β) ≤ s
1−κs . We then provide the

explicit oracle inequality;
∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ 32((2pcαn)1/α+
√
nā)

2
s

n(1−2
√
κs)2

. The main difference

from works known in literature is that our oracle inequalities are obtained under non-Gaussian

distribution satisfying the weak Poincaré inequality. Moreover, in contrast to classical results,

we provide an explicit upper bound of the compatibility constant in the oracle inequality for

LASSO and group LASSO estimator.

2 Statement of the Problem and Preliminary Results

Let H be a Hilbert space with inner product 〈., .〉 and its corresponding norm ‖.‖H. Let B

a closed convex subset of H. We will be interested in a regression problem as in (1.1) where

f ∈ Rn is an unknown deterministic mean and ξ ∈ Rn is a random noise vector. Let P be the

probability distribution of ξ satisfying a weak spectral gap inequality with function γ defined

in (1.2). We focus on estimates of f having the form Xβ̂ where β̂ ∈ B is data determined like

in (1.3). The matrix X represents a linear operator from H → Rn. We aim to investigate the

prediction performances of the estimator β̂ defined as the solution of the problem minimization:

β̂ ∈ arg min
β∈B

‖Y− Xβ‖2
n + F (β), (2.1)

where F : H → R+ is a convex penalty function.

2.1 Preliminary results

We expose here, two propositions giving the key ingredients for the proof of our main

result. The first proposition, based on convexity argument and some simple algebra, provide a

deterministic bound of the prediction error in terms of ‖Xβ − f‖2
n up to an additional random

term.

Proposition 2.1 If β̂ is a solution of the minimization problem (2.1), Then β̂ satisfies,

for all β ∈ B and for all f ∈ Rn,
∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ 2

n
ξTX(β̂ − β) + F (β) − F (β̂) −

∥∥∥X(β̂ − β)
∥∥∥

2

n
. (2.2)

Proof The proof mainly relies on the sub-differentials and optimality condition of convex

functions and some simple algebra. For detailed and a complete proof see for instance [1,

Proposition 3.2]. �

The second proposition provides an upper bound of the random quantity 1
nξ

TX(β̂−β) that

holds with large enough probability.

Proposition 2.2 Let P satisfies a weak spectral gap inequality (1.2) with a function γ.

Let h : H → [0,+∞[ be a positive homogeneous mapping and let τ > 0. Denote the event:

Ω =

{
sup

u∈H:h(u)≤1

1

n
ξTXu ≤ τ

}
, (2.3)
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and assume it to satisfy P(Ω) ≥ 1
2 . Then, for any constants k ≥ 1, c ≥ 0 and s ∈ (0, 1/4), we

have

P

(
∀u ∈ H :

1

n
ξTXu ≤ (τ + k)max (h(u), c ‖Xu‖n)

)
≥ 1 − 3Θ(kc

√
n), (2.4)

where Θ(x) = inf
{
s ∈ (0, 1/4); exp

(
−x

4
√
γ(s)

)
≤ s
}

vanishes when x goes to infinity.

Proof The proof of this proposition is a modified version of the one discussed in the case

of Gaussian errors in [1, Proposition 3.1]. Indeed by using the homogeneity of the map h one

can suppose, without loss of generality, that:

max (h(u), c ‖Xu‖n) = 1. (2.5)

Define the function f : Rn → R and the subset T ⊂ H as follows:

f(ξ) = sup
u∈T

1

n
ξTXu and T = {u ∈ H : max (h(u), c ‖Xu‖n) ≤ 1} .

It is easy to verify that, for every ξ1, ξ2 ∈ Rn, we have,

|f(ξ1) − f(ξ2)| ≤
1

c
√
n
‖ξ1 − ξ2‖2 .

By the concentration inequality [2, Theorem 5.3] and the fact that f is a 1
c
√
n
-Lipschitz function,

we have with probability at least 1 − 3Θ(kc
√
n),

sup
u∈T

1

n
ξTXu ≤ Med

(
sup
u∈T

1

n
ξTXu

)
+ k ≤ Med

(
sup

u∈H:h(u)≤1

1

n
ξTXu

)
+ k,

where Θ(u) = inf
{
s ∈ (0, 1/4); exp

(
−u

4
√
γ(s)

)
≤ s

}
tends to 0 when u tends to infinity. The

notation Med(Z) states for the median of the random variable Z.

Assume that P

(
sup

u∈H:h(u)≤1

1
nξ

TXu ≤ τ
)
≥ 1/2, then the median of sup

u∈H:h(u)≤1

1
nξ

TXu can

be bounded from above by τ . Using (2.5) combined with the homogeneity property, we deduce

that, with probability at least 1 − 3Θ(kc
√
n),

∀u ∈ H, 1

n
ξTXu ≤ (τ + k)max (h(u), c ‖Xu‖n) ,

which achieves the proof. �

2.2 Main assumptions of decomposability and compatibility

Consider the linear operator X : H → Rn defined by the relation:

Xβ = (〈β,X1〉 , · · · , 〈β,Xn〉)T , ∀β ∈ H, (2.6)

where X1, · · · , Xn are deterministic elements of H. The convex penalty F : H → R is taken

proportional, with a tunning parameter λ > 0, to a regularization norm:

F (β) = λ ‖β‖ .

The estimator β̂ introduced in (2.1) becomes then:

β̂ ∈ argmin
β∈B

‖Xβ − y‖2
n + λ ‖β‖ . (2.7)

Before establishing our main results, we recall two other important ingredients under which

oracle inequalities are obtained namely the decomposability assumptions of the regularization

norm and the compatibility factor.



2202 ACTA MATHEMATICA SCIENTIA Vol.41 Ser.B

• Decomposability assumption and consequences Let A be a subset of H for which we

associate a linear operator PA : H → H and P⊥
A

= I − PA where I is the identity operator.

Assumption 2.1 We suppose that there exists a subset A of B such that:

PAA = A, ∀A ∈ A and ‖A‖ +
∥∥P⊥

AB
∥∥ = ‖B + PA(A−B)‖ , ∀A ∈ A, ∀B ∈ H.

