
Acta Mathematica Scientia, 2021, 41B(5): 1606–1618

https://doi.org/10.1007/s10473-021-0512-7

c©Innovation Academy for Precision Measurement Science

and Technology, Chinese Academy of Sciences, 2021
http://actams.apm.ac.cn

THE PRODUCT OPERATOR BETWEEN

BLOCH-TYPE SPACES OF SLICE

REGULAR FUNCTIONS∗

Yuxia LIANG (ù�_)

School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China

E-mail : liangyx1986@126.com

Abstract There is little work concerning the properties of quaternionic operators acting on

slice regular function spaces defined on quaternions. In this paper, we present an equivalent

characterization for the boundedness of the product operator CϕD
m acting on Bloch-type

spaces of slice regular functions. After that, an equivalent estimation for its essential norm

is established, which can imply several existing results on holomorphic spaces.
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1 Introduction

Gentili and Struppa first introduced slice hyperholomorphic functions in 2006 (see, e.g.,[12]).

Since then, many mathematicians have been involved in creating a theory regarding the func-

tions of quaternionic variables, and this has several applications, for example in Schur analysis

and operator theory. Associated with slice hyperholomorphic functions, there is a very rich

literature on Schur analysis; see the book [1] and the references therein. Slice hyperholomor-

phic functions can also be referred to as slice regular, as they are defined on quaternions and

are quaternionic-valued. With the development of the theory of slice regular functions, there

have appeared various slice regular function spaces, such as Fock space [2, 11, 26], Hardy and

Bergman spaces [7, 23], and Bloch, Besov and Dirichlet spaces [25] and so on. These quater-

nionic function spaces play important roles in quaternionic operator theory, which is different

from the complex operator theory. As far as we are concerned, one of the main difference is the

definition of the spectrum of a linear operator, which is called the S-spectrum in quaternionic

operator theory, and is widely used in fractional powers and fractional diffusion processes (see

the excellent books [5, 6]).

For a long time, describing the behavior of linear operators acting on various complex

holomorphic function spaces has been a very fundamental topic. The linear operators include

the (weighted differentiation) composition operators ([4, 17, 19, 20, 24, 27, 28, 30, 31]), the
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integral-type operator ([3]) and so on. To the best of our knowledge, there is very little work

on the properties of quaternionic operators on slice regular function spaces. Considering that

the Bloch-type space is a convenient setting for many problems in functional analysis and the

product operator CϕDm is a very general operator, we fix our attention in this paper on some

classical and challenging problems to characterize the boundedness and compactness of this

product operator acting between the Bloch-type spaces of slice regular functions.

We now recall some preliminaries regarding slice regular functions. For more information

regarding the ensuing facts, we refer readers to [9, 10]. Let the symbol H denote the noncom-

mutative, associative, real algebra of quaternions q = x0 + x1e1 + x2e2 + x3e3 = Req + Imq,

with Req = x0 and Imq = x1e1 + x2e2 + x3e3, where xj are real numbers for j = 0, 1, 2, 3,

and the imaginary units e1, e2, e3 are subject to the rule e2
1 = e2

2 = e2
3 = e1e2e3 = −1. The set

{e0 = 1, e1, e2, e3} is the usual basis of the quaternions. An element q ∈ H can also be written

as a linear combination of two complex numbers, that is, q = (x0 + x1e1) + (x2 + x3e1)e2.

Moreover, we can consider the space R3 embedded in H as follows:

(x1, x2, x3) −→ x1e1 + x2e2 + x3e3.

We say the conjugate of q ∈ H is q = Req− Imq and its modulus is |q|2 = qq = |Req|2 + |Imq|2.

Every q ∈ H can be expressed as q = x + yI, where x, y ∈ R and I = Imq/|Imq| if Imq 6= 0,

otherwise we take I arbitrarily such that I2 = −1. Let the symbol S denote the two-dimensional

unit sphere of purely imaginary quaternions, meaning that

S = {q = x1e1 + x2e2 + x3e3 : x2
1 + x2

2 + x2
3 = 1},

hence I ∈ S. It is obvious that q2 = −1 for all q ∈ S.

In the sequel, we take i ∈ S and let C(i) denote the space generated by {1, i}, which can

be identified as the usual complex plane. It is easy to check that

H =
⋃

i∈S

C(i).

