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Abstract In this paper, we derive some ∂∂-Bochner formulas for holomorphic maps be-

tween Hermitian manifolds. As applications, we prove some Schwarz lemma type estimates,

and some rigidity and degeneracy theorems. For instance, we show that there is no non-

constant holomorphic map from a compact Hermitian manifold with positive (resp. non-

negative) ℓ-second Ricci curvature to a Hermitian manifold with non-positive (resp. negative)

real bisectional curvature. These theorems generalize the results [5, 6] proved recently by L.

Ni on Kähler manifolds to Hermitian manifolds. We also derive an integral inequality for a

holomorphic map between Hermitian manifolds.
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1 Introduction

There are many generalizations of the classical Schwarz Lemma on holomorphic maps be-

tween unit balls via the work of Ahlfors, Chen-Cheng-Look, Lu, Mok-Yau, Royden, Yau, etc.

(see [2, 4, 8, 14]). Here, we recall in particular Yau’s general Schwarz Lemma [14] that a

holomorphic map from a complete Kähler manifold of Ricci curvature bounded from below

to a Hermitian manifold of holomorphic bisectional curvature bounded from above by a neg-

ative constant decreases distances. Recently, there has been significant progress on this topic,

which has involed relaxing either the curvature assumptions or the Kählerian condition; see

[5, 6, 9, 11, 12] and references therein for more details. In particular, Ni [5, 6] proved some

new estimates interpolating the Schwarz Lemmata of Royden-Yau for holomorphic mappings

between Kähler manifolds. These more flexible estimates provide additional information on

(algebraic) geometric aspects of compact Kähler manifolds with nonnegative holomorphic sec-

tional curvature, nonnegative Ricℓ or positive Sℓ. One wonders if the results of Ni could be

extended or modified to apply to the Hermitian setting.
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A classical differential geometric approach for proving Schwarz type inequalities for a holo-

morphic map makes use of the Chern-Lu formula and the maximum principle arguments.

Therefore, we first generalize the ∂∂-Bochner formulas derived by Ni [6] on Kähler manifolds

to Hermitian manifolds. Let f : (M, g) → (N, h) be a holomorphic map between Hermitian

manifolds. Assume that dimCM = m ≤ n = dimC N . Let ∂f( ∂
∂zα

) =
n∑
i=1

f iα
∂
∂ωi

with respect

to local coordinates (z1, · · ·, zm) and (ω1, · · ·, ωn). The Hermitian form f∗h = Aαβdz
α ∧ dzβ

with Aαβ = f iαf
j
βhij is the pull-back h via f . For the local Hermitian metric A = (Aαβ) and

G = (gαβ), we denote the Aℓ and Gℓ be the upper-left ℓ× ℓ blocks.

Theorem 1.1 Let Wℓ = det(Aℓ)
det(Gℓ)

be the function defined in a small neighborhood of p,

1 ≤ ℓ ≤ m = dimC M . We assume that gαβ = δαβ at p ∈M , hij = δij at f(p). Also, we assume

that df( ∂
∂zα

) =
∑
i=1

λαδiα
∂
∂ωi

with |λ1| ≥ · · · ≥ |λα| ≥ · · · ≥ |λm| are the singular values of

∂f : (T ′
pM, g) → (T ′

f(p)N, h). Then at p, for nonzero Wℓ, we have

∂2

∂zγ∂zδ
logWℓ =

ℓ∑

α=1

RM (γ, δ, α, α) −
ℓ∑

α=1

RN (γ, δ, α, α)λγλδ −
ℓ∑

α=1

m∑

t=ℓ+1

gαt,γgtα,δ

+

ℓ∑

α=1

n∑

i=ℓ+1

1

|λα|2
(f iαγ + hαi,γλαλγ)(f

i
αδ + hiα,δλαλδ), (1.1)

where RM and RN are the Chern curvature tensors of M and N , respectively.