The last assumption has been also discussed in [1, Assumption 4.2]. One can see easily

that, for the ℓ1 regularization norm, the decomposability assumption is satisfied when the linear

operator PA is an orthogonal projector. As a consequence of the decomposability Assumption

2.1, we have the following triangular property:

Corollary 2.3 The above Assumption 2.1 implies the following triangular property:

PAA = A, ∀A ∈ A and ‖A‖ − ‖B‖ ≤ ‖PA(A−B)‖ −
∥∥P⊥

AB
∥∥ . (2.8)

This corollary has been discussed also in [1, Assumption 4.1]. In the case of ℓ1 regularization

norm, the decomposability assumption and triangular property are defined differently in [8,

Paragraph 2.5].

• Compatibility factor assumption Another main ingredient for the proof of our main

result is the compatibility factor [1]. For any A ∈ H and for any constant c0 ≥ 0, define the

following cone in B as follows:

CA,c0 =
{
B ∈ B :

∥∥∥PA
⊥B
∥∥∥ ≤ c0 ‖PAB‖

}
.

The compatibility factor associated to the cone CA,c0 is the quantity:

µc0(A) = inf {µ > 0 : ‖PAB‖ ≤ µ ‖XB‖n , ∀B ∈ CA,c0} . (2.9)

3 Main Results and Oracle Inequalities

The next theorem states our main result in the case of distributions verifying the spectral

gap inequality.

Theorem 3.1 Let P satisfies a weak spectral gap inequality with function γ. Assume

that Assumption 2.1 holds. Let τ > 0 and suppose that Ω defined in (2.3) satisfies P(Ω) ≥ 1
2 .

Let k ≥ 1, c ≥ 0 and λ ≥ 2(τ + k). Then, the estimator β̂ (2.7) satisfies with probability at

least 1 − 3Θ(kc
√
n),

∥∥∥Xβ̂ − f
∥∥∥

2

n
≤ inf
β∈A

[
‖Xβ − f‖2

n +
(λ + 2 (τ + k))2

4
µ2
c0(β)

]
+

(λ + 2(τ + k))2c2

4
, (3.1)

where Θ(u) = inf
{
s ∈ (0, 1/4); exp

(
−u

4
√
γ(s)

)
≤ s
}

goes to 0 when u goes to infinity.

Proof Let us consider the positive simple function h(u) = ‖u‖. Combining the two

inequalities from Proposition 2.1 and Proposition 2.2, we get with probability at least 1 −
3Θ(kc

√
n)

∥∥∥Xβ̂ − f
∥∥∥

2

n
− ‖Xβ − f‖2

n ≤ 2 (τ + k)max (‖u‖ , c ‖Xu‖n) + λ ‖β‖ − λ
∥∥∥β̂
∥∥∥− ‖Xu‖2

n ,

where u = β̂ − β. For the rest of the proof we distinguish three cases:
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Case 1 β ∈ A such that ‖u‖ < c ‖Xu‖n. This will imply that,
∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ 2(τ + k)c ‖Xu‖n + λ ‖β‖ − λ
∥∥∥β̂
∥∥∥− ‖Xu‖2

n .

By using the triangle inequality λ ‖β‖ − λ
∥∥∥β̂
∥∥∥ ≤ λ

∥∥∥β̂ − β
∥∥∥ and ‖u‖ < c ‖Xu‖n,

∥∥∥Xβ̂ − f
∥∥∥

2

n
− ‖Xβ − f‖2

n ≤ 2(τ + k)c ‖Xu‖n + λc ‖Xu‖n − ‖Xu‖2
n

≤ (2(τ + k) + λ)c ‖Xu‖n − ‖Xu‖2
n

using inequality 2ab ≤ a2 + b2 we obtain,
∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ (2(τ + k) + λ)2c2

4
+ ‖Xu‖2

n − ‖Xu‖2
n

≤ (2(τ + k) + λ)2c2

4
. (3.2)

Thus inequality (3.1) is satisfied.

Case 2 β ∈ A such that ‖u‖ > c ‖Xu‖n. Then,
∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ 2(τ + k) ‖u‖ + λ ‖β‖ − λ
∥∥∥β̂
∥∥∥− ‖Xu‖2

n (3.3)

Assumption 2.1 with A = β and B = β̂ allow to write,

‖β‖ −
∥∥∥β̂
∥∥∥ ≤

∥∥∥Pβ(β − β̂)
∥∥∥−

∥∥∥P⊥
β β̂
∥∥∥ ,

and the triangle inequality implies,
∥∥∥β̂ − β

∥∥∥ =
∥∥∥Pβ(β̂ − β) + P⊥

β (β̂ − β)
∥∥∥ ≤

∥∥∥Pβ(β̂ − β)
∥∥∥+

∥∥∥P⊥
β (β̂ − β)

∥∥∥ .

Combining the last two inequalities and (3.3), we obtain
∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ (λ+ 2(τ + k)) ‖Pβu‖ − (λ− 2(τ + k))
∥∥P⊥

β u
∥∥− ‖Xu‖2

n . (3.4)

Case 2.1 β ∈ A such that ‖u‖ > c ‖Xu‖n and

(λ+ 2(τ + k)) ‖Pβu‖ < (λ− 2(τ + k))
∥∥P⊥

β u
∥∥ .

In view of inequality (3.4) we get,
∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ 0

and ∥∥∥Xβ̂ − f
∥∥∥

2

n
≤ ‖Xβ − f‖2

n (3.5)

which implies that inequality (3.1) holds.

Case 2.2 β ∈ A such that ‖u‖ > c ‖Xu‖n and

(λ− 2(τ + k))
∥∥P⊥

β u
∥∥ < (λ+ 2(τ + k)) ‖Pβu‖ .

Then u belongs to the cone Cβ,c0 =
{
u ∈ H :

∥∥∥P⊥
β u
∥∥∥ ≤ c0 ‖Pβu‖

}
where c0 = λ+2(τ+k)

λ−2(τ+k) .

We use the compatibility factor associated to Cβ,c0 ,

µc0(β) = inf
{
µ > 0 : ‖Pβu‖ ≤ µ ‖Xu‖n ,

∀u ∈ H : 0 ≤ (λ+ 2 (τ + k)) ‖Pβu‖ − (λ− 2 (τ + k))
∥∥P⊥

β u
∥∥
}
,
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so that ‖Pβu‖ ≤ µc0(β) ‖Xu‖n. This and inequality (3.4) yield,

∥∥∥Xβ̂ − f
∥∥∥

2

n
− ‖Xβ − f‖2

n ≤ (λ+ 2 (τ + k)) ‖Pβu‖ − ‖Xu‖2
n

≤ (λ+ 2 (τ + k))µc0(β) ‖Xu‖n − ‖Xu‖2
n .

