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Abstract This paper is concerned with a stability problem on perturbations near a physi-

cally important steady state solution of the 3D MHD system. We obtain three major results.

The first assesses the existence of global solutions with small initial data. Second, we derive

the temporal decay estimate of the solution in the L
2-norm, where to prove the result, we

need to overcome the difficulty caused by the presence of linear terms from perturbation.

Finally, the decay rate in L
2 space for higher order derivatives of the solution is established.
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1 Introduction

The 3D incompressible magnetohydrodynamic equations can be written as




∂tU + U · ∇U = −∇P + µ∆U + B · ∇B,

∂tB + U · ∇B = ν∆B + B · ∇U,

∇ · U = 0,∇ · B = 0,

U(x, 0) = U0(x), B(x, 0) = B0(x),

(1.1)

where x ∈ R3 and t > 0. U = U(x, t) represents the fluid velocity, B = B(x, t) the magnetic

field, and P = P (x, t) the pressure. For simplicity, we set the viscosity coefficient µ and the

magnetic field coefficient ν to 1.

The MHD equations (1.1) involve the coupling of the incompressible Navier-Stokes equation

and Maxwell’s equation. They play an important role in many fields, such as geophysics,

astrophysics, cosmology and engineering (see [3, 5, 19]). Because of the physical and engineering

applications of MHD equations, the mathematical study of them is very important; as a result,

the MHD equations have been extensively studied. For instance, G. Duvaut and J. L. Lions [8]

obtained the local existence and uniqueness of a solution in the Sobolev space Hs(Rd), s > d,
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and proved the global existence of the solution for small initial data. M. Sermange and R.

Teman [25] further studied the properties of the solutions. Miao, Yuan and Zhang [18] studied

the well-posedness of solutions of MHD equations in BMO−1(R3) and bmo−1(R3), and proved

that the solution of the Cauchy problem of MHD with small initial value is globally unique

in BMO−1(R3) and locally unique in bmo−1(R3). Cao, Wu and Yuan [4] studied the 2D

incompressible MHD with partial dissipation for data in Hs(R2), s > 2. Recently, the global

regularity issue concerning equations (1.1) has attracted much interest, and considerable results

have been obtained (see [9, 11, 29]).

For the 3D equations around the equilibrium state (U0, B0), it is clear that U0(x, t) =

(0, 0, 0) and B0 = (1, 0, 0) are the special solutions of (1.1). The perturbation (u, b) around this

equilibrium with u , U − U0, b , B − B0 obeys





∂tu + u · ∇u = −∇p + ∆u + b · ∇b + ∂1b,

∂tb + u · ∇b = b · ∇u + ∆b + ∂1u,

∇ · u = 0,∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x),

(1.2)

where x ∈ R3, t > 0.

The stability problem of equations (1.2) was first raised by H.Alfvén in [2], and now it has

aroused people’s attention again. The stability problem on MHD equations can be extremely

challenging. Recently, in the 2D case, Ji, Lin, Wu and Yan [10] studied stability for the 2D

MHD equations with partial dissipation in Hs(R2), s ≥ 0. Ren et al. [20] proved the global

existence and decay of smooth solutions for the 2-D MHD equations for general perturbations.

For the 3D case, Abidi and Zhang [1] proved the global solution near the equilibrium. Deng and

Zhang [6] obtained the large time behavior of solutions near the equilibrium. Wu and Zhu [28]

proved global solutions of the 3D incompressible MHD equations with mixed partial dissipation

and magnetic diffusion near an equilibrium.

