
Acta Mathematica Scientia, 2021, 41B(6): 1911–1920

https://doi.org/10.1007/s10473-021-0608-0

c©Innovation Academy for Precision Measurement Science

and Technology, Chinese Academy of Sciences, 2021
http://actams.apm.ac.cn

THE GROWTH OF DIFFERENCE EQUATIONS

AND DIFFERENTIAL EQUATIONS∗

Dedicated to the memory of Professor Jiarong YU

Zongxuan CHEN (�mü)†

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

E-mail : chzx@vip.sina.com

Ranran ZHANG (Ü,,)

Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China

E-mail : zhangranran@gdei.edu.cn

Shuangting LAN (7Vx)

School of Mathematics and Systems Sciences, Guangdong Polytechnic Normal University,

Guangzhou 510665, China

E-mail : wqh200811@126.com

Chuangxin CHEN (�M)

College of Computational Sciences, Zhongkai University of Agriculture and Engineering,

Guangzhou 510225, China

E-mail : chenchxin@126.com

Abstract In this paper, we mainly apply a new, asymptotic method to investigate the

growth of meromorphic solutions of linear higher order difference equations and differential

equations. We delete the condition (1.6) of Theorems E and F, yet obtain the same results

for Theorems E and F. We also weaken the condition (1.4) of Theorems C and D.
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1 Introduction and Main Results

In this paper, we apply a new, asymptotic method to investigate the growth of transcenden-

tal meromorphic solutions of linear higher order difference equations and differential equations.

We assume that the reader is familiar with the basic idea of Nevanlinna’s value distribution

theory. The Nevanlinna theory is an important tool in this paper, and its usual notations and

basic results come mainly from [13, 16, 20, 22]. Here we let f(z) be a nonconstant meromorphic

function in the complex plane.
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We use σ(f) to denote the order of f(z), λ(f) to denote the convergence exponent of zeros

of f(z), and λ(f) to denote the convergence exponent of distinct zeros of f(z).

For n ∈ N, we define

∆f(z) = f(z + 1) − f(z), ∆nf(z) = ∆(∆n−1f(z)).

Over the course of the last 15 years, many authors have paid great attention to complex

difference equations and to the difference analogues of Nevanlinna’s theory, and have obtained

many interesting results, including [2–6, 8, 10, 11, 15, 18, 19, 21, 23].

Ishizaki and Yanagihara [19] considered the growth of transcendental entire solutions of

difference equations

Qn(z)∆nf(z) + · · · + Q1(z)∆f(z) + Q0(z)f(z) = 0, (1.1)

where Qn, · · · , Q0 are polynomials, and obtained the following theorem:

Theorem A Let f(z) be a transcendental entire solution of (1.1), and let its order χ <

1/2. Then

log M(r, f) = Lrχ(1 + o(1)),

where a rational number χ is the slope of a Newton polygon for the equation (1.1), and L > 0

is a constant. In particular, we have that χ > 0.

Note that the equation (1.1) can be rewritten as

Pn(z)f(z + n) + · · · + P1(z)f(z + 1) + P0(z)f(z) = 0. (1.2)

Example 1.1 (see [19]) Suppose that f(z) is a transcendental entire solution of the

difference equation

(6z2 + 19z + 15)∆3f(z) + (z + 3)∆2f(z) − ∆f(z) − f(z) = 0.

In fact, in [19], Ishizaki and Yanagihara proved that this difference equation admits an

entire solution of order 1
3 by using the method of a Newton polygon.

Chiang and Feng [10] proved

Theorem B Let Pn(z), · · · , P0(z) be polynomials such that there exists an integer, l,

0 ≤ l ≤ n, such that

deg(Pl) > max
0≤j≤n,j 6=l

{deg(Pj)} (1.3)

holds. Supposing that f(z) is a meromorphic solution of (1.2), we then have that σ(f) ≥ 1.

