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Abstract As in our previous work [14], a function is said to be of theta-type when its

asymptotic behavior near any root of unity is similar to what happened for Jacobi theta
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1 Introduction

In his last letter to Hardy, Ramanujan wrote that he had discovered very interesting func-

tions that he called mock ϑ-functions. As was said in Watson’s L.M.S. presidential address [10],

the first three pages, where Ramanujan explained what he meant by “mock ϑ-functions”, are

very obscure. Therefore, Watson quoted the following comment of Hardy:

A mock ϑ-function is a function defined by a q-series convergent when |q| < 1, for which we

can calculate asymptotic formulae, when q tends to a “rational point” e2rπi/s of the unit circle,

of the same degree of precision as those furnished for the ordinary ϑ-functions by the theory of

linear transformation.

In our previous work [14], we proposed definitions of what we call theta-type, false theta-

type and mock theta-type functions, following directly from the above-mentioned comment of

Hardy. The main goal of this paper is to determine the possible values of x for which the Euler

q-exponential function (x; q)∞ is of theta-type, where

(x; q)∞ =
∏

n≥0

(1 − x qn) . (1.1)
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1.1 Statement of Main Theorem

Let ζ = e2πir= e(r) be any root of unity, with r ∈ Q. As in [14], a function f(q) is said

to be of theta-type as q
a.r.−→ ζ, and one writes f ∈ Tζ, if there exists a quadruplet (υ, λ, I, γ),

composed of a couple (υ, λ) ∈ Q×R, a strictly increasing sequence I ⊂ R and a C∗-valued map

γ defined on I, such that the following relation holds for any N ∈ Z≥0 as τ
a.v.−→ r:

f(q) =

(

i

τ̂

)υ

e(λτ̂ )





∑

k∈I∩(−∞,N ]

γ(k) qk
1 + o(qN

1 )



 . (1.2)

Here and in what follows, q = e2πiτ = e(τ), ℑτ > 0, τ̂ = τ − r and q1 = e(− 1
τ̂ ). The symbol

“q
a.r.−→ ζ” could be read as “q almost radially converges to the root of unity ζ”. At the same

time, “τ
a.v.−→ r” means that “τ almost vertically converges to the rational point r”; see §1.2 (ii),

below.

The above-named variable q1 may be considered as the modular variable with respect to

the root ζ. By considering the respective modular formulae, one can easily see that the ordinary

ϑ-functions, as well as the famous Dedekind η-function, satisfy the condition in (1.2) for any

root of unity ζ.

Let U denote the set of the roots of unity. One remembers that η(τ) = q1/24 (q; q)∞, where

q = e(τ). Thus, one can observe that (q; q)∞ ∈ Tζ for any ζ ∈ U. Furthermore, an elementary

calculation shows that the following identities hold:

(−q; q)∞ =
(q2; q2)∞
(q; q)∞

, (
√
q; q)∞ =

(
√
q;
√
q)∞

(q; q)∞

and

(−√
q; q)∞ =

(q; q)2∞
(
√
q;
√
q)∞ (q2; q2)∞

.

As one may check directly from (1.2), the set ∩ζ∈U (Tζ \ {0}) constitutes a multiplicative group

which is stable by the ramification operator q 7→ qν for all ν ∈ Q>0. Therefore, one obtains

from the above the following property:

Remark 1.1 Given x ∈ {q,−q,√q,−√
q}, one has (x; q)∞ ∈ Tζ for all ζ ∈ U.

The following result can be viewed as being converse to the above statement:

Theorem 1.2 (Main theorem) Let (x0, β) ∈ C×R be such that |x0| = 1 and β 6= 0, and

consider x = x0 q
β . Then, the following conditions are equivalent:

(1) one has (x; q)∞ ∈ T1, with ζ = 1 = e(0);

(2) there exists a root of unity ζ = e2πir= e(r) such that (x; q) ∈ Tζ ;

(3) one has x ∈ {q,−q,√q,−√
q}.

It should be noted that the four Euler q-exponential functions obtained in Theorem 1.2

are intimately linked to the quadruplet (φ(q), ψ(q), f(−q), χ(q)), situated at the heart of the

Ramanujan’s theory about theta-functions and modular equations [2, Ch. 16]. Indeed, one can

observe that f(−q) = (q; q)∞, χ(q) = (−q; q2)∞ and, furthermore, that

φ(q) =
(−q; q2)∞ (q2; q2)∞
(q; q2)∞ (−q2; q2)∞

, ψ(q) =
(q2; q2)∞
(q; q2)∞

.

In particular, these relations imply that

(q; q2)∞ =
f(−q2)
ψ(q)

, (−q2; q2)∞ =
χ(q)ψ(q)

φ(q)
.
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1.2 Some Ideas for the Proof of Main Theorem

The following notational conventions will be used through the whole paper:

(i) For simplicity, we will write e(z) = e2πiz for all z ∈ C, and this gives, in particular, a

map τ 7→ q = e(τ) from the Poincaré half-plane H onto the unit disc D. Furthermore, one has

e(Q ∩ [0, 1)) = U, where U denotes the set of the roots of unity.

(ii) Let ζ = e(r) ∈ U and r ∈ Q ∩ [0, 1). One writes q
a.r.−→ ζ if there exists ǫ ∈ (0, π

2 )

such that q → ζ in the sector | arg(q − ζ) + r| < ǫ inside the unit disc D. Similarly, one writes

τ
a.v.−→ r if there exists ǫ ∈ (0, π

2 ) such that τ → r in the sector | arg(τ − r)− π
2 | < ǫ in the upper

half-plane H.

(iii) Given ζ = e(r) ∈ U, one says that f is exponentially small as q
a.r.−→ ζ or τ

a.v.−→ r, and

one writes f ∈ A≤−1
ζ if there exists (C, κ) ∈ R2

>0 such that |f(q)| ≤ C e−κ/|τ−r| for all q = e(τ)

in some sector {|τ − r| < ρ, | arg(τ − r) − π
2 | < ǫ}, where ǫ ∈ (0, π

2 ) and ρ > 0.

(iv) For any given (z, τ) ∈ C ×H, we set (z | τ)0 = (x; q)0 = 1, (z | τ)∞ = (x; q)∞ and, for

N ∈ Z>0,

(z | τ)N = (x; q)N =

N−1
∏

n=0

(1 − x qn) , (1.3)

where x = e(z) and q = e(τ). This is in line with (x; q)∞ given in (1.1).

Letting k = min I and c = γ(k) in (1.2) implies that

f(q) = c

(

i

τ̂

)υ

e

(

λ τ̂ − k

τ̂

)

(1 + f1(q)) , f1 ∈ A≤−1
ζ .

If one takes the principal branch of the logarithm for both members of the above equation, one

can observe the following fact:

Remark 1.3 (Asymptotic form of the theta-type functions) Given ζ ∈ U and f(q) ∈ Tζ ,

there exists a quadruplet (υ, c∞, c0, c1) ∈ Q × (iR) × C × (iR) such that

log f(q) = υ log
i

τ̂
+
c∞
τ̂

+ c0 + c1 τ̂ mod A≤−1
ζ . (1.4)

The formula stated in (1.4) can be viewed as a necessary condition for any function to be

of theta-type. Furthermore, let C{z} be the set of analytic functions at z = 0. One remembers

that A≤−1
ζ ∩ C{τ̂} = {0}. By replacing c0 + c1τ̂ with any convergent power series of τ̂ in the

relation in (1.4), we will introduce a larger class of functions as follows:

Definition 1.4 Let ζ = e(r) ∈ U and r ∈ Q ∩ [0, 1). One says that f(q) admits an

exponential–convergent expansion as q
a.r.−→ ζ or τ

a.v.−→ r and one writes f ∈ Cζ if there exists

(υ, c∞) ∈ Q × (iR) such that

log f(q) = υ log
i

τ̂
+
c∞
τ̂

mod C{τ̂} ⊕ A≤−1
ζ . (1.5)

It is obvious that Tζ ⊂ Cζ . In this way, one will see that Theorem 1.2 can be easily deduced

from

Theorem 1.5 Let (x0, β) ∈ C × R be such that |x0| = 1 and β 6= 0, and consider

x = x0 q
β. Then, the following conditions are equivalent:

(1) one has (x; q) ∈ C1, with ζ = 1 = e2πi0;

(2) there exists a root of unity ζ = e2πir such that (x; q) ∈ Cζ ;

(3) one has x0 ∈ {1,−1} and β ∈ 1
2Z \ {0}.
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A modular-like formula has been found for (x; q)∞ in [13, Th. 3.2] and [15, Th. 2.9], by

means of one certain perturbed factor named P (z, τ), where x = e(z) and q = e(τ). Thus, it

suffices to understand the analyticity obstacle of P (α+β τ, τ) around each given rational point

τ = r ∈ Q ∩ [0, 1). We shall obtain the condition for this function to be analytically continued

at τ = 0 by a Stokes analysis, with the help of the Ramis-Sibuya theorem [6, 8]. This analysis

will be generalized for every r ∈ Q∩ (0, 1) by means of a series of transformations associated to

the continued fraction of r; transformations often used in the classical theory of the modular

functions.