In this paper, inspired by references [23, 30], we study the global solutions and decay

estimates to equations (1.2) in Hs(R3). For the global solution of equations (1.2), we refer

to [16, 27]. For the decay estimation of equations (1.2), we refer to [7, 15, 21, 24]. However,

the classical method does not apply here, due to the appearance of linear terms ∂1u and ∂1b

from the perturbation in equations (1.2). We introduce a diagonalization method to eliminate

the linear terms, then we prove the temporal decay estimates by the classical Fourier splitting

method. Our main results are stated as follows:

First, to prove the global well-posedness of small initial data in Theorem 1.2, we need the

local well-posedness result of the strong solution in Proposition 1.1, which can be obtained by

a standard procedure with Friedrichs’ method. The key estimate is that
∫

R3

Λs(u · ∇u) · Λsudx =

∫

R3

[Λs, u] · ∇u · Λsudx

≤ C‖Λsu‖L2‖Λsu‖L6‖∇u‖L3

≤ C‖Λsu‖L2‖Λs+1u‖L2‖u‖Hs

≤ δ‖Λs+1u‖2
L2 + C(δ)‖Λsu‖2

L2‖u‖2
Hs
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for s ≥ 3
2 , where δ is small constant number.

Proposition 1.1 (Local well-posedness of a strong solution) Assume (u0, b0) ∈ Hs(R3)

with divu0 = divb0 = 0, s ≥ 3
2 . Then, there exists a small time T = T (‖u0‖Hs , ‖b0‖Hs) > 0

such that (1.2) has a unique strong solution (u, b) satisfying (u, b) ∈ C([0, T ]; Hs(R3)).

Theorem 1.2 Letting s ≥ 3
2 , assume that (u0, b0) ∈ Hs(R3) with divu0 = divb0 = 0, and

that the initial data satisfies

‖u0‖
Ḣ

1

2
+ ‖b0‖

Ḣ
1

2
≤ ǫ

for a small constant ǫ > 0. Then the perturbation MHD equations (1.2) have a unique global

solution (u, b) satisfying

‖u(t)‖2
Hs + ‖b(t)‖2

Hs +

∫ t

0

‖∇u(τ)‖2
Hs + ‖∇b(τ)‖2

Hsdτ ≤ ‖u0‖2
Hs + ‖b0‖2

Hs

for all t > 0.

Theorem 1.3 If (u0, b0) ∈ L1(R3) ∩ Hs(R3) with divu0 = divb0 = 0, s ≥ 3
2 , then the

small global solution (u, b) to equations (1.2) constructed in Theorem 1.2 has the following

optimal decay rate:

‖u(t)‖L2 + ‖b(t)‖L2 ≤ C(1 + t)−
3

4 . (1.3)

The decay rate of the higher order derivative of the solution is also obtained.

Theorem 1.4 Under the assumption of Theorem 1.3, for any integer m ≥ 0, the small

global solution (u, b) satisfies

‖Λmu(t)‖L2 + ‖Λmb(t)‖L2 ≤ C(1 + t)−
3

4
−m

2 , (1.4)

where C is a constant which depends on m and the initial data. Λ =
√
−∆ is defined in the

end of this section.

Remark 1.5 The decay rates (1.3) and (1.4) are optimal in the sense that they coincide

with the ones of the heat equation.

Remark 1.6 For the real number s > 0, we can also obtain the time decay rate of the

L2−norm for the s-order derivative of the solution by the interpolation relation

‖Λsf‖L2 ≤ C‖Λmf‖m+1−s
L2 ‖Λm+1f‖s−m

L2

with m < s < m + 1, which is

‖Λsu(t)‖L2 + ‖Λsb(t)‖L2 ≤ C(1 + t)−
3

4
− s

2 . (1.5)

The rest of this paper is divided into four parts. In the second section, we shall collect some

lemmas and prove Lemma 2.3 by a diagonalization process. In the third section, we give the

proof of Theorem 1.1 by a priori estimates. In the fourth section, we give the proof of Theorem

1.2 by a classical Fourier splitting method, which was obtained first by Schonbek [22]. In the

fifth section, we will show the proof of Theorem 1.3 by making use of an induction argument.

