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Abstract Let f be a twice continuously differentiable self-mapping of a unit disk satisfying

Poisson differential inequality |∆f(z)| ≤ B · |Df(z)|2 for some B > 0 and f(0) = 0. In this

note, we show that f does not always satisfy the Schwarz-Pick type inequality

1 − |z|2

1 − |f(z)|2
≤ C(B),

where C(B) is a constant depending only on B. Moreover, a more general Schwarz-Pick

type inequality for mapping that satisfies general Poisson differential inequality is established

under certain conditions.
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1 Introduction and Main Results

Let D be an open unit disk in the complex plane C and denote T = ∂D. For a domain Ω ⊂ C,

let Cn(Ω) be the set of all complex-valued n-times of continuously differentiable functions from

Ω into C. In particular, let C(Ω) := C0(Ω) be the set of all continuous functions in Ω.

A real-valued function u, defined in an open subset Ω of the complex plane C, is real

harmonic if it is twice continuously differentiable in Ω and satisfies Laplace’s equation

∆u(z) =
∂2u

∂x2
(z) +

∂2u

∂y2
(z) = 0, z ∈ Ω.

A complex-valued function ω = u + iv is harmonic if both u and v are real harmonic. We refer

the readers to [7] for more properties of harmonic mappings in the plane.
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Let P be the Poisson kernel, that is, the function

P (z, eiθ) =
1 − |z|2

|z − eiθ|2
, z ∈ D, θ ∈ R,

and let G be the Green function of the unit disk, that is, the function

G(z, w) =
1

2π
log

∣∣∣∣
1 − zw

z − w

∣∣∣∣ , z, w ∈ D, z 6= w.

Let f : T → C be a bounded integrable function on the unit circle T and let g : D → C be

continuous. The solution of Poisson’s equation ∆ω = g in D satisfying the boundary condition

ω|T = f ∈ L1(T) is given by

ω(z) = P [f ](z) − G[g](z), z ∈ D, (1.1)

where

P [f ](z) =
1

2π

∫ 2π

0

P (z, eiϕ)f(eiϕ)dϕ, G[g](z) =

∫

D

G(z, w)g(w)dm(w), (1.2)

where dm denotes the Lebesgue measure in the plane. It was proved in [5] that for any g ∈ C(D),

the function G := G[g] satisfies the inequality

|G(z)| ≤
||g||∞

4
· (1 − |z|2), (1.3)

where ||g||∞ := sup
z∈D

|g(z)|. Suppose that Ω ⊂ C is a hyperbolic type domain with a hyperbolic

metric λΩ(z)|dz|. The hyperbolic distance between two points z1, z2 ∈ Ω is defined by

dhΩ
(z1, z2) := inf

γ

{∫

γ

λΩ(z)|dz|
}
,

where the infimum is taken over all rectifiable curves γ in Ω connected z1 and z2. It is well

known that when D = D,

λD(z) =
2

1 − |z|2
and dhD

(z1, z2) = log
|1 − z1z2| + |z1 − z2|

|1 − z1z2| − |z1 − z2|
.

A function f from a hyperbolic type domain Ω into a hyperbolic type domain Ω′ is said to be

hyperbolically Lipschitz continuous if there exists a constant L > 0 such that the inequality

dh
Ω′

(f(z1), f(z2)) ≤ L · dhΩ
(z1, z2)

holds for any z1, z2 ∈ Ω.

Suppose that Ω and Ω′ are two simply connected domains of hyperbolic type in C with

hyperbolic metrics λΩ(z)|dz| and λΩ′(w)|dw|, respectively. The classical Schwarz-Pick lemma

states that if f is holomorphic from Ω into Ω′, then

λΩ′ ◦ f(z)

λΩ(z)
· |f ′(z)| ≤ 1, z ∈ Ω. (1.4)

Moreover, equality occurs in (1.4) when f is conformal from Ω onto Ω′. In particular, if Ω =

Ω′ = D, then inequality (1.4) becomes

|f ′(z)| ·
1 − |z|2

1 − |f(z)|2
≤ 1.