Using the obvious inequality 2ab < a2 + b2

∥∥∥Xβ̂ − f
∥∥∥

2

n
− ‖Xβ − f‖2

n ≤ (λ+ 2 (τ + k))2

4
µ2
c0(β) + ‖Xu‖2

n − ‖Xu‖2
n

≤ (λ+ 2 (τ + k))2

4
µ2
c0(β). (3.6)

This achieves the proof of inequality (3.1). �

In the following we describe direct applications of Proposition 2.2 and Theorem 3.1, by

investigating two examples of distributions verifying the spectral gap inequality (1.2). The

first one is issued from the heavy tailed family obtained from the product of the probability

distribution dµα(t) = α(1+|t|)−1−α

2 dt. The second example is from the sub-exponential family

as a product of measures of the form, dνr = dre
−|t|rdt, ∀ r ∈ (0, 1).

• A heavy tailed example We consider on Rn, the distribution P issued from the product

probability measure of

dµα(t) =
α(1 + |t|)−1−α

2
dt for α > 2. (3.7)

This measure satisfies a weak spectral gap inequality with,

γ(s) = cα

( s
n

)−2/α

, for s ∈ (0,
1

4
).

For more details see discussions in [2, Example 3.5]. Let h : H → [0,+∞[ be a positive

homogeneous mapping and let τ > 0. Assume that the event Ω defined in (2.3) satisfies

P(Ω) ≥ 1
2 . Then, there exists constants t0(α) > e and C(α) such that tc

√
n

n
1
α

≥ t0(α) and by

applying, Proposition 2.2 for c ≥ 0, we have:

P

(
∀u ∈ H :

1

n
ξTXu ≤ (τ + t)max (h(u), c ‖Xu‖n)

)
≥ 1 − 1

2
C(α)




log( tc

√
n

n
1
α

)

tc
√
n

n
1
α




α

.

We deduce then, by applying Theorem 3.1 that the estimator β̂ (2.7) satisfy with probability

at least 1 − 1
2C(α)

(
log( tc

√
n

n
1
α

)

tc
√

n

n
1
α

)α

∥∥∥Xβ̂ − f
∥∥∥

2

n
≤ inf
β∈A

[
‖Xβ − f‖2

n +
(λ+ 2 (τ + t))2

4
µ2
c0(β)

]
+

(λ + 2(τ + t))2c2

4
. (3.8)

• A sub-exponential example In this case, we consider P as the product of the probability

measure,

dνr = dre
−|t|rdt, (3.9)

where the exponent r is in (0, 1), and the positive quantity dr =
2Γ( 1

r )

r is a norming constant

such that
∫

e−|t|rdt = 1. This measure satisfies also a weak spectral gap inequality with:

γ(s) = kr

(
log(

2n

s
)

)(2/r)−s
, s ∈ (0, 1/4).
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For more details see for instance [2, Example 5.4]. Let h : H → [0,+∞[ be a positive homoge-

neous mapping and let τ > 0. We suppose that Ω satisfies P(Ω) ≥ 1
2 . Then, for k ≥ 0, c ≥ 0

and r ∈ (0, 1), we have

P

(
∀u ∈ H :

1

n
ξTXu ≤ (τ + k)max (h(u), c ‖Xu‖n)

)
≥ 1−5 exp

(
−crkc

√
n

max ((kc
√
n)r, logn)

1/r−1

)
,

where cr is a constant depending only on r. In particular, for a fixed ǫ, a large n, and k verifying

k ≥ cr(log 10
ǫ )(logn)

1
r −1, we have:

P

(
∀u ∈ H :

1

n
ξTXu ≤

(
τ +

k

c
√
n

)
max (h(u), c ‖Xu‖n)

)
≥ 1 − ǫ

2
.

In this example, the estimator β̂ given by the minimization problem (2.7) satisfies with

probability at least 1 − 5 exp

(
−crkc

√
n

max((kc
√
n)r,logn)1/r−1

)
,

∥∥∥Xβ̂ − f
∥∥∥

2

n
≤ inf

β∈A

[
‖Xβ − f‖2

n +
(λ+ 2 (τ + k))2

4
µ2
c0(β)

]
+

(λ+ 2(τ + k))2c2

4
. (3.10)

In particular, for λ ≥ 2(τ + k
c
√
n
), then with probability at least 1 − ǫ

2 ,

∥∥∥Xβ̂ − f
∥∥∥

2

n
≤ inf

β∈A


‖Xβ − f‖2

n +
(λ+ 2

(
τ + k

c
√
n

)
)2

4
µ2
c0(β)


 +

(λ+ 2(τ + k
c
√
n
))2c2

4
.

4 Application to the Classical LASSO and Group LASSO

We use the same notations as in [1]; we denote | . |q for the ℓq norm of a finite dimensional

vector, 1 ≤ q ≤ ∞. The support of β will be denoted supp(β) = {j : βj 6= 0}. If (ej)j=1,··· ,p
is the canonical basis of Rp, then βS will denote the orthogonal projection of β onto the linear

span of {ej : j ∈ S} for S ⊂ {1, · · · , p}.

4.1 Application to LASSO

In this case H = B = Rp equipped with the Euclidean norm ‖ . ‖H = | . |2. The penalty

function is given by ‖ . ‖ the ℓ1 norm. Then the estimator β̂ defined in (2.7) is the LASSO

estimator

β̂ ∈ argmin
β∈Rp

‖Xβ − y‖2
n + λ |β|1 , (4.1)

where λ > 0 is a tuning parameter. For β ∈ Rp, we consider the decomposability conditions with

Pβ, the orthogonal projection operator onto the linear span of {ej : j ∈ supp(β)}. Following a

similar argument as in [1] or [3, 8], one can show, using the duality between ℓ1 and ℓ∞ norms,

that for LASSO setting the set Ω defined in (2.3), becomes:

Ω =

{
sup

u∈Rp:|u|1≤1

1

n
ξTXu ≤ τ

}
=

{
sup

u∈Rp:|u|1≤1

1

n
(XT ξ)Tu ≤ τ

}
=

{
1

n

∣∣XT ξ
∣∣
∞ ≤ τ

}
.

In the following we recall that, in the LASSO setting, the Assumption 2.1 holds for the

orthogonal projection operator.
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4.2 Upper bound of the compatibility factor

In this section we state a close form for the upper bound of the compatibility factor µc0(β).