Noting here that C denotes a positive constant that may change from line to line, Ff denotes

the Fourier transform of a function f and the fractional Laplacian operator Λ =
√
−∆ is defined

through a Fourier transform, namely Λ̂f(ξ) = |ξ|f̂(ξ).
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2 Preliminaries

The primary purpose of this section is to give three Lemmas; the first one is the product

type estimate, the second and the third are mainly used for the decay estimate of a solution.

The detailed processes are as follows:

Lemma 2.1 (Product estimate [13, 14, 17]) Let 1 < p < ∞, and s > 0. Then there exists

a constant C such that

‖Λs(fg)‖Lp ≤ C(‖f‖Lp1‖Λsg‖Lp2 + ‖Λsf‖Lp3‖g‖Lp4 ) (2.1)

for f ∈ Lp1 ∩ Ẇ s,p3 and g ∈ Ẇ s,p2 ∩ Lp4 , with p2, p3 ∈ (1, +∞) and p1, p4 ∈ [1, +∞] satisfying

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

We will use the following L2 estimate of the Fourier transform of the initial datum in a

ball (the proof of Lemma 2.2 is based on the Hausdorff-Young theorem; for more details please

refer to [12, 22, 30]):

Lemma 2.2 Let u0 ∈ Lp(R3), 1 ≤ p < 2. Then
∫

S(t)

|Fu0|2dξ ≤ C(t + 1)−
3

2
( 2

p
−1), (2.2)

where S(t) = {ξ ∈ R3 :| ξ |≤ g(t)} is a ball with

g(t) =
( γ

t + 1

) 1

2

.

Here, γ > 0 is a constant which will be determined later, and C is a constant which depends

upon γ and the Lp norm of u0.

In order to prove Theorem 1.2, we need to calculate the estimates of |û(ξ)| and |̂b(ξ)|, which

will play a key role in this paper. For more details, readers can refer to [7, 26].

Lemma 2.3 Letting (u, b) ∈ C([0, T ]; Hs(R3)) be a global solution to the Cauchy problem

(1.2) with initial data (u0, b0) ∈ L1(R3) ∩ Hs(R3), there exists a constant C > 0 depending

only on ‖u0‖L2 and ‖b0‖L2 such that

|û(ξ, t)| ≤ C

((
|û0(ξ)| + |b̂0(ξ)|

)
+

1

|ξ|

)
,

|̂b(ξ, t)| ≤ C

((
|û0(ξ)| + |b̂0(ξ)|

)
+

1

|ξ|

)
.

Proof We rewrite (1.2) in the following form:




∂tu − ∆u − ∂1b = G,

∂tb − ∆b − ∂1u = F.
(2.3)

Here G := −u ·∇u+ b ·∇b−∇p, F := −u ·∇b+ b ·∇u. We take the Fourier transform for (2.3)

as

∂t


ûi

b̂i


 (ξ) = A


ûi

b̂i


 (ξ) +


Ĝi

F̂i


 (ξ), i = 1, 2, 3, (2.4)
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where

A =


−|ξ|2 iξ1

iξ1 −|ξ|2


 .

Then the eigenvalues of matrix A can be calculated as follows:

λ1 = −|ξ|2 + i|ξ1|, λ2 = −|ξ|2 − i|ξ1|.

The associated eigenvectors are

f =


 iξ1

i|ξ1|


 , g =


 iξ1

−i|ξ1|


 .

The matrix C of the eigenvectors and its inverse are given by

C ,

(
f g

)
=


C11 C12

C21 C22


 =


 iξ1 iξ1

i|ξ1| −i|ξ1|




and

C−1 ,


c11 c12

c21 c22


 =




1

2iξ1

1

2i | ξ1 |
1

2iξ1
− 1

2i | ξ1 |


 .

If we define 
Ûi

B̂i


 , C−1


ûi

b̂i


 , (2.5)

then Ûi and B̂i satisfy

∂t


Ûi

B̂i


 (ξ) =


λ1 0

0 λ2





Ûi

B̂i


 (ξ) + C−1


Ĝi

F̂i


 (ξ), i = 1, 2, 3.

