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Abstract In this paper, we extend the concept of holomorphic curves sharing hyperplanes

and introduce definitions of restricted hyperplanes and partial shared hypersurfaces. Then, we

prove several normal criteria of the family of holomorphic curves and holomorphic mappings

that concern restricted hyperplanes and partial shared hypersurfaces. These results generalize

the Montel-type normal criterion of holomorphic curves.
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1 Introduction

In the theory of a normal family of meromorphic functions, the following Montel theorem

plays an important role:

Theorem A Let F be a family of meromorphic functions in a plane domain D. If there

exist three distinct points, a1, a2, a3, on the Riemann sphere such that for each f ∈ F, f(z)−aj

(for j = 1, 2, 3) has no zeros in D, then F is normal.
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The Montel theorem is also very useful in valued distribution. For example, the Montel

theorem yields the Picard theorem and the Julia theorem. More generally, the three exception

values in Theorem A can be extended to shared values.

Theorem B Let F be a family of meromorphic functions in a plane domain D. If there

are three distinct points, a1, a2, a3, in the Riemann sphere such that any two functions f, g ∈ F

share a1, a2 and a3 in D, then F is normal.

This Montel-type theorem raises an interesting question about two families of meromorphic

functions sharing some values. In 2013, Liu, Li and Pang ([7]) proved the following result:

Theorem C Suppose that F and G are two families of meromophic functions in a plane

domain D. Let a1, a2, a3, a4 be four fixed distinct points on the Riemann sphere. If for each

f ∈ F there exists g ∈ G such that f and g share a1, a2, a3, a4, and G is normal in D, then F is

normal.

In the 1950s, Wu ([14]) and Fujimot ([4]) began to study the normal family for holomor-

phic mappings and extended some classical results for meromorphic functions to holomorphic

mappings. The notion of a normal family has proved its importance in geometric function

theory in several complex variables. In recent years, as more and more attention has been paid

to high dimensional complex analysis, the study of normal families of holomorphic curves and

holomorphic mappings has become well developed. Many researchers, such as Aladro, Krantz,

Ru, Tu and Pang, etc. have done much work on the normal family of holomorphic mappings

and holomorphic curves (see, e.g. refs. [1, 8, 13, 15, 16]). In this paper, we will prove several

theorems on the normality of holomorphic curves and holomorphic mappings.

We first give some definitions. Let PN (C) be the complex projective space of dimension

N ; that is, PN(C) = CN+1 − {0}/ ∼, where (z0, z1, · · · , zN) ∼ (w0, w1, · · · , wN ) if and only if

(z0, z1, · · · , zN ) = λ(w0, w1, · · · , wN ) for some nonzero complex number λ. We denote by [z]

the equivalent class of [z0 : z1 : · · · : zN ]. Suppose that

f = [f0 : f1 : · · · : fN ] : C
m → P

N (C)

is a holomorphic mapping, where f0, f1, · · · , fN are holomorphic functions of m variables. De-

note by f = (f0, f1, · · · , fN ) a reduced representation of f if f0, f1, · · · , fN have no common

zeros. The holomorphic mapping f is called a holomorphic curve when m = 1. Letting D be a

domain in Cm, we denote by H (D, PN (C)) the set of all holomorphic mappings f : D → PN (C).

Definition 1.1 A family F ⊂ H (D, PN (C)) is said to be normal on D if any sequence in

F contains a subsequence which is relatively compact; that is, if any sequence {fn} ⊂ F contains

a subsequence which converges to f ∈ H (D, PN (C)) uniformly on every compact subset of D.

A family F is said to be normal at a ∈ D if any sequence in F contains a subsequence which

is relatively compact; that is, if any sequence of F contains a subsequence which converges

compactly to f ∈ H (D, PN(C)) on some neighborhood Ua of a.