For this purpose, we need the following results:

Lemma 4.1 In the LASSO setting, with a, τ and t verifying conditions of Theorem 3.1,

we have the following:

1. For the orthogonal projector operator Pβ, the Assumption 2.1 is satisfied.

2. The modified compatibility factor we defined in (1.4) can be expressed as follows:

µ̄c0(β) =
λ− a

λ+ a
sup

u∈Rp:|P⊥
β u|1≤c0|Pβu|1

c0 |Pβu|1 −
∣∣∣P⊥
β u
∣∣∣
1

‖Xu‖n
,

where a = 2(τ + t) and c0 = λ+a
λ−a . It is bounded by the classical compatibility factor given in

[1] as follows:

µ̄c0(β) ≤ µc0(β). (4.2)

3. We assume the empirical norm of the columns Xej are normalized (i.e., ‖Xej‖n = 1,

∀ 1 ≤ j ≤ p), and we write κ = sup
1≤i6=j≤p

|〈Xei,Xej〉|
n , the maximal correlation between columns

in X ∈ Rn×p. For all u ∈ Rp, we have:

‖Xu‖2
n ≥ |u|22 − κ |u|21 .

Proof We use a similar argument as in [1, 3] to verify the decomposability assumptions

2.1.

1. For β ∈ Rp, by definition Pβ = Proj{ej:j∈supp(β)} where supp(β) = {j : βj 6= 0}, we have

Pββ =

p∑

j=1

βjProj{ej:j∈supp(β)}ej =

p∑

j=1

βjej11{j∈supp(β)} =
∑

j∈supp(β)

βjej = β,

consider β́ =
p∑
j=1

β́jej . We have

|β|1 −
∣∣∣β́
∣∣∣
1

=

∣∣∣∣∣∣

∑

j∈supp(β)

βjej

∣∣∣∣∣∣
1

−

∣∣∣∣∣∣

p∑

j=1

β́jej

∣∣∣∣∣∣
1

=
∑

j∈supp(β)

|βj | −
∑

j∈supp(β)

∣∣∣β́j
∣∣∣−

∑

j∈suppc(β)

∣∣∣β́j
∣∣∣

using the triangular inequality
∑

j∈supp(β)

|βj| −
∑

j∈supp(β)

∣∣∣β́j
∣∣∣ ≤

∑
j∈supp(β)

∣∣∣(β − β́)j

∣∣∣, we have

|β|1 −
∣∣∣β́
∣∣∣
1
≤
∣∣∣Pβ(β − β́)

∣∣∣
1
−
∣∣∣P⊥
β β́
∣∣∣
1
.

2. Taking c0 = λ+a
λ−a and we recall that:

µc0(β) = inf
{
µ > 0 : |Pβu|1 ≤ µ ‖Xu‖n , ∀u ∈ Rp :

∣∣P⊥
β u
∣∣
1
≤ c0 |Pβu|1

}
.

Using the fact that 1
c0

∣∣∣P⊥
β u
∣∣∣
1
≤ |Pβu|1 ≤ µ ‖Xu‖n ⇒ c0|Pβu|1−|P⊥

β u|1
c0‖Xu‖n

≤ µ. We can write,

µc0(β) ≥ inf

{
µ > 0 : 1

c0
× c0|Pβu|1−|P⊥

β u|1
‖Xu‖n

≤ µ, ∀u ∈ Rp :
∣∣∣P⊥
β u
∣∣∣
1
≤ c0 |Pβu|1

}
, which implies

inequality (4.2).
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3. A simple algebraic calculus shows the result as follows:

‖Xu‖2
n =

1

n
〈u,XTXu〉

=
1

n

∑

1≤i,j≤p
〈Xei,Xej〉uiuj

=

p∑

i=1

‖Xei‖2
nu

2
i +

∑

1≤i6=j≤p

〈Xei,Xej〉
n

uiuj

≥ |u|22 − κ

p∑

i=1

∑

j 6=i
|uj ||ui|

≥ |u|22 − κ |u|21 .
�

Let us denote ζ =
|P⊥

β u|1
|Pβu|1 . Using the expression (4.2) of the compatibility factor, inequality

of Lemma 4.1, homogeneity of ℓ1 norm and equality |u|1 = |Pβu|1 +
∣∣∣P⊥
β u
∣∣∣
1

= (1 + ζ) |Pβu|1,
we get the following upper bound for the compatibility factor:

µc0(β)2 ≤ (λ− a)2

(λ+ a)2
sup

0≤ζ≤c0
sup

|P⊥
β u|1=ζ|Pβu|1

|u|2=1

(c0 − ζ)2

1 − κ(1 + ζ)2 |Pβu|21
|Pβu|21 . (4.3)

In the following proposition we give, for a fixed ζ, the value of the supremum of the right

hand side of inequality (4.3).

Proposition 4.2 Fix ζ ∈ (0, 1). For every β ∈ Rp such that |supp(β)| = |{j : βj 6= 0}| =

s for some integer 1 ≤ s ≤ p, we have

sup
|P⊥

β u|1=ζ|Pβu|1
|u|2=1

|Pβu|1 =

√
s(p− s)

p− s+ ζ2s
.

Proof The proof relies on constrained optimization and Lagrange multiplier methods.

Assume uj > 0 and that the support of β constitutes the first s coordinates. The lagrangian of

u ∈ Rp, ν1 ∈ R, ν2 ∈ R:

L(u, ν1, ν2) =

s∑

j=1

uj − ν1

( p∑

j=1

u2
j − 1

)
− ν2

( p∑

j=s+1

uj − ζ

s∑

j=1

uj

)
.

Differentiating L(u, ν1, ν2) with respect to uj , 1 ≤ j ≤ p yields

∂jL = 1 − 2ν1uj − ν2
(
11{j>s} − ζ11{j≤s}

)
= 0

⇐⇒ 2ν1uj = 1 − ν2
(
11{j>s} − ζ11{j≤s}

)
. (4.4)

Let s̃ = # {j ≤ s | uj 6= 0} and p̃− s = # {s+ 1 ≤ j ≤ p : uj 6= 0} where #N stands for the

cardinal of a finite set N . Then the constraints give the following equations:




|u|22 = 1,∣∣∣P⊥
β u
∣∣∣
1

= ζ |Pβu|1
⇐⇒





(2ν1)
2 = s̃(ν2ζ + 1)2 + p̃− s(ν2 − 1)2,

p̃− s(ν2 − 1) = −ζs̃(ν2ζ + 1).