Integrating in time, by Duhamel’s formula, we have

Ûi(ξ, t) = eλ1tÛi(ξ, 0) +

∫ t

0

eλ1(t−τ)
(
c11Ĝi(ξ, τ) + c12F̂i(ξ, τ)

)
dτ, (2.6)

B̂i(ξ, t) = eλ2tB̂i(ξ, 0) +

∫ t

0

eλ2(t−τ)
(
c21Ĝi(ξ, τ) + c22F̂i(ξ, τ)

)
dτ (2.7)

for i = 1, 2, 3, and, according to (2.5), we have

Ûi

B̂i


 (ξ, 0) =


c11 c12

c21 c22





û0i

b̂0i


 (ξ) =


c11û0i + c12b̂0i

c21û0i + c22b̂0i


 (ξ),

and 
ûi

b̂i


 =


C11 C12

C21 C22





Ûi

B̂i




=


C11Ûi + C12B̂i

C21Ûi + C22B̂i


 . (2.8)
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We can get from (2.6)–(2.8) that

ûi(ξ, t) = M̂11(ξ, t)û0i(ξ) + M̂12(ξ, t)b̂0i(ξ)

+

∫ t

0

M̂11(ξ, t − τ)Ĝidτ +

∫ t

0

M̂12(ξ, t − τ)F̂idτ, (2.9)

b̂i(ξ, t) = M̂21(ξ, t)û0i(ξ) + M̂22(ξ, t)b̂0i(ξ)

+

∫ t

0

M̂21(ξ, t − τ)Ĝidτ +

∫ t

0

M̂22(ξ, t − τ)F̂idτ, (2.10)

where

M =


M̂11(ξ, t) M̂12(ξ, t)

M̂21(ξ, t) M̂22(ξ, t)


 =




eλ1t + eλ2t

2
sgn(ξ1)

eλ1t − eλ2t

2

sgn(ξ1)
eλ1t − eλ2t

2

eλ1t + eλ2t

2


 ,

and

sgn(ξ1) =





1 ξ1 > 0

−1 ξ1 < 0
.

It is clear that

|M̂ij(ξ, t)| ≤ Ce−|ξ|2t, i, j = 1, 2. (2.11)

Taking the divergence of (1.2)1, and using the divergence free condition of u and b, we have

−∆p = ∇ · (−u · ∇u + b · ∇b) = −∇ · div(u ⊗ u) + −∇ · div(b ⊗ b).

Since the Fourier transform is a bounded map from L1 to L∞, this leads to

|∇̂p(ξ, t)| ≤|ξ||p̂(ξ, t)| ≤ |ξ|(|û ⊗ u| + |b̂ ⊗ b|)
≤|ξ|(‖u(t)u(t)‖L1 + ‖b(t)b(t)‖L1)

≤C|ξ|(‖u(t)‖2
L2 + ‖b(t)‖2

L2). (2.12)

Similarly, by the divergence free condition of u and b, we can obtain that

|b̂ · ∇b| ≤ |ξ||b̂ ⊗ b| ≤ |ξ|‖b‖2
L2, (2.13)

|û · ∇u| ≤ |ξ||û ⊗ u| ≤ |ξ|‖u‖2
L2, (2.14)

|b̂ · ∇u| ≤ |ξ||b̂ ⊗ u| ≤ |ξ|‖b ⊗ u‖L1 ≤ C|ξ|(‖u‖2
L2 + ‖b‖2

L2), (2.15)

and

|û · ∇b| ≤ C|ξ|(‖u‖2
L2 + ‖b‖2

L2). (2.16)

Combining the estimates (2.12)–(2.16), by the expression formula of G and F , we get

|Ĝ(ξ, t)| ≤ C|ξ|(‖u‖2
L2 + ‖b‖2

L2), (2.17)

and

|F̂ (ξ, t)| ≤ C|ξ|(‖u‖2
L2 + ‖b‖2

L2). (2.18)

