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Abstract We investigate the Hyers–Ulam stability (HUS) of certain second-order linear

constant coefficient dynamic equations on time scales, building on recent results for first-

order constant coefficient time-scale equations. In particular, for the case where the roots

of the characteristic equation are non-zero real numbers that are positively regressive on

the time scale, we establish that the best HUS constant in this case is the reciprocal of the

absolute product of these two roots. Conditions for instability are also given.
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1 Introduction

The story of Ulam and Hyers–Ulam stability (HUS) is recounted in many papers dealing

with the subject, as has the development of dynamic equations on time scales. In this work,

we continue the connection between those two areas by extending recent results on HUS for

first-order time scale equations with constant coefficient [1], to second-order dynamic equations

with constant coefficients. Other papers exploring HUS for dynamic equations on time scales

include [2–6]. With a more general view, [7] established Ulam–type stability for a first-order

equation using measure theory.

First, a brief review of time scales. Any closed, nonempty subset of the real line R is a time

scale [11]. For example, R, hZ, and N are common examples of time scales. In this paper, we

denote a time scale by T. We define the jump operators σ, ρ : T → T by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

Set µ(t) = σ(t) − t. The point t ∈ T is called right-scattered, right-dense, left-dense, left-

scattered if σ(t) > t, σ(t) = t, ρ(t) = t, ρ(t) < t, respectively. For example if T = R, then
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σ(t) = t = ρ(t) and µ(t) = 0 hold for any t ∈ R; that is, all t ∈ R are left and right-dense. If

T = hZ := {hk : k ∈ Z} for h > 0, then σ(t) = t+ h, ρ(t) = t − h, and µ(t) = h hold for any

t ∈ hZ; that is, all t ∈ hZ are right and left-scattered. Define the set T
κ by T

κ = T − {M} if

T has a left-scattered maximum M ; if not, then T
κ = T. Let t ∈ T

κ and f : T → R. The delta

derivative at t of f is defined by the following: For any ε > 0, there is a neighborhood B of t

for which

|f(σ(t)) − f(ξ) − f∆(t)[σ(t) − ξ]| ≤ ε|σ(t) − ξ|

for all ξ ∈ B. For example, f∆(t) = f ′(t) when T = R; f∆(t) = ∆hf(t) = f(t+h)−f(t)
h when

T = hZ. It is clear that if a function f exists on T and is delta differentiable, then f∆ exists on

T
κ. The following product rule [11, Theorem 1.20] hold for the differentiable functions f and

g:

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

In this study, we call it the ∆-derivative product rule.

Initially, we focus on the first-order linear dynamic equation

x∆(t) − ax(t) = 0 (1.1)

on T
κ, where a ∈ R. By [11, Theorem 2.62], solutions of (1.1) are guaranteed to have global

existence and uniqueness for the initial-value problem if a is regressive; that is, 1 + aµ(t) 6= 0

for all t ∈ T
κ. In 2018, Anderson and Onitsuka [1] dealt with the Hyers–Ulam stability of (1.1),

assuming that 1 + aµ(t) > 0 for all t ∈ T
κ; that is to say, a ∈ R+, where a ∈ R+ is called

positively regressive. We say that (1.1) has Hyers–Ulam stability (HUS) on T if and only if

there exists a constant K > 0 with the following property. For arbitrary ε > 0, if a function

φ : T → R satisfies |φ∆(t) − aφ(t)| ≤ ε for all t ∈ T
κ, then there exists a solution x : T → R

of (1.1) such that |x(t) − φ(t)| ≤ Kε for all t ∈ T. Any such constant K is known as an HUS

constant on T for (1.1). For example, see the related references [8–10] for HUS of the first-order

differential equations, difference equations, functional differential equations. It is known that

(1.1) is not Hyers–Ulam stable on T when a = 0 and sup T = ∞ (see, [1, Remark 3.3]). In

this paper, the unique solution of the initial value problem (1.1) with x(t0) = 1 is denoted

by ea(t, t0). Note that if a ∈ R+, then ea(t, t0) > 0 for all t ∈ T (see, [11, Theorem 2.44]).

Anderson and Onitsuka gave the following result.

Theorem 1.1 ([1, Theorem 3.7]) Let t0 ∈ T and ε > 0 be given. Suppose a function

φ : T → R that is delta-differentiable on T
κ satisfies

|φ∆(t) − aφ(t)| ≤ ε, t ∈ T
κ,

where a 6= 0 and a ∈ R+. Then, one of the following holds.

(i) If a > 0 and sup T < ∞, then any solution x of (1.1) with |φ(sup T) − x(sup T)| < ε
a

satisfies |φ(t) − x(t)| < ε
a for all t ∈ T.

(ii) If a > 0 and sup T = ∞, then lim
t→∞

φ(t)
ea(t,t0)

exists, and there exists a unique solution

x(t) :=

(

lim
t→∞

φ(t)

ea(t, t0)

)

ea(t, t0)

of (1.1) such that |φ(t) − x(t)| ≤ ε
a for all t ∈ T.
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(iii) If a < 0 and inf T > −∞, then any solution x of (1.1) with |φ(inf T) − x(inf T)| < ε
|a|

satisfies |φ(t) − x(t)| < ε
|a| for all t ∈ T.

(iv) If a < 0 and inf T = −∞, then lim
t→−∞

φ(t)
ea(t,t0)

exists, and there exists a unique solution

x(t) :=

(

lim
t→−∞

φ(t)

ea(t, t0)

)

ea(t, t0)

of (1.1) such that |φ(t) − x(t)| ≤ ε
|a| for all t ∈ T.

Remark 1.2 Since T is any closed, nonempty subset of R, we have the following facts:

sup T < ∞ if and only if max T exists, and thus, sup T = max T holds; sup T = ∞ if and only

if max T does not exist; inf T > −∞ if and only if min T exists, and thus, inf T = min T holds;

inf T = −∞ if and only if min T does not exist.

2 First-order Non-homogeneous Linear Dynamic Equations

A function f : T → R is said to be rd-continuous if it is continuous at all right-dense points

in T and its left-sided limit exists (finite) at left-dense points of T. If f is rd-continuous, then

there is a function F such that F∆ = f (see, [11]). We define
∫

f(t)∆t = F (t) + C,

∫ b

a

f(t)∆t = F (b) − F (a),

where C is an arbitrary constant of integration. Next, consider the first-order non-homogeneous

linear dynamic equation

x∆(t) − ax(t) = f(t), (2.1)

where the function f is rd-continuous on T. Theorem 1.1 is improved as follows.