Combining the two equalities (4.4) and (2ν1)
2 = s̃(ν2ζ + 1)2 + p̃− s(ν2 − 1)2, we get

u2
j =

(ν2ζ + 1)2

(2ν1)2
= (s̃+

ζ2s̃2

p̃− s
)−1, j ≤ s,
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we then deduce the objective function |Pβu|1

|Pβu|1 =
s̃√

s̃+ ζ2s̃2

p̃−s

=

√
s̃p̃− s

p̃− s+ ζ2s̃
.

The map, (s̃, p̃− s) 7−→ s̃p̃−s
p̃−s+ζ2s̃ = ( ζ2

p̃−s + 1
s̃ )

−1 is maximal for s̃ = s and p̃− s = p− s. �

We give an upper bound of µc0(β) for all s-sparse vector β ∈ Rp under condition on the

matrix X from the following proposition.

Proposition 4.3 For β ∈ Rp s-sparse (i.e., |supp(β)| ≤ s) and κ the maximal correlation

between two columns of matrix X, under the condition κs(1 + c0)
2 ≤ 1 +

c20s
p−s , we have:

µc0(β)2 ≤ s

1 − κs
. (4.5)

Proof By Proposition 4.2 and inequality (4.3), we get the following upper bound of the

compatibility factor,

µc0(β)2 ≤ (λ− a)2

(λ+ a)2
sup

0≤ζ≤c0

(c0 − ζ)2s(p− s)

(p− s) + ζ2s− κ(1 + ζ)2s(p− s)
.

The upper bound of the function ζ 7−→ (c0−ζ)2s(p−s)
(p−s)+ζ2s−κ(1+ζ)2s(p−s) is finite if the denominator is

positive when ζ = c0 namely under the condition κs(1 + c0)
2 ≤ 1 +

c20s
p−s . �

4.3 Application to special distributions

In this section we establish explicit oracle inequalities for the two examples of heavy tailed

and sub-exponential distributions discussed bellow. In order to show the main results we need

to find, for each distribution family, τ such that P(Ω) > 1/2.

Lemma 4.4 Let X be a deterministic matrix ∈ Rn×p, then we have:

1. Suppose that the probability distribution P is issued from the product of (3.7). In this

case if

τ ≥ (2pcαn)1/α ‖Xej‖n +
√
nā√

n
,

where ā = t0(α) +
∫∞
t0(α)

C(α)
(

log(t)
t

)α
dt. Then P(Ω) ≥ 1/2.

2. Suppose that the probability distribution P is issued from the product of (3.9), then if

τ ≥ ln(20p)

cr
max

(
ln(20p)

cr
, log(n)

)1/r−1 ‖Xej‖n√
n

+ b̄,

where b̄ =
∫∞
0

10 exp
(

−crk

max(kr ,logn)1/r−1

)
dt and cr is a quantity depending only on r. Then

P(Ω) ≥ 1/2.

Proof Define f : Rn → R by:

f(z) =
1

n
(Xej)

T z.

Then, for every z1, z2 ∈ Rn, |f(z1) − f(z2)| ≤ ‖Xej‖n√
n

|z1 − z2|2. Therefore, f is a Lipschitz

function with Lipschitz constant
‖Xej‖n√

n
.
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1. By the concentration inequality [2] applied to (3.7), there exists constants t0(α) > e and

C(α) such that for all t > t0(α),

P

(∣∣∣∣
1

n
(Xej)

T ξ − Med[
1

n
(Xej)

T ξ]

∣∣∣∣ ≥
tn

1
α ‖Xej‖n√

n

)
≤ ϕ(t),

where ϕ(t) = C(α)
(

log(t)
t

)α
. Replacing median by mean, we have

P

(∣∣∣∣
1

n
(Xej)

T ξ − E

(
1

n
(Xej)

T ξ

)∣∣∣∣ ≥
tn

1
α ‖Xej‖n√

n
+ ā

)
≤ ϕ(t),

where ā = t0(α) +
∫∞
t0(α)

C(α)
(

log(t)
t

)α
dt. We know that E

(
(Xej)

T ξ
)

=
n∑
i=1

xijE(ξi) = 0. We

deduce then that, for all t > t0(α),

P

(∣∣∣∣
1

n
(Xej)

T ξ

∣∣∣∣ ≥
tn

1
α ‖Xej‖n√

n
+ ā

)
≤ C(α)

(
log t

t

)α
.

It follows that,

P

(
max

j=1,··· ,p

∣∣∣∣
1

n
(Xej)

T ξ

∣∣∣∣ ≥
tn

1
α ‖Xej‖n√

n
+ ā

)
≤

p∑

j=1

P

(∣∣∣∣
1

n
(Xej)

T ξ

∣∣∣∣ ≥
tn

1
α ‖Xej‖n√

n
+ ā

)

≤ pC(α)

(
log t

t

)α
,

and

P

(
max

j=1,··· ,p

∣∣∣∣
1

n
(Xej)

T ξ

∣∣∣∣ ≤
tn

1
α ‖Xej‖n√

n
+ ā

)
≥ 1 − pC(α)

(
log t

t

)α
≥ 1 − pcα

tα
.

This probability is greater than 1/2 if t ≥ (2pcα)1/α and then,

τ ≥ (2pcαn)1/α ‖Xej‖n +
√
nā√

n
.

2. The concentration inequality [2, example 9] applied to (3.9), leads to,

P

(∣∣∣∣
1

n
(Xej)

T ξ − Med[
1

n
(Xej)

T ξ]

∣∣∣∣ ≥ k
‖Xej‖n√

n

)
≤ 10 exp

(
−crk

max (kr, logn)1/r−1

)
.

Replacing median by mean, we have

P

(∣∣∣∣
1

n
(Xej)

T ξ − E

(
1

n
(Xej)

T ξ

)∣∣∣∣ ≥ k
‖Xej‖n√

n
+ b̄

)
≤ 10 exp

(
−crk

max (kr, logn)
1/r−1

)
,

where b̄ =
∫∞
0

10 exp
(

−crk
max(kr ,logn)1/r−1

)
dt. Since E

(
(Xej)

T ξ
)

= 0, we have,

P

(∣∣∣∣
1

n
(Xej)

T ξ

∣∣∣∣ ≥ k
‖Xej‖n√

n
+ b̄

)
≤ 10 exp

(
−crk

max (kr, logn)
1/r−1

)
.