Inserting (2.17), (2.18) and (2.11) into (2.9), we deduce that

|û|(t, x) ≤ e−|ξ|2t(|û0| + |b̂0|) + C

∫ t

0

e−|ξ|2(t−τ)|ξ|(‖u(τ)‖2
L2 + ‖b(τ)‖2

L2)dτ
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≤ C(|û0| + |b̂0|) + sup
0≤τ≤t

(‖u(τ)‖2
L2 + ‖b(τ)‖2

L2)

∫ t

0

e−|ξ|2(t−τ)|ξ|dτ

≤ C(|û0| + |b̂0| +
1

|ξ| ). (2.19)

Using an argument similar to (2.10), we have

|̂b|(t, x) ≤ C(|û0| + |b̂0| +
1

|ξ| ).

The proof of Lemma 2.3 is thus completed. �

3 Proof of Theorem 1.2

This section aims to prove Theorem 1.2. We will show that for any given T > 0,

‖(u, b)‖Hs is uniformly bounded over (0, T ). Therefore, in order to achieve this goal, we first

give the basic L2-estimate, then establish the Hs-estimate. For further details, readers may

refer to Yuan and Liu [30] and Schonbek, Schonbek and Süli [24]. The proof of Theorem 1.1 is

split into two subsections: the L2 estimate and the Hs estimate.

3.1 L2 estimate

Taking the L2 inner products of the equations (1.2)1,2 with u and b, and adding the results

and integrating by parts, we obtain

1

2

d

dt
(‖u(t)‖2

L2 + ‖b(t)‖2
L2) + ‖∇u‖2

L2 + ‖∇b‖2
L2 = 0, (3.1)

where we have used the fact that∫

R3

(u · ∇)u · udx = 0,

∫

R3

(u · ∇)b · bdx = 0,

∫

R3

(b · ∇)b · udx +

∫

R3

(b · ∇)u · bdx = 0 and

∫

R3

∂1b · u + ∂1u · bdx = 0.

3.2 Hs estimate

Applying Λs to the equations of (1.2)1,2, dotting the resulting equations with Λsu and Λsb,

and integrating over R3, we have

1

2

d

dt
(‖Λsu‖2

L2 + ‖Λsb‖2
L2) + ‖Λs+1u‖2

L2 + ‖Λs+1b‖2
L2

≤ −
∫

R3

Λs(u · ∇u) · Λsudx +

∫

R3

Λs(b · ∇b) · Λsudx +

∫

R3

Λs∂1b · Λsudx

−
∫

R3

Λs(u · ∇b) · Λsbdx +

∫

R3

Λs(b · ∇u) · Λsbdx +

∫

R3

Λs∂1u · Λsbdx

:=

6∑

i=1

Ii. (3.2)

Now, we estimate I1–I6. For the term I1, by the divergence free condition of u, integration by

parts, Lemma 2.1 and ‖f‖L3 ≤ C‖f‖
Ḣ

1

2
, we obtain

I1 = −
∫

R3

Λs(u · ∇u) · Λsudx

=

∫

R3

Λs(u ⊗ u) · Λs+1udx
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≤ (‖Λsu‖L6‖u‖L3 + ‖u‖L3‖Λsu‖L6) ‖Λs+1u‖L2

≤ C‖u‖L3‖Λsu‖L6‖Λs+1u‖L2

≤ C‖u‖
Ḣ

1

2

‖Λs+1u‖2
L2. (3.3)