1.3 Plan for the Paper

The rest of the paper is divided into three sections. In Section 2, we define a family of

integrals involving the exponential generating function associated with the Bernoulli numbers.

These integrals can be seen as being of Laplace type, and they will be used for stating an

equivalent version of the above-mentioned result on (x; q)∞; see Theorems 2.1 and 2.4.

Section 3 is essentially devoted to the part ζ = 1 of Theorem 1.5; see Theorem 3.1. By means

of Theorems 2.1 and 2.4, we will see that the fact that a Euler q-exponential function, modulo

some exponentially small term, can be analytically continued at τ = 0 and may be interpreted as

one problem of the analytic continuation inside the theory of the Gevrey asymptotic expansions;

see Theorem 3.8 and the proof of Theorem 1.5 given in Subsection 3.3.

Section 4 aims to obtain Theorem 1.5 for an arbitrary root ζ of unity; see Theorem 4.1.

Lemma 4.8 will play a key role, especially in terms of permitting us to make use of both

continued fractions and modular transforms. Finally, a complete scheme for proving our main

result, Theorem 1.2, will be outlined at the end of the paper.

2 A Laplace-type Integral Involving Bernoulli Exponential Generat-

ing Function

The goal of this section is to develop appropriate means for properly understanding the

following result obtained in [13] and [15]:

Theorem 2.1 ([13, Th. 3.2], [15, Th. 2.9]) Let (z, τ) ∈ U and let s = z/τ . If s /∈ (−∞, 0],

then

(z | τ)∞ =

√

2πs(1 − e(z))

Γ(s+ 1)
e(− τ

24
) es(log s−1)+

Li2(e(z))
2πiτ

+P (z,τ) (
z − 1

τ
| − 1

τ
)∞ , (2.1)

where P (z, τ) denotes the analytic function in U defined by the following integral:

P d(z, τ) =

∫ ∞eid

0

sin( zt
τ )

eit/τ − 1

(

cot
t

2
− 2

t

)

dt

t
(−π < d < 0) . (2.2)

In the above, U denotes the domain defined in C ×H by the relation

U = ∪δ∈(0,π)Cδ ×Hδ , (2.3)

where Hδ = {τ ∈ H : arg τ ∈ (0, δ)} and Cδ = C \
(

(1 + Hδ) ∪ (−1 −Hδ)
)

. The functions

Γ, log and Li2 are the Euler Gamma function, the principal branch of the complex logarithm

function and the dilogarithm function, respectively.



2090 ACTA MATHEMATICA SCIENTIA Vol.41 Ser.B

In Subsection 2.1, we will introduce a family of Laplace-like integrals denoted as bd, in-

volving the exponential generating function of Bernoulli numbers. It will be shown that the

term ((z − 1)/τ | −1/τ)∞ in the right-hand side of (2.1) can be obtained from comparing these

integrals in different directions; see Theorem 2.4. One will also see that the same integrals are

closely linked to the function P (z, τ) used in Theorem 2.1, and an equivalent version of this

theorem will come from this comparison; see Theorem 2.8 in Subsection 2.2.

2.1 Bernoulli Integrals

Through the whole paper, we will denote by B(t) the function defined by

B(t) =
1

et − 1
− 1

t
+

1

2
(2.4)

for t∈ C \ {±2πik : k ∈ Z>0}. Indeed, one knows that

B(t) =
∑

n≥1

B2n

(2n)!
t2n−1 , (2.5)

where B2n denotes the Bernoulli numbers for n ∈ Z>0; see [1, p. 12]. In addition, by Binet’s

formula [1, p. 28] on log Γ(x), it follows that

I(x) :=

∫ ∞

0

B(t) e−xt dt

t
= log Γ(x) − (x− 1

2
) log x+ x− 1

2
log 2π . (2.6)

Here, first of all, one supposes that ℜx > 0, so the integration path is the half-axis (0,+∞).

By using an open interval (0,∞eid) in the half-plane ℜt > 0, this integral representation can

then be valid for all x ∈ C \ (−∞, 0].

The integral I(x) stated in (2.6) is the Laplace transform of the function t 7→ B(t)/t. In

what follows, we shall consider a modified Laplace-type integral bd(z, τ) associated to each

d ∈ (−π
2 ,

π
2 ):

bd(z, τ) =

∫ ∞eid

0

e−zu − 1

eu − 1
B(τu)

du

u
. (2.7)

To be brief, bd will be called a Bernoulli integral.

Let us determine the values (z, τ) ∈ C2 where the integral bd(z, τ) is well-defined. From

(2.5), it follows that B(t) = O(t) at t = 0 in C. Thus, the above integral in (2.7) converges at

u = 0 for all (z, τ) ∈ C × C. With regard to the convergence at infinity, we define

V d,+ = {τ ∈ C : ℜ(τeid) > 0} , V d,− = {τ ∈ C : ℜ(τeid) < 0} (2.8)

and

Ud = {z ∈ C : z + 1 ∈ V d,+} = V d,+ − 1 . (2.9)

By using (2.4), one finds that B(t) → ±1/2 when ℜt → ±∞. Therefore, bd(z, τ) is defined in

two separated domains Ud × V d,+ and Ud × V d,− in C2.

Geometrically, Ud represents the half-plane containing the point at origin and delimited

by the straight-line −1 + ei(−d+π
2 )R, while V d,± are half-planes separated by the straight line

ei(−d+π
2 )R. One can find that the interval (−1,∞) belongs to Ud for every argument d ∈

(−π
2 ,

π
2 ); see Figure 1.
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Figure 1 Half-planes Ud, V d,− and V d,+

Let

W+ = ∪d∈(−π
2 , π

2 )U
d × V d,+, W− = ∪d∈(−π

2 , π
2 )U

d × V d,− . (2.10)

Since ∪d∈(−π
2 , π

2 )V
d,+ = C \ (−∞, 0], ∪d∈(−π

2 , π
2 )V

d,− = C \ [0,∞), it follows that

(−1,∞) × (C \ (−∞, 0]) ⊂ W+ , (−1,∞) × (C \ [0,∞)) ⊂ W− . (2.11)

Definition 2.2 We define b+(z, τ) and b−(z, τ) in W+ and W−, respectively, by applying

the analytic continuation procedure to bd(z, τ) from Ud×V d,+ and Ud×V d,− as d runs through

(−π
2 ,

π
2 ).