Theorem 1.2 Let Uℓ =
∑

1≤α,β≤ℓ

gαβAαβ be the function defined in a small neighborhood

of p, 1 ≤ ℓ ≤ m = dimC M . We assume that gαβ = δαβ at p ∈ M , hij = δij at f(p). Also, we

assume that df( ∂
∂zα

) =
∑
i=1

λαδiα
∂
∂ωi

with |λ1| ≥ · · · ≥ |λα| ≥ · · · ≥ |λm| are the singular values

of ∂f : (T ′
pM, g) → (T ′

f(p)N, h). Then at p, for nonzero Uℓ, we have

∂∂Uℓ =

( ℓ∑

δ=1

RM (α, β, δ, δ)|λδ |2−
ℓ∑

γ=1

RN(α, β, γ, γ)|λγ |2λαλβ
)
dzα∧dzβ + 〈∇Vℓ,∇Vℓ〉, (1.2)

where ∇ is the induced connection on the bundle E = T ′∗M⊗f∗(T ′N), Vℓ =
ℓ∑

α=1

n∑
i=1

f iαdz
α⊗ei ∈

Γ(M,E), ei = f∗ ∂
∂ωi

.

Remark 1.3 When ℓ = m = dimC M , we get Wm = (f∗h)m

gm
. In particular, if the domain

and target manifolds have an equal dimension, namely m = n, then Wm involves volume forms

related by a holomorphic map. Similarly, Um = trgf
∗h is the trace of f∗h with respect to

g when ℓ = m = dimC M . Note that if (M, g) and (N, h) are both Kähler manifolds, we

can take the normal coordinates near p and f(p) such that gαβ(p) = δαβ , dgαβ(p) = 0 and

hij(f(p)) = δij , dhij(f(p)) = 0. Thus, the calculation of the above formulas is much simpler

(see [5, 6]).

Before we state the applications of Theorem 1.1 and Theorem 1.2 we first recall some basic

notions (also see [6]). Assume that f : (Mm, g) → (Nn, h) is a holomorphic map between

two Hermitian manifolds. Let ∂f : T ′M → T ′N be the tangent map. Let ∧ℓ∂f : ∧ℓT ′
xM →

∧ℓT ′
f(x)N be the associated map defined as ∧ℓ∂f(υ1 ∧ · · · ∧ υℓ) = ∂f(υ1)∧ · · · ∧ ∂f(υℓ). Define
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‖ · ‖0 as

‖ ∧ℓ ∂f‖0(x) = sup
a=υ1∧···∧υℓ 6=0,a∈∧ℓT ′

xM

| ∧ℓ ∂f(a)|
|a| .

We assume that gαβ = δαβ at p, hij = δij at f(p) such that df( ∂
∂zα

) =
∑
i=1

λαδiα
∂
∂ωi

with

|λ1| ≥ · · · ≥ |λα| ≥ · · · ≥ |λm|, so ‖ ∧ℓ ∂f‖0(p) = |λ1 · · · λℓ|. It is also easy to see that

‖∂f‖2 = trgf
∗h =

m∑
α,β=1

gαβAαβ =
m∑
α=1

|λα|2. The second goal of this paper is to prove some

estimates for holomorphic maps between Hermitian manifolds.

Theorem 1.4 Let f : (Mm, g) → (Nn, h) be a holomorphic map between Hermitian

manifolds with M being compact. Let m ≤ n and ℓ ≤ m. Then,

(a) Assume that the scalar curvature of (M, g), S(x) ≥ −K and the m-first Ricci curvature

of (N, h), Ric
(1)
m (x) ≤ −κ for some K ≥ 0, κ > 0. Then

(f∗h)m

gm
(x) ≤ (

K

mκ
)m,

(b) Assume that metric g on M is Kähler and that 1 ≤ ℓ < m. Assume the ℓ-scalar

curvature of (M, g), Sℓ(x) ≥ −K and the ℓ-first Ricci curvature of (N, h), Ric
(1)
ℓ (x) ≤ −κ for

some K ≥ 0, κ > 0. Then

‖ ∧ℓ ∂f‖2
0(x) ≤ (

K

ℓκ
)ℓ,

(c) Assume the ℓ-second Ricci curvature of (M, g), Ric
(2)
ℓ ≥ −K, and the real bisectional

curvature of (N, h), B̃(x) ≤ −κ for some K ≥ 0, κ > 0. Then

σℓ(x) ≤
ℓK

κ
,

where σℓ(x) =
ℓ∑

σ=1
|λα|2(x).