Similarly,

I2 = −
∫

R3

Λs(b · ∇b) · Λsudx

≤ (‖b‖L3‖Λsb‖L6 + ‖Λsb‖L6‖b‖L3)‖Λs+1u‖L2

≤ C‖b‖
Ḣ

1

2

‖Λs+1b‖L2‖Λs+1u‖L2

≤ C‖b‖
Ḣ

1

2
(‖Λs+1b‖2

L2 + ‖Λs+1u‖2
L2). (3.4)

|I4 + I5| =

∣∣∣∣ −
∫

R3

Λs(u · ∇b) · Λsbdx +

∫

R3

Λs(b · ∇u) · Λsbdx

∣∣∣∣

=

∣∣∣∣
∫

R3

Λs(u ⊗ b) · Λs+1bdx −
∫

R3

Λs(b ⊗ u) · Λs+1bdx

∣∣∣∣

≤ C(‖u‖L3‖Λsb‖L6 + ‖Λsu‖L6‖b‖L3)‖Λs+1b‖L2

≤ C‖u‖L3‖Λs+1b‖2
L2 + C‖b‖L3‖Λs+1u‖L2‖Λs+1b‖L2

≤ C(‖u‖
Ḣ

1

2
+ ‖b‖

Ḣ
1

2
)(‖Λs+1b‖2

L2 + ‖Λs+1u‖2
L2). (3.5)

For the terms I3 and I6, integrating by parts, we get

I3 + I6 =

∫

R3

Λs∂1b · Λsudx +

∫

R3

Λs∂1u · Λsbdx = 0. (3.6)

Inserting estimates (3.3)–(3.5) into (3.2), we have

d

dt
(‖Λsu‖2

L2 + ‖Λsb‖2
L2) + (2 − C(‖u‖

Ḣ
1

2
+ ‖b‖

Ḣ
1

2
))(‖Λs+1u‖2

L2 + ‖Λs+1b‖2
L2) ≤ 0. (3.7)

By Proposition 1.1 , we know that if ‖u0‖
Ḣ

1

2
+ ‖b0‖

Ḣ
1

2
< 2

C
< ǫ, then for a small time interval

(0, t1], ‖u‖
Ḣ

1

2
+ ‖b‖

Ḣ
1

2
< 1

C
, so one has

d

dt
(‖Λsu‖2

L2 + ‖Λsb‖2
L2) + ‖Λs+1u‖2

L2 + ‖Λs+1b‖2
L2 ≤ 0. (3.8)

Combining this with estimate (3.1), we have

d

dt
(‖u‖2

Hs + ‖b‖2
Hs) + ‖∇u‖2

Hs + ‖∇b‖2
Hs ≤ 0 (3.9)

or

‖u(t)‖2
Hs + ‖b(t)‖2

Hs +

∫ t1

0

‖∇u(t)‖2
Hs + ‖∇b(t)‖2

Hsdt ≤ ‖u0‖2
Hs + ‖b0‖2

Hs (3.10)

for 0 < t ≤ t1. In estimate (3.8), choosing s = 1
2 and integrating the resulting estimate, it

follows that

‖u(t1)‖2

Ḣ
1

2

+ ‖b(t1)‖2

Ḣ
1

2

≤ ‖u0‖2

Ḣ
1

2

+ ‖b0‖2

Ḣ
1

2

. (3.11)

Thus, by a continuous extending argument, we get

‖u(t)‖2
Hs + ‖b(t)‖2

Hs +

∫ t

0

‖∇u(τ)‖2
Hs + ‖∇b(τ)‖2

Hsdτ ≤ ‖u0‖2
Hs + ‖b0‖2

Hs (3.12)

for all 0 < t < ∞. This completes the proof of Theorem 1.1.
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4 Proof of Theorem 1.3

In this section, we prove the decay rate of the global solution in L2(R3) by the classic

Fourier splitting method.