We shall make use of the following result to express the difference between b+(z, τ) and

b−(z, τ) in their common domain W+ ∩W−:

Lemma 2.3 If τ ∈ H and z ∈ H, then

∑

n≥1

1

n

e(nz)

1 − e(nτ)
= − log ((z | τ)∞) . (2.12)

Proof This follows from [2, p. 36, (21.1)]. �

By (2.11), one finds that ((−1,∞) × (C \ R)) ⊂ W+ ∩W−. In what follows, we will write

C \ R = H ∪H−, where H− = −H = {τ ∈ C : ℑτ < 0}.
Theorem 2.4 Let (z, τ) ∈ W+ ∩W−. The following assertions hold:

(1) if τ ∈ H, then

b+(z, τ) − b−(z, τ) = − log
(−(z + 1)/τ | − 1/τ)∞

(−1/τ | − 1/τ)∞
; (2.13)

(2) if τ ∈ H−, then

b+(z, τ) − b−(z, τ) = − log
((z + 1)/τ | 1/τ)∞

(1/τ | 1/τ)∞
. (2.14)

Proof (1) By the standard argument of analytical continuation, it suffices to prove (2.13)

for (z, τ) ∈ (−1,∞) × H. Thus, one chooses d1 ∈ (−π
2 , 0) and d2 ∈ (0, π

2 ) such that τ ∈
(

V d1,+ ∩ V d2,−
)

. The contour integral in (2.7) allows one to write that

b+(z, τ) − b−(z, τ) = bd1,+(z, τ) − bd2,−(z, τ)

=

( ∫ ∞eid1

0

−
∫ ∞eid2

0

)

e−zu − 1

eu − 1
B(τu)

du

u
. (2.15)

Since both d1 and d2 belong to (−π
2 ,

π
2 ), the two half straight-lines used in the contour-

integral (2.15) are separated in the u-plane by the half straight-line ℓτ defined by the relation

ℓτ = {u ∈ C∗ : ℜ(τu) = 0,ℜu > 0}; see Figure 2.
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Figure 2 τ belongs to the common domain V d1,+
∩ V d2,− while the directions d1 and d2 are

separated by the half-line ℓτ

By observing that the function B(τu) admits simple poles u = 2nπi/τ (n ∈ Z>0) on the

line ℓτ , applying the Residues Theorem to (2.15) yields that

b+(z, τ) − b−(z, τ) =
∑

n≥1

1

n

e(−nz/τ) − 1

e(n/τ) − 1

=
∑

n≥1

1

n

e(−n(z + 1)/τ)

1 − e(−n/τ) −
∑

n≥1

1

n

e(−n/τ)
1 − e(−n/τ) . (2.16)

By using the relation in (2.12), the above expression in (2.16) implies that

b+(z, τ) − b−(z, τ) = − log

(

(−z + 1

τ
| − 1

τ
)∞

)

+ log

(

(−1

τ
| − 1

τ
)∞

)

,

so that one obtains (2.13).

(2) When τ ∈ H−, the above proof can be adopted as follows: choose d1 ∈ (0, π
2 ) and

d2 ∈ (−π
2 , 0), and observe that the simple poles of B(τu) to which the Residues Theorem is

applied become u = −2nπi/τ (n ∈ Z>0). A direct calculation implies (2.14), which ends the

proof of Theorem 2.4. �

Now, consider τ ∈ H, with arg τ = δ ∈ (0, π). By (2.10), it follows that (z, τ) ∈ W+ if and

only if z ∈ V d,+ for some suitable d ∈ (−π
2 ,

π
2 − δ). Thus, one obtains the equivalence

(z, τ) ∈ W+ ⇐⇒ z ∈ H ∪ Zτ , (2.17)

where Zτ is the half-plane associated with τ in the following manner:

Zτ = {z ∈ C : ℑz + 1

τ
< 0} .

One may see that if z ∈ Zτ , then z + z0 ∈ Zτ for all z0 ∈ R>0; see Figure 3.

-
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Figure 3 The half-plane Zτ contains both the point τ and the segment (−1,∞)
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Lemma 2.5 Let b+(z, τ) be as in Definition 2.2, and let s = z/τ . One supposes that

τ ∈ H. If (z − 1, τ) ∈ W+, then s /∈ (−∞, 0] and

b+(z − 1, τ) − b+(z, τ) = I(s) , (2.18)

where I(s) is the Laplace integral stated by (2.6).

Proof Since (z−1, τ) ∈ W+, relation (2.17) implies that either z ∈ H∪(0,∞) or z ∈ H−

but ℑ(z/τ) < 0. This implies that s /∈ (−∞, 0]. Also, relation (2.18) follows immediately, by

comparing (2.7) with (2.6). �

2.2 Functions related with Bernoulli Integrals

First, let P (z, τ) be as in (2.1) and consider how to express it by using b+(z, τ). In view of

the fact that

cot
t

2
− 2

t
=

eit/2 + e−it/2

eit/2 − e−it/2
i − 2

t
= 2i

(

1

eit − 1
+

1

2
− 1

it

)

,

it follows that cot t
2 − 2

t = 2iB(it); see (2.4) for B(t). Thus, replacing the integration path

(0,∞eid) with (0, i∞eid) in (2.2) yields that

P d(z, τ) =

∫ ∞eid
′

0

ezt/τ − e−zt/τ

et/τ − 1
B(t)

dt

t
, (2.19)

where we write d′ = d+ π
2 ∈ (−π

2 ,
π
2 ).

Let W+ be as in (2.10), and let U be as in (2.3). A simple computation shows that

U = {(z, τ) ∈ W+ : τ ∈ H, (−z, τ) ∈ W+} .
Furthermore, comparing the integrals in (2.19) and (2.7) allows one to immediately observe the

following:

Remark 2.6 Let b+(z, τ) be as in Definition 2.2. The function P (z, τ) can be expressed

as

P (z, τ) = −b+(z, τ) + b+(−z, τ) . (2.20)

Furthermore, by gathering together (2.20) with (2.18), it follows that

P (z + 1, τ) − P (z, τ) = I(−s) + I(s+
1

τ
) , (2.21)

where I(s) denotes the function defined by (2.6) with s = z/τ .

Next, given d ∈ (−π
2 ,

π
2 ), let V d,± be as in (2.8), and define

Hd =

(

V d,+ − 1

2

)

∩
(

−V d,+ +
1

2

)

.

It is easy to see that the integral

Bd(z, τ) =

∫ ∞eid

0

ezu − e−zu

eu/2 − e−u/2
B(τu)

du

u
(2.22)

is well-defined for any (z, τ) ∈ Hd × (V d,+ ∪ V d,−). Furthermore, by noticing that

ezu − e−zu

eu/2 − e−u/2
=

e(z+ 1
2 )u − 1

eu − 1
− e−(z− 1

2 ) − 1

eu − 1
,

comparing (2.22) with (2.7) yields that

Bd(z, τ) = bd(−z − 1

2
, τ) − bd(z − 1

2
, τ) . (2.23)
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Definition 2.7 Let

Ω+ = ∪d∈(−π
2 , π

2 )H
d × V d,+ , Ω− = ∪d∈(−π

2 , π
2 )H

d × V d,− . (2.24)

We will denote by B+(z, τ) and B−(z, τ) the respective functions defined in Ω+ and Ω− by the

integral (2.22).

If there is no possible confusion, we will simply write Ω and B(z, τ) instead of Ω+ and

B+(z, τ), respectively.

From (2.23), it follows that

B±(z, τ) = b±(−z − 1

2
, τ) − b±(z − 1

2
, τ) . (2.25)

Furthermore, combining this last equality with (2.20) and (2.18) yields that

B(z, τ) = P (z +
1

2
, τ) − I(

z + 1/2

τ
) . (2.26)

Theorem 2.8 The following relation holds for all (z, τ) ∈ Ω with τ ∈ H:

(z +
1

2
| τ)∞ = e(− τ

24
)
√

1 + e(z) e
Li2(−e(z))

2πiτ +B(z,τ) (
z − 1/2

τ
| − 1

τ
)∞ . (2.27)

Proof By considering (2.6), the formula in (2.1) can be put into the following form:

(z | τ)∞ =
√

1 − e(z) e(− τ

24
) e

Li2(e(z))
2πiτ −I( z

τ
)+P (z,τ) (

z − 1

τ
| − 1

τ
)∞ .

Thus, one obtains (2.27), with the help of (2.26). �

3 Conditions for a Euler q-exponential Function to be of Theta-type

at One

Let x0 = e(α) = e2πiα with α ∈ R, and let β ∈ R. By using (1.3) with N = ∞, we write

(x0 q
β ; q)∞ = (α+ β τ | τ)∞, where τ ∈ H and q = e(τ). The goal of this section is to establish

the next result, which will be useful for the proof of Theorem 1.5.

Theorem 3.1 Let (α, β) ∈ [0, 1)×(0, 1], and consider f(q) = (α+β τ | τ)∞. Then, f ∈ C1

if and only if α ∈ {0, 1
2} and β ∈ { 1

2 , 1}.
The main idea here will consist of using Theorems 2.1 and 2.8 to rewrite f(q) in such a

way that log f(q) = B(· · · ) or = P (· · · ) mod C{τ} ⊕ A≤−1
1 , the exponential small term being

furnished by an infinite product of e(−1/τ). Thus, we will be led to consider the analytic

continuation of B or P around τ = 0 in the complex plane; see Theorem 3.8 in Subsection 3.2.