The set B = {q ∈ H : |q| < 1} is a unit ball in H, and so Bi = B ∩ C(i) is identified as the unit

disk D in the complex plane C(i) for i ∈ S.

We denote the space of holomorphic functions on D by H(D). For 0 < α < ∞, an f ∈ H(D)

is said to be in the complex Bloch-type space or α-Bloch space Bα
D

if

‖f‖α,D = sup
z∈D

(1 − |z|2)α|f ′(z)| < ∞.

Then Bα
D

is a Banach space under the norm

‖f‖Bα
D

= |f(0)| + ‖f‖α,D.

That the complex Bloch-type space is important in operator theory is due to its invariance

with respect to Möbius transformation. We refer the readers to the book [31] by Zhu, which

is an excellent source concerning the development of theory on complex holomorphic function

spaces.

As regards the theory of slice regular functions, it has been developed systematically in

recent decades and is widely applied in quaternionic quantum mechanics; see e.g., [10]. Here

we first present the definition of slice regular functions and cite some basic properties; see, e.g.,

[8, 9, 13].
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Definition 1.1 (Slice regular functions) Let Ω be a domain in H. A real differentiable

quaternionic-valued function f : Ω → H is called slice regular if, for any i ∈ S, its restriction fi

on Ωi = Ω ∩ C(i) satisfies

∂if(x + yi) :=
1

2

(

∂

∂x
+ i

∂

∂y

)

fi(x + yi) = 0

for all x + yi ∈ Ωi. We denote by R(Ω) the set of all slice regular functions on Ω.

Proposition 1.2 (Splitting lemma) If f ∈ R(Ω), then for any i ∈ S and every j ∈ S

orthogonal to i, there are two holomorphic functions F, G : Ω∩C(i) → C(i) such that, for any

z = x + iy, it holds that

fi = f |Ωi
(z) = F (z) + G(z)j.

Slice regular functions possess good properties on specific open sets that we will call axially

symmetric slice domains. On these domains, slice regular functions satisfy the representation

formula, which allows us to reconstruct the values of the function once we know its values on

some complex plane C(i).

Definition 1.3 Let Ω ⊂ H be a domain. Then

(1) Ω is called a slice domain (or s-domain for short) if it intersects the real axis and if,

for any i ∈ S, Ωi is a domain in C(i).

(2) Ω is called an axially symmetric domain if, for any x + yi ∈ Ω with x, y ∈ R and i ∈ S,

the entire two-sphere x + yS is contained in Ω.

Proposition 1.4 (Representation Formula) Let f be a slice regular function on an axially

symmetric s-domain Ω ⊂ H. Choose any j ∈ S. Then the following equality holds for all

q = x + yi ∈ Ω:

f(x + yi) =
1

2
((1 + ij)f(x − yj) + (1 − ij)f(x + yj)) .

Letting i, j ∈ S be mutually orthogonal vectors and Ω ⊂ H an axially symmetric s-domain,

the splitting lemma and the representation formula entail the ensuing definitions, which relate

the slice regular function space R(Ω) on Ω with the space of pairs of holomorphic functions on

Ωi, denoted by H(Ωi). Afterwards, define

Qi : R(Ω) → H(Ωi) + H(Ωi)j

by Qi[f ] = fi = f |Ωi
and

Pi : H(Ωi) + H(Ωi)j → R(Ω)

by

Pi[f ](q) = Pi[f ](x + yIq) =
1

2
[(1 + Iqi)f(x − yi) + (1 − Iqi)f(x + yi)]

for f ∈ H(Ωi) + H(Ωi)j.

Based on the above mappings, we first recall a definition for the slice regular α-Bloch

space on the unit ball B from [15, Definition 2.1]. Then we present its relation with a complex

Bloch-type space.

Definition 1.5 For 0 < α < ∞, the slice regular α-Bloch space associated with the unit

ball B is the quaternionic right linear space of slice regular function f on B such that

‖f‖α = sup
p∈B

(1 − |p|2)α

∣

∣

∣

∣

∂f

∂x0
(p)

∣

∣

∣

∣

< ∞,
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where Re p = x0; that is to say,

Bα := Bα(B) = {f ∈ R(B) : ‖f‖α < ∞} .

It is easy to check that Bα is a Banach space endowed with the norm

‖f‖Bα = |f(0)| + ‖f‖α.