If f ∈ H (D, PN (C)) is representable as f = (f0, f1, · · · , fN) with a polynomial (or constant)

fj , we say that f is rational (or constant, respectively). In particular, letting M be a domain

in the complex plane, f : M → PN(C) is a holomorphic curve which we denote by f ∈

H (M, PN (C)).
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A hypersurface Q ∈ C[z0, z1, · · · , zN ]d is

Q = {[z] ∈ P
N (C); Q(z0, z1, · · · , zN) = 0},

where Q is a homogeneous polynomial of degree d. Hypersurfaces Q1, Q2, · · · , Qq in PN (C) are

said to be in t-subgeneral position if, for any 0 6 j0 6 j1 6 · · · 6 jt 6 q, we have

jt
⋂

j=j0

Qj = ∅,

and they are said to be in general position if t = N . Let f be a holomorphic mapping, where

f = (f0, f1, · · · , fN ) is the reduced representation. Then

〈f , Q〉 := Q ◦ f = Q(f0, f1, · · · , fN )

is a holomorphic function.

Definition 1.2 The multiplicity of holomorphic function 〈f , Q〉 at a point a is said to be

the multiplicity of holomorphic mapping f intersecting Q at a.

Remark 1.3 It is easy to verify that the zeros in 〈f , Q〉 are independent of the choice of

fj . Hence, Definition 1.2 is well defined.

We denote f−1(Q) by

f−1(Q) := {z ∈ D; f(z) ∈ Q} = {z ∈ D; 〈f(z), Q〉 = 0}.

Furthermore, for a family of holomorphic mappings F ⊂ H (D, PN (C)), we denote

F−1(Q) :=
⋃

f∈F

{z ∈ D; f(z) ∈ Q}.

We then introduce the definition of a shared hypersurface, which is the extension of shared

values for meromorphic functions.

Definition 1.4 Suppose that f, g ∈ H (D, PN (C)) and Q is a hypersurface in PN (C).

f and g are said to be sharing the hypersurface Q in D if

f−1(Q) = g−1(Q),

and is denoted by

f ∈ Q ⇔ g ∈ Q.

Furthermore, a family of holomorphic mappings F ⊂ H (D, PN (C)) is said to be sharing a

hypersurface Q in D ⊂ Cm if, for any f ∈ F, we have

F−1(Q) = f−1(Q).

If H is a homogeneous polynomial of degree 1, we say that H is a hyperplane; that is,

H = {[z0 : z1 : · · · : zN ] ∈ P
N(C); a0z0 + a1z1 + · · · + aNzN = 0},

where aj ∈ C, 0 ≤ j ≤ N . We also denote by H = {〈z, α〉 = 0}, or α = (a0, a1, a2, · · · , aN ),

the hyperplane where 〈z, α〉 is the inner product of z and α. Similarly, we can define a family

of holomorphic curves sharing hyperplanes. In particular, we say that holomorphic curve f is

linearly degenerate if

〈f(z), H〉 ≡ 0.
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Otherwise, it is linearly nondegenerate. Throughout this paper, we use M, D, H and Q as a

complex domain in C, a domain in Cm, a hyperplane and a hypersurface, respectively.

In 2014, Yang, Fang and Pang generalized Theorem B on a family of holomorphic curves

sharing some hyperlanes; see [15].

Theorem D Let M be a domain in the complex plane. Suppose that F ⊂ H (M, PN (C))

and H1, H2, · · · , H2t+1 are the 2t+1 hyperplanes located in t-subgeneral position, where t > N .

If F shares H1, H2, · · · , H2t+1 on M , then F is normal.

In this paper, we will improve Theorem D. First, we will prove

Theorem 1.5 Let f be a holomorphic curve in a plane domain M , and let Q be a

hypersurface in PN (C). Then, either f−1(Q) is a discrete set in M , or f−1(Q) = M .

By Theorem 1.5, we can introduce the definition of a restricted hyperplane.