In this way, we will obtain the condition for (α, β) required by Theorem 3.1, whose proof will

be completed in Subsection 3.3.

We shall make use of the Gevrey asymptotic expansions for understanding the analytic

obstacle at τ = 0 of the above-mentioned functions B and P . This is linked to the so-called

Stokes’ phenomenon. One tool to treat this problem may be Ramis-Sibuya Theorem, which

will be briefly explained in Subsection 3.1 in what follows.

3.1 Ramis-Sibuya’s Theorem on Gevrey Asymptotic Expansions

Let x0 ∈ C and let C̃x0 be the Riemann surface of the function x 7→ log(x − x0); let

I = (α1, α2) ⊂ R and let R > 0. We let Vx0(I;R) denote the sector of a vertex at x0 in C̃x0 ,
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with an opening in I and a radius R; that is to say,

Vx0(I;R) = {x0 + reiα : α ∈ I, r ∈ (0, R)} . (3.1)

By definition, a proper sub-sector of Vx0(I;R) will be any domain of the form Vx0(J ; ρ) such

that J̄ ⊂ I and ρ < R.

If the length of the open interval I is smaller than or equal to 2π, any sector Vx0(I;R) is

not overlapped in C̃x0 ; in this case, one will consider Vx0(I;R) as a sector in C. When x0 = 0,

we will remove the sub-index 0 and simply write V (I;R) instead of V0(I;R).

Let V = V (I;R) be a sector in C at 0. By definition ([6], [8], · · · ), a given function

f defined and analytic in V is said to have a power series
∑

n≥0

anx
n, an ∈ C, as a Gevrey

asymptotic expansion at 0 in V , if, for any proper sub-sector U = V (J ; ρ), one can find C > 0

and A > 0 such that the following estimates hold for all n ∈ Z≥0:

sup
x∈U

∣

∣

∣

∣

∣

(f(x) −
n−1
∑

m=0

amx
m)x−n

∣

∣

∣

∣

∣

≤ C An n! . (3.2)

As a typical example, the Borel-sum function of a given divergent series, if it exists, admits

this series as a Gevrey asymptotic expansion. A Gevrey type asymptotic expansion is also

called an exponential asymptotic expansion, due to the following fact:

Remark 3.2 ([6, p. 175, Th. 1.2.4.1 1)]) A function f admits the identically null series

as a Gevrey asymptotic expansion at 0 in V if and only if f is exponentially small there, which

means that, for all proper sub-sectors U in V , there exists C > 0 and κ > 0 such that, for all

x ∈ U , |f(x)| ≤ C e−κ/|x|.

In what follows, we will denote by A≤−1(V ) the space of all functions that are exponentially

small in V as indicated in Remark 3.2. More generally, when V = Vx0(I;R), we will say that

f ∈ A≤−1(V ) when f is exponentially small as x→ x0 in V .

Theorem 3.3 ([6, p. 176, Th. 1.3.2.1]) Let V1, · · · , Vm, Vm+1 be a family of open sectors

at 0 in C such that Vm+1 = V1, Vj ∩ Vj+1 6= ∅ for 1 ≤ j ≤ m and that the whole union ∪m
j=1Vj

contains a neighborhood of 0 in C. For every j, let fj be a given analytic and bounded function

in Vj . If

fj+1 = fj mod A≤−1(Vj ∩ Vj+1),

then all fj ’s admit the same Gevrey asymptotic expansion at 0.

The above result is currently called Ramis-Sibuya’s theorem. We shall make use of the

following statement deduced from Theorem 3.3:

Corollary 3.4 Let R > 0, and let I1 and I2 be open intervals such that

[−ǫ, π − ǫ] ⊂ I1 ⊂ (−π, π), [π − ǫ, 2π − ǫ] ⊂ I2 ⊂ (0, 2π)

for some ǫ ∈ (0, π). Let V1 = V (I1;R), V2 = V (I2;R), and consider two analytic and bounded

functions f1 and f2 defined, respectively, in V1 and V2. If f1 − f2 ∈ A≤−1(V1 ∩ V2), then f1

and f2 have the same Gevrey asymptotic expansion and, moreover, the following conditions are

equivalent:

(1) one of the functions f1 and f2 can be continued into an analytic function at 0 in C;

(2) both f1 and f2 can be continued into an analytic function at 0 in C;

(3) f1 ≡ f2 in V1 ∩ V2.
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Proof The existence of a Gevrey asymptotic expansion for f1 and f2 follows immediately

from Theorem 3.3.

Let f̂ =
∑

n≥0

anx
n be the common asymptotic expansion of f1 and f2. Since the length of I1

and that of I2 are larger that π, one finds that f1 and f2 are the respective Borel-sum functions

of f̂ in V1 and V2. Thus, the above statement in (1) implies that f̂ is really a convergent series,

so that their two Borel-sums are equal to each other. In this way, one obtains that (1) implies

all other statements.

On the other hand, if the statement in (3) is true, then both f1 and f2 equal to a same an-

alytic and bounded function in the punctuated disc {0 < |x| < R}. By the Riemann removable

singularities Theorem, one finds the statements (1) and (2). �

3.2 Asymptotic expansion of Bernoulli integrals

From now on, we will identify the upper half-plane H as the sector V (I;R) with I =

(0, π) and R = ∞. Thus, A≤−1(H) will be the space of all analytic functions in H that are

exponentially small as τ → 0. It is easy to see that A≤−1(H) ⊂ A≤−1
1 , where ζ = 1 = e2πi0

with r = 0; see Subsection 1.2 (iii).

Proposition 3.5 Let (α, β) ∈ R2, and consider f(τ) = log
(

(−α+β τ
τ | − 1

τ )∞

)

for τ → 0

in H. If α > 0, then f ∈ A≤−1(H).

Proof Thanks to Euler [1, p. 490, Corollary 10.2.2 (b)], one can write that, for all x ∈ C,

(x; q)∞ =
∑

n≥0

qn(n−1)/2

(q; q)n
(−x)n . (3.3)

Letting x = e(−(α+ β τ)/τ) and q = e( − 1/τ) into (3.3), one gets that

(−α+ β τ

τ
| − 1

τ
)∞ = 1 +

∑

n≥1

(−1)ne(−n(α+ β τ)/τ)

( − 1/τ | − 1/τ)n
e

(

n(n− 1)

2
( − 1

τ
)

)

,

where (. | .)n is defined as in (1.3). Since e( − ν
τ ) ∈ A≤−1(H) for any ν > 0, it follows that,

when α > 0,

(−α+ β τ

τ
| − 1

τ
)∞ = 1 − e(−(α+ β τ)/τ)

1 − e( − 1/τ)
mod A≤−1(H)

= 1 mod A≤−1(H) .

This finishes the proof. �

Proposition 3.6 Let (α, β) ∈ R2 and let I = (−π, π). If α > −1, then b+(α + β τ, τ) is

well-defined and analytic in V (I;R), and is bounded in every proper sub-sector of V (I;R) with

R > 0.

Proof For all τ ∈ C∗, let Dτ be the sector containing 0 that is bounded by (−∞,−1] ∪
[−1,−1 − ∞τ), where [−1,−1 − ∞τ) denotes the half straight-line starting from −1 to ∞
with the direction −τ . By combining (2.8) together with (2.9), one can find that, for all fixed

τ ∈ C \ (−∞, 0], the function b+(z, τ) is defined and analytic for z ∈ Dτ .

If α > −1, one can easily see that α+β τ belongs to this half-plane Dτ when τ /∈ R−. This

implies that b+(α + β τ, τ) is well-defined and analytic in any sector V (I;R).

The boundedness of this function over any proper sub-sector comes from direct estimates

done for (2.7). �
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In a similar way, one can find that the statement of Proposition 3.6 remains true if b+(z, τ)

and I are replaced with b−(z, τ) and (0, 2π), respectively. Thus, one obtains the following:

Theorem 3.7 Let (α, β) ∈ R2 and let b+(z, τ) as in Definition 2.2. If α > −1, then

b+(α + β τ, τ) admits a Gevrey asymptotic expansion in any sector V (I;R) with I = (−π, π)

and R > 0.