Theorem 2.1 Let t0 ∈ T and ε > 0 be given. Suppose a function φ : T → R that is

delta-differentiable on T
κ satisfies

|φ∆(t) − aφ(t) − f(t)| ≤ ε, t ∈ T
κ,

where a ∈ R+ and a 6= 0. Then, one of the following holds.

(i) If a > 0 and sup T < ∞, then any solution x of (2.1) with |φ(sup T) − x(sup T)| < ε
a

satisfies |φ(t) − x(t)| < ε
a for all t ∈ T.

(ii) If a > 0 and sup T = ∞, then lim
t→∞

(

φ(t)
ea(t,t0)

−
∫ f(t)

ea(σ(t),t0)∆t
)

exists, and there exists a

unique solution

x(t) :=

[
∫

f(t)

ea(σ(t), t0)
∆t+ lim

t→∞

(

φ(t)

ea(t, t0)
−

∫

f(t)

ea(σ(t), t0)
∆t

)]

ea(t, t0)

of (2.1) such that |φ(t) − x(t)| ≤ ε
a for all t ∈ T.

(iii) If a < 0 and inf T > −∞, then any solution x of (2.1) with |φ(inf T) − x(inf T)| < ε
|a|

satisfies |φ(t) − x(t)| < ε
|a| for all t ∈ T.

(iv) If a < 0 and inf T = −∞, then lim
t→−∞

(

φ(t)
ea(t,t0)

−
∫ f(t)

ea(σ(t),t0)
∆t

)

exists, and there exists

a unique solution

x(t) :=

[
∫

f(t)

ea(σ(t), t0)
∆t+ lim

t→−∞

(

φ(t)

ea(t, t0)
−

∫

f(t)

ea(σ(t), t0)
∆t

)]

ea(t, t0)

of (2.1) such that |φ(t) − x(t)| ≤ ε
|a| for all t ∈ T.
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Before proving the theorem, we give two lemmas as follows.

Lemma 2.2 ([11, Theorem 6.2]) Let t0 ∈ T. If a ∈ R+, then the inequality

ea(t, t0) ≥ 1 + a(t− t0)

holds for all t ∈ [t0,∞)T.

Lemma 2.3 ([1, Lemma 3.5]) Let t0 ∈ T. If a ∈ R+ and a < 0, then the inequality

ea(t, t0) ≥ 1 + a(t− t0)

holds for all t ∈ (−∞, t0]T.

Proof of Theorem 2.1 Given any ε > 0, let φ : T → R satisfy

|φ∆(t) − aφ(t) − f(t)| ≤ ε, t ∈ T
κ.

Fix t0 ∈ T, and let

ϕp(t) := ea(t, t0)

∫

f(t)

ea(σ(t), t0)
∆t, t ∈ T.

Then, ϕp is a particular solution of (2.1). We see, moreover, that

ϕ∆
p (t) = ea(σ(t), t0)

f(t)

ea(σ(t), t0)
+ aea(t, t0)

∫

f(t)

ea(σ(t), t0)
∆t = f(t) + aϕp(t)

follows from the ∆-derivative product rule. Let y(t) = φ(t) − ϕp(t). Then,

|y∆(t) − ay(t)| = |φ∆(t) − aφ(t) − f(t)| ≤ ε (2.2)

holds for all t ∈ T
κ.

First, we consider case (i), that is, assume that a > 0 and sup T <∞. By Remark 1.2, max T

exists and sup T = max T. Now, we consider any solution x of (2.1) with |φ(sup T)−x(sup T)| <
ε
a . Let z(t) := x(t) − ϕp(t). Then, we see that z is a solution of (1.1) with

|y(sup T) − z(sup T)| = |y(sup T) + ϕp(sup T) − x(sup T)| <
ε

a
.

So that this together with Theorem 1.1 (i) and (2.2) implies that |φ(t)−x(t)| = |y(t)−z(t)| < ε
a

for all t ∈ T.

Next, we consider case (ii), that is, assume that a > 0 and sup T = ∞. Using Theorem 1.1

(ii) with (2.2), we can conclude that lim
t→∞

y(t)
ea(t,t0)

exists, and there exists a unique solution

w(t) :=

(

lim
t→∞

y(t)

ea(t, t0)

)

ea(t, t0)

of (1.1) satisfying |y(t) − w(t)| ≤ ε
a for all t ∈ T. Recalling y(t) = φ(t) − ϕp(t), we see that

c := lim
t→∞

(

φ(t)

ea(t, t0)
−

∫

f(t)

ea(σ(t), t0)
∆t

)

exists. Set

x(t) := w(t) + ϕp(t) =

(
∫

f(t)

ea(σ(t), t0)
∆t+ c

)

ea(t, t0).

Then, x is a solution of (2.1) and satisfies |φ(t) − x(t)| = |y(t) − w(t)| ≤ ε
a for all t ∈ T.
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Now, we will show that the above mentioned x is the unique solution satisfying |φ(t) −

x(t)| ≤ ε
a for all t ∈ T. Assume that there exists a solution x̃ of (2.1) with x̃(t) 6= x(t) and

|φ(t) − x̃(t)| ≤ ε
a for all t ∈ T. From the uniqueness of solutions of (2.1), x̃ is rewritten by

x̃(t) :=

(
∫

f(t)

ea(σ(t), t0)
∆t+ c̃

)

ea(t, t0),

where c̃ 6= c. Thus,

|c− c̃|ea(t, t0) = |x(t) − x̃(t)| ≤ |φ(t) − x(t)| + |φ(t) − x̃(t)| ≤
2ε

a

for all t ∈ T. This is a contradiction of the fact that ea(t, t0) → ∞ as t→ ∞ by Lemma 2.2.

The arguments given above for (i) and (ii) can be modified to establish the validity of (iii)

and (iv); the details are omitted. Note here that the uniqueness of the solution x in (iv) is

shown by using Lemma 2.3. This completes the proof. �

In a definition analogous to that given for the homogeneous equation (1.1), equation (2.1)

is Hyers–Ulam stable (HUS) on T if and only if there exists a constant K > 0 satisfying the

following property. For any ε > 0, if some function φ : T → R satisfies |φ∆(t)−aφ(t)−f(t)| ≤ ε

for all t ∈ T
κ, then there exists some solution x : T → R of (2.1) such that |φ(t) − x(t)| ≤ Kε

for all t ∈ T. By Theorem 2.1, we get a simple result, immediately.