The space Bα
i has a close relation to the slice regular α-Bloch space, which is the quater-

nionic right linear space of slice regular functions on the unit ball B such that

‖f‖α,i = sup
z∈Bi

(1 − |z|2)α|Qi[f ]′(z)| < ∞,

where

Qi[f ]′(z) =
∂Qi[f ]

∂x0
(z) =

∂fi

∂x0
(z)

is a holomorphic map of complex variable z = x0 + iy and i ∈ S. Hence,

Bα
i := Bα

i (B) = {f ∈ R(B) : ‖f‖Bα
i

= |f(0)| + ‖f‖α,i < ∞}

is a Banach space under the norm ‖f‖Bα
i
. The following remark further reveals the relationship

between Bα
i and Bα

D
:

Remark 1.6 Let i ∈ S and f ∈ Bα
i . Then, for any j ∈ S with j ⊥ i, there exist

holomorphic functions f1 and f2 : Bi → C(i) such that

Qi[f ](z) = fi(z) = f1(z) + f2(z)j.

In addition,

|Qi[f ]′(z)|2 = |f ′
i(z)|2 = |f ′

1(z)|2 + |f ′
2(z)|2,

which implies the conclusion that f ∈ Bα
i if and only if both f1 and f2 belong to the complex

α-Bloch space Bα
D
. It turns out that

‖f‖2
α,i = sup

z∈Bi

(1 − |z|2)2α|f ′
i(z)|2

= sup
z∈Bi

(1 − |z|2)2α[|f ′
1(z)|2 + |f ′

2(z)|2]

= ‖f1‖
2
α,D + ‖f2‖

2
α,D. (1.1)

The next proposition shows that the spaces Bα and Bα
i contain the same elements.

Proposition 1.7 ([25, Proposition 2.6]) Let i ∈ S. Then f ∈ Bα
i if and only if f ∈ Bα.

More precisely, one has

‖f‖Bα
i
≤ ‖f‖Bα ≤ 2‖f‖Bα

i
. (1.2)

In addition, it also holds that

‖f‖α,i ≤ ‖f‖α ≤ 2‖f‖α,i.

Furthermore, the function f ∈ Bα
i if and only if f ∈ Bα

j and the norms ‖ · ‖Bα
i

and ‖ · ‖Bα
j

are

equivalent for i, j ∈ S.

In the sequel, we define the composition operator on slice regular α-Bloch spaces.
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Definition 1.8 Let ϕ : B → B be a slice regular map such that ϕ(Bi) ⊂ Bi for some

i ∈ S. Then the C(i)-composition operator (Cϕ)i : Bα → Bβ of the unit ball B, with the domain

consisting of all h ∈ Bα such that Cϕh belongs to Bβ, is defined by

(Cϕf)i = fi ◦ ϕi, f ∈ Bα.

Using the Representation Formula, we can obtain all values of Cϕf on H.

Readers can also refer to [22] for the definition of the slice regular composition operator

Cϕ. It is well-known that the study of composition operators is a fairly active field. For general

references on the theory of composition operators on the holomorphic functions of complex

variables, see the excellent books [4], by Cowen and MacCluer, and [24], by Shapiro. As

regards the slice regular composition operators, Ren and Wang ([22]) studied their properties

acting on the quaternionic Hardy spaces. As a generalization, the basic properties of the

slice regular weighted composition operator were systematically characterized in the recent

papers [16, 18]. As far as we are concerned, there has been no investigation on the product

operator of differentiation and composition operators acting on slice regular function spaces, so

we concentrate on this characterization with regard to Bloch-type spaces.

A natural notion of differentiation can be given for slice regular functions (see [12, 13]),

and this is called the slice (or Cullen) derivative of f .

Definition 1.9 Let Ω be a slice domain in H, and let f : Ω → H be a slice regular

function. The slice derivative of f at q = x + yi ∈ Ωi is defined by

∂if(x + yi) :=
1

2

(

∂

∂x
− i

∂

∂y

)

fi(x + yi).

We notice that the operators ∂i and that ∂i can commute, and that ∂if = ∂f
∂x

for regular

function f . Therefore, the slice derivative of a regular function is still regular, so we can iterate

the differentiation to obtain the m-th slice derivative

∂m
i f =

∂mf

∂xm
, m ∈ N.