We will give specific definitions of these curvatures in the next section. For ℓ = 1, the

1-first Ricci curvature and 1-second Ricci curvature are both holomorphic sectional curvature;

If ℓ = m = dimM , the m-first Ricci curvature is the (first) Chern Ricci curvature and the

m-second Ricci curvature is the second Ricci curavture. For 1 ≤ ℓ ≤ dimM , they are the

same when the metric is Kähler. In an attempt to generalize Wu-Yau’s Theorem ([10]) to the

Hermitian case, Yang and Zheng [13] introduced the concept of real bisectional curvature for

Hermitian manifolds. When the metric is Kähler, this curvature is the same as the holomorphic

sectional curvature H , and when the metric is not Kähler, the curvature condition is slightly

stronger than H , at least algebraically. This condition also appeared in a recent work by Lee

and Streets [3], where it is referred to as a “positive (resp. negative) curvature operator”.

The following are the rigidity and degeneracy results:

Theorem 1.5 Let f : (Mm, g) → (Nn, h) be a holomorphic map between Hermitian

manifolds with M being a compact. Let m ≤ n and ℓ ≤ m. Then,

(a) If SM ≥ 0 and manifold (N, h) has Ric(1)
m < 0, or SM > 0 and manifold (N, h) has

Ric(1)
m ≤ 0, then f must be degenerate. The same result holds if RicM ≥ 0 and SNm < 0, or

RicM > 0 and SNm ≤ 0.
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(b) Assume that metric g on M is Kähler and that 1 ≤ ℓ < m. If SMℓ ≥ 0 and manifold

(N, h) has Ric
(1)
ℓ < 0, or SMℓ > 0 and manifold (N, h) has Ric

(1)
ℓ ≤ 0, then rank(f) < ℓ. The

same result holds if RicMℓ ≥ 0 and SNℓ < 0, or RicMℓ > 0 and SNℓ ≤ 0.

(c) If manifold M has Ric
(2)
ℓ > 0 and manifold N has B̃N ≤ 0, or Ric

(2)
ℓ ≥ 0 and B̃N < 0,

then f must be constant.

In particular, from the proof of theorem 1.5 (c), we easily get the following result:

Corollary 1.6 There is no non-constant holomorphic map from a compact Hermitian

manifold with positive (resp. non-negative) holomorphic sectional curvature to a Hermitian

manifold with non-positive (resp. negative) holomorphic sectional curvature.

Note that the above Corollary 1.6 is also proved independently by Yang in [11, 12] using a

different method.

As an application of Theorem 1.1, we will also give an integral inequality for non-degenerate

holomorphic maps between two Hermitian manifolds without assuming any curvature condition.

More precisely, we shall prove the following:

Theorem 1.7 Let (Mm, g) and (Nn, h) be two Hermitian manifolds and let M be com-

pact. Assume that dimM = m ≤ n = dimN . Then there exists a smooth real function ψ on

M such that for any non-degenerate holomorphic map f : M → N , it holds that
∫

M

Sge
(m−1)ψgm ≤ m

∫

M

e(m−1)ψf∗(Ric(1)
m (h)) ∧ gm−1, (1.3)

where Sg is the Chern scalar curvature of g and Ric(1)
m (h) is the m-first Ricci curvature of h.

Remark 1.8 The above Theorem 1.7 recovers Theorem 1.2 in [15], which is proved by

Zhang when dimM = dimN . The above result can be applied to prove degeneracy theorems

for holomorphic maps without assuming any pointwise curvature signs for both the domain and

the target manifolds.

2 Preliminaries

2.1 Curvatures in complex geometry

Let (M, g) be a Hermitian manifold of dimension dimC M = m, where ω = ωg is the metric

form of a Hermitian metric g. If ω is closed, that is, if dω = 0, we call g a Kähler metric. In

local holomorphic chart (z1, · · ·, zm), we write

ω =
√
−1

m∑

i=1,j=1

gijdz
i ∧ dzj .

Recall that the curvature tensor R = {Rijkl} of the Chern connection is given by

Rijkl = − ∂2gkl
∂zi∂zj

+ gpq
∂gkq
∂zi

∂gpl

∂zj
.