Corollary 2.4 If a ∈ R+ with a 6= 0, then (2.1) is Hyers–Ulam stable, with an HUS

constant 1
|a| on T.

Proof Let ε > 0 be given. Assume that |φ∆(t)− aφ(t)− f(t)| ≤ ε for all t ∈ T
κ. We now

consider the case a > 0. If we suppose that sup T < ∞, then there exists a solution x of (2.1)

such that |φ(t)− x(t)| < ε
a for all t ∈ T by Theorem 2.1 (i). That is, (2.1) has HUS on T. Note

that (i) in Theorem 2.1 says that any solution satisfying the appropriate initial condition will

satisfy |φ(t) − x(t)| < ε
a for all t ∈ T. We just have to choose one of them. If sup T = ∞, then

by Theorem 2.1 (ii), we can find an exact solution x of (2.1) satisfying |φ(t) − x(t)| < ε
a for all

t ∈ T, so that, (2.1) has HUS on T.

For the cases a < 0 with inf T > −∞ or inf T = −∞, we can use Theorem 2.1 (iii) and (iv),

so that, (2.1) has HUS on T when a < 0 as well. �

Theorem 2.5 Suppose that sup T = ∞ and inf T = −∞, and that a ∈ R+ with a 6= 0.

If (2.1) is Hyers–Ulam stable, then the minimal HUS constant is at least 1
|a| on T.

Proof Let t0 ∈ T. For arbitrary ε > 0, let φ : T → R be given by

φ(t) := ea(t, t0)

∫

f(t)

ea(σ(t), t0)
∆t−

ε

a
.

Then, we have

φ∆(t) = ea(σ(t), t0)
f(t)

ea(σ(t), t0)
+ aea(t, t0)

∫

f(t)

ea(σ(t), t0)
∆t = f(t) + aφ(t) + ε

by using the ∆-derivative product rule, so that |φ∆(t) − aφ(t) − f(t)| = ε holds for all t ∈ T.

Let

x(t) :=

(
∫

f(t)

ea(σ(t), t0)
∆t+ c

)

ea(t, t0),

where c ∈ R is an arbitrary constant. Then, x is the general solution of (2.1). Since the

following facts hold, namely: if a > 0, then lim
t→∞

ea(t, t0) = ∞ holds by Lemma 2.2, and if
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a < 0, then lim
t→−∞

ea(t, t0) = ∞ by Lemma 2.3, we see that |φ(t) − x(t)| < ∞ whenever c = 0;

c = 0 implies that |φ(t) − x(t)| = ε
|a| for all t ∈ T; that is, the minimum (best) HU-stability

constant for (2.1) on T is at least 1
|a| on T. �

Corollary 2.4 and Theorem 2.5 imply the following theorem, immediately.

Theorem 2.6 Suppose that sup T = ∞ and inf T = −∞. If a ∈ R+ with a 6= 0, then

(2.1) is Hyers–Ulam stable, with best (minimum) HU-stability constant 1
|a| on T.

Remark 2.7 Almost at the same time as the start of this study, Shen and Li [12] gave

a result similar to Theorem 2.1. The difference from their result is that the integral that

appears in Theorem 2.1 is the indefinite integral. Therefore, our result is represented by any

primitive function. Furthermore, in this study, we deal with the best (minimum) value of the

HU-stability constant. Shen and Li [12] do not study the minimum HUS constant for (2.1) on

T. For this reason, the originality of this section is guaranteed. If we can obtain the minimum

HUS constant, then it is often called the best HUS constant or the best constant. For the

best constant for functional equations and some positive linear operators, see Popa and Raşa

[13, 14]. For linear differential equations and linear difference equations, the papers [15–18] are

representative of recent results.

3 Second-Order Linear Dynamic Equations

Using the previous results on first-order linear dynamic equations, in this section we focus

on the second-order linear constant coefficient dynamic equation

x∆∆(t) + αx∆(t) + βx(t) = f(t), t ∈ T
κκ, (3.1)

where α and β are real numbers and f : T → R is rd-continuous. Here, the set T
κκ is defined

by T
κκ = T − {M,Mκ} if T and T

κ have left-scattered maximums M and Mκ, respectively;

T
κκ = T

κ if T has a left-scattered maximumM , but T
κ does not have a left-scattered maximum;

T
κκ = T if T does not have a left-scattered maximum. Note here that if T does not have a

left-scattered maximum, then T
κ = T, so that, T

κ does not have a left-scattered maximum.

We say that (3.1) is Hyers–Ulam stable (HUS) on T if and only if there exists some constant

K > 0 with the following property. For arbitrary ε > 0, if some function φ : T → R satisfies

|φ∆∆(t) + αφ∆(t) + βφ(t) − f(t)| ≤ ε

for all t ∈ T
κκ, then there exists some solution x : T → R of (3.1) such that |φ(t) − x(t)| ≤ Kε

for all t ∈ T. Any such constant K is called an HUS constant for (3.1) on T. Hyers–Ulam stabil-

ity for second-order linear constant coefficient difference equations, differential equations, and

dynamic equations on times scales were studied in [19–26]. In addition, Hyers–Ulam stability

for second-order non-constant coefficient differential equations, functional differential equations,

and dynamic equations were discussed in [27–31]. The first result for (3.1) is as follows.

Theorem 3.1 Suppose that the characteristic equation λ2 + αλ + β = 0 for (3.1) has

non-zero real roots λ1 and λ2 with λ1, λ2 ∈ R+. Then, (3.1) is Hyers–Ulam stable, with an

HUS constant 1
|λ1λ2|

on T.