Chen weakened the condition (1.3) of Theorem B and obtained

Theorem C (see [4, 5]) Let F (z), Pn(z), · · · , P0(z) be polynomials such that FPnP0 6≡ 0

and

deg(Pn + · · · + P0) = max{deg(Pj) : j = 0, · · · , n} ≥ 1. (1.4)

Then every finite order transcendental meromorphic solution f(z) of

Pn(z)f(z + n) + · · · + P1(z)f(z + 1) + P0(z)f(z) = F (z) (1.5)

satisfies σ(f) ≥ 1 and λ(f) = σ(f).

Theorem D (see [4, 5]) Let Pn(z), · · · , P0(z) be polynomials such that PnP0 6≡ 0 and

(1.4) is satisfied. Then every finite order transcendental meromorphic solution f(z)(6≡ 0) of
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equation (1.2) satisfies σ(f) ≥ 1, and f(z) assumes every non-zero value a ∈ C infinitely often

and λ(f − a) = σ(f).

Chen considered difference equations with constant coefficients, and obtained the following

two theorems:

Theorem E (see [4]) Let Cn, · · · , C0 be constants such that CnC0 6= 0 and such that

they satisfy

Cn + · · · + C0 6= 0. (1.6).

Then every finite order transcendental meromorphic solution f(z)(6≡ 0) of the equation

Cnf(z + n) + · · · + C1f(z + 1) + C0f(z) = 0 (1.7)

satisfies σ(f) ≥ 1, f(z) assumes every nonzero value a ∈ C infinitely often, and λ(f −a) = σ(f).

Theorem F Let Cn, · · · , C0 be constants and let F (z) be a polynomial such that

FCnC0 6≡ 0 and (1.6) is satisfied. Then every finite order transcendental meromorphic so-

lution f(z) of the equation

Cnf(z + n) + · · · + C1f(z + 1) + C0f(z) = F (z) (1.8)

satisfies that λ(f) = σ(f) ≥ 1.

Question 1.1 Can the condition (1.6) be deleted from Theorems E and F?

In this paper, we answer this question in the affirmative and delete condition (1.6) from

Theorems E and F , and obtain the following theorems:

Theorem 1.1 Let Cn, · · · , C0 be constants such that CnC0 6= 0. Then every finite order

transcendental meromorphic solution f(z)(6≡ 0) of the equation (1.7) satisfies that σ(f) ≥ 1.

Theorem 1.2 Let Cn, · · · , C0 be constants, and let F (z) be a polynomial such that

FCnC0 6≡ 0. Then every finite order transcendental meromorphic solution f(z) of the equation

(1.8) satisfies that λ(f) = σ(f) ≥ 1.

Remark 1.1 In Theorems 1.1 and 1.2, we have deleted condition (1.6) of Theorems E

and F.

In Theorem 1.1, we cannot give the result that every finite order transcendental mero-

morphic solution f(z) of (1.7) assumes every nonzero value a ∈ C infinitely often and that

λ(f − a) = σ(f).

In Theorem 1.2, we obtain the same results as for Theorem F.

Remark 1.2 By Theorems 1.1 and 1.2, we see that in Theorems C and D, the condition

(1.4) can be weakened as

deg(Pn + · · · + P0) = max{deg(Pj) : j = 0, · · · , n}, (1.4)′

where “ ≥ 1” of (1.4) is deleted. Thus, we can obtain the following corollaries:

Corollary 1.1 Let F (z), Pn(z), · · · , P0(z) be polynomials such that FPnP0 6≡ 0 and such

that they satisfy (1.4)′. Then every finite order transcendental meromorphic solution f(z) of

(1.5) satisfies that σ(f) ≥ 1 and λ(f) = σ(f).

Corollary 1.2 Let Pn(z), · · · , P0(z) be polynomials such that PnP0 6≡ 0 and such that

they satisfy (1.4)′. Then every finite order transcendental meromorphic solution f(z)(6≡ 0) of

(1.2) satisfies that σ(f) ≥ 1.
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Example 1.2 The difference equation

e−1f(z + 2) + 2f(z + 1) − 3ef(z) = 0

has a solution such that f(z) = ez and σ(f) = 1.