In the ensuing sections, we will directly denote the m-th slice derivative ∂m
i f by f (m) for

i ∈ S and m ∈ N, and denote

Df := ∂if =
∂f

∂x
, f ∈ R(B).

Generally, for a nonnegative integer m ∈ N, we denote

Dmf := ∂m
i f =

∂mf

∂xm
, f ∈ R(B).

Combining the differentiation operator with a map ϕ satisfying ϕ(Bi) ⊂ Bi for some i ∈ S,

we define the product operator of differentiation and composition operators as

(CϕDmf)i = [f (m)]i ◦ ϕi, f ∈ R(B).

Using the Representation Formula, we can extend all values of the operator CϕDm on R(B).

As is well known, the composition operator is a typical bounded operator on the com-

plex classical Bloch space Bα
D

with α = 1, while the differentiation operators are typically

unbounded on various complex Banach spaces of holomorphic functions. Recently, a lot of
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work has appeared on new characterizations in terms of ϕm for composition and differentia-

tion operators between complex holomorphic function spaces. For example, Zhao [30] obtained

the new characterization for the compactness of composition operator Cϕ from Bp
D

to Bq
D

as
(

e
2p

)p

lim sup
m→∞

mp−1‖ϕm‖q,D = 0, where ϕm means the m-th power of ϕ. For more similar char-

acterizations regarding the boundedness and compactness of some classical linear operators, we

refer readers to [3, 17, 20, 27–29] and the references therein.

Regarding the complex-valued product operator CϕDm, we have deduced an equivalent

description for its boundedness and estimated its essential norm in terms of monomial zn in

the complex Bloch-type spaces, which have concise representations, as follows:

Theorem A ([19, Theorem 1]) Let 0 < α, β < ∞, m be a nonnegative integer and let ϕ

be a holomorphic self-map of the unit disk D. Then CϕDm : Bα
D
→ Bβ

D
is bounded if and only if

sup
n∈N

nα−1‖CϕDm(zn)‖β,D < ∞,

where z ∈ D, n ∈ N.

Theorem B ([19, Theorem 2]) Let 0 < α, β < ∞, m be a nonnegative integer and let ϕ

be a holomorphic self-map of the unit disk D. Suppose that CϕDm : Bα
D
→ Bβ

D
is bounded, then

the estimate for the essential norm of CϕDm : Bα
D
→ Bβ

D
is

‖CϕDm‖e ≍
( e

α + m

)α+m

lim sup
n→∞

nα−1‖CϕDm(zn)‖β,D.

Building on the above foundations, we continue to provide the corresponding characteriza-

tions for the boundedness and essential norm estimation of CϕDm : Bα → Bβ of slice regular

functions. Throughout the remainder of this paper, N will denote the set of all nonnegative

integers and C will denote a positive constant, the exact value of which will vary from one

appearance to the next. The notations A ≍ B, A � B, A � B mean that there may be

different positive constants C such that B/C ≤ A ≤ CB, A ≤ CB, CB ≤ A.

2 The Characterizations for CϕDm
: Bα → Bβ of Slice Regular Func-

tions

In this section, we first present a characterization for the boundedness of CϕDm : Bα → Bβ

acting between the slice regular Bloch-type spaces containing Theorem A as a particular case.

Theorem 2.1 Let 0 < α, β < ∞, m be a nonnegative integer and let ϕ : B → B be a slice

regular map such that ϕ(Bi) ⊂ Bi for some i ∈ S. Then the product operator CϕDm : Bα → Bβ

is bounded if and only if

sup
n∈N

nα−1‖CϕDmIn(p)‖β < ∞, (2.1)

where In(p) = pn, p ∈ H, n ∈ N.

Proof Necessity Assume that the operator CϕDm : Bα → Bβ is bounded. Combining

this with Proposition 1.7 ensures that the operator CϕDm : Bα
i → Bβ

i is bounded. Suppose

that p = x0 + Iy ∈ B with some I ∈ S, and denote z = x0 + iy and z = x0 − iy. It then holds

that |z| = |z| = |p|. Since

‖CϕDmIn(p)‖β = sup
p∈B

(1 − |p|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(p)

∣

∣

∣

∣

, (2.2)
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we will estimate the right part by the Representation Formula, due to the fact that
∂(CϕDmIn)

∂x0

is a slice regular function. First, it is true that

∂(CϕDmIn)

∂x0
(p) =

1

2
(1 − Ii)

∂(CϕDmIn)

∂x0
(z) +

1

2
(1 + Ii)

∂(CϕDmIn)

∂x0
(z).