Moreover, b+(α+ β τ, τ) can be continued into an analytic function at τ = 0 if and only if

α = 0 and β ∈ Z.

Proof Fix R > 0, and let

V1 = V ((−π, π);R), V2 = V ((0, 2π);R).

Define

f1(τ) = b+(α+ β τ, τ) = b+(α+ β τ, τ), f2(τ) = b−(α + β τ, τ)

for τ ∈ V1 and V2, respectively. By putting z = α+ β τ into both relations (2.13) and (2.14) of

Theorem 2.4, it follows that

f1(τ) − f2(τ) = − log
(−(α+ β τ + 1)/τ | − 1/τ)∞

(−1/τ | − 1/τ)∞
, (3.4)

if τ ∈ H ∩ V1 ∩ V2, and that

f1(τ) − f2(τ) = − log
((α+ β τ + 1)/τ | 1/τ)∞

(1/τ | 1/τ)∞
, (3.5)

if τ ∈ H− ∩ V1 ∩ V2.

One observes that V1 ∩ V2 ∩ R = ∅. Therefore, by considering Proposition 3.5, relation

(3.4) together with (3.5) imply that f1(τ)− f2(τ) is exponentially small in the common domain

V1 ∩ V2. This allows us to apply Corollary 3.4 to get a particularly the common Gevrey

asymptotic expansion of both f1 and f2.

Furthermore, Corollary 3.4 implies that f1 can be extended into an analytic function at

τ = 0 in C if and only if

(−α+ β τ + 1

τ
| − 1

τ
)∞ = (−1

τ
| − 1

τ
)∞

for all τ ∈ H, or, equivalently,

−α+ β τ + 1

τ
= −1

τ
mod Z .

In this way, one finds the necessary and sufficient condition α + β τ ∈ τZ in order to have an

analytic function b+(α+ β τ, τ) at τ = 0 in C. This ends the proof of Theorem 3.7. �

Now, consider the functions P (z, τ) and B(z, τ) appearing in Theorems 2.1 and 2.8. In

keeping with the spirit of Theorem 3.7, one finds the following result:

Theorem 3.8 Let (α, β) ∈ R2, and let V = V (I;R) with I = (−π, π) and R > 0. Then

(1) if α ∈ (−1, 1), the function P (α + β τ, τ) admits a Gevrey asymptotic expansion as

τ → 0 in V ;

(2) if α ∈ (− 1
2 ,

1
2 ), the function B(α + β τ, τ) admits a Gevrey asymptotic expansion as

τ → 0 in V .

Furthermore, P (α + β τ, τ) or B(α + β τ, τ) can be continued into an analytic function at

τ = 0 in C if and only if α = 0 and β ∈ 1
2Z.
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Proof We shall consider only the function P (z, τ), and the case of B(z, τ) is very similar.

By using (2.20), P (α+ β τ, τ) can be expressed in terms of b+(α+ β τ, τ) as follows:

P (α+ β τ, τ) = −b+(α+ β τ, τ) + b+(−α− β τ, τ) .

Thus, Theorem 3.7 implies that P (α + β τ, τ) remains analytic and has a Gevrey asymptotic

expansion as τ → 0 in V when α ∈ (−1, 1).

Furthermore, combining the expression of P (z, τ) in (2.20) with Stokes’s relations (2.13)

and (2.14) allows one to obtain the following equation: for all τ ∈ H,

P (z, τ) − P−(z, τ) = log
(−(z + 1)/τ | − 1/τ)∞

(−(−z + 1)/τ | − 1/τ)∞
,

where P−(z, τ) denotes the function defined by (2.19) with d ∈ (0, π). Thus, P (α+ β τ, τ) can

be continued into an analytic function at τ = 0 if and only if

−(α+ β τ + 1)/τ = (α+ β τ − 1)/τ mod Z .

This achieves the proof of Theorem 3.8. �

3.3 Proof of Theorem 3.1

In what follows, we will denote by C{τ} the space of the germs of analytic functions at τ = 0

in H. One knows that the dilogarithm is well-defined and analytic in the universal covering

of C \ {1}. Thus, u 7→ Li2 (e(u)) represents an analytic function on the Riemann surface of

logarithm, i.e, the universal covering C̃0 of C \ {0}.
Lemma 3.9 The following relation holds for all u ∈ C̃0:

Li2
(

e(ue2πi)
)

− Li2 (e(u)) = 4π2 u . (3.6)

Proof Let x = e(u) for u ∈ C̃0. When u makes a complete rotation along a circle around

u = 0, the corresponding x forms a circle around x = 1. By using a relation between Li2(x)

and Li2(1 − x) [12, §2],

Li2(1 − x) = −Li2(x) +
π2

6
− log x log(1 − x),

one finds that the monodromy of Li2 around x = 1 can be expressed as follows:

Li2(1 + x e2πi) = Li2(1 + x) − 2πi log(1 + x) .

Therefore, one gets that

Li2
(

e
(

ue2πi
))

− Li2 (e (u)) = −2πi log (e (u)) ,

which implies the desired relation (3.6). �

Proof of Theorem 3.1 First of all, suppose that (α, β) ∈ {0, 1
2 )×{ 1

2 , 1}. It follows from

Remark 1.1 that f ∈ T1, so f ∈ C1, also.

Now, consider the “ only if” part, and suppose that f ∈ C1. The rest of the proof will be

divided into two parts, according whether α may be null or not.

• Case 1: α ∈ (0, 1). Let α′ = α− 1
2 , and observe that α′ ∈ (− 1

2 ,
1
2 ). By putting z = α′+β τ

into (2.27) of Theorem 2.8, it follows that

log f(q) = A(τ) + L(τ) +B(α′ + β τ, τ) +R(τ), (3.7)
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where one introduces the following notation:

A(τ) = log
(

e
(

− τ

24

)

√

1 + e(α′ + β τ)
)

=
π

12

τ

i
+

1

2
log (1 − e(α+ β τ)) ,

L(τ) =
Li2(e(α+ β τ))

2πiτ
, R(τ) = log(

α+ β τ − 1

τ
| − 1

τ
)∞ .

On the one hand, as α′ − 1/2 < 0, Proposition 3.5 implies that R(τ) ∈ A≤−1(H) ⊂ A≤−1
1 . On

the other hand, it is easy to see that

A(τ) ∈ C{τ}, L(τ) =
Li2(e(α))

2πiτ
mod C{τ} .

Thus, comparing (1.5) (ζ = 1, r = 0, τ̂ = τ) with (3.7) yields that

B(α′ + β τ, τ) = ν log
τ

i
+
λ

τ
mod C{τ} ⊕ A≤−1

1 , (3.8)

where ν ∈ Q and λ ∈ C.

By Theorem 3.8, it follows that B(α′ +β τ, τ) has a Gevrey asymptotic expansion as τ → 0

in any sector V = V (I;R), where I = (−π, π) and R > 0. This implies that ν = 0 and

λ = 0 in (3.8). Furthermore, the exponentially small term used in (3.8) will be bounded in any

proper sub-sector of V . As the openness of V is larger than π, a classical argument such as the

Phragemen-Lindeloff Theorem implies that this term is identically null; see [5] for more on this

matter. Thus, one gets that B(α′ + β τ, τ) can be really continued into an analytic function at

τ = 0. Applying Theorem 3.8 (2) implies that α′ = 0 and β ∈ 1
2Z, so it follows that α = 1

2 and

β ∈ { 1
2 , 1}.

• Case 2: α = 0. Putting z = β τ and s = z/τ = β > 0 into (2.1) of Theorem 2.1 gives

that

f(q) =

√

2πβ(1 − e(β τ))

Γ(β + 1)
e(− τ

24
) eβ(log β−1)+L(τ)+P (β τ,τ)R1(τ) ,

so that

log f(q) =
1

2
log

τ

i
− I(β) +A(τ) + L(τ) + P (β τ, τ) +R(τ) . (3.9)

In the above, I denotes the function given by (2.6),

A(τ) =
π

12

τ

i
+

1

2
log

e (β τ) − 1

iβ τ
, L(τ) =

Li2(e(β τ))

2πiτ
,

and

R(τ) = logR1(τ), R1(τ) = (
β τ − 1

τ
| − 1

τ
)∞ .