Example 1.3 The difference equation

f(z + 2) + 2f(z + 1) + f(z) = 4z2 + 8z + 6

has a polynomial solution f1(z) = z2 and a transcendental entire solution f2(z) = cosπz + z2

with σ(f2) = 1.

In what follows, we discuss the growth of linear differential equations with constant coeffi-

cients. In 1982, Bank and Laine proved the following result:

Theorem H (see [1]) Suppose that A0 is a polynomial with deg A0(z) ≥ 1, and that

f(z) 6≡ 0 is a meromorphic solution of a differential equation

f ′′(z) + A0(z)f(z) = 0. (1.9)

Then σ(f) = n+1
2 .

Since 1982, many authors have studied the growth of solutions of linear differential equations

and obtained many good results, see [7, 9, 12, 14].

Now, we consider the growth of solutions of homogeneous and non-homogeneous linear

differential equations with constant coefficients, and obtain the following results:

Theorem 1.3 Let Cn, · · · , C0 be constants such that CnC0 6= 0. Then every meromor-

phic solution f(z)(6≡ 0) of the homogeneous differential equation

Cnf (n)(z) + Cn−1f
(n−1)(z) + · · · + C1f

′(z) + C0f(z) = 0 (1.10)

satisfies that σ(f) = 1.

Theorem 1.4 Let Cn, · · · , C0 be constants, and let F (z) be a polynomial such that

FCnC0 6≡ 0. Then every transcendental meromorphic solution f(z) of the non-homogeneous

differential equation

Cnf (n)(z) + Cn−1f
(n−1)(z) + · · · + C1f

′(z) + C0f(z) = F (z) (1.11)

satisfies that λ(f) = λ(f) = σ(f) = 1.

Remark 1.3 From Theorems 1.1 and 1.3, we see that for homogeneous equations (1.7)

or (1.10), we can only obtain that σ(f) ≥ 1 or σ(f) = 1.

From Theorems 1.2 and 1.4, we see that for non-homogeneous equations (1.8) or (1.11), we

can obtain that λ(f) = σ(f) ≥ 1 or λ(f) = σ(f) = 1.

Remark 1.4 From Theorem 1.3, we see that homogeneous equation (1.10) does not have

a polynomial solution. From Theorem 1.4, we see that non-homogeneous equation (1.11) may

have a polynomial solution.

Example 1.4 The differential equation

2f (3) + 3f ′′(z) + 2f ′(z) + 3f(z) = 0

has solutions f(z) = cos z and σ(f) = 1.

Example 1.5 The differential equation

3f ′′(z) + 2f ′(z) − 4f(z) = −4z2 + 4
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has a polynomial solution f(z) = z2 + z + 1.

2 The Asymptotic Method

Theorem G (see [17(p.30), 20]; the Wiman-Valiron Theory) Suppose that f is a tran-

scendental entire function, and that for any given 0 < δ < 1/8, there exists a set H of finite

logarithmic measure such that

f (n)(z)

f(z)
=

(ν(r, f)

z

)n

(1 + o(1)), |z| = r 6∈ H, (2.1)

whenever

|f(z)| ≥ M(r, f)ν(r, f)−
1

8
+δ,

ν(r, f) is the central index of f .

Remark 2.1 Suppose that f(z) =
∞
∑

n=0
anzn. The maximum term of f , µf (r) = µ(r, f),

is defined as

µf (r) = µ(r, f) := max{|an|r
n : n ≥ 0}.

The central index of f , νf (r) = ν(r, f) is defined as

νf (r) = ν(r, f) = max{n : |an|r
n ≤ µ(r, f) for all n ≥ 0}.