Then, the above calculations yield that

(1 − |p|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(p)

∣

∣

∣

∣

≤ (1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(z)

∣

∣

∣

∣

+ (1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(z)

∣

∣

∣

∣

,

which further implies that

sup
p∈B

(1 − |p|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(p)

∣

∣

∣

∣

≤ sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(z)

∣

∣

∣

∣

+ sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(z)

∣

∣

∣

∣

≤ 2 sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(z)

∣

∣

∣

∣

. (2.3)

Since In(p) = pn defined on Bi coincides with the usual complex monomial zn, it is clear

that In(p) ∈ Bα
i . Furthermore, by the boundness of CϕDm : Bα

i → Bβ
i , we conclude that

sup
n∈N

nα−1‖CϕDmIn(p)‖β,i < ∞. (2.4)

Actually, this is due to the fact that In(p) is bounded in Bα
i and that

‖In‖α,i = ‖In‖Bα
i

= sup
z∈Bi

(1 − |z|2)α|nzn−1| = ‖zn‖Bα
D

= ‖zn‖α,D.

By the direct arguments in Bα
D
, we obtain that

lim
n→∞

nα−1‖In‖Bα
i

= lim
n→∞

nα−1‖In‖α,i = lim
n→∞

nα−1‖zn‖α,D =

(

α + m

e

)α+m

. (2.5)

The above inequality ensures that there is a constant C > 0, independent of n, such that

‖In‖Bα
i
≤ Cn1−α.

It turns out that

1

C
nα−1‖CϕDmIn(p)‖β,i ≤

‖CϕDmIn(p)‖β,i

‖In‖Bα
i

=

∥

∥

∥

∥

CϕDm In(p)

‖In‖Bα
i

∥

∥

∥

∥

β,i

≤ ‖CϕDm‖Bα
i →Bβ

i

< ∞.

Taking sup
n∈N

in the above inequality, we can obtain the formula (2.4).

Letting j ∈ S with j ⊥ i, we can write (In)i(z) = In,1(z) + In,2(z)j with two complex

holomorphic functions In,1 ∈ Bα
D

and In,2 ∈ Bα
D
, by Remark 1.6. Indeed, for In(p) = pn, we can

directly write In,1(z) = zn and In,2(z) = 0. More generally, we can deduce that

sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(z)

∣

∣

∣

∣

≤ sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn,1)

∂x0
(z)

∣

∣

∣

∣

+ sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn,2)

∂x0
(z)

∣

∣

∣

∣

= ‖CϕDmIn,1(z)‖β,D + ‖CϕDmIn,2(z)‖β,D

= ‖CϕDmIn,1(z)‖β,D = ‖CϕDmIn(p)‖β,i. (2.6)
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Here we have used (1.1) with In,2(z) = 0. Putting the display (2.6) into (2.3) yields that

sup
p∈B

(1 − |p|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(p)

∣

∣

∣

∣

≤ 2‖CϕDmIn(p)‖β,i,

which, together with the formulas (2.4) and (2.2), implies that

sup
n∈N

nα−1‖CϕDmIn(p)‖β ≤ 2 sup
n∈N

nα−1‖CϕDmIn(p)‖β,i < ∞.

Sufficiency Supposing the formula (2.1) holds, we get that

sup
n∈N

nα−1‖CϕDmIn(p)‖β,i < ∞. (2.7)

Letting j ∈ S with j ⊥ i, it holds that

(In)i(z) = In,1(z) + In,2(z)j = zn.

Therefore, by ϕ(Bi) ⊂ Bi, we deduce that

sup
n∈N

nα−1 sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(z)

∣

∣

∣

∣

= sup
n∈N

nα−1 sup
z∈D

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn,1)

∂x0
(z)

∣

∣

∣

∣

= sup
n∈N

nα−1‖CϕDmIn,1(z)‖β,D.

The above arguments, together with (2.7), ensure that

sup
n∈N

nα−1‖CϕDmIn(z)‖β,D < ∞.

Observing Theorem A, the above formula holds if and only if the operator CϕDm : Bα
D
→ Bβ

D

is bounded. By Remark 1.6, the boundedness of CϕDm : Bα
D
→ Bβ

D
can entail the boundedness

of the operator CϕDm : Bα
i → Bβ

i . This means that ‖CϕDmf‖β,i < ∞ for any f ∈ Bα
i .