Definition 1.6 Let F ∈ H (M, PN (C)). A hyperplane H in PN (C) is said to be restricted

for F if, for any closed subset G ⊂ M ,

#{G ∩ F−1(H)} < ∞,

where # is the number of elements. H is said to be a general restricted hyperplane for F if

there is a discrete set EH such that, for any closed set G ⊂ M , we have

#{G ∩ EH} < ∞,

and for any f ∈ F, we have either f−1(H) ⊂ EH or f−1(H) = M.

Remark 1.7 i) If H is a restricted hyperplane for F, then there is no linearly degenerate

holomorphic curve in F.

ii) If a family of holomorphic curves F shares a hyperplane H , then it follows from Theorem

1.5 that for any f ∈ F, either f−1(H) = M or f−1(H) = F−1(H) is a discrete set.

For the first case, H is obviously generally restricted. For the second case, if we let

EH = F−1(H),

then H is restricted. Hence, in either of the two cases, H is generally restricted.

iii) A restricted hyperplane for F may not be a shared hyperplane and a shared hyperplane

for F may not be a restricted hyperplane.

Based on the definition of a general restricted hyperplane, we prove the following, which is

an extension of Theorem D:

Theorem 1.8 Suppose that F ⊂ H (M, PN (C)), where M is a domain in the complex

plane. If for F there exist 2t + 1 general restricted hyperplanes H1, H2, · · · , H2t+1 located in

t-subgeneral positions, where t > N , then F is normal.

It follows from Definition 1.6 that a restricted hyperplane is also a general restricted hy-

perplane. Hence, we can also obtain the following result:

Corollary 1.9 Let F ⊂ H (M, PN (C)), where M is a plane domain. If for F there exist

2t + 1 restricted hyperplanes H1, H2, · · · , H2t+1 located in t-subgeneral position, where t > N ,

then F is normal.

For the normality of two families of holomorphic curves, Yang, Fang and Pang generalized

Theorem C and proved the following (see [16]):
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Theorem E Suppose that F, G ⊂ H (D, PN (C)), where D is a domain in Cm and

Q1, Q2, · · · , Q3t+1 are hypersurfaces located in t-subgeneral position, where t > N . If, for any

f ∈ F, there exists g ∈ G such that f and g share Qj (1 ≤ i ≤ 3t + 1) and G is normal, then F

is normal.

We now introduce the definition of partial sharing.

Definition 1.10 Suppose that f, g ⊂ H (D, PN (C)), where D is a domain in Cm. For

a hypersurface Q in PN(C), f is said to be left sharing Q with g in D if f−1(Q) ⊂ g−1(Q),

denoted by

f ∈ Q ⇒ g ∈ Q.

Remark 1.11 It follows from the definition that f ∈ Q ⇔ g ∈ Q if and only if

f ∈ Q ⇒ g ∈ Q and g ∈ Q ⇒ f ∈ Q.

We will improve Theorem E and obtain the following result for holomorphic mappings:

Theorem 1.12 Suppose that Q1, Q2, · · · , Q3t+1 ⊂ PN (C) are hypersurfaces located in

t-subgeneral position, where t > N . Let F, G ⊂ H (D, PN (C)), where D is a domain in Cm. If

i) for any f ∈ F, there exists g ∈ G such that for any j = 1, 2, · · · , 3t + 1, we have

f ∈ Qj ⇒ g ∈ Qj ,

ii) G is normal,

then F is also normal.

2 Lemmas

Lemma 2.1 ([1]) Suppose that D is a domain in Cm and that F ⊂ H (D, PN (C)). The

family F is not normal on D if and only if there exist sequences {zn}∞n=1 ⊂ D, {ρn}∞n=1 ⊂ R+,

{un}∞n=1 ⊂ Cm and {fn}∞n=1 ⊂ F such that lim
n→∞

zn = z0, lim
n→∞

ρn = 0, ‖un‖ = 1, and

hn(ζ) := fn(zn + ρnunζ)

converges uniformly on compact subsets of C to a nonconstant holomorphic mapping h ∈

H (C, PN (C)), where ‖un‖ is the Euclidean length, and ζ ∈ C satisfies zn + ρnunζ ∈ D.