Asymptotic Method (see [13 (P.183-184), 17 (P. 227-229)]) Suppose that aj(z) (j =

0, 1, · · · , n), F (z) are polynomials, and consider the linear differential equation

an(z)f (n)(z) + an−1(z)f (n−1)(z) + · · · + a0(z)f(z) = F (z) (2.2)

and the corresponding homogeneous linear differential equation

an(z)f (n)(z) + an−1(z)f (n−1)(z) + · · · + a0(z)f(z) = 0. (2.3)

If a solution f(z) of equation (2.2) (or (2.3)) is a transcendental entire function, then, from

Theorem G (the Wiman-Valiron theory), there is a set H ⊂ (1, +∞) having logarithmic measure

lmH < ∞, we can choose z satisfying |z| = r /∈ [0, 1]∪H and |f(z)| = M(r, f) to such that get

that

f (j)(z)

f(z)
=

(νf (r)

z

)j

(1 + o(1)) (j = 1, 2, · · · , n), (2.4)

where νf (r) is the central index of f(z). Substituting (2.4) into (2.2) and (2.3), respectively,

we obtain

an(z)
(νf (r, f)

z

)n

(1 + o(1)) + an−1(z)
(νf (r, f)

z

)n−1

(1 + o(1))

+ · · · + a0(z) = o(1), r 6∈ [0, 1] ∪ H, (2.5)

and

an(z)
(νf (r, f)

z

)n

(1 + o(1)) + an−1(z)
(νf (r, f)

z

)n−1

(1 + o(1))

+ · · · + a0(z) = 0, r 6∈ [0, 1] ∪ H. (2.6)

Suppose that aj(z) = Ajz
mj(1 + o(1)) (j = 0, 1, · · · , n) as r → ∞, and An 6= 0. Set

νf (r, f) = νf (r).
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Thus, νf (r) → ∞ as r → ∞ and r 6∈ [0, 1] ∪ H , so by (2.5) and (2.6), we obtain

An(νf )nzmn−n(1 + o(1)) + An−1(νf )n−1zmn−1−(n−1)(1 + o(1))

+ · · · + A0z
m0(1 + o(1)) = o(1), r 6∈ [0, 1] ∪ H, (2.7)

and

An(νf )nzmn−n(1 + o(1)) + An−1(νf )n−1zmn−1−(n−1)(1 + o(1))

+ · · · + A0z
m0(1 + o(1)) = 0, r 6∈ [0, 1] ∪ H. (2.8)

Since solutions of algebraic equations (2.7) and (2.8) are continuous functions of coefficients,

solutions νf (r) of equations (2.7) and (2.8) must asymptotically be equal to the solution of

equation

An(νf )nzmn−n + An−1(νf )n−1zmn−1−(n−1) + · · · + A0z
m0 = 0. (2.9)

Since the solution νf of (2.9) is an algebraic function of z, setting the principal part of νf as

a(ρ)zρ (a, ρ are nonzero real numbers) in the neighborhood of z = ∞, we get that,

νf (r) = a(ρ)zρ(1 + o(1), in the neighborhood of z = ∞. (2.10)

By (2.9) and (2.10), it is easy to see that the degrees of all of the terms of the left of (2.9) are

nρ + mn − n, (n − 1)ρ + mn−1 − (n − 1), · · · , m0. (2.11)

Since νf (r) is the solution of (2.9), we see that in (2.11), at least, there are two terms that

are both the largest numbers and equal, and that the sum of coefficients of their corresponding

terms in (2.9) is zero. Hence, ρ satisfies that we have i and j such that

iρ + mi − i = jρ + mj − j (i < j, i = 0, 1, · · · , n − 1). (2.12)

Thus, we see that ρ is a rational number, and we have at most n such rational numbers that

are not less than 1/n.

3 Proofs of Theorems 1.1 and 1.2

We need the following lemmas to prove Theorems 1.1 and 1.2:

Lemma 3.1 (see [2, 4]) Let n ∈ N, and let f be a transcendental meromorphic function

of an order less than 1. Then there exists an ε-set En such that

∆nf(z) ∼ f (n)(z) (n = 1, · · · ) as z → ∞ in C \ En.