Proof Set ψ(t) := φ∆(t) − λ1φ(t) for t ∈ T
κ. Since φ∆ and φ are delta-differentiable, we
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get

|ψ∆(t) − λ2ψ(t) − f(t)| = |(φ∆(t) − λ1φ(t))∆ − λ2(φ
∆(t) − λ1φ(t)) − f(t)|

= |φ∆∆(t) − (λ1 + λ2)φ
∆(t) + λ1λ2φ(t) − f(t)|

= |φ∆∆(t) + αφ∆(t) + βφ(t) − f(t)| ≤ ε (3.2)

for all t ∈ T
κκ. Using Corollary 2.4 with (3.2), a solution y : T → R of

y∆(t) − λ2y(t) = f(t) (3.3)

exists, such that |ψ(t) − y(t)| ≤ ε
|λ2|

for all t ∈ T
κ; that is,

|φ∆(t) − λ1φ(t) − y(t)| = |ψ(t) − y(t)| ≤
ε

|λ2|
(3.4)

for all t ∈ T
κ. Since y is a solution of (3.3), y is delta-differentiable, and thus y is rd-continuous

on T
κ. Using Corollary 2.4 with (3.4), a solution x : T → R of

x∆(t) − λ1x(t) = y(t) (3.5)

exists, such that |φ(t) − x(t)| ≤ ε
|λ1λ2|

for all t ∈ T. Now, we will check that x is a solution of

(3.1). Since y is delta-differentiable, x∆ is also delta-differentiable. From (3.3) and (3.5), we

obtain

x∆∆(t) + αx∆(t) + βx(t) = x∆∆(t) − (λ1 + λ2)x
∆(t) + λ1λ2x(t)

= (x∆(t) − λ1x(t))
∆ − λ2(x

∆(t) − λ1x(t))

= y∆(t) − λ2y(t) = f(t) (3.6)

for t ∈ T
κκ. This completes the proof. �

Theorem 3.2 Suppose that sup T = ∞ and inf T = −∞, and that the characteristic

equation λ2 + αλ + β = 0 for (3.1) has non-zero real roots λ1 and λ2 with λ1, λ2 ∈ R+. Let

t0 ∈ T and ε > 0 be given. If a twice ∆-differentiable function φ : T → R satisfies

|φ∆∆(t) + αφ∆(t) + βφ(t) − f(t)| ≤ ε, t ∈ T
κκ,

then the following hold.

(i) If 0 < λ1 ≤ λ2 and lim
t→∞

∫ t

t0
∆s

1+λ1µ(s) = ∞, then

c1 := lim
t→∞

(

φ∆(t) − λ1φ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

and

c2 := lim
t→∞

[

φ(t)

eλ1
(t, t0)

−

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t− c1

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t

]

exist, and there exists the unique solution

x(t) :=

[
∫

(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t+ c1

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t+ c2

]

eλ1
(t, t0)

of (3.1) such that |φ(t) − x(t)| ≤ ε
λ1λ2

for all t ∈ T;

(ii) If λ1 ≤ λ2 < 0 and lim
t→−∞

∫ t

t0
∆s

1+λ2µ(s) = −∞, then

c3 := lim
t→−∞

(

φ∆(t) − λ1φ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)
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and

c4 := lim
t→−∞

[

φ(t)

eλ1
(t, t0)

−

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t−c3

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t

]

exist, and there exists the unique solution

x(t) :=

[
∫

(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t+ c3

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t+ c4

]

eλ1
(t, t0)

of (3.1) such that |φ(t) − x(t)| ≤ ε
λ1λ2

for all t ∈ T;

(iii) If λ1 < 0 < λ2, then

c1 := lim
t→∞

(

φ∆(t) − λ1φ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

and

c5 := lim
t→−∞

[

φ(t)

eλ1
(t, t0)

−

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t−c1

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t

]

exist, and there exists the unique solution

x(t) :=

[
∫

(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t+ c1

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t+ c5

]

eλ1
(t, t0)

of (3.1) such that |φ(t) − x(t)| ≤ ε
|λ1λ2|

for all t ∈ T.

Before proving the theorem, we state and establish the following lemmas.

Lemma 3.3 Let t0 ∈ T. If λ1, λ2 ∈ R+ with λ1 6= 0 6= λ2, then

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t =



















eλ2
(t, t0)

(λ2 − λ1)eλ1
(t, t0)

+ C if λ1 6= λ2,

∫ t

t0

∆s

1 + λ1µ(s)
+ C if λ1 = λ2,

where C is any constant.

Proof First, consider the case λ1 6= λ2. By the ∆-derivative quotient rule, we have

(

eλ2
(t, t0)

eλ1
(t, t0)

)∆

=
(eλ2

(t, t0))
∆
eλ1

(t, t0) − eλ2
(t, t0) (eλ1

(t, t0))
∆

eλ1
(t, t0)eλ1

(σ(t), t0)

= (λ2 − λ1)
eλ2

(t, t0)

eλ1
(σ(t), t0)

, (3.7)

so that the assertion is established. Next, consider the case λ1 = λ2. By [11, Theorem 2.36], it

is known that

eλ1
(σ(t), t0) = (1 + λ1µ(t))eλ1

(t, t0). (3.8)

Using this, the assertion is true. �

From [11, Theorems 3.16 and 3.34] the following lemma is immediately true.

Lemma 3.4 For (3.1), assume the characteristic equation λ2 + αλ+ β = 0 has non-zero

real roots λ1 and λ2 with λ1, λ2 ∈ R+. Let t0 ∈ T. Then, the general solution of (3.1) is given
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by:

x(t) :=











































[
∫

(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t+ C1

]

eλ1
(t, t0) + C2eλ2

(t, t0)

if λ1 6= λ2,

[
∫

(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t+ C1 + C2

∫ t

t0

∆s

1 + λ1µ(s)

]

eλ1
(t, t0)

if λ1 = λ2,

where C1 and C2 are arbitrary constants.

Lemma 3.5 ([1, Lemma 5.2]) Assume a ∈ R+ with a < 0, and let t0 ∈ T. Then, the

inequality

ea(t, t0) ≤
1

1 − a(t− t0)

holds for all t ∈ [t0,∞)T.

Lemma 3.6 Assume a > 0, and let t0 ∈ T. Then, the inequality

ea(t, t0) ≤
1

1 − a(t− t0)

holds for all t ∈ (−∞, t0]T.

Proof Let

y(t) :=
1

ea(t, t0)
+ a(t− t0) − 1

for all t ∈ (−∞, t0]T, then y(t0) = 0. We will show that y(t) ≥ 0 for all t ∈ (−∞, t0]T. Using

the ∆-derivative quotient rule, we have

y∆(t) =
−(ea(t, t0))

∆

ea(t, t0)ea(σ(t), t0)
+ a = a

(

1 −
1

ea(σ(t), t0)

)

for all t ∈ (−∞, t0)T. Note here that t ≤ σ(t) ≤ t0 from t < t0 and the definition of σ(t). This

together with the monotonicity of ea(t, t0) with a > 0 and ea(t0, t0) = 1 implies that

0 < ea(σ(t), t0) ≤ ea(t0, t0) = 1,

and thus, y∆(t) ≤ 0 for all t ∈ (−∞, t0)T. Consequently, we obtain y(t) ≥ 0 for all t ∈ (−∞, t0]T,

completing the proof. �

Lemmas 2.2, 2.3, 3.5 and 3.6 imply the following lemma.