Lemma 2.2 ([15]) Suppose that f is a holomorphic curve, and that H1, H2, · · · , H2t+1

are hyperplanes in PN(C) located in t-subgeneral position, where t > N . If, for each hyperplane

Hj , j ∈ {1, 2, · · · , 2t+1}, and either 〈f , Hj〉 ≡ 0 or 〈f , Hj〉 has finitely many zeros in C at most

(no zero is allowed), then the map f is rational.

Lemma 2.3 Let f be a holomorphic curve. If there exist 2t+1 hyperplanes H1, H2, · · · ,

H2t+1 in PN (C) located in t-subgeneral position, where t > N , satisfying that

i) for each j ∈ {1, 2, · · · , s}, either 〈f , Hj〉 ≡ 0 or 〈f , Hj〉 6= 0, where s > t + 1,

ii) for each j ∈ {s + 1, s + 2, · · · , 2t + 1}, 〈f , Hj〉 has finitely many zeros in C at most,

then f is a constant mapping.

Proof It follows from Lemma 2.2 that f is a rational mapping; that is, f is repre-

sentable as f = (f0, f1, · · · , fN) with polynomial fj . Hence, 〈f , Hj〉 is a polynomial for each

j = 1, 2, · · · , 2t + 1.
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If, for each j ∈ {1, 2, · · · , s},

〈f , Hj〉 6= 0,

then 〈f , Hj〉 is a nonzero constant, denoted by 〈f , Hj〉 ≡ cj . Hence, let

〈f , Hj〉 ≡ cj , j = 1, 2, · · · , s,

where cj = 0 if 〈f , Hj〉 ≡ 0, and cj 6= 0 if 〈f , Hj〉 6= 0.

For any j = 1, 2, · · · , N + 1, let

Hj = {[z0 : z1 : · · · : zN ] ∈ P
N(C); aj

0z0 + aj
1z1 + · · · + aj

NzN = 0}.

Then we have


























a1
0f0 + a1

1f1 + · · · + a1
NfN = c1,

a2
0f0 + a2

1f1 + · · · + a2
NfN = c2,

· · · · · · · · · · · ·

aN+1

0 f0 + aN+1

1 f1 + · · · + aN+1

N fN = cN+1.

Since H1, H2, · · · , H2t+1 are located in t-subgeneral position, vectors (aj
0, aj

1, · · · , aj
N ), j =

1, 2, · · · , N + 1 are linearly independent, so the linear system has a unique solution fj ≡ dj ,

j = 1, 2, · · · , N + 1.

We know that s ≥ N +1, hence if we choose other N +1 linear equations, we will have the

same solution for the linear system. Anything else would contradict the uniqueness theorem of

holomorphic functions. �

Lemma 2.4 ([16]) Let f ⊂ H (C, X), where X is a closed set in PN(C). If there exist

2t+1 hypersurfaces Q1, Q2, · · · , Q2t+1 in PN(C) located in t-subgeneral position, where t > N ,

such that either f(C) ⊂ Qj or f(C) ∩ Qj = ∅, then f is a constant mapping.

3 Proof of Theorems

3.1 Proof of Theorem 1.5

Let f = (f0, f1, · · · , fn) be a reduced representation of f . Noticing that Q is a polynomial

and that fj is a holomorphic function, we can obtain that

〈f , Q〉(z) = Q(f0, f1, · · · , fN)

is also a holomorphic function. Hence, either 〈f , Q〉(z) = Q(f0, f1, · · · , fN ) ≡ 0, or its zeros are

isolated. For the former, we have f−1(Q) = M . For the latter, we can conclude that f−1(Q) is

a discrete set in M .