Proof Applying Plancherel’s theorem to (3.1), and by splitting the phase space R3 into

two time-dependent parts, we get

d

dt

∫

R3

|û(ξ)|2 + |̂b(ξ)|2dξ

= −
∫

R3

|ξ|2(|û(ξ)|2 + |̂b(ξ)|2)dξ

= −
∫

S(t)

| ξ|2(|û(ξ) |2 +|̂b(ξ)|2)dξ −
∫

S(t)c

|ξ|2(|û(ξ)|2 + |̂b(ξ)|2)dξ

≤ −
∫

S(t)

|ξ|2(|û(ξ)|2 + |̂b(ξ)|2)dξ −
∫

S(t)c

g(t)2(|û(ξ) |2 +|̂b(ξ)|2)dξ

≤ −
∫

R3

g(t)2(|û(ξ)|2 + |̂b(ξ)|2)dξ +

∫

S(t)

g(t)2(|û(ξ)|2 + |̂b(ξ)|2)dξ, (4.1)

where S(t) and g(t) are defined in Lemma 2.2, and γ > 0 is a constant which will be determined

later. Thus, we obtain

d

dt

(
‖u(t)‖2

L2 + ‖b(t)‖2
L2

)
+ g(t)2

(
‖u(t)‖2

L2 + ‖b(t)‖2
L2

)

≤ g(t)2
∫

S(t)

|û(ξ, t)|2 + |̂b(ξ, t)|2dξ. (4.2)

Multiplying (4.2) by the integrating factor (t + 1)γ , it follows that

d

dt
((1 + t)γ(‖u(t)‖2

L2 + ‖b(t)‖2
L2)) ≤ γ(1 + t)γ−1

∫

|ξ|≤g(t)

|û(ξ, t)|2 + |̂b(ξ, t)|2dξ. (4.3)

By Lemma 2.3, we have

d

dt
((1 + t)γ(‖u(t)‖2

L2 + ‖b(t)‖2
L2)) ≤ γ(1 + t)γ−1

∫

|ξ|≤g(t)

(
|û0(ξ)|2 + |b̂0(ξ)|2 +

1

|ξ|2
)

dξ

≤ C(t + 1)γ−1− 3

2 + C(t + 1)γ−1− 1

2 . (4.4)

Integrating (4.4) in time from 0 to t leads to the result

‖u(t)‖2
L2 + ‖b(t)‖2

L2 ≤ C(t + 1)−
3

2 + C(t + 1)−
1

2 + C(1 + t)−γ . (4.5)

By choosing γ > 1
2 , we have

‖u(t)‖2
L2 + ‖b(t)‖2

L2 ≤ C(t + 1)−
1

2 . (4.6)

Inserting estimate (4.6) into (2.19), we can obtain that in the ball S(t),

|û(t, ξ)| ≤ e−|ξ|2t(|û0(ξ)| + |b̂0(ξ)|) + C

∫ t

0

e−|ξ|2(t−τ)|ξ|(τ + 1)−
1

2 dτ

≤ C(|û0(ξ)| + |b̂0(ξ)|) + C|ξ|((t + 1)
1

2 − 1)

≤ C(|û0(ξ)| + |b̂0(ξ)| + 1). (4.7)

Similarly, we obtain

|̂b(t, ξ)| ≤ C(|û0(ξ)| + |b̂0(ξ)| + 1). (4.8)
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Inserting (4.7) and (4.8) into (4.3), and by Lemma 2.2, we have

d

dt

(
(1 + t)γ(‖u(t)‖2

L2 + ‖b(t)‖2
L2)

)
≤ Cγ(1 + t)γ−1(t + 1)−

3

2 . (4.9)

Integrating (4.9) in time and choosing γ > 3
2 leads to

‖u(t)‖2
L2 + ‖b(t)‖2

L2 ≤ C(1 + t)−
3

2 .

This completes the proof of Theorem 1.2. �

5 Proof of Theorem 1.4

In this section, we will prove the higher order derivative’s decay estimate of the small global

solution to the equations of (1.2) in L2(R3) space.