Lemma 3.2 (see [3, 4]) Let f(z) be a non-constant finite-order meromorphic solution of

P (z, f) = 0,

where P (z, f) is a difference polynomial in f(z), and let δ < 1. If P (z, a) 6≡ 0 for a slowly

moving target a, then

m

(

r,
1

f − a

)

= o

(

T (r + |c|, f)

rδ

)

+ o(T (r, f))

for all r outside of a possible exceptional set with finite logarithmic measure. Moreover, the

Nevanlinna deficiency satisfies that

δ(a, f) =: lim
r→∞

m(r, 1
f−a

)

T (r, f)
= 0.
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Proof of Theorem 1.1 We divide this proof into the following two cases:

Case 1 Suppose that f(z) is a transcendental meromorphic solution of (1.7) and has a

pole z0. Thus, by (1.7), we see that there is j1 (1 ≤ j1 ≤ n) such that f(z0 + j1) = ∞. Again by

(1.7), we see that there are js (1 ≤ js ≤ n, s = 2, · · · ,∞) such that f(z0 + j1 + · · · + js) = ∞.

Thus, we see that f(z) has poles z0, z0 + j1, · · · , z0 + j1 + · · · + js, · · · , such that λ( 1
f
) ≥ 1.

Hence, σ(f) ≥ λ( 1
f
) ≥ 1.

Case 2 Suppose that f(z) is an entire function, and that σ(f) < 1. We can rewrite (1.7)

as

An∆nf(z) + An−1∆
n−1f(z) + · · · + A0f(z) = 0, (3.1)

where Aj (j = 0, · · · , n) are constants.

Since f(z) is an entire function, and σ(f) < 1, by Lemma 3.1 we see that there exist ε-set

Ej (j = 1, · · · , n) such that

∆jf(z) ∼ f (j)(z) (j = 1, · · · ) as z → ∞ in C \ Ej . (3.2)

Set

H1 =

{

|z| = r, z ∈

n
⋃

j=1

Ej

}

.

Since Ej are ε-set, we see that a set H1 is of finite logarithmic measure. By (3.1) and (3.2), we

obtain that

Anf (n)(z)(1 + o(1)) + · · · + A1f
′(z)(1 + o(1)) + A0f(z) = 0. (3.3)

If A0 = 0, then we may suppose that A1 6= 0 and f ′(z) = g(z), f (j)(z) = g(j−1), j = 2, · · · , n.

Thus, without loss of generality, we may suppose that A0 6= 0. By the Wiman-Valiron theory

(see Theorem G) we see that there exists a set H2 of finite logarithmic measure such that

f (j)(z)

f(z)
=

(ν(r, f)

z

)j

(1 + o(1)), j = 1, · · · , n, (3.4)

where |f(z)| = M(r, f), |z| = r 6∈ [0, 1]∪H1∪H2, ν(r, f) is the central index of f(z). Combining

(3.3) and (3.4), we obtain that

An

(ν(r, f)

z

)n

(1 + o(1)) + An−1

(ν(r, f)

z

)(n−1)

(1 + o(1))

+ · · · + A1
ν(r, f)

z
(1 + o(1)) + A0 = 0, (3.5)

where |f(z)| = M(r, f), |z| = r 6∈ [0, 1] ∪ H1 ∪ H2.

Thus, applying the Asymptotic Method to (3.5), we see that the solution ν(r, f) of (3.5) is

asymptotic and equal to the solution ν(r) of algebraic equation

Anz−nν(r)n + An−1z
−(n−1)ν(r)(n−1) + · · · + A1z

−1ν(r) + A0 = 0. (3.6)

By supposition σ(f) = α < 1, we then have that ν(r) ∼ arα, where a is a nonzero real number,

and α is a rational number no less than 1
n
.

Thus, n + 1 terms in the left hand side of (3.6) are equal to

Ananrn(α−1), An−1a
n−1r(n−1)(α−1), · · · , A1ar(α−1), A0. (3.7)

Since 1
n
≤ α < 1, we see that the degrees of n + 1 terms in (3.7) satisfy

n(α − 1) < (n − 1)(α − 1) < · · · < α − 1 < 0. (3.8)
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By (3.7) and (3.8), we see that (3.6) is a contradiction.

Hence, every finite order transcendental meromorphic solution f(z)(6≡ 0) of the equation

(1.7) satisfies that σ(f) ≥ 1. �

Proof of Theorem 1.2 Using the same method as in the proof of Theorem 1.1, we can

prove that every finite order transcendental meromorphic solution f(z) of the equation (1.8)

satisfies σ(f) ≥ 1.