The Schwarz-Pick lemma (1.4) has lots of generalizations. For example, Ahlfors [1] extended

it to holomorphic mappings from a unit disk into a Riemann surface equipped with a Riemann
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metric whose Gaussian curvature is less than or equal to −1. In [19], Yau generalized it to

holomorphic mappings between a complete Kähler manifold with Ricci curvature bounded from

below by a constant and a Hermitian manifold with holomorphic bisectional curvature bounded

from above by a negative constant. Osserman, in [16], obtained a general finite shrinking lemma

from a geodesic disk of radius ρ1 with respect to a metric dŝ2 which is circularly symmetric into

a geodesic disk on a surface. We refer readers to the multipoint version [3] and the higher-order

derivatives version [6, 14] of the Schwarz-Pick lemma and references therein.

In this paper, we are particularly interested in the Schwarz-Pick type inequality for map-

pings satisfying Poisson differential inequality (1.9). Let f be a quasiconformal self-mapping of

a unit disk satisfying the Poisson differential equation

|∆f(z)| ≤ B · |Df(z)|2, (1.5)

where |Df(z)| = |fz(z)| + |fz(z)|. In [12], Kalaj obtained the following result:

Lemma 1.1 ([12, Lemma 2.3]) Suppose that f is a K-quasiconformal self-mapping of D

satisfying Poisson differential equation (1.5) and f(0) = 0. Then there exists C(B, K) such

that
1 − |z|2

1 − |f(z)|2
≤ C(B, K). (1.6)

This lemma can be viewed as a kind of Schwarz-Pick type inequality for the K-quasiconformal

self-mapping of D satisfying Poisson differential inequality (1.5). Now, let F(D, B) = {f : D →

D : f(0) = 0, |∆f | ≤ B · |Df |2, f ∈ C2}. We can derive, by using the Schwarz lemma for

harmonic mapping [9], the Schwarz-Pick type inequality

1 − |z|2

1 − |f(z)|2
≤

π

2
(1.7)

for the class F(D, 0). In [12], Kalaj asked if the quasiconformality assumption is important for

Lemma 1.1. In other words, does (1.7) hold for some constant C = C(B) instead of π/2 for the

class F(D, B)? We summarize this as follows:

Question 1.2 Is the Schwarz-Pick type inequality

1 − |z|2

1 − |f(z)|2
≤ C(B) (1.8)

always valid for mappings in the class F(D, B)?

The first aim of this paper is to give a negative answer to the question. We have

Theorem 1.3 The mappings in the class F(D, B) do not always enjoy Schwarz-Pick type

inequality (1.8).

Although the answer to Question 1.2 is negative, one can establish a Schwarz-Pick type

inequality (1.8) for twice continuously differentiable self-mappings of a unit disk satisfying

Poisson differential inequality (1.8) under certain conditions. For example, in [15], a Schwarz-

Pick type inequality (1.8) for (K, K ′)–quasiconformal self-mappings of a unit disk satisfying the

Poisson differential inequality (1.8) was obtained. However, those mappings discussed in Lemma

1.1 and [15, Lemma 2.1] require quasiconformality. Here, we establish one kind of inequality

(1.8) for those mappings satisfying (1.5) under certain conditions (with no requirement of
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quasiconformality). Actually, our result also works with twice continuously differentiable self-

mappings of a unit disk satisfying the following more general Poisson differential inequality:

|∆f(z)| ≤ a · |Df(z)|2 + b. (1.9)

It is noted that both harmonic mappings and holomorphic mappings are contained in the class

of functions satisfying inequality (1.9). We refer the reader to the research works on those

mappings for two dimensions [4, 8] and higher dimensions [11]. Next, we will state our result

on Schwarz-Pick type inequality (1.8) for twice continuously differentiable self-mappings of a

unit disk satisfying the general Poisson differential inequality (1.9) under certain conditions.

Throughout the rest of this paper, L(a, b, K) always refers to the constant in Lemma 2.5.

According to [8], one can give the explicit expression of L(a, b, K) when the values of a, b are

small enough.