Employing Proposition 1.7, it turns out that ‖CϕDmf‖β < ∞ for all f ∈ Bα, which implies

the boundedness of the operator CϕDm : Bα → Bβ, ending the proof. �

As stated in [25, Definition 2.9], the space H∞(B) is the collection of all quaternionic right

linear bounded slice regular functions on B; that is,

H∞(B) = {f ∈ R(B) : ‖f‖∞ := sup
q∈B

|f(q)| < ∞}.

We can verify that H∞(B) is a Banach space under the norm ‖f‖∞. Immediately, we go on

showing that CϕDm : Bα → Bβ is compact if ‖ϕ‖∞ < 1. The following proposition can be

deduced by a similar way as [14, Proposition 3.3], which plays a critical role in proving the

compactness of operators:

Proposition 2.2 Let 0 < α, β < ∞, m be a nonnegative integer and let ϕ : B → B

be a slice regular map such that ϕ(Bi) ⊂ Bi for some i ∈ S. Then the product operator

CϕDm : Bα → Bβ is compact if and only if, for any bounded sequence {fk}k∈N in Bα with

fk → 0 as k → ∞ on compact sets, ‖CϕDmfk‖Bβ → 0 as k → ∞.

Theorem 2.3 Let 0 < α, β < ∞, m be a nonnegative integer and let ϕ : B → B be a

slice regular map such that ϕ(Bi) ⊂ Bi for some i ∈ S. If ‖ϕ‖∞ < 1, then the product operator

CϕDm : Bα → Bβ is compact.
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Proof Let {fk}k∈N be a bounded sequence in Bα satisfying fk → 0 as k → ∞ on compact

sets of B. Then it also holds that fk → 0 as k → ∞ on compact sets of Bi for i ∈ S. Let

j ∈ S be such that j ⊥ i, and let fk,1, fk,2 : Bi → C(i) be holomorphic functions satisfying

(fk)i(z) = fk,1(z) + fk,2(z)j for some z = x0 + iy ∈ Bi. By Remark 1.6, it follows that the

two functions fk,1(z) and fk,2(z) lie in the complex Bloch-type spaces Bα
D

on Bi, where Bi is

identified with D ⊂ C(i). In addition, it is obvious that fk,l → 0 as k → ∞ on compact sets of

D and l = 1, 2. Hence we obtain that

sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmfk)

∂x0
(z)

∣

∣

∣

∣

≤ sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmfk,1)

∂x0
(z)

∣

∣

∣

∣

+ sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmfk,2)

∂x0
(z)

∣

∣

∣

∣

= ‖CϕDmfk,1‖β,D + ‖CϕDmfk,2‖β,D

→ 0, as k → ∞, (2.8)

where the last line is due to the corresponding result in complex Bloch-type spaces (see, e.g.,

[19, page 356]) under the case ‖ϕ‖∞ < 1. Based on the fact that

(1 − |p|2)β

∣

∣

∣

∣

∂(CϕDmfk)

∂x0
(p)

∣

∣

∣

∣

≤ (1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmfk)

∂x0
(z)

∣

∣

∣

∣

+ (1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmfk)

∂x0
(z)

∣

∣

∣

∣

,

we use (2.8) to deduce that

‖CϕDmfk(p)‖β = sup
p∈B

(1 − |p|2)β

∣

∣

∣

∣

∂(CϕDmfk)

∂x0
(p)

∣

∣

∣

∣

≤ 2 sup
i∈S

sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmfk)

∂x0
(z)

∣

∣

∣

∣

→ 0, as k → ∞.

Employing Proposition 2.2, the compactness of CϕDm : Bα → Bβ follows. �

Definition 2.4 The essential norm of a bounded linear operator T between two normed

linear spaces X and Y is its distance from the compact operator K; that is,

‖T ‖e = inf{‖T − K‖X→Y , K : X → Y is compact},

where ‖.‖X→Y denotes the operator norm (see, e.g., [21]).

It is obvious that T is compact if and only if ‖T ‖e = 0. Thus Theorem 2.3 can yield

‖CϕDm‖e = 0 for the case ‖ϕ‖∞ < 1. Next, we continue to estimate the essential norm of

CϕDm : Bα → Bβ under the case ‖ϕ‖∞ = 1, which contains Theorem B as a special case.