Lemma 3.7 Assume a ∈ R+ with a 6= 0, and let t0 ∈ T. Then, the following hold.

(i) If sup T = ∞, then

lim
t→∞

ea(t, t0) =







∞ if a > 0,

0 if a < 0.

(ii) If inf T = −∞, then

lim
t→−∞

ea(t, t0) =







0 if a > 0,

∞ if a < 0.
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Lemma 3.8 Suppose that λ1, λ2 ∈ R+ and λ1 6= 0 6= λ2. Let t0 ∈ T. Then, the following

hold.

(i) If sup T = ∞, 0 < λ1 < λ2 and lim
t→∞

∫ t

t0
∆s

1+λ1µ(s) = ∞, then

lim
t→∞

eλ2
(t, t0)

eλ1
(t, t0)

= ∞.

(ii) If inf T = −∞, λ1 < λ2 < 0 and lim
t→−∞

∫ t

t0
∆s

1+λ2µ(s) = −∞, then

lim
t→−∞

eλ1
(t, t0)

eλ2
(t, t0)

= ∞.

Proof First, we consider case (i). By (3.7), (3.8) and λ1, λ2 ∈ R+, we have
(

eλ2
(t, t0)

eλ1
(t, t0)

)∆

=
λ2 − λ1

1 + λ1µ(t)

eλ2
(t, t0)

eλ1
(t, t0)

> 0 (3.9)

for all t ∈ T. Using this inequality, we get

eλ2
(t, t0)

eλ1
(t, t0)

≥
eλ2

(t0, t0)

eλ1
(t0, t0)

= 1

for all t ∈ [t0,∞)T. This together with (3.9) implies that
(

eλ2
(t, t0)

eλ1
(t, t0)

)∆

≥
λ2 − λ1

1 + λ1µ(t)

for all t ∈ [t0,∞)T, and thus,

eλ2
(t, t0)

eλ1
(t, t0)

− 1 ≥

∫ t

t0

λ2 − λ1

1 + λ1µ(s)
∆s

for all t ∈ [t0,∞)T. Therefore, we get

lim
t→∞

eλ2
(t, t0)

eλ1
(t, t0)

= ∞.

Next, we consider case (ii). In the same way, we have
(

eλ1
(t, t0)

eλ2
(t, t0)

)∆

=
λ1 − λ2

1 + λ2µ(t)

eλ1
(t, t0)

eλ2
(t, t0)

< 0 (3.10)

for all t ∈ T. From this, we get

eλ1
(t, t0)

eλ2
(t, t0)

≥
eλ1

(t0, t0)

eλ2
(t0, t0)

= 1

for all t ∈ (−∞, t0]T. This together with (3.10) implies that
(

eλ1
(t, t0)

eλ2
(t, t0)

)∆

≤
λ1 − λ2

1 + λ2µ(t)

for all t ∈ (−∞, t0]T, and thus,

1 −
eλ1

(t, t0)

eλ2
(t, t0)

≤

∫ t0

t

λ1 − λ2

1 + λ2µ(s)
∆s =

∫ t

t0

λ2 − λ1

1 + λ2µ(s)
∆s

for all t ∈ (−∞, t0]T. Therefore, we get

lim
t→−∞

eλ1
(t, t0)

eλ2
(t, t0)

= ∞.

�
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Remark 3.9 Let λ ∈ R+. If T = R and t0 = 0, then µ(t) = 0, so that we have
∫ t

t0

∆s

1 + λµ(s)
= t→ ±∞ as t→ ±∞.

If T = hZ and t0 = 0, then µ(t) = h, so that we have
∫ t

t0

∆s

1 + λµ(s)
=

t

1 + λh
→ ±∞ as t→ ±∞.

From these facts, we say that the assumptions

lim
t→∞

∫ t

t0

∆s

1 + λ1µ(s)
= ∞ and lim

t→−∞

∫ t

t0

∆s

1 + λ2µ(s)
= −∞

in Theorem 3.2 and Lemma 3.8 are natural conditions.

Proof of Theorem 3.2 Set ψ(t) := φ∆(t) − λ1φ(t) for t ∈ T
κ. Then, we get (3.2) for

all t ∈ T
κκ.

First, we prove case (i). Using Theorem 2.1 (ii) with (3.2), we see that

lim
t→∞

(

ψ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

= lim
t→∞

(

φ∆(t) − λ1φ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

=: c1

exists, and there exists a unique solution

y(t) :=

(
∫

f(t)

eλ2
(σ(t), t0)

∆t+ c1

)

eλ2
(t, t0)

of (3.3) such that |ψ(t) − y(t)| ≤ ε
λ2

for all t ∈ T
κ; that is, (3.4) holds. Using Theorem 2.1 (ii)

with (3.4), we see that

lim
t→∞

(

φ(t)

eλ1
(t, t0)

−

∫

y(t)

eλ1
(σ(t), t0)

∆t

)

= lim
t→∞

[

φ(t)

eλ1
(t, t0)

−

∫
{(

∫

f(t)

eλ2
(σ(t), t0)

∆t+ c1

)

eλ2
(t, t0)

eλ1
(σ(t), t0)

}

∆t

]

= lim
t→∞

[

φ(t)

eλ1
(t, t0)

−

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t− c1

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t

]

=: c2

exists, and there exists a unique solution

x(t) : =

(
∫

y(t)

eλ1
(σ(t), t0)

∆t+ c2

)

eλ1
(t, t0)

=

[
∫

{(
∫

f(t)

eλ2
(σ(t), t0)

∆t+ c1

)

eλ2
(t, t0)

eλ1
(σ(t), t0)

}

∆t+ c2

]

eλ1
(t, t0)

=

[
∫

(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t+ c1

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t+ c2

]

eλ1
(t, t0)

of (3.5) such that |φ(t) − x(t)| ≤ ε
λ1λ2

for all t ∈ T. Clearly, x satisfies (3.6) for t ∈ T
κκ, and

thus, we see that x is a solution of (3.1). To simplify matters, we write

F (t) :=

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t. (3.11)

Note here that x is rewritten as

x(t) :=















(F (t) + c1C + c2) eλ1
(t, t0) +

c1

λ2 − λ1
eλ2

(t, t0) if λ1 6= λ2,

(

F (t) + c1C + c2 + c1

∫ t

t0

∆s

1 + λ1µ(s)

)

eλ1
(t, t0) if λ1 = λ2,
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from Lemma 3.3, where C is an arbitrary constant.