3.2 Proof of Theorem 1.8

Let J = {1, 2, · · · , 2t + 1} and

Fj = {f ∈ F; f−1(Hj) 6= M, }, Ej =
⋃

f∈Fj

f−1(Hj), E :=

2t+1
⋃

j=1

Ej (j ∈ J).

It follows from Theorem 1.5 that for each f ∈ Fj, f−1(Hj) is a discrete set. Since for all

j ∈ J Hj is a restricted hyperplane, we have that Ej is a discrete set, and there have been E.
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Furthermore, for any closed subset G ⊂ M , we have

#(E ∩ G) < ∞.

Hence, for any fixed point a ∈ M , there exists a neighborhood Ua of a such that the radius of

Ua is sufficiently small and

#(E ∩ Ua) ≤ 1.

Then, for each f ∈ F and Hj(1 ≤ j ≤ 2t + 1), there are only three possibilities:

1) f(Ua) ⊂ Hj ; that is, for any z ∈ Ua, we have 〈f , Hj〉 ≡ 0;

2) f(a) /∈ Hj ; that is, for any z ∈ Ua, we have 〈f , Hj〉 6= 0;

3) f(a) ∈ Hj ; that is, f−1(Hj) ∩ Ua = {a}.

If we suppose that F is not normal at some a ∈ M , then F is not normal in Ua. It follows from

Lemma 2.1 that there exist sequences {zn} ⊂ Ua, {ρn} ⊂ R+, and {fn} ⊂ F such that

lim
n→∞

zn = a, lim
n→∞

ρn = 0

and

hn(ζ) := fn(zn + ρnζ), (zn + ρnζ ∈ Ua)

converges uniformly to a nonconstant holomorphic curve h in any compact subset of C.

Next we will prove that for any j ∈ J there are three possibilities: 〈h, Hj〉 ≡ 0, 〈h, Hj〉 6= 0,

or 〈h, Hj〉 has only one zero.

Let Hj satisfy 〈h, Hj〉 6≡ 0 and {z ∈ Ua; 〈h, Hj〉 = 0} 6= ∅. If holomorphic function 〈h, Hj〉

has two distinct zeros, then it follows from the Hurwitz theorem that when n is sufficiently

large, holomorphic function 〈hn, Hj〉 = 〈fn(zn + ρnζ), Hj〉 has two distinct zeros. In other

words, there are two distinct intersection points of fn and Hj , which contradicts the definition

of Ua. Therefore, 〈h, Hj〉 has only one zero.

Let

J0 = {j ∈ J ; 〈h, Hj〉 6= 0},

J1 = {j ∈ J ; 〈h, Hj〉 has only one zero},

J2 = {j ∈ J ; 〈h, Hj〉 ≡ 0}.

Then J = J0 ∪ J1 ∪ J2.

We claim that for any j ∈ J1, we have {〈h, Hj〉 = 0} =
⋂

j∈J1

{〈h, Hj〉 = 0}. In fact, since

hn(ζ) = fn(zn + ρnζ) → h(ζ),

then we have

〈hn, Hj〉 → 〈h, Hj〉.

For any fixed j ∈ J1, if ζ0 ∈ C is a zero of 〈h, Hj〉 with multiplicity µ, where µ ≥ 1, then it

follows from the Hurwitz Theorem that for ε > 0, when n is sufficiently large, holomorphic

function 〈hn, Hj〉 has µ zeros in |ζ − ζ0| < ε, counting its multiplicity. Therefore, we can choose

a sequence ζn → ζ0 such that when n is sufficiently large, we have zn + ρnζn ∈ Ua and

〈hn(ζn), Hj〉 = 〈fn(zn + ρnζn), Hj〉 = 0;

that is,

zn + ρnζn ∈ f−1
n (Hj).
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Since 〈fn, Hj〉 has at most one zero a in Ua, when n is sufficiently large, we have

zn + ρnζn = a.