One can easily see that A(τ) ∈ C{τ}. Letting u = β τ in (3.6) gives that L(τ e2πi)−L(τ) =

−2βπi. In view of the equality Li2(1) = π2

6 , the function L can be put into the following form:

L(τ) =
c∞
τ

+ β log
τ

i
mod C{τ} , c∞ = − π

12
i .

In addition, by Proposition 3.5, one gets that R ∈ A≤−1
1 . Thus, it follows from (3.9) that

log f(q) =
c∞
τ

+ (
1

2
+ β) log

τ

i
+ P (β τ, τ) mod C{τ} ⊕ A≤−1

1 . (3.10)

One knows that P (β τ, τ) admits a Gevrey asymptotic expansion as τ → 0 in C \ (−∞, 0].

As in Case 1 for B(· · · , τ), comparing (3.10) with (1.5) gives that P (β τ, τ) can be continued
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into an analytic function at τ = 0. Thus, applying Theorem 3.8 (1) implies, finally, that β ∈ 1
2Z,

whis gives that β ∈ { 1
2 , 1}.

• In summary, one finds that f ∈ C1 implies that α ∈ {0, 1
2} and β ∈ { 1

2 , 1}. This ends the

proof of Theorem 3.1. �

4 Asymptotic Behavior at an Arbitrary Root via Continued Fractions

With regard to an arbitrary root ζ of unity, we shall establish the following result, which,

together with Theorem 3.1, will imply Theorem 1.5:

Theorem 4.1 Let r ∈ Q ∩ (0, 1), ζ = e(r) and (α, β) ∈ [0, 1) × (0, 1], and consider

f(q) = (α+ β τ | τ)∞. Then f ∈ Cζ if and only if α ∈ {0, 1
2} and β ∈ { 1

2 , 1}.
First, one will observe, in §4.1, that the corresponding functions B and P used in Theorems

2.8 and 2.1 are analytic at each non-zero rational point τ = r. This allows us to establish one

key lemma, Lemma 4.8, in Subsection 4.2, that permits us to pass an arbitrary rational value

r to an other r1. By iterating this procedure, one arrives at the case of r = 0, to which case

Theorem 3.1 can be applied. This is realized in terms of the continued fractions relative to r

and related modular transforms; see Theorem 4.9 in Subsection 4.3. We complete the proofs of

Theorems 4.1, 1.5 and 1.2.

4.1 Bernoulli Integral and Associated Functions on a Real Axis

We will discuss the degenerate case τ ∈ R>0 for the functions b+(z, τ), B(z, τ) and P (z, τ).

In what follows, we will make use of the notational convention

ǫ ∈ (0,
π

2
), Wǫ = V ((−ǫ.ǫ);∞), W c

ǫ = C \ W̄ǫ , (4.1)

and the letter r always denotes a given positive number.

First of all, we consider the function b+(z, τ). It should be noted that the relation stated

in (2.18) is valid for any (z, τ) ∈ H × H. If z /∈ H, we have to avoid the poles of the Gamma

function, and the right-hand side of (2.18) continues to be well-defined over the Riemann surface

of log while s /∈ Z≤0. Thus, Lemma 2.5 allows one to make the analytic continuation of the

function b+ at (z, τ) provided that (z + n)/τ /∈ Z≤0 for all n ∈ Z≥1. This yields the following

observation:

Remark 4.2 For any fixed τ ∈ H, z 7→ b+(z, τ) can be continued into an analytic function

on the universal covering of C \ ∆τ , where

∆τ = Z≤−1 ⊕ τZ≤0 . (4.2)

By Definition 2.2 and Remark 4.2, b+(z, τ) is well-defined and analytic in the domain

(−W c
ǫ − 1)×Wǫ, where −W c

ǫ − 1 = C \
(

−W̄ǫ − 1
)

; see Figure 4 below. In particular, we note

the following fact:

Remark 4.3 Given r > 0, α ∈ (−1, 0) and β ∈ R, there exists ρ ∈ (0, r) such that the

function τ 7→ b+(α+β(τ−r), τ) is well-defined and analytic in the open disc {τ ∈ C : |τ−r| < ρ}.
When ǫ→ 0+, Wǫ becomes (0,∞) and −W c

ǫ −1 is reduced into C\ (−∞,−1]. By replacing

τ with r in the partial lattice ∆τ given by (4.2) for all τ ∈ H, we will continue to write
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∆r = {n +mr : n ∈ Z≤−1,m ∈ Z≤0}. It is easy to see that ∆r is discrete on the real axis if

and only if r is a rational number. In this way, we shall make use of the following remark:

−1 0
������

HHHHHH

�
�

�
�

H
H

H
H

H

ǫ Wǫ−W̄ǫ − 1 �

K
−W c

ǫ − 1

Figure 4 b+(z, τ ) is analytic for z ∈ (−W c
ǫ − 1) and τ ∈ Wǫ

Remark 4.4 If n and d are co-prime positive integers such that r = n
d ∈ (0, 1), then

∆r = −1 +
1

d
Z≤0 ⊂ (−∞,−1] . (4.3)

For any α ∈ R, let [α] denote the integral part of α and {α} denote the corresponding

fractional part, that is α− [α]. If z0 ∈ (−∞,−1] \ ∆r, we define

b̆(z0, r) =



[−z0] − 1 − 2

[−z0]−1
∑

k=1

{

z0 + k

r

}



 πi . (4.4)

Theorem 4.5 Let r ∈ (0, 1)∩Q and let ∆r, b̆ be as in the above. Then b+(z, r) is analytic

in C \ (−∞,−1] and can be continued to be an analytic function over the universal covering of

C \ ∆r in such a way that the following relation holds for all z0 ∈ (−∞,−1] \ ∆r:

lim
ǫ→0+

(

b+(z0 + iǫ, r) − b+(z0 − iǫ, r)
)

= b̆(z0, r) . (4.5)

Proof As τ → r in H, the limit set ∆r of the singularities of b+(z, τ) is discrete, as stated

in (4.3). By considering Remark 4.2, one obtains that b+(z, r) is analytic over the universal

covering of C \ ∆r.

Now, let D(z0) denote the expression in the left-hand side of (4.5). By putting τ = r into

(2.18), one finds that, if z /∈ (−∞, 0], then b+(z − 1, r) = b+(z, r) + I(s), where s = z/r and

I(s) is given in (2.6). Thus, one can write

D(z0 − 1) = D(z0) + lim
ǫ→0+

(

I(
z0
r

+ ǫi) − I(
z0
r

− ǫi)
)

for all z0 ∈ (−∞, 0] \ ∆r. By using (2.6), one gets that

D(z0 − 1) = D(z0) + (1 − 2z0
r

)πi + lim
ǫ→0+

(

log Γ(
z0
r

+ ǫi) − log Γ(
z0
r

− ǫi)
)

. (4.6)

Let n be any negative integer, say, n = −m, m > 0, and let s ∈ (n, n+1). From the relation

Γ(x) =
Γ(x+m)

(x)m
and the fact that log Γ(x +m) is well-defined and analytic for ℜ(x) > n, it

follows that

lim
ǫ→0+

(log Γ(s+ ǫi) − log Γ(s− ǫi)) = − lim
ǫ→0+

(log(s+ ǫi)m − log(s− ǫi)m) = 2πin .

Therefore, (4.6) yields that

D(z0 − 1) = D(z0) + 2
(

n− z0
r

)

πi + πi . (4.7)
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Letting z0 = (n+ δ0)r with n0 ∈ Z<0 and δ0 ∈ (0, 1), the above expression in (4.7) becomes

D(z0 − 1) − D(z0) = −2πiδ0 + πi. By replacing z0 with z0 + 1 and iterating this process,

one obtains the finite sequences (nk) and (δk) associated with the pair (z0, r) in the following

manner: z0 +k = (nk + δk)r, where nk ∈ Z<0 and δk = δk(z0, r) = { z0+k
r }. Since D(z0 +k) = 0

for k > −1 − z0, one finds that

D(z0 − 1) = −2
(

δ0 + · · · + δ[−z0]−1

)

πi + [−z0]πi .

Replacing z0 with z0 +1 in this last relation gives D(z0) = b̆(z0, r), where b̆ is as given in (4.4),

so one obtains the expected relation (4.5) and Theorem 4.5. �

By using (2.25), one finds that B(z, τ) is analytic in the domain

((1/2 +W c
ǫ ) ∩ (−1/2 −W c

ǫ )) ×Wǫ .