Now, we will show that the above mentioned x is the unique solution satisfying |φ(t)−x(t)| ≤
ε

λ1λ2

for all t ∈ T. Assume that there exists a solution of (3.1), call it x̃, with x̃(t) 6= x(t) and

|φ(t) − x̃(t)| ≤ ε
λ1λ2

for all t ∈ T. This implies that

|x(t) − x̃(t)| ≤ |φ(t) − x(t)| + |φ(t) − x̃(t)| ≤
2ε

|λ1λ2|
(3.12)

for all t ∈ T. From Lemma 3.4 and the uniqueness of solutions of (3.1), x̃ is given by

x̃(t) :=



















(

F (t) + C̃1

)

eλ1
(t, t0) +

C̃2

λ2 − λ1
eλ2

(t, t0) if λ1 6= λ2,

(

F (t) + C̃1 + C̃2

∫ t

t0

∆s

1 + λ1µ(s)

)

eλ1
(t, t0) if λ1 = λ2,

where (C̃1, C̃2) 6= (c1C + c2, c1). We consider the case 0 < λ1 < λ2. Using Lemmas 3.7 (i), 3.8

(i) and (C̃1, C̃2) 6= (c1C + c2, c1), we see that

|x(t) − x̃(t)| =

∣

∣

∣

∣

∣

c1C + c2 − C̃1 +
c1 − C̃2

λ2 − λ1

eλ2
(t, t0)

eλ1
(t, t0)

∣

∣

∣

∣

∣

eλ1
(t, t0) → ∞ as t→ ∞.

This contradicts (3.12). Next, we consider the case λ1 = λ2. Using Lemma 3.7 (i) and

lim
t→∞

∫ t

t0

∆s

1 + λ1µ(s)
= ∞,

we can conclude that

|x(t) − x̃(t)| =

∣

∣

∣

∣

(

c1C + c2 − C̃1 + (c1 − C̃2)

∫ t

t0

∆s

1 + λ1µ(s)

)∣

∣

∣

∣

eλ1
(t, t0) → ∞ as t→ ∞.

This contradicts (3.12). Ergo, x is unique solution satisfying |φ(t) − x(t)| ≤ ε
λ1λ2

for all t ∈ T.

Next, we consider case (ii). Using the same technique above with Theorem 2.1 (iv), (3.2)

and (3.4), we see that

lim
t→−∞

(

ψ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

= lim
t→−∞

(

φ∆(t) − λ1φ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

=: c3

and

lim
t→−∞

[

φ(t)

eλ1
(t, t0)

−

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t− c3

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t

]

=: c4

exist, and there exists a solution

x(t) :=

[
∫

(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t+ c3

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t+ c4

]

eλ1
(t, t0)

of (3.1) such that |φ(t) − x(t)| ≤ ε
λ1λ2

for all t ∈ T. Note here that x is rewritten as

x(t) :=















(F (t) + c3C + c4) eλ1
(t, t0) +

c3

λ2 − λ1
eλ2

(t, t0) if λ1 6= λ2,

(

F (t) + c3C + c4 + c3

∫ t

t0

∆s

1 + λ1µ(s)

)

eλ1
(t, t0) if λ1 = λ2,

from Lemma 3.3, where C is any constant, and F is defined by (3.11).
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Now, we will show that the above mentioned x is the unique solution satisfying |φ(t)−x(t)| ≤
ε

λ1λ2

for all t ∈ T. Consider the function

x̃(t) :=



















(

F (t) + C̃1

)

eλ1
(t, t0) +

C̃2

λ2 − λ1
eλ2

(t, t0) if λ1 6= λ2,

(

F (t) + C̃1 + C̃2

∫ t

t0

∆s

1 + λ1µ(s)

)

eλ1
(t, t0) if λ1 = λ2,

where (C̃1, C̃2) 6= (c3C + c4, c3). From Lemma 3.4 and the uniqueness of solutions of (3.1), x̃ is

a solution of (3.1) satisfying x̃(t) 6= x(t) for all t ∈ T. Assume that |φ(t) − x̃(t)| ≤ ε
λ1λ2

for all

t ∈ T. Then, (3.12) holds for all t ∈ T. We consider the case λ1 < λ2 < 0. Using Lemmas 3.7

(ii), 3.8 (ii) and (C̃1, C̃2) 6= (c3C + c4, c3), we see that

|x(t) − x̃(t)| =

∣

∣

∣

∣

∣

(c3C + c4 − C̃1)
eλ1

(t, t0)

eλ2
(t, t0)

+
c3 − C̃2

λ2 − λ1

∣

∣

∣

∣

∣

eλ2
(t, t0) → ∞ as t→ −∞.

This contradicts (3.12). Next, we consider the case λ1 = λ2. Using Lemma 3.7 (ii) and

lim
t→−∞

∫ t

t0

∆s

1 + λ2µ(s)
= −∞,

we can conclude that

|x(t) − x̃(t)| =

∣

∣

∣

∣

(

c3C + c4 − C̃1 + (c3 − C̃2)

∫ t

t0

∆s

1 + λ2µ(s)

)
∣

∣

∣

∣

eλ2
(t, t0) → ∞ as t→ −∞.

This contradicts (3.12). Ergo, x is the unique solution satisfying |φ(t) − x(t)| ≤ ε
λ1λ2

for all

t ∈ T.

Finally, we consider case (iii). Using the same technique as above with Theorem 2.1 (ii),

(iv), (3.2) and (3.4), we see that

lim
t→∞

(

ψ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

= lim
t→∞

(

φ∆(t) − λ1φ(t)

eλ2
(t, t0)

−

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

=: c1

and

lim
t→−∞

[

φ(t)

eλ1
(t, t0)

−

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t− c1

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t

]

=: c5

exist, and there exists a solution

x(t) :=

[
∫

(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t+ c1

∫

eλ2
(t, t0)

eλ1
(σ(t), t0)

∆t+ c5

]

eλ1
(t, t0)

of (3.1) such that |φ(t) − x(t)| ≤ ε
|λ1λ2|

for all t ∈ T. Note here that x is rewritten as

x(t) := (F (t) + c1C + c5) eλ1
(t, t0) +

c1

λ2 − λ1
eλ2

(t, t0)

from Lemma 3.3, where C is any constant, and F is defined by (3.11).