We deduce that

P

(
max

j=1,··· ,p

∣∣∣∣
1

n
(Xej)

T ξ

∣∣∣∣ ≥ k
‖Xej‖n√

n
+ b̄

)
≤

p∑

j=1

P

(∣∣∣∣
1

n
(Xej)

T ξ

∣∣∣∣ ≥ k
‖Xej‖n√

n
+ b̄

)
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≤ 10p exp

(
−crk

max (kr, logn)1/r−1

)
,

and

P

(
max

1≤j≤p

∣∣∣∣
1

n
(Xej)

T ξ

∣∣∣∣ ≤ k
‖Xej‖n√

n
+ b̄

)
≥ 1 − 10p exp

(
−crk

max (kr, logn)
1/r−1

)
,

if kr ≥ log(n), this probability is greater than 1/2. If k ≥
(

ln(20p)
cr

)1/r

, this implies that

τ ≥
(

ln(20p)
cr

)1/r ‖Xej‖n√
n

+ b̄. Otherwise if kr ≤ log(n), this probability is greater than 1/2 if

k ≥ (logn)1/r−1 ln(20p)
cr

, then we have τ ≥ (logn)1/r−1 ln(20p)
cr

‖Xej‖n√
n

+ b̄. �

Combining equation (3.8) of Theorem 3.1, Proposition 4.3 and Lemma 4.4, we have an

oracle inequality for the LASSO estimator with tuning parameter that can be explicitly lower

bounded in the case of the heavy tailed and the sub-exponential examples discussed above.

Theorem 4.5 Assume that ξ  P where P is the n-fold product of dµα(t) = α(1+|t|)−1−α

2 dt

and that X is deterministic and all the diagonal elements of the matrix 1
nXTX are equal to 1.

Let κ the maximal correlation between two columns of matrix X. Let p ≥ 2, α > 2, cα > 0 and

s ∈ {1, · · · , p}. Consider the LASSO estimator β̂ defined by (4.1) with tunning parameter

λ ≥ 4
(
(2pcαn)1/α +

√
nā
)

(1 − 2
√
κs)

√
n

,

where ā = t0(α) +
∫∞
t0(α) C(α)

(
log(t)
t

)α
dt.

Then, with probability at least 1 − cα
2(((2pcαn)1/α+

√
nā)

√
s)α

n

, we have

∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ 32
(
(2pcαn)1/α +

√
nā
)2
s

n(1 − 2
√
κs)2

.

Proof Let the matrix X ∈ Rn×p be deterministic such that ‖Xej‖n = 1 and c2 = s
1−κs .

Let λ such that κs(1 + c0)
2 ≤ 1 +

c20s
p−s where c0 = λ+a

λ−a , we get λ = a
1−2

√
κs

where a = 2(τ + t).

With τ = t = (2pcαn)1/α+
√
nā√

n
, we have a =

4((2pcαn)1/α+
√
nā)√

n
. By Lemma 4.4, P(Ω) ≥ 1/2.

Using Theorem 2 we obtain:

∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ 2

4

(
4t+

4t

1 − 2
√
κs

)2
s

1 − κs

≤ 2

4
× 64t2 (1 −√

κs)
2

(1 − 2
√
κs)

2 × s

1 − κs

≤ 32t2s

(1 − 2
√
κs)

2 .

�

We have a similar result for the sub-exponential example that we state in the following

theorem.

Theorem 4.6 Assume that ξ  P where P is the n-fold product of dνr = dre
−|t|rdt for

r ∈ (0, 1) and that X is deterministic and all the diagonal elements of the matrix 1
nXTX are
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equal to 1. Let κ the maximal correlation between two columns of matrix X. Let p ≥ 2 and

s ∈ {1, · · · , p}. Consider the LASSO estimator β̂ defined by (4.1) with tunning parameter

λ ≥
4

(
ln(20p)max

(
ln(20p)
cr

, log(n)
)1/r−1

+
√
ncr b̄

)

(1 − 2
√
κs)

√
ncr

.

Then, with probability at least

1 − 5 exp




−√
s

(
ln(20p)max

(
ln(20p)
cr

, log(n)
)1/r−1

+
√
ncr b̄

)

max

((
ln(20p)max( ln(20p)

cr
,log(n))

1/r−1
+
√
ncr b̄

cr

√
(1−κs)

√
s

)r
, log(n)

)1/r−1


 ,

we have

∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤
32

(
ln(20p)max

(
ln(20p)
cr

, log(n)
)1/r−1

+ cr
√
nb̄

)2

s

nc2r(1 − 2
√
κs)2

,

where b̄ =
∫∞
0

10 exp
(

−crk

max(kr ,logn)1/r−1

)
dt and cr is a quantity depending only on r.

Proof We use the same technique as for Theorem 4.5. Let λ such that κs(1+ c0)
2 = 1 ≤

1 +
c20s
p−s , where c0 = λ+a

λ−a , we get λ = a
1−2

√
κs

where a = 2(τ + t). With

τ = k =

(
ln(20p)max

(
ln(20p)
cr

, log(n)
)1/r−1

+
√
ncr b̄

)

√
ncr

,

we have

a =

4

(
ln(20p)max

(
ln(20p)
cr

, log(n)
)1/r−1

+
√
ncr b̄

)

√
ncr

and by Lemma 4.4 we get P(Ω) ≥ 1/2. Using Theorem 3.1 we obtain:

∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ 2

4

(
4k +

4k

1 − 2
√
κs

)2
s

1 − κs

≤ 2

4
× 64k2 (1 −√

κs)
2

(1 − 2
√
κs)

2 × s

1 − κs

≤ 32k2s

(1 − 2
√
κs)

2 .

�

4.4 Application to Group LASSO in case of the heavy tailed example

In order to shorten the length of the paper, we will discuss, in this sub-section, only the

case where ξ has a heavy tailed distribution issued from (3.7). A similar result can be obtained

for the other sub-exponential example. We begin by introducing the notations usually adopted

in literature for the group LASSO as follows: Let G1, · · · , GM be a partition of {1, · · · , p}.
We denote βGk

= (βj)j∈Gk
and, for every 1 ≤ p < ∞, we define the mixed (2, q)-norm and
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(2,∞)-norm of β as follows:





|β|2,q =

( M∑

k=1

( ∑

j∈Gk

β2
j

)q/2)1/q

;

|β|2,∞ = max
1≤k≤M

|βGk
|2.