In addition, from (2.20) one obtains that P (z, τ) can be continued to be analytic in the domain

((−1 −W c
ǫ ) ∩ (1 +W c

ǫ )) ×Wǫ; see Figure 5 below, where Wǫ and W c
ǫ are given in (4.1).
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Figure 5 P (z, τ ) is analytic for z ∈ (−W c
ǫ − 1) ∩ (W c

ǫ + 1) and τ ∈ Wǫ

Similarly to Remark 4.3, one can observe the following property:

Remark 4.6 Let r > 0 and (α, β) ∈ R2. If α + βr ∈ (− 1
2 ,

1
2 ), then τ 7→ B(α + β τ, τ) is

well-defined and analytic inside some open disc centered at τ = r.

Moreover, things are the same for τ 7→ P (α+ β τ, τ) when α+ βr ∈ (−1, 1).

By letting ǫ → 0+, one sees that, for any r > 0, B(z, r) is analytic for all z ∈ C \
(−∞,−1/2) ∪ (1/2,∞), while P (z, r) is analytic for z ∈ C \ (−∞,−1] ∪ [1,∞).

Theorem 4.7 Let r ∈ (0, 1) ∩ Q, and let ∆r and b̆ be as in (4.3) and (4.4). Then

(1) the function B(z, r) can be continued to be analytic in the universal covering of C \
((1/2 + ∆r) ∪ (−1/2 − ∆r)), and the following relations hold for all z0 ∈ R \

(

(1/2 + ∆r)∪
(−1/2 − ∆r)

)

:

lim
ǫ→0+

(B(z0 + iǫ, r) −B(z0 − iǫ, r)) = −b̆(−|z0| −
1

2
, r) ; (4.8)

(2) the function P (z, r) can be continued to be analytic in the universal covering of C \
(∆r ∪ (−∆r)) in such a way that, for all z0 ∈ R \ (∆r ∪ (−∆r)),

lim
ǫ→0+

(P (z0 + iǫ, r) − P (z0 − iǫ, r)) = −b̆(−|z0|, r) . (4.9)

Proof This follows directly from Theorem 4.5 together with relations (2.25) and (2.20).

�

4.2 One Key Lemma

As in the definition of b̆(z, r) in (4.4), we will let [a] and {a} denote the integral and

fractional part, respectively, of any given real a. Given each non-zero real r, consider the
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associated one-to-one map Tr defined on [0, 1) × (0, 1] as follows:

Tr : (α, β) 7→ ({(1 − α)

[

−1

r

]

+ β}, 1 − α) . (4.10)

One finds easily that

Tr({0,
1

2
} × {1

2
, 1}) = {0, 1

2
} × {1

2
, 1} . (4.11)

Lemma 4.8 Let r ∈ (0, 1) ∩ Q, ζ = e(r), ζ1 = e({− 1
r}), and let z(τ) = α + β τ with

(α, β) ∈ [0, 1)× (0, 1]. Consider

f(q) = (z(τ) | τ)∞ , g(q1) = (z1(τ1) | τ1)∞ ,

where q = e(τ), τ1 = − 1
τ −

[

− 1
r

]

, q1 = e(τ1) and

z1(τ1) = α1 + β1 τ1 , (4.12)

(α1, β1) being the transform of (α, β) defined by (4.10). Then f ∈ Cζ if and only if g ∈ Cζ1 .

Proof For simplicity, write r1 = {− 1
r} and N = [− 1

r ]. As − 1
r = r1 + N , the following

equivalence holds on the upper half-planes ℑτ > 0 and ℑτ1 > 0:

τ
a.v.−→ r ⇐⇒ τ1

a.v.−→ r1 . (4.13)

By observing that τ = −1/(τ1 + N), one gets that (z(τ) − 1)/τ = (1 − α)(τ1 + N) + β, so it

follows from (4.12) that z1(τ1) = (z(τ) − 1)/τ mod Z. One remembers that (z | τ)∞ = (z′ | τ ′)
if (z, τ) = (z′, τ ′) mod Z2; see (1.3). Thus, one finds that g(q1) = g̃(q) if one defines

g̃(q) =

(

z(τ) − 1

τ
| − 1

τ

)

∞

. (4.14)

By noticing the relation τ1 − r1 = (τ − r)/(rτ), it follows from (4.13) that g(q1) ∈ Cζ1 if

and only if g̃(q) ∈ Cζ . Thus, we shall use Theorems 2.8 and 2.1 to link f(q) with g̃(q) in the

following fashion:

f(q) = H(q) g̃(q) . (4.15)

By hypothesis, (α, β) /∈ Z × {0}, so f(q) is not identically null. As Cζ \ {0} constitutes a

multiplicative group, Lemma 4.8 says exactly that H ∈ Cζ , which is what we need to establish.

As before, write τ̂ = τ − r. As in the proof of Theorem 3.1, we shall distinguish two cases:

α+ βr /∈ Z and α+ βr ∈ Z.

• Case 1: α + βr − n ∈ (0, 1) with some n ∈ Z. Let α′ = α − n − 1
2 , and observe that

α′ + βr ∈ (− 1
2 ,

1
2 ). By applying Theorem 2.8 to z = z(τ) − n− 1

2 , the factor H(q) defined by

(4.15) can be written as follows: H(q) = H1(q)H2(q)H3(q), where

H1(q) =
√

1 − e(z(τ)) e(− τ

24
) e

Li2(e(z(τ)))

2πiτ , H2(q) = eB(α′+β τ,τ)

and

H3(q) =
((z(τ) − n− 1)/τ | − 1/τ)∞

((z(τ) − 1)/τ | − 1/τ)∞
. (4.16)

When τ → r, it follows that e (z(τ)) → e(α+ βr) 6= 1 for α+ βr /∈ Z. Thus Li2(e(z(τ))) is

really analytic at τ = r in C. As r 6= 0, one finds, finally, that H1 ∈ C{τ̂}. In addition, Remark

4.6 implies that B(α′ + β τ, τ) is analytic at τ = r. Furthermore, one can express H3 as

H3(q) =

(

z(τ) − n− 1

τ
| − 1

τ

)

−n

or H3(q) =
1

((z(τ) − 1)/τ | − 1/τ)n
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for n ∈ Z≤0 or Z≥0, respectively; see (1.3). This also shows that H3 ∈ C{τ̂}. Thus, one gets

that H ∈ (C{τ̂} \ {0}
)

⊂ Cζ .

• Case 2: α + βr = n ∈ Z. Let s = (z(τ) − n)/τ , and notice that z(τ) − n = β τ̂ , so

s = β τ̂/τ . As β 6= 0, one gets that s ∈ C \ R for all τ ∈ H. Moreover, one has C{s} = C{τ̂}
for r 6= 0.

Putting z = z(τ) − n = β τ̂ into Theorem 2.1 gives that the factor H(q) defined by (4.15)

can be read as follows: H(q) = H0(q)H1(q)H2(q)H3(q), where

H0(q) =

√

2πs(1 − e(τs))

Γ(s+ 1)
e(− τ

24
) , H1(q) = es(log s−1)+

Li2(e(τs))
2πiτ ,

H2(q) = eP (β (τ−r),τ), and where H3(q) is given by (4.16). It is immediately apparent that

H0 ∈ C{s}, so H0 ∈ C{τ̂} also. Also, from Remark 4.6, one knows that H2 ∈ C{τ̂}; it is the

same for H3, as explained in the above. Furthermore, replacing u with τs in (3.6) of Lemma

3.9 gives that Li2(e(τse
2πi)) − Li2(e(τs)) = 4π2τs, so one gets the identity

s log(se2πi) +
Li2(e(τse

2πi))

2πiτ
= s log s+

Li2(e(τs))

2πiτ
,

which implies that H2 ∈ C{s} = C{τ̂}. Finally, one finds that H ∈ (C{τ̂} \ {0}) ⊂ Cζ , which

ends the proof. �

4.3 Continued Fractions and Modular Transforms

Let us consider the asymptotic behavior of the Euler function (z | τ)∞ when τ
a.v.−→ r ∈

(0, 1) ∩ Q or, equivalently, when q
a.r.−→ ζ = e(r). Our strategy is to use continued fractions in

order to reduce the general case τ
a.v.−→ r to the known case τ

a.v.−→ 0.