Proof We use the Fourier splitting method again. Let

S(t) = {ξ ∈ R3
∣∣|ξ| ≤ f(t)}, f(t) = (

γ

1 + t
)

1

2 . (5.1)

Then Plancherel’s theorem and (5.1) imply that

‖Λm+1u(t)‖2
L2 + ‖Λm+1b(t)‖2

L2

=

∫

R3

|ξ|2(|FΛmu(ξ, t)|2 + |FΛmb(ξ, t)|2)dξ

≥
∫

|ξ|≥f(t)

|ξ|2(|FΛmu(ξ, t)|2 + |FΛmb(ξ, t)|2)dξ

≥ f(t)2
(
‖Λmu‖2

L2 + ‖Λmb‖2
L2

)
− f(t)2

∫

|ξ|≤f(t)

|ξ|2
(
|FΛm−1u(ξ, t)|2 + |FΛm−1b(ξ, t)|2

)
dξ

≥ f(t)2(‖Λmu‖2
L2 + ‖Λmb‖2

L2) − f(t)4
∫

|ξ|≤f(t)

|FΛm−1u(ξ, t)|2 + |FΛm−1b(ξ, t)|2dξ

≥ (
γ

1 + t
)(‖Λmu‖2

L2 + ‖Λmb‖2
L2) − (

γ

1 + t
)2(‖Λm−1u‖2

L2 + ‖Λm−1b‖2
L2), (5.2)

where m ≥ 1 is an integer. Inserting estimate (5.2) into (3.8), it follows that

d

dt
(‖Λmu‖2

L2 + ‖Λmb‖2
L2) + (

γ

1 + t
)(‖Λmu‖2

L2 + ‖Λmb‖2
L2)

≤ (
γ

1 + t
)2(‖Λm−1u‖2

L2 + ‖Λm−1b‖2
L2). (5.3)

By induction, when m = 1, multiplying both sides of inequality (5.3) by the integrating factor

(t + 1)γ yields

d

dt
((t + 1)γ(‖Λu‖2

L2 + ‖Λb‖2
L2)) ≤ C(1 + t)γ−2(‖u‖2

L2 + ‖b‖2
L2)

≤ C(1 + t)γ−2− 3

2 . (5.4)

Integrating inequality (5.4) from 0 to t, we have

(t + 1)γ(‖Λu‖2
L2 + ‖Λb‖2

L2) ≤ C(‖u0‖2
L2 + ‖b0‖2

L2) + C(1 + t)γ−1− 3

2 . (5.5)

Thus, choosing γ > 5
2 , we can obtain

‖Λu‖2
L2 + ‖Λb‖2

L2 ≤ C(1 + t)−
3

2
−1. (5.6)
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Assuming that for m > 1,

‖Λm−1u‖2
L2 + ‖Λm−1b‖2

L2 ≤ C(1 + t)−
3

2
−(m−1). (5.7)

Therefore, inserting the above estimate into (5.3), we have

d

dt
(‖Λmu‖2

L2 + ‖Λmb‖2
L2) +

γ

1 + t
(‖Λmu‖2

L2 + ‖Λmb‖2
L2) ≤ C(

γ

1 + t
)2(1 + t)−

3

2
−(m−1). (5.8)

Multiplying both sides of (5.8) by (1 + t)γ , we obtain

d

dt
[(1 + t)γ(‖Λmu‖2

L2 + ‖Λmb‖2
L2)] ≤ (1 + t)γ− 3

2
−(m−1)−2. (5.9)

Integrating (5.9) on [0, t], we get

(1 + t)γ
(
‖Λmu(t)‖2

L2 + ‖Λmb(t)‖2
L2

)
≤ ‖Λmu0‖2

L2 + ‖Λmb0‖2
L2 + (1 + t)γ− 3

2
−(m−1)−1. (5.10)

Similarly, by choosing γ > 3
2 + m, we obtain

‖Λmu‖2
L2 + ‖Λmb‖2

L2 ≤ (1 + t)−
3

2
−m. (5.11)

Therefore, the proof of Theorem 1.3 is completed. �
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