Now, we prove that every finite order transcendental meromorphic solution f(z) of the

equation (1.8) satisfies λ(f) = σ(f).

By (1.8), we set

E(z, f) := Cnf(z + n) + · · · + C0f(z) − F (z).

Thus,

E(z, 0) = −F (z) 6≡ 0.

By Lemma 3.2, we have that m
(

r, 1
f

)

= S(r, f), so

N

(

r,
1

f

)

= T (r, f) + S(r, f).

Hence, λ(f) = σ(f). �

4 Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3 It is well known that all meromorphic solutions of equations

(1.10) are entire functions.

Suppose that f(z) is a solution of (1.10).

First, we prove that f(z) cannot be a polynomial. If f(z) is a nonzero constant, then

f ′(z) = · · · = f (z)(z) = 0, and this is not possible. If f(z) is a polynomial with deg f(z) ≥ 1,

then deg f (j)(z) < deg f(z) (j = 1, · · · , n) which is also not possible.

Now, we suppose that f(z) is a transcendental entire function with σ(f) = σ.

By the Wiman-Valiron theory, we see that there exists a set H2 of finite logarithmic measure

such that (3.4) holds, where |f(z)| = M(r, f), |z| = r 6∈ [0, 1] ∪ H1 ∪ H2, ν(r, f) is the central

index of f(z). By (3.4) and (1.10), we obtain

Cn

(ν(r, f)

z

)n

(1 + o(1)) + Cn−1

(ν(r, f)

z

)(n−1)

(1 + o(1))

+ · · · + C1
ν(r, f)

z
(1 + o(1)) + C0 = 0, (4.1)

where |f(z)| = M(r, f), |z| = r 6∈ [0, 1] ∪ H1 ∪ H2, and

Cn

(ν(r, f)

z

)n

+ Cn−1

(ν(r, f)

z

)(n−1)

+ · · · + C1
ν(r, f)

z
+ C0 = 0. (4.2)

Using the same method as in the proof of Theorem 1.1, we see that ν(r) ∼ arα, where a is

nonzero real number, and α is a rational number no less than 1
n
.

Thus, we see that the degrees of n + 1 terms in (4.2) are, respectively,

n(σ − 1), (n − 1)(σ − 1), · · · , σ − 1, 0. (4.3)
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If 0 ≤ σ < 1, then

n(σ − 1) < (n − 1)(σ − 1) < · · · < σ − 1 < 0. (4.4)

If σ > 1, then

n(σ − 1) > (n − 1)(σ − 1) > · · · > σ − 1 > 0. (4.5)

Thus, by (4.4) and (4.5), we see that (4.1) is a contradiction.

Hence, by (4.4) and (4.5), we see that σ = 1, that is, every solution f(z)(6≡ 0) of the

equation (1.10) satisfies σ(f) = 1.

Theorem 1.3 is thus proved. �

Proof of Theorem 1.4

We need the following lemma:

Lemma 4.1 (see [13, pp. 168]) Suppose that a0, a1, · · · , ak−1, F 6≡ 0 are entire

functions, that f satisfies the differential equation

f (k) + ak−1f
(k−1) + · · · + a0f = F, (4.6)

and that

max{σ(F ), σ(aj); j = 0, 1, · · · , k − 1} < σ(f) = σ (0 < σ ≤ ∞). (4.6)

Then,

λ(f) = λ(f) = σ(f).

Proof of Theorem 1.4 Using the same method as in the proof of Theorem 1.3, we

see that all meromorphic solutions of equations (1.11) are entire functions, and if f(z) is a

transcendental entire solution of (1.11), then σ(f) = 1.

Since Cj(j = 0, · · · , n) are constants, F (z) 6≡ 0 is a polynomial, and thus Cj , F (z) and f(z)

satisfy condition (4.6) of Lemma 4.1. By Lemma 4.1, we obtain that λ(f) = λ(f) = σ(f) = 1.

Theorem 1.4 is thus proved. �
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