For any β ∈ Rp, we define the regularization norm ‖.‖ as follows:

‖β‖ = |β|2,1 =

M∑

k=1

|βGk
|2. (4.6)

The Group LASSO estimator is a solution of the convex minimization problem

β̂ ∈ arg min
β∈Rp

‖Xβ − y‖2
n + λ

M∑

k=1

|βGk
|2. (4.7)

Without loss of generality, we assume, in the following, that the groups Gk have the same

cardinality |Gk| = p/M, k = 1, · · · ,M . Since we consider mainly sparse vectors, it is convenient

to define a generalization of the support concept. To any β ∈ Rp, let:

K (β) = {k ∈ {1, · · · ,M} : βGk
6= 0} .

It plays the role of support by block of vector β. As for the LASSO application, we begin by

verifying the decomposability assumptions and we bound the compatibility factor for the heavy

tailed example introduced above.

Lemma 4.7 Consider X is a matrix ∈ Rn×p and β ∈ Rp,

1. the decomposability Assumptions 2.1 are satisfied when Pβ is the orthogonal projection

operator onto the linear span of
{
ej : j ∈ ⋃

k∈K (β)

Gk

}
.

2. The event Ω defined in (2.3) takes the following form:

Ω =

{
max

1≤k≤M

1

n

∣∣XTGk
ξ
∣∣
2
≤ τ

}
,

where XGk
is the n× |Gk| sub-matrix of X formed by the columns indexed by Gk.

Proof 1. For β ∈ Rp and Pβ = Proj{
ej :j∈ ⋃

k∈K (β)

Gk

} , we have

Pββ =

p∑

j=1

βjProj{
ej :j∈

⋃
k∈K (β)

Gk

}ej =

p∑

j=1

βjej11{
j∈

⋃
k∈K (β)

Gk

} =
∑

j∈ ⋃
k∈K (β)

Gk

βjej = β.

Consider β́ =
p∑
j=1

β́jej . We have,

|β|2,1 −
∣∣∣β́
∣∣∣
2,1

=
∑

k∈K (β)

|βGk
|2 −

M∑

k=1

∣∣∣β́Gk

∣∣∣
2

=
∑

k∈K (β)

|βGk
|2 −

∑

k∈K (β)

∣∣∣β́Gk

∣∣∣
2
−

∑

k∈K c(β)

∣∣∣β́Gk

∣∣∣
2
.

Applying the triangular inequality
∑

k∈K (β)

|βGk
|2 −

∑

k∈K (β)

∣∣∣β́Gk

∣∣∣
2
≤

∑

k∈K (β)

∣∣∣(β − β́)Gk

∣∣∣
2

=
∣∣∣Pβ(β − β́)

∣∣∣
2,1
,
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we have

|β|2,1 −
∣∣∣β́
∣∣∣
2,1

≤
∣∣∣Pβ(β − β́)

∣∣∣
2,1

−
∣∣∣P⊥
β β́
∣∣∣
2,1
.

2. The event Ω =

{
sup

v∈Rp:|v|2,1≤1

1
nε

TXv ≤ τ

}
becomes,

Ω =

{
sup

v∈Rp:|v|2,1≤1

1

n

M∑

k=1

εTXGk
vGk

≤ τ

}

=





sup
v∈Rp:|v|2,1≤1

1

n

(
(XG1 · · ·XGM )T ξ

)T




vG1

...

vGM


 ≤ τ




.

From the duality between ℓ1 and l∞ norms and the mixed (2,∞)-norm, we have,

sup
v∈Rp:|v|2,1≤1

1

n

(
(XG1 · · ·XGM )

T
ξ
)T




vG1

...

vGM


 =

∣∣∣∣
1

n
(XG1 · · ·XGM )

T
ξ

∣∣∣∣
2,∞

= max
1≤k≤M

1

n

∣∣XTGk
ξ
∣∣
2
.

�

We consider now to control the compatibility µc0(β) for any group sparse vector β ∈ Rp

which means that |K (β)| is much smaller than M the number of groups. For this purpose, we

will need the following RE(s) condition introduced in [11, Assumption 3.1].

Assumption 4.1 (RE(s) condition) For any S ⊂ {1, · · · ,M}, let c0 > 0 be a constant

and 1 ≤ s ≤ M be an integer that gives an upper bound on the group sparsity of a vector δ,

the following condition holds.

κ2
G(s, c0) = min

{
‖Xδ‖2

n

|δS |22
: |S| ≤ s, δ ∈ Rp,

∑

k∈Sc

|δGk
|2 ≤ c0

∑

k∈S
|δGk

|2

}
> 0, (4.8)

where Sc denotes the complement of the set of indices S.

In order to apply Theorem 3.1, we need to find τ such that P(Ω) > 1/2. The lower bound

of τ is determined in the following lemma.

Lemma 4.8 Let X be deterministic and ξ have a distribution of the form (3.7) with

α > 2 and denote by ‖XGk
‖sp = sup

v∈Rp:
|v|2≤1

∣∣XTGk
v
∣∣
2

the spectral norm of matrix XGk
and ‖XGk

‖Fr =

√
XTGk

XGk
its Frobenius norm. Set ψ∗

sp = max
k=1,··· ,M

‖XGk‖sp√
n

and ψ∗
Fr = max

k=1,··· ,M
‖XGk‖F r√

n
. If

τ ≥
(Mcαn)

1
α ψ∗

sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗
Fr√
n

+ c̄,

then P(Ω) ≥ 1/2.