Theorem 2.5 Let 0 < α, β < ∞, m be a nonnegative integer and let ϕ : B → B be a slice

regular map such that ϕ(Bi) ⊂ Bi for some i ∈ S and ‖ϕ‖∞ = 1. Suppose that CϕDm : Bα → Bβ

is bounded. Then the estimation for the essential norm of CϕDm : Bα → Bβ is

‖CϕDm‖e ≍ lim sup
n→∞

nα−1‖CϕDmIn‖β. (2.9)

Proof The lower estimation Let In(p) = pn. Then In(z) = zn is a sequence on Bi

(identified as the unit disk D) associated with n ∈ N. Since In converges to zero uniformly on
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compact subsets of Bi, Proposition 2.2 ensures that

‖KIn‖Bβ
i
→ 0, as n → ∞

for every compact operator K : Bα
i → Bβ

i . Therefore, it follows that

‖CϕDm − K‖Bα→Bβ ≥

∥

∥

∥

∥

(CϕDm − K)
In

‖In‖Bα

∥

∥

∥

∥

Bβ

≥

∥

∥

∥

∥

(CϕDm − K)
In

‖In‖Bα

∥

∥

∥

∥

Bβ
i

≥
1

2‖In‖Bα
i

‖(CϕDm − K)In‖Bβ
i

≥
1

2‖In‖Bα
i

(

‖CϕDmIn‖Bβ
i
− ‖KIn‖Bβ

i

)

.

Here the second and third inequalities are both due to (1.2) in Proposition 1.7. Combining the

formula (2.5) with the norm relation in Proposition 1.7, it follows that

‖CϕDm‖e = inf
K

‖CϕDm − K‖Bα→Bβ

� inf
K

lim sup
n→∞

1

2‖In‖Bα
i

(

‖CϕDmIn‖Bβ
i
− ‖KIn‖Bβ

i

)

≍ lim sup
n→∞

1

2
nα−1

(

e

α + m

)α+m

‖CϕDmIn‖Bβ
i

� lim sup
n→∞

nα−1‖CϕDmIn‖Bβ

≍ lim sup
n→∞

nα−1‖CϕDmIn‖β.

The lower estimation follows from the above arguments.

The upper estimation Let Ln be the sequence of operators given in [19, Lemma 3, 4,

5]; that is, Ln is compact as an operator from Bα
D

to Bα
D
. Using Remark 1.6, for every f ∈ Bα

i ,

let j ∈ S be such that j ⊥ i, and let f1, f2 : Bi → C(i) be holomorphic functions satisfying

f(z) = f1(z) + f2(z)j for some z = x0 + iy ∈ Bi. It follows that fk ∈ Bα
D
, k = 1, 2, and so

‖Lnf‖2
α,i = ‖Lnf1‖

2
α,D + ‖Lnf2‖

2
α,D.

This verifies that Ln : Bα
i → Bα

i is also compact. Furthermore, CϕDmLn : Bα
i → Bβ

i and

CϕDmLn : Bα → Bβ are a sequence of compact operators. Thus

‖CϕDm‖e ≤ lim sup
n→∞

‖CϕDm − CϕDmLn‖Bα→Bβ

= lim sup
n→∞

‖CϕDm(I − Ln)‖Bα→Bβ

= lim sup
n→∞

sup
‖f‖Bα≤1

‖CϕDm(I − Ln)f‖Bβ

≤ 2 lim sup
n→∞

sup
‖f‖Bα

i
≤1

‖CϕDm(I − Ln)f‖Bβ
i

≤ 2 lim sup
n→∞

sup
‖f‖Bα

i
≤1

|CϕDm(I − Ln)f(0)| (2.10)

+2 lim sup
n→∞

sup
‖f‖Bα

i
≤1

‖CϕDm(I − Ln)f‖β,i. (2.11)
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The formula (1.1) implies that

‖f‖Bα
i

= |f(0)| + ‖f‖α,i

=
√

|f1(0)|2 + |f2(0)|2 +
√

‖f1‖2
α,D + ‖f2‖2

α,D

≥ max{‖f1‖Bα
D
, ‖f2‖Bα

D
},

so if ‖f‖Bα
i
≤ 1, we get that ‖fk‖Bα

D
≤ 1 for k = 1, 2, but the converse is not true.