Indeed, the above operation (r, τ, z) 7→ (r1, τ1, z1), considered in Lemma 4.8, allows one to

link two rational numbers: r and r1. By iterating this process, one arrives at the case where

τ
a.v.−→ 0. This iteration procedure requires one to write r into continued fraction. Thus, to any

given r = p
m ∈ Q ∩ (0, 1) will be associated the sequences rj ∈ Q ∩ [0, 1) and dj ∈ Z>0 in the

following manner:

r0 =
p

m
, d0 = 0; rj =

{

− 1

rj−1

}

, dj =

[

− 1

rj−1

]

( 1 ≤ j ≤ ν) , (4.17)

where ν denotes the smallest index such that rν = 0, i.e., 1/rν−1 ∈ Z>0. With the standard

notation for the continued fractions, one can notice that

r = [0, d1,−d2 · · · , (−1)ν−1dν ] =
1

d1 − |
1

d2 − | · · ·
1

|dν
. (4.18)

Now, given (α0, β0) ∈ [0, 1) × (0, 1] and r ∈ (0, 1) ∩ Q as in (4.18), define the r-depending

sequence (zj , τj)0≤j≤ν as follows: τ0 = τ , z0 = z0(τ0) = α0 + β0 τ ,

τj = − 1

τj−1
− dj , zj = zj(τj) = αj + βj τj , (4.19)

where (αj , βj) = Trj−1(αj−1, βj−1), Trj−1 being the transform obtained by substituting rj−1 to

r in (4.10). If τ = τ0
a.v.−→ r in H, then τj

a.v.−→ rj in H, particularly with τν
a.v.−→ 0. Furthermore,

it is easy to see that τj ∈ H, with

τj = Mj τj−1 , Mj =





−dj −1

1 0



 ∈ SL(2; Z) ,
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where τ 7→ M τ denotes the classic modular transform associated with a modular matrix M .

Thus, one can find that τν = M τ with M = Mν · · · M1 ∈ SL(2; Z).

Theorem 4.9 Let (ν, r), τj and zj(τj) be given as in (4.18) and (4.19), with (α, β) ∈
[0, 1) × (0, 1]. Let ζj = e(rj) and qj = e(τj) for j from 0 to ν. Consider

f(q) = (z0(τ0)|τ)∞, fj(qj) = (zj(τj)|τj)∞ .

Then, the following conditions are equivalent:

(1) f ∈ Cζ ;

(2) fν ∈ C1;

(3) fj ∈ Cζj
for all j from 1 until ν;

(4) α ∈ {0, 1
2} and β ∈ {1, 1

2}.
Proof For simplicity, write ∆ = {0, 1

2} × {1, 1
2}. By (4.11), it follows that (α, β) ∈ ∆ if

and only if (αj , βj) ∈ ∆ for (one of) all indices j from 0 to ν. In addition, applying Theorem

3.1 to fν implies that (αν , βν) ∈ ∆ if and only if fν ∈ C1. Thus, by considering Lemma 4.8,

one finds that all conditions (1)–(4) stated in Theorem 4.9 are equivalent. �

Now, we are ready to finish, successively, the proofs for Theorems 4.1 and 1.5 and, therefore,

the proof for the main theorem.

Proof of Theorem 4.1 This follows directly from Theorem 4.9. �

Proof of Theorem 1.5 In view of Theorems 3.1 and 4.1, it suffices to notice that, given

ζ ∈ U, one has (x0 q
β ; q)∞ ∈ Cζ if and only if the same holds by replacing β with β + 1. This

last equivalence can be deduced from the relation (x0 q
β ; q)∞ = (1 − x0 q

β) (x0 q
β+1; q)∞ and

the fact that (1 − x0 q
β) ∈ Cζ , for Cζ \ {0} constitutes a multiplicative group. �

Proof of Theorem 1.2 By taking into account Remark 1.1 and Theorem 1.5, one needs

only to observe that, for any positive integer n ∈ Z>0 and any root ζ ∈ U, any finite product

of the form (x0 q
β ; q)n does not belong to Tζ , although the same function belongs to the larger

class Cζ . �

Addendum After having finished a first version of our paper, we learned that the inter-

esting work [4] is closely related to the present paper. Indeed, let α > 0 and µ ∈ [0, 1) be as in

[4, Theorem 1]. By combining [4, (3.2) & (3.3)] together with (1.2) and (1.4), one can observe

the following result:

Remark 4.10 One has (e(µ)qα; q)∞ ∈ T1 only if the following conditions are satisfied for

all integers k ≥ 2:

Bk(0, e(µ))Bk+1(α) = 0 . (4.20)

In the above, Bk(α) denotes the usual Bernoulli polynomials, and Bk(α, y) are the rational

functions defined by the Taylor series expansion

z eαz

y ez − 1
=

∞
∑

k=0

Bk(α, y)

k!
zk (4.21)

near z = 0. One can notice that Bk(α) = Bk(α, 1) and Bk = Bk(0) = Bk(0, 1), where Bk are

the Bernoulli numbers. Furthermore, one knows from [1, p. 55, 44 (c)] or [7, p. 6, (2.71)] that

Bk(α) =

k
∑

j=0

(

k

j

)

Bj α
k−j . (4.22)
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Proposition 4.11 The following conditions are equivalent for any (µ, α) ∈ [0, 1) ×
(0,+∞):

(1) relation (4.20) holds simultaneously for all integers k ≥ 2;

(2) relation (4.20) holds simultaneously for k = 2 and k = 3;

(3) (µ, α) ∈ {(0, 1
2 ), (0, 1), (1

2 ,
1
2 ), (1

2 , 1)}.
Proof It is obvious that (1) implies (2). To see (2) ⇔ (3), firstly let µ = 0 and y =

e(0) = 1. Relation (4.20) becomes Bk Bk+1(α) = 0. By [1, p. 12] or [7, p. 6], it follows that

B0 = 1, B1 = − 1
2 , B2 = 1

6 and B3 = 0. Using (4.22) gives that B3(α) = α(α− 1
2 )(α−1). Thus,

(4.20) holds simultaneously for k = 2 and k = 3 if and only if α ∈ { 1
2 , 1}. Next, let µ ∈ (0, 1)

and y = e(µ) 6= 1; putting α = 0 into (4.21), one can get that B0(0, y) = 0, B1(0, y) = 1
y−1 ,

B2(0, y) = − 2 y
(y−1)2 and B3(0, y) = 3y(y+1)

(y−1)3 . Again, one can notice that B2(0, y) 6= 0, so relation

(4.20) holds for k = 2 only if α ∈ { 1
2 , 1}. Since B4 = − 1

30 , one obtains, applying (4.22), that

B4(α) = α4 − 2α3 + α2 − 1
30 . One can see that B4(

1
2 ) 6= 0 and B4(1) 6= 0. Therefore, (4.20)

holds simultaneously for both k = 2 and k = 3 if and only if α ∈ { 1
2 , 1} and e(µ) = −1. This

implies the equivalence between the conditions (2) and (3) stated in Proposition 4.11. Finally,

suppose that condition (3) holds. It follows from Theorem 1.2 that (e(µ) qα; q)∞ ∈ T1, which,

together with Remark 4.10, implies (1). In this way, we complete the proof of Proposition 4.11.

�
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[6] Malgrange B. Sommation des séries divergentes. Exposition Math, 1995, 13(2/3): 163–222

[7] Rademacher H. Topics in Analytic Number Theory. Springer-Verlag, 1973

[8] Ramis J -P. Gevrey asymptotics and applications to holomorphic ordinary differential equa-

tions//Differential Equations & Asymptotic Theory in Mathematical Physics (Wuhan Univ, China, 2003).

Series in Analysis, 2. World Scientific, 2004: 44–99

[9] Ramis J -P, Sauloy J, Zhang C. Local analytic classification of q-difference equations. Astérique, 2013, 355:

vi+151 pages

[10] Watson G N. The final problem: An account of the mock theta functions. J London Math Soc, 1936, 11:

55–80

[11] Whittaker E T, Watson G N. A Course of Modern Analysis. Fourth ed. Cambridge Univ Press, 1927

[12] Zagier D. Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann),
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