Then the (first) Chern Ricci curvature Ric(ωg) = trgR ∈ Γ(M,∧1,1T ′∗M) has components

Rij =

m∑

k=1,l=1

gklRijkl = −∂
2 log det(g)

∂zi∂zj
.
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The second Chern Ricci curvature Ric(2)(ωg) = trωgR ∈ Γ(M, End(T ′M)) has components

Ric
(2)

ij
=

m∑

i=1,j=1

gijRijkl .

Note that Ric(ωg) and Ric(2)(ωg) are the same when ωg is a Kähler metric. The Chern scalar

curvature Sω is given by

Sω =

m∑

i,j,k,l=1

gijgklRijkl .

The holomorphic bisectional curvature B(X,Y ) for X,Y in T ′
pM at p ∈M is given by

B(X,Y ) =
H(X,X, Y, Y )

g(X,X)g(Y, Y )
.

The holomorphic sectional curvature H(X) is denoted by

H(X) = B(X,X) =
R(X,X, Y, Y )

g(X,X)2
.

Definition 2.1 Let (Mm, g) be a Hermitian manifold and let Rg ∈ Γ(M,∧1,1T ′∗M ⊗
End(T ′M)) be the Chern curvature tensor. Assume the ℓ-dimensional subspace Σ ⊂ T ′

pM ,

p ∈ M , 1 ≤ ℓ ≤ m. For any υ ∈ Σ, we define Ric
(1)
ℓ (p,Σ)(υ, υ) =

ℓ∑
i=1

R(υ, υ, Ei, Ei) with {Ei}

being a unitary basis of Σ. We say that Ric
(1)
ℓ (p) < 0 if Ric

(1)
ℓ (p,Σ) < 0 for any ℓ-dimensional

subspace Σ. We call Ric
(1)
ℓ (p) the ℓ-first Ricci curvature at p. Similarly, for any υ ∈ Σ, we

define Ric
(2)
ℓ (p,Σ)(υ, υ) =

ℓ∑
i=1

R(Ei, Ei, υ, υ). We say that Ric
(2)
ℓ (p) < 0 if Ric

(2)
ℓ (p,Σ) < 0 for

any ℓ-dimensional subspace Σ. We call Ric
(2)
ℓ (p) the ℓ-second Ricci curvature at p. We define

Sℓ(p,Σ) =
ℓ∑

i,j=1

R(Ei, Ei, Ej , Ej) with Ei being a unitary basis of Σ. We say that Sℓ(p) < 0 if

Sℓ(p,Σ) < 0 for any ℓ-dimensional subspace Σ. We call Sℓ(p) the ℓ-scalar curvature at p.

Clearly, Ric
(1)
ℓ (p) < 0 or Ric

(2)
ℓ (p) < 0 implies that Sℓ(p) < 0. Ric

(1)
ℓ and Ric

(2)
ℓ are both

holomorphic sectional curvature when ℓ = 1. If ℓ = m, they are Chern Ricci curvature and

second Ricci curvature, respectively. If the metric g is Kähler, Ric
(1)
ℓ and Ric

(2)
ℓ will be the

same. In the case of Kähler manifolds, there are many studies (see [5–7]) for Ricℓ and Sℓ. We

will do more research on the above new curvature condition on Hermitian manifolds in the

future.

Let us recall the concept of real bisectional curvature introduced in [13]. Let (Mm, g) be a

Hermitian manifold. Denote by R the curvature tensor of the Chern connection. For p ∈ M ,

let e = {e1, · · ·, em} be a unitary tangent frame at p, and let a = {a1, · · ·, am} be non-negative

constants with |a|2 = a2
1 + · · · + a2

m > 0. Define the real bisectional curvature of g by

B̃g(e, a) =
1

|a|2
m∑

i,j=1

Riijjaiaj . (2.1)

We will say that a Hermitian manifold (Mm, g) has positive real bisectional curvature, denoted

by B̃g > 0, if, for any p ∈ M and any unitary frame e at p, and any nonnegative constant

a = {a1, · · ·, am}, it holds that B̃g(e, a) > 0.
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Recall that the holomorphic sectional curvature in the direction υ is defined by H(υ) =

Rυυυυ/|υ|4. If we take e so that e1 is parallel to υ, and take a1 = 1, a2 = · · · = am = 0, then

B̃ becomes H(υ). Thus, B̃ > 0 (≥ 0, < 0, or ≤ 0) implies that H > 0 (≥ 0, < 0, or ≤ 0). For a

more detailed discussion of this, we refer readers to [13].