On the one hand, since

|CϕDm(I − Ln)f(0)| ≤ |CϕDm(I − Ln)f1(0)| + |CϕDm(I − Ln)f2(0)|,

and lim sup
n→∞

sup
‖fk‖Bα

D
≤1

|CϕDm(I − Ln)fk(0)| = 0 for k = 1, 2, the term (2.10) is zero due to the

fact that

lim sup
n→∞

sup
‖f‖Bα

i
≤1

|CϕDm(I − Ln)f(0)|

≤ lim sup
n→∞

sup
‖f1‖Bα

D
≤1

|CϕDm(I − Ln)f1(0)| + lim sup
n→∞

sup
‖f2‖Bα

D
≤1

|CϕDm(I − Ln)f2(0)|.

On the other hand, we turn to estimate the term (2.11). By (1.1), it follows that

‖CϕDm(I − Ln)f‖2
β,i = ‖CϕDm(I − Ln)f1‖

2
β,D + ‖CϕDm(I − Ln)f2‖

2
β,D,

which leads to

‖CϕDm(I − Ln)f‖β,i ≤ ‖CϕDm(I − Ln)f1‖β,D + ‖CϕDm(I − Ln)f2‖β,D.

This further implies that

lim sup
n→∞

sup
‖f‖Bα

i
≤1

‖CϕDm(I − Ln)f‖β,i

≤ lim sup
n→∞

sup
‖f1‖Bα

D
≤1

‖CϕDm(I − Ln)f1‖β,D + lim sup
n→∞

sup
‖f2‖Bα

D
≤1

‖CϕDm(I − Ln)f2‖β,D

�
( e

α + m

)α+m

lim sup
n→∞

nα−1‖CϕDmIn‖β,D

≤
( e

α + m

)α+m

lim sup
n→∞

nα−1‖CϕDmIn‖β ,

where we use the complex upper estimation (see [19, page 357-359])

lim sup
n→∞

sup
‖h‖Bα

D
≤1

‖CϕDm(I − Ln)h‖β,D �
( e

α + m

)α+m

lim sup
n→∞

nα−1‖CϕDmIn‖β,D

and ‖CϕDmIn‖β,D = ‖CϕDmIn‖β,i ≤ ‖CϕDmIn‖β. Combining the estimations for the parts

(2.10) and (2.11), we deduce that

‖CϕDm‖e � lim sup
n→∞

nα−1‖CϕDmIn‖β ,

completing the proof of the upper estimation. �

Remark 2.6 Let 0 < α, β < ∞, m be a nonnegative integer and let ϕ : B → B be a slice

regular map such that ϕ(Bi) ⊂ Bi for some i ∈ S. Then (2.9) also holds for ‖ϕ‖∞ < 1.
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Proof Based on Theorem 2.3, we only need to show that the right part of (2.9) equals

0. Take 0 < r < 1 such that ‖ϕ‖∞ = r < 1. Letting i, j ∈ S with i ⊥ j, there exists a monomial

zn : Bi → Bi such that (In)i = zn. Furthermore, we obtain that

lim sup
n→∞

nα−1‖CϕDmIn(p)‖β ≤ 2 lim sup
n→∞

nα−1‖CϕDmIn(p)‖β,i

= 2 lim sup
n→∞

nα−1 sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmIn)

∂x0
(z)

∣

∣

∣

∣

= 2 lim sup
n→∞

nα−1 sup
z∈Bi

(1 − |z|2)β

∣

∣

∣

∣

∂(CϕDmzn)

∂x0
(z)

∣

∣

∣

∣

= 2 lim sup
n→∞

nα−1‖CϕDmzn‖β,D = 0,

implying that the formula (2.9) is true. �

The last corollary is a consequence of Theorem 2.5 and Remark 2.6.

Corollary 2.7 Let 0 < α, β < ∞, m be a nonnegative integer and let ϕ : B → B be a slice

regular map such that ϕ(Bi) ⊂ Bi for some i ∈ S. Then the product operator CϕDm : Bα → Bβ

is compact if and only if

lim sup
n→∞

nα−1‖CϕDmIn(p)‖β = 0.

To conclude, we pose a question for exploring in the near future:

Question How does one present the corresponding characterizations for a general slice

regular map ϕ : B → B without the assumption ϕ(Bi) ⊂ Bi?
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