Proof Define f : Rn → R by:

f(z) =
∣∣XTGk

z
∣∣
2
.
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For every z1, z2 ∈ Rn, |f(z1) − f(z2)| ≤
√
nψ∗

sp |z1 − z2|2. Therefore, f is a Lipschitz function

with Lipschitz constant
√
nψ∗

sp. By the concentration inequality [2, equation 3], there exists

constants t0(α) > e and C(α) such that for all t > t0(α),

P

(
1

n

∣∣XTGk
ξ
∣∣
2
≥
tn

1
αψ∗

sp√
n

+ Med

(
1

n

∣∣XTGk
ξ
∣∣
2

))
≤ 1

2
ϕ(t),

where ϕ(t) = C(α)
(

log(t)
t

)α
. Replacing median by mean, we have,

P

(
1

n

∣∣XTGk
ξ
∣∣
2
≥
tn

1
αψ∗

sp√
n

+ E

(
1

n

∣∣XTGk
ξ
∣∣
2

)
+ c̄

)
≤ 1

2
ϕ(t),

where c̄ = t0(α) +
∫∞
t0(α) C(α)

(
log(t)
t

)α
dt. As

(
E

(∣∣XTGk
ξ
∣∣2
2

))1/2

≥ E

(∣∣XTGk
ξ
∣∣
2

)
then, for all

t > t0(α), we get,

P

(
1

n

∣∣XTGk
ξ
∣∣
2
≥
tn

1
αψ∗

sp√
n

+

(
E

(
1

n2

∣∣XTGk
ξ
∣∣2
2

))1/2

+ c̄

)
≤ C(α)

(
log (t)

t

)α
.

The term
∣∣XTGk

ξ
∣∣2
2

is a quadratic form which can be written as:

∣∣XTGk
ξ
∣∣2
2

= ξTXGk
XTGk

ξ =

n∑

j=1

(XGk
XTGk

)jjξ
2
j +

n∑

i=1

n∑

j=1
j 6=i

(XGk
XTGk

)ijξiξj .

Since XGk
is deterministic and E(ξ2j ) = 2

(α−1)(α−2) and E(ξiξj) = 0, we have:

E

(∣∣XTGk
ξ
∣∣2
2

)
=

2

(α − 1)(α− 2)

n∑

j=1

(XGk
XTGk

)jj

=
2

(α − 1)(α− 2)
trace(XGk

XTGk
)

=
2

(α − 1)(α− 2)
‖XGk

‖2
Fr .

Thus, for all t > t0(α), we obtain,

P

(
1

n

∣∣XTGk
ξ
∣∣
2
≥
(
tn

1
αψ∗

sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗
Fr√
n

+ c̄

))
≤ 1

2
C(α)

(
log (t)

t

)α
.

If we denote U , P

(
max

k=1,··· ,M
1
n

∣∣XTGk
ξ
∣∣
2
≥
(
tn

1
α ψ∗

sp√
n

+
√

2
(α−1)(α−2)

ψ∗
F r√
n

+ c̄

))
, we will

have,

U ≤
M∑

k=1

P

(
1

n

∣∣XTGk
ξ
∣∣
2
≥
(
tn

1
αψ∗

sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗
Fr√
n

+ c̄

))

≤ 1

2
MC(α)

(
log (t)

t

)α
≤ 1

2

Mcα
tα

.

Using the union bound, we get,

P

(
max

k=1,··· ,M

1

n

∣∣XTGk
ξ
∣∣
2
≤
(
tn

1
αψ∗

sp√
n

+

√
2

(α − 1)(α− 2)

ψ∗
Fr√
n

+ c̄

))
≥ 1 − 1

2

Mcα
tα

.
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This probability is greater than 1/2 if tα ≥Mcα. We deduce then the desired condition,

τ ≥
(Mcαn)

1
α ψ∗

sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗
Fr√
n

+ c̄.

�

Combining Theorem 4.5 and Lemma 4.8, we have an oracle inequality for the Group LASSO

estimator with explicit bounds.

Theorem 4.9 Let ξ and X satisfy conditions of Theorem 4.5. Assume the Assumption

4.1 on the RE(s) condition holds for any group s-sparse vectors β (i.e., β ∈ Rp such that

|K (β)| ≤ s). The Group LASSO estimator defined by (4.7) with tuning parameter

λ ≥
4
(
(Mcαn)

1
α ψ∗

sp +
√

2
(α−1)(α−2)ψ

∗
Fr +

√
nc̄
)

√
n

satisfies, with probability at least 1 − cα(κG(s,c0))
αn

2
((

(Mcαn)
1
α ψ∗

sp+
√

2
(α−1)(α−2)

ψ∗
F r+

√
nc̄
)√

s
)α ,

∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤
32
(
(Mcαn)

1
α ψ∗

sp +
√

2
(α−1)(α−2)ψ

∗
Fr +

√
nc̄
)2

s

nκ2
G(s, c0)

.

Proof Let matrix X ∈ Rn×p be deterministic and β any group s-sparse vectors (i.e.,

|K (β)| ≤ s). Assume that RE(s) condition holds, we have

∣∣βK (β)

∣∣
2

= |Pββ|2 ≤ ‖Xβ‖n
κG(K (β), c0)

,

where Pβ = Proj{
ej :j∈

⋃
k∈K (β)

Gk

} . Using equivalence between mixed (2, 1)-norm and ℓ2 norm,

|δS |2,1 ≤
√
|S| |δS |2, we have:

∣∣βK (β)

∣∣2
2,1

= |Pββ|22,1 ≤ |K (β)| |Pββ|22 ≤ |K (β)|
κ2
G(K (β), c0)

‖Xβ‖2
n .

Hence,

µ2
c0(β) ≤ |K (β)|

κ2
G(K (β), c0)

≤ s

κ2
G(s, c0)

.

Let c2 ≤ s
κ2

G(s,c0)
and τ =

(Mcαn)
1
α ψ∗

sp√
n

+
√

2
(α−1)(α−2)

ψ∗
F r√
n

+ c̄, by Lemma 4.8 and Theorem 4.5,

we have,

∥∥∥Xβ̂ − f

∥∥∥
2

n
− ‖Xβ − f‖2

n ≤ (λ+ 2(τ + t))2

4
µ2
c0(β) +

(λ+ 2(τ + t))2

4
c2

≤ 2λ2 s

κ2
G(s, c0)

≤
2 × 16

(
(Mcαn)

1
α ψ∗

sp +
√

2
(α−1)(α−2)ψ

∗
Fr +

√
nc̄
)2

s

nκ2
G(s, c0)

.

�
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5 Conclusion

In this paper we discussed penalized least squares estimators with convex penalty or regu-

larization norms. We focused on regression model where the observations noise are independent

and follow a probability measure which satisfies a weak spectral gap (or weak Poincaré) inequal-

ity. We established oracle inequalities in probability for the prediction error for the LASSO

and Group LASSO estimators. Our results have been applied to two examples of non Gaussian

cases; namely a heavy tailed and a sub-exponential examples. For these cases we explicit the

oracle inequalities bounds in a close form.
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