2.2 Gauduchon metric

Let Mm be a compact Hermitian manifold. A Hermitian metric ω is called Gauduchon if

∂∂(ωm−1) = 0.

For a Gauduchon metric ω and a smooth function u on M , we easily get
∫

M

(∆ωu)ω
m = 0,

where ∆ωu is the complex Laplacian defined by ∆ωu = trω(
√
−1∂∂u). A classical result of

Gauduchon [1] states that, for any Hermitian metric ω, there is a ψ ∈ C∞(M,R) (unique up

to scaling) such that eψω is Gauduchon.

2.3 Non-degenerate holomorphic maps

Let f : Mm → Nn be a holomorphic map between two Hermitian manifolds (m ≤ n). If

dim(f(M)) = m, then we say that f is non-degenerate. If dim(f(M)) < m, we say that f is

degenerate.

3 ∂∂-Bochner Formulas for Holomorphic Mappings

In this section, we will give the proof of Theorems 1.1 and 1.2. The calculation is more

complicated in the Hermitian case than in the Kähler case.

Proof of Theorem 1.1 As stated in the theorem, we assume that gαβ = δαβ at p ∈M ,

hij = δij at f(p). After a constant unitary change of coordinates z and ω, at p, we have

df( ∂
∂zα

) =
n∑
i=1

λαδiα
∂
∂ωi

with |λ1| ≥ · · · ≥ |λα| ≥ · · ·|λm|. The Hermitian form is f∗h =

Aαβdz
α ∧ dzβ with Aαβ =

n∑
i,j=1

f iαf
j
βhij . For the local Hermitian metrics A = (Aαβ) and

G = (gαβ), we denote that Aℓ and Gℓ be the upper-left ℓ× ℓ blocks. To simplify notation, we

write ∂fi

∂zα
as f iα, and ∂2fi

∂zα∂zγ
as f iαγ . We can perform the computation at p and f(p), where

RM
γδαβ

= −gαβ,δγ +
m∑

t=1

gαt,γgtβ,δ , R
N

ijkl
= −gkl,ji +

n∑

s=1

gks,igsl,j .

Hence,

∂2

∂zγ∂zδ
logWℓ =

∂2

∂zγ∂zδ
log

det(Aℓ)

det(Gℓ)
=

∂2

∂zγ∂zδ
log det(Aℓ) −

∂2

∂zγ∂zδ
log det(Gℓ) .

Direct calculation shows that

∂2

∂zγ∂zδ
log det(Gℓ) =

∂

∂zγ

[ ℓ∑

α,β=1

(Gℓ)
αβgαβ,δ

]

= −
ℓ∑

α,β,t,λ=1

(Gℓ)
αtgλt,γ(Gℓ)

λβgαβ,δ +
ℓ∑

α,β=1

(Gℓ)
αβgαβ,δγ
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=

ℓ∑

α=1

(
−

ℓ∑

t=1

gαt,γgtα,δ + gαα,δγ

)

=

ℓ∑

α=1

(
−RM

γδαα
+

m∑

t=ℓ+1

gαt,γgtα,δ

)
.

The last two lines only hold at point p.

(log det(Aℓ))δ =

ℓ∑

α,β=1

n∑

i,j=1

(Aℓ)
αβ(f iαhijf

j
β)δ

=

ℓ∑

α,β=1

n∑

i,j=1

(Aℓ)
αβ

[ n∑

t=1

hij,tf
i
αf

j
βf

t
δ + f iαhijf

j
βδ

]

=

ℓ∑

α=1

1

|λα|2
[hαα,δ|λα|2λδ + λαfααδ] .

Similarly,

(log det(Aℓ))γ =

ℓ∑

α,β=1

n∑

i,j=1

(Aℓ)
αβ

[
f iαγhijf

j
β +

n∑

k=1

f iαhij,kf
k
γ f

j
β

]

=

ℓ∑

α=1

1

|λα|2
[fααγλα + hαα,γ |λα|2λγ ] .