Now, we will show that the above mentioned x is the unique solution satisfying |φ(t)−x(t)| ≤
ε

|λ1λ2|
for all t ∈ T. Consider the function

x̃(t) :=
(

F (t) + C̃1

)

eλ1
(t, t0) +

C̃2

λ2 − λ1
eλ2

(t, t0)

where (C̃1, C̃2) 6= (c1C + c5, c1). From Lemma 3.4 and the uniqueness of solutions of (3.1), x̃ is

a solution of (3.1) satisfying x̃(t) 6= x(t) for all t ∈ T. Assume that |φ(t) − x̃(t)| ≤ ε
|λ1λ2|

for all
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t ∈ T. Then, (3.12) holds for all t ∈ T. We consider the case C̃2 = c1. Using Lemma 3.7 (ii)

and C̃1 6= c1C + c5, we have

|x(t) − x̃(t)| = |c1C + c5 − C̃1|eλ1
(t, t0) → ∞ as t→ −∞.

This contradicts (3.12). On the other hand, consider the case C̃2 6= c1. Using Lemma 3.7 (i)

and (ii), we have

|x(t) − x̃(t)| =

∣

∣

∣

∣

∣

(c1C + c5 − C̃1)
eλ1

(t, t0)

eλ2
(t, t0)

+
c1 − C̃2

λ2 − λ1

∣

∣

∣

∣

∣

eλ2
(t, t0) → ∞ as t→ ∞.

This contradicts (3.12). Hence, x is the unique solution satisfying |φ(t) − x(t)| ≤ ε
|λ1λ2|

for all

t ∈ T. This ends the proof of Theorem 3.2. �

To end this section, we give instability results for the homogeneous version of (3.1), under

certain assumptions on the characteristic roots and their corresponding dynamic exponential

functions.

Theorem 3.10 Assume sup T = ∞. The second-order homogeneous dynamic equation

x∆∆(t) − λx∆(t) = 0 (3.13)

is unstable in the Hyers–Ulam sense, for any λ ∈ R\{0} satisfying lim
t→∞

∣

∣

∣

eλ(t,t0)
t

∣

∣

∣
= 0 or ∞.

Proof Given any ε > 0, t0 ∈ T, and λ ∈ R\{0}, set

φ(t) := −
tε

λ

for all t ∈ T. Then, φ∆(t) = − ε
λ and φ∆∆(t) = 0 imply that |φ∆∆(t) − λφ∆(t)| = ε for all

t ∈ T
κκ. Since the general solution of (3.13) is x(t) = c1 + c2eλ(t, t0), we see that

lim sup
t→∞

|φ(t) − x(t)| = lim sup
t→∞

∣

∣

∣

∣

ε

λ
+
c1

t
+ c2

eλ(t, t0)

t

∣

∣

∣

∣

t = ∞

for any choice of c1 and c2. This ends the proof. �

Theorem 3.11 Assume sup T = ∞, and fix t0 ∈ T. If λ2 ∈ R but not positively

regressive, with m ≤ |eλ2
(t, t0)| ≤ M for all t ∈ T, for some 0 < m < M < ∞, then the

second-order homogeneous dynamic equation

x∆∆(t) − (λ1 + λ2)x
∆(t) + (λ1λ2)x(t) = 0 (3.14)

is unstable in the Hyers–Ulam sense, for any λ1 ∈ R satisfying lim
t→∞

eλ1
(t,t0)

t = 0 and

lim sup
t→∞

|eλ1
(t, t0)| > 0.

Proof Given any ε > 0, t0 ∈ T, and λ1 ∈ R, suppose λ2 ∈ R but not positively regressive,

with m ≤ |eλ2
(t, t0)| ≤M for all t ∈ T, for some 0 < m < M <∞. Set

φ(t) :=
ε

M
eλ1

(t, t0)

∫

teλ2
(t, t0)

eλ1
(σ(t), t0)

∆t

for all t ∈ T. Then,

φ∆(t) =
ε

M
teλ2

(t, t0) + λ1φ(t)

and

φ∆∆(t) =
ε

M
eλ2

(σ(t), t0) +
ελ2

M
teλ2

(t, t0) + λ1φ
∆(t)
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imply that

|φ∆∆(t) − (λ1 + λ2)φ
∆(t) + (λ1λ2)φ(t)| =

ε

M
|eλ2

(σ(t), t0)| ≤ ε

for all t ∈ T
κκ. Since the general solution of (3.14) is x(t) = c1eλ1

(t, t0) + c2eλ2
(t, t0), we see

that

lim sup
t→∞

|φ(t) − x(t)| = lim sup
t→∞

∣

∣

∣

∣

ε

M
eλ1

(t, t0)

∫

teλ2
(t, t0)

eλ1
(σ(t), t0)

∆t− c1eλ1
(t, t0) − c2eλ2

(t, t0)

∣

∣

∣

∣

= ∞

for any choice of c1 and c2. We now show this fact. The assumption lim
t→∞

eλ1
(t,t0)

t = 0 says that

there exists l > 0 and t1 ≥ t0 such that

eλ1
(t, t0)

t
≤ l

for t ≥ t1. Hence,
∣

∣

∣

∣

∫

teλ2
(t, t0)

eλ1
(σ(t), t0)

∆t

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

t0

seλ2
(s, t0)

eλ1
(σ(s), t0)

∆s+ c3

∣

∣

∣

∣

≥

∫ t

t0

∣

∣

∣

∣

seλ2
(s, t0)

eλ1
(σ(s), t0)

∣

∣

∣

∣

∆s− |c3|

≥
m

l
(t− t0) − |c3|

for some c3 ∈ R, and so that lim
t→∞

∣

∣

∣

∫ teλ2
(t,t0)

eλ1
(σ(t),t0)

∆t
∣

∣

∣
= ∞. This, together with

lim sup
t→∞

|eλ1
(t, t0)| > 0,

implies that

lim sup
t→∞

|φ(t) − x(t)| ≥ lim sup
t→∞

(∣

∣

∣

∣

ε

M

∫

teλ2
(t, t0)

eλ1
(σ(t), t0)

∆t− c1

∣

∣

∣

∣

|eλ1
(t, t0)| −M |c2|

)

= ∞.