Hence,

ζn =
a − zn

ρn

.

It follows from the fact that ζn → ζ0 that

ζ0 = lim
n→∞

ζn = lim
n→∞

a − zn

ρn

.

Hence, ζ0 is unique and is independent of Hj(j ∈ J1). Then we prove our claim.

Finally, since H1, H2, · · · , H2t+1 are located in t-subgeneral position, we have that

#J1 6 t.

Otherwise, there would be t + 1 hyperplanes, say, {Hjk
}t+1

k=1
, such that

t+1
⋂

k=1

Hjk
6= ∅.

It follows from Lemma 2.3 that h is a constant mapping, which is a contradiction. By the

arbitrariness of a and Definition 1.1, we can obtain that F is normal in D.

3.3 Proof of Theorem 1.12

We suppose that the result is false, that is, that F is not normal in D. Then it follows from

Lemma 2.1 that there exist {zn}
∞
n=1 ⊂ D, {ρn}

∞
n=1 ⊂ R

+, {un}
∞
n=1 ⊂ C

m and {fn}
∞
n=1 ⊂ F

such that lim
n→∞

zn = z0, lim
n→∞

ρn = 0, ‖un‖ = 1 and the sequence of holomorphic mappings

hn(ζ) := fn(zn + ρnunζ)

converges compactly to a nonconstant holomorphic mapping h in C.

By condition i), for the sequence of holomorphic mappings {fn}∞n=1, there exists a sequence

{gn}∞n=1 ⊂ G such that, for any n ∈ Z+ and 1 ≤ j ≤ 3t + 1, we have

fn ∈ Qj ⇒ gn ∈ Qj .

Noticing that G is normal, we can suppose, without loss of generality, that {gn}∞n=1 converges

compactly in D; that is,

gn → g ∈ H (D, PN (C)).

Since h is not a constant mapping, it follows from Lemma 2.4 that there exist at least t+1

hypersurfaces, say, Q1, Q2, · · · , Qt+1 satisfying 〈h, Qj〉 6≡ 0 and let {ζ ∈ D; 〈h(ζ), Qj〉 = 0} 6= ∅,

where 1 ≤ j ≤ t + 1. Let Qj0 ∈ {Qj}
t+1

j=1 and let ζ0 ∈ {ζ ∈ D; 〈h(ζ), Qj〉 = 0}. Then there

exists a neighborhood U0 of ζ0, a reduced representation of h

h = (h0, h1, · · · , hN ),

and hn

hn(ζ) = (hn0(ζ), hn1(ζ), · · · , hnN (ζ))

= (fn0(zn + ρnunζ), fn1(zn + ρnunζ), · · · , fnN (zn + ρnunζ))
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such that the sequences of holomorphic functions {hnm}∞n=1 converge compactly to hm in U0,

where 0 ≤ m ≤ N . Therefore, 〈hn(ζ), Qj0 〉 converges compactly to 〈h(ζ), Qj0〉 in U0. Since

〈h(ζ), Qj0〉 6≡ 0, it follows from the Hurwitz theorem that there exists {ζn} ⊂ U0 such that

ζn → ζ0 and

〈hn(ζn), Qj0〉 = 0, n ∈ Z
+;

that is,

〈fn(zn + ρnunζn), Qj0〉 = 0, n ∈ Z
+.

Knowing that fn ∈ Qj ⇒ gn ∈ Qj , we can obtain

〈gn(zn + ρnunζn), Qj0〉 = 0, n ∈ Z
+.

Letting n → ∞, we have

〈g(z0), Qj0〉 = 0.

Since j0 is arbitrary, there exist t + 1 hypersurfaces Q1, Q2, Qt+1 such that 〈g(z0), Qj〉 = 0,

which contradicts the hypothesis that Q1, Q2, · · · , Qt+1 is located in t-subgeneral position in

X . Hence, Theorem 1.12 is true.
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