Taking the second derivative and evaluating at p, we have

(log det(Aℓ))γδ =
∂

∂zγ

{ ℓ∑

α,β=1

n∑

i,j=1

(Aℓ)
αβ

[ n∑

t=1

hij,tf
i
αf

j
βf

t
δ + f iαhijf

j
βδ

]}

=
ℓ∑

α,β=1

n∑

i,j=1

{
−

ℓ∑

k,s=1

(Aℓ)
αs(Aℓ)ks,γ(Aℓ)

kβ

[ n∑

t=1

hij,tf
i
αf

j
βf

t
δ + f iαhijf

j
βδ

]}

+
ℓ∑

α,β=1

n∑

i,j=1

(Aℓ)
αβ

[ n∑

t,p=1

hij,tpf
p
γf

i
αf

j
βf

t
δ +

n∑

t=1

hij,tf
i
αγf

j
βf

t
δ

+ f iαγhijf
j
βδ +

n∑

q=1

f iαhij,qf
q
γf

j
βδ

]

= −
ℓ∑

α,β=1

1

|λα|2|λβ |2
(fαβγλα + λβλγλαhβα,γ)(hαβ,δλαλβλδ + λαfαβδ)

+

ℓ∑

α=1

n∑

i=1

1

|λα|2
(hαα,δγλγ |λα|2λδ + hiα,δf

i
αγλαλδ

+ f iαγf
i
αδ + λαhαj,γλγf

i

αδ)

=

ℓ∑

α=1

n∑

i=ℓ+1

1

|λα|2
(f iαγ + hαi,γλαλγ)(f

i
αδ + hiα,δλαλδ) −

ℓ∑

α=1

RN
γδαα

λγλδ.

Putting all of the above together, we can get the formula (1.1). �

Proof of Theorem 1.2 Here we will use the method in the proof of Lemma 4.1 in [13],

which is a slightly simpler proof. Let Vℓ =
ℓ∑

α=1

n∑
i=1

f iαdz
α⊗ei ∈ Γ(M,E), E = T ′∗M ⊗f∗(T ′N),
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ei = f∗ ∂
∂ωi

. Since f is a holomorphic map, Vℓ is a holomorphic section of E. Clearly, Uℓ =

|Vℓ|2 =
ℓ∑

α,β=1

gαβAαβ . Thus, by Bochner’s formula, we have

√
−1∂∂|Vℓ|2 = 〈∇′Vℓ,∇′Vℓ〉 − 〈ΘEVℓ, Vℓ〉 ,

where ΘE is the curvature of the vector bundle E with respect to the induced metric, since

ΘE = ΘT ′∗M ⊗ Idf∗(T ′N) + IdT ′∗M ⊗ f∗(ΘT ′N ) .

More precisely, we can assume that

ΘT ′∗M = −
m∑

α,β,δ,η=1

(RM )δ
αβη

dzα ∧ dzβ ⊗ ∂

∂zδ
⊗ dzη,

f∗(ΘT ′N ) =
n∑

i,j,k,l=1

m∑

α,β=1

(RN )l
ijk
f iαf

j
βdz

α ∧ dzβ ⊗ e∗k ⊗ el,

where (RM )δ
αβη

=
m∑
ξ=1

gδξRM
αβηξ

and (RN )l
ijk

=
n∑
s=1

hlsRN
ijks

.

Hence, at the point p assumed in the theorem condition, we have

〈ΘEVℓ, Vℓ〉 =

(
−

ℓ∑

δ=1

RM (α, β, δ, δ)|λδ |2 +

ℓ∑

γ=1

RN(α, β, γ, γ)|λγ |2λαλβ
)
dzα ∧ dzβ .

Putting all the above together, we can get the formula (1.2). �

4 Applications

Since, in general, ‖ ∧ℓ ∂f‖2
0 and σℓ are not smooth, we will consider that Wℓ(x) serves

as a smooth barrier for ‖ ∧ℓ ∂f‖0(x) and Uℓ serves as a smooth barrier for σℓ. As stated in

the previous section, we have Hermitian form f∗h = Aαβdz
α ∧ dzβ with Aαβ =

n∑
i,j=1

f iαf
j
βhij .