This ends the proof. �

4 Minimum HUS Constant

Theorem 4.1 Let t0 ∈ T. Suppose that sup T = ∞ and inf T = −∞, and that the

characteristic equation λ2 +αλ+β = 0 for (3.1) has non-zero real roots λ1 and λ2 with λ1, λ2 ∈

R+. If 0 < λ1 ≤ λ2 and lim
t→∞

∫ t

t0
∆s

1+λ1µ(s) = ∞, or if λ1 ≤ λ2 < 0 and lim
t→−∞

∫ t

t0
∆s

1+λ2µ(s) = −∞,

or if λ1 < 0 < λ2, then (3.1) is Hyers–Ulam stable, with minimum HUS constant 1
|λ1λ2|

= 1
|β|

on T.

Proof From Theorem 3.1, we know that (3.1) has HUS with HUS constant 1
|λ1λ2|

= 1
|β|

on T.

Next, we will show that the minimal HUS constant is at least 1
|β| . Fix t0 ∈ T, and for

arbitrary ε > 0 let Y : T → R be given by

Y (t) ≡ Y (t;λ1, λ2) := eλ1
(t, t0)

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t,

ϕp : T → R be given by

ϕp(t) :=
ε

λ1λ2
,

and

φ(t) := Y (t) + ϕp(t). (4.1)
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Then

Y ∆(t) = eλ2
(t, t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t+ λ1eλ1
(t, t0)

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t

and

Y ∆∆(t) = f(t) + (λ1 + λ2)eλ2
(t, t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

+λ2
1eλ1

(t, t0)

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t,

yielding

Y ∆∆(t) − λ1Y
∆(t) = f(t) + λ2eλ2

(t, t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

= f(t) + λ2Y
∆(t)

−λ1λ2eλ1
(t, t0)

∫
(

eλ2
(t, t0)

eλ1
(σ(t), t0)

∫

f(t)

eλ2
(σ(t), t0)

∆t

)

∆t

= f(t) + λ2Y
∆(t) − λ1λ2Y (t).

We see that

Y ∆∆(t) − (λ1 + λ2)Y
∆(t) + λ1λ2Y (t) = f(t),

that is, Y solves (3.1). Moreover,

ϕ∆∆
p (t) + αϕ∆

p (t) + βϕp(t) =
βε

λ1λ2
= ε,

making ϕp a solution of (3.1) for f ≡ ε. Consequently,
∣

∣φ∆∆(t) + αφ∆(t) + βφ(t) − f(t)
∣

∣ = ε,

and

|φ(t) − Y (t)| = |ϕp(t)| =
ε

|λ1λ2|
=

1

|β|
.

for all T. Note here that by Theorem 3.2, Y is the unique solution satisfying |φ(t)−Y (t)| ≤ ε
|β|

for all t ∈ T. Thus, the minimum HUS constant is at least 1
|β| , completing the proof. �

From Remark 3.9, we get the following corollaries.

Corollary 4.2 Let T = R. Suppose that the characteristic equation λ2 + αλ+ β = 0 for

(3.1) has non-zero real roots λ1 and λ2. Then, (3.1) is Hyers–Ulam stable, with minimum HUS

constant 1
|λ1λ2|

= 1
|β| on T.

Remark 4.3 In [17], Baias and Popa studied the Hyers–Ulam stability of the second

order linear differential operator. When restricted to the case where the characteristic equation

has non-zero real roots, a result given in [17] matches Corollary 4.2. Note that they are also

considering the case of complex roots.

Corollary 4.4 Let T = hZ. Suppose that the characteristic equation λ2 +αλ+β = 0 for

(3.1) has non-zero real roots λ1 and λ2 with λ1, λ2 ∈ R+. Then, (3.1) is Hyers–Ulam stable,

with minimum HUS constant 1
|λ1λ2|

= 1
|β| on T.

Remark 4.5 When T = hZ, the condition λ1, λ2 ∈ R+ means that 1 + λ1h > 0 and

1 + λ2h > 0. Since λ1 and λ2 are non-zero real roots of (3.1), we have

−
1

h
< λi < 0 or 0 < λi
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for i ∈ {1, 2}. Under this condition, using a result in [18], we can obtain the same best HUS

constant given in Corollary 4.4.

Example 4.6 Consider a time scale with discrete step size s > 0 and continuous interval

length ξ > 0, and let a ∈ R\
{

− 1
s

}

. When

T = Pξ,s :=

∞
⋃

j=0

[j(ξ + s), ξ + j(ξ + s)],

the HUS classification of (1.1) for not positively regressive a is as follows. Suppose 0 < s <
ξ

W0(1/e) , where W0 is the principal branch of the Lambert W function. If a ∈
(

−∞, − 1
s

)

, then

a 6∈ R+, and (1.1) is Hyers–Ulam stable, with best HUS constant

K =
1

−a

(

eaξ(1 + as) − (1 + 2as)

1 + eaξ(1 + as)

)

;

see [2, Theorem 2.1]. We conjecture that the best HUS constant for (3.1) on Pξ,s is no greater

than
1

λ1λ2

(

eξλ1(1 + sλ1) − (1 + 2sλ1)

1 + eξλ1(1 + sλ1)

) (

eξλ2(1 + sλ2) − (1 + 2sλ2)

1 + eξλ2(1 + sλ2)

)

,

for distinct characteristic roots λ1, λ2 ∈
(

−∞, − 1
s

)

, assuming 0 < s < ξ
W0(e−1) . We leave the

details for a future work.

5 Conclusion and Future Direction

This study deals with conditions under which second-order linear dynamic equations on

time scales with constant coefficients are Hyers–Ulam stable (HUS), but also unstable in other

cases. To achieve this goal, HUS for first-order non-homogeneous linear dynamic equations is

established first. Moreover, the best HUS constant is obtained in some cases. By using the

results, a sufficient condition for HUS and the main theorem related to HUS are obtained. It is

also shown that an HUS constant obtained here is the best one. Finally, the results for several

time scales are introduced.

The stability results presented here cover only the case where the characteristic equation

has non-zero real roots, with instability in the zero-root case, because these results depend on

the results of the first-order dynamic equation. If one can obtain HUS results for the complex-

valued dynamic equations of first-order, one will obtain some results for the case where the

characteristic equation has complex roots, by using the same methods.
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