We assume that gαβ = δαβ at p ∈ M , hij = δij at f(p). After a constant unitary change of

coordinates z and ω, at p, we have df( ∂
∂zα

) =
n∑
i=1

λαδiα
∂
∂ωi

with |λ1| ≥ · · · ≥ |λα| ≥ · · ·|λm|.
For the local Hermitian metrics A = (Aαβ) and G = (gαβ), we denote that Aℓ and Gℓ be the

upper-left ℓ× ℓ blocks. It is easy to see that |λ1|2 ≥ · · · ≥ |λm|2 are the eigenvalues of A (with

respect to g). We start with some necessary algebraic results (see [6]).

Proposition 4.1 ([6], Proposition 2.1) For any 1 ≤ ℓ ≤ m, the following holds:

σℓ =
ℓ∑

α=1

|λα|2 ≥
ℓ∑

α,β=1

gαβAαβ = Uℓ . (4.1)

Proposition 4.2 ([6], Proposition 2.2) For any 1 ≤ ℓ ≤ m, the following holds:

‖ ∧ℓ ∂f‖2
0 = Πℓ

α=1|λα|2 ≥ det(Aℓ)

det(Gℓ)
= Wℓ . (4.2)

Proof of Theorem 1.4 To prove part (a), let D = (f∗h)m

gm
= Wm. Since M is compact,

D attains its maximum at some point p. We assume that at p, D is not equal to zero. Then
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in a neighborhood of p, D 6= 0. The maximum principle then implies that at p, with respect to

the coordinates specified in Theorem 1.1,

0 ≥ ∆logD = SM −
m∑

δ=1

Ric(1)
m (δ, δ)|λδ|2 +

ℓ∑

α=1

n∑

i=ℓ+1

1

|λα|2
|f iαδ + hαi,δλαλδ|2

≥ −K + κ

( m∑

δ=1

|λδ|2
)

≥ −K +mD
1

mκ.

where Ric(1)
m denotes the m-first Ricci curvature of (N, h). The above inequality implies the

result.

For (b), clearly ‖ ∧ℓ ∂f‖2
0 attains a maximum somewhere at p in M . We assume that the

coordinates at p and f(p) satisfy the conditions of Theorem 1.1. Since (M, g) is Kähler, we can

also assume that at p, gαβ,δ = gαβ,δ = 0, ∀ 1 ≤ α, β, δ ≤ m. Then we have ‖∧ℓ∂f‖2
0(p) = Wℓ(p)

and Wℓ(x) ≤ ‖∧ℓ ∂f‖2
0(x) ≤ ‖∧ℓ ∂f‖2

0(p) = Wℓ(p) for x in the small neighborhood of p. Hence,

Wℓ also attains its local maximum at p. Now, at p, we get

0 ≥
ℓ∑

γ=1

∂2

∂zγ∂zγ
(log(Wℓ)) ≥ SMℓ −

ℓ∑

γ=1

Ric
(1)
ℓ (γ, γ)|λγ |2

≥ −K + ℓ(Wℓ(p))
1

ℓ κ = −K + ℓ(‖ ∧ℓ ∂f‖2
0(p))

1

ℓ κ,

where Ric
(1)
ℓ denotes the ℓ-first Ricci curvature of (N, h).

The proof of part (c) is similar. We assume that σℓ attains a maximum at p. We also

assume that the coordinates at p and f(p) satisfy the conditions of Theorem 1.2, so Uℓ(x) ≤
σℓ(x) ≤ σℓ(p) = Uℓ(p) for x in the small neighborhood of p. Thus, at p,

0 ≥
ℓ∑

α=1

1

2
(∇α∇α + ∇α∇α)Uℓ

≥
ℓ∑

δ=1

Ric
(2)
ℓ (δ, δ)|λδ|2 −

ℓ∑

α,γ=1

RN(α, α, γ, γ)|λα|2|λγ |2

≥ −K
ℓ∑

δ=1

|λδ|2 + κ

ℓ∑

α=1

|λα|4

≥ −KUℓ(p) +
κ

ℓ
U2
ℓ (p),

where Ric
(2)
ℓ denotes the ℓ-second Ricci curvature of (M, g). �

Combining Theorems 1.1, 1.2 and 1.4, we can now easily prove Theorem 1.5.

Proof of Theorem 1.5 If f is not degenerate, then D = (f∗h)m

gm
= Wm has a nonzero

maximum somewhere at p. By using the coordinates around p and f(p), specified as in Theorem

1.4, at p, we have that

0 ≥ ∆logD ≥ SM −
m∑

δ=1

Ric(1)
m (δ, δ)|λδ|2.

This leads to a contradiction under the assumption that either SM ≥ 0 and manifold (N, h)

has Ric(1)
m < 0, or that SM > 0 and Ric(1)

m ≤ 0. For the second part of (a), we introduce the
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operator

Ψ =

m∑

γ=1

1

2|λγ |2
(∇γ∇γ + ∇γ∇γ).

Since, at p, D 6= 0, the above operator is well defined in a small neighborhood of p. Then, at p,

0 ≥ Ψ(logD) ≥
m∑

γ=1

1

|λγ |2
RicM (γ, γ) − SNm .

The above also induces a contradiction under either RicM ≥ 0 and SNm < 0, or RicM > 0 and

SNm ≤ 0.

The proof of (b) is similar to that of (a). It is worth noting that in the second part of (b),

we need to introduce the operator

Ψℓ =

ℓ∑

γ=1

1

2|λγ |2
(∇γ∇γ + ∇γ∇γ).

For (c), if f is not constant, σℓ will attain a maximum somewhere, say at p and σℓ(p) > 0.

By using the coordinates around p and f(p), specified as in Theorem 1.4, at p, we have that

0 ≥
ℓ∑

α=1

1

2
(∇α∇α + ∇α∇α)Uℓ

≥
ℓ∑

δ=1

Ric
(2)
ℓ (δ, δ)|λδ|2 −

ℓ∑

α,γ=1

RN (α, α, γ, γ)|λα|2|λγ |2 ,

if Ric
(2)
ℓ > 0, the first term is positive, and the second one is nonnegative, since B̃N ≤ 0. Hence,

we have a contradiction. The same holds if Ric
(2)
ℓ ≥ 0 and B̃N < 0. �

5 An Integral Inequality for Non-degenerate Holomorphic Maps

In this section we prove Theorem 1.7. The proof does not use any maximum principle

argument, since the curvatures and target spaces may not be signed in a pointwise sense. This

method was essentially derived by Zhang in [15].

Proof of Theorem 1.7 Because f is a non-degenerate holomorphic map, we assume

that p ∈ M with D(p) = (f∗h)m

gm
(p) > 0. We also assume that the coordinates at p and f(p)

satisfy the conditions of Theorem 1.1. Let ǫ be an arbitrary positive constant. By the formula

(1.1), at p, we have

∆ log(D + ǫ) =
∆D

D + ǫ
− |∂D|2

(D + ǫ)2

=
D

D + ǫ
(
∆D

D
− |∂D|2

D2
) +

ǫ|∂D|2
D(D + ǫ)2

=
D

D + ǫ
∆logD +

ǫ|∂D|2
D(D + ǫ)2

≥ D

D + ǫ
{SM − trg(f

∗(Ric(1)
m (h)))}. (5.1)

Here we note that the above inequality is independent of the choice of coordinates.
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Set V = {x ∈M | D = 0 at x}, which is a proper subvariety (may be empty) of M . Then,

the above inequality (5.1) holds on M \ V , and by continuity we know that it holds on the

whole of M .

Next, we fix a ψ ∈ C∞(M,R) such that eψgm is a Gauduchon metric on M . Intergrating

the above inequality with respect to e(m−1)ψgm over M gives
∫

M

D

D + ǫ
{SM − trg(f

∗(Ric(1)
m (h)))}e(m−1)ψgm ≤

∫

M

∆log(D + ǫ)e(m−1)ψgm = 0 .

Here we have used that∫

M

∆log(D + ǫ)e(m−1)ψgm =

∫

M

(∆eψg log(D + ǫ))(eψg)m = 0 .

Now, we can easily use the same arguments as to those in Theorem 1.1 in [15] to complete the

proof. �
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