Theorem 1.4 For a given q ∈ {1} ∪ [2, +∞), let f : D → D be continuous in D, f |D ∈

C2, f |T ∈ C2, f(0) = 0 and satisfy the following Poisson differential inequality:

|∆f(z)| ≤ a · |Df(z)|2 + b

and
∣∣∣∂2f(eiϕ)

∂ϕ2

∣∣∣ ≤ K, where 0 < a < 1
2 , 0 < b, K < ∞. Supposing, for q ≥ 2, that

(2q−1q + 1) · max{a, b} ·
(
L2(a, b, K) + 1

)

4
<

2

π
,

we get

1 − |z|q

1 − |f(z)|q
≤






1
2
π
− 3max{a,b}·(L2(a,b,K)+1)

4

, when q = 1,

1
2
π
− (2q−1q+1)·max{a,b}·(L2(a,b,K)+1)

4

, when q ≥ 2.

Under which conditions, the subject of a harmonic self-mapping of the unit disk that has

Lipschitz continuity with respect to a given metric has attracted the attention of many re-

searchers; see the papers [17, 20] and the references cited therein. A direct and interesting

corollary of Theorem 1.4 is the property of hyperbolically Lipschitz continuity for those map-

pings mentioned in Theorem 1.4.

Corollary 1.5 Let f : D → D be continuous in D, f |D ∈ C2, f |T ∈ C2, f(0) = 0 and satisfy

the following Poisson differential inequality:

|∆f(z)| ≤ a · |Df(z)|2 + b

and
∣∣∣∂2f(eiϕ)

∂ϕ2

∣∣∣ ≤ K, where 0 < a < 1
2 , 0 < b, K < ∞. If

5 · max{a, b} ·
(
L2(a, b, K) + 1

)

4
<

2

π
,

then f is a hyperbolically Lipschitz continuity; that is, the inequality

dhD
(f(z1), f(z2)) ≤

L(a, b, K)
2
π
− 5·max{a,b}·(L2(a,b,K)+1)

4

· dhD
(z1, z2)

holds for any z1, z2 ∈ D.

The organization of the rest of this paper is as follows: in Section 2 we make some prepa-

rations which will be used in the proof of Theorems 1.2 and 1.3. The proof of Theorem 1.2 will
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be presented in Section 3. The proof of Theorem 1.3 is given in Section 4. The last section is

devoted to the proof of Corollary 1.4.

2 Some Preparations

In [13], Kalaj and Zhu obtained a Schwarz-Pick type inequality for the harmonic self-

mapping f of D with f(0) = 0. It is read as follows:

Lemma 2.1 ([13, Proposition 3.6]) If f is a harmonic self-mapping of D with f(0) = 0,

then the inequality
1 − |z|q

1 − |f(z)|q
≤

π

2
(2.1)

holds for every z ∈ D and q > 0. In particular, we have, for q = 2, that

1 − |z|2

1 − |f(z)|2
≤

π

2
, z ∈ D. (2.2)

Next, we will establish a Schwarz-Pick type inequality (2.1) of the harmonic self-mapping

of a unit disk with the removed of the assumption that f(0) = 0. The result is as follows:

Lemma 2.2 Let f be a harmonic self-mapping of D satisfying |f(0)| < 2/π. Then for any

q ≥ 1, the inequality
1 − |z|q

1 − |f(z)|q
≤

1
2
π
− |f(0)|

(2.3)

holds for every z ∈ D.

Proof Apparently, inequality (2.3) is true when z = 0. Hence, we assume that z 6= 0. By

a generalized Schwarz type inequality for harmonic self-mapping [10, 18] of the unit disk, we

get

1 − |f(z)|q

1 − |z|q
=

1 −
∣∣∣f(z) − 1−|z|2

1+|z|2 · f(0) + 1−|z|2

1+|z|2 · f(0)
∣∣∣
q

1 − |z|q

≥
1 −

(∣∣∣f(z) − 1−|z|2

1+|z|2 · f(0)
∣∣∣ + 1−|z|2

1+|z|2 · |f(0)|
)q

1 − |z|q

≥
1 −

(
4
π
· arctan |z| + 1−|z|2

1+|z|2 · |f(0)|
)q

1 − |z|q
. (2.4)

Next, we will use L’Hospital’s rules for monotonicity [2] to decide the monotonicity of the

function

φ(x) =
1 −

(
4
π
· arctanx + 1−x2

1+x2 · m
)q

1 − xq
,

where x ∈ (0, 1), m ∈ [0, 2/π). To do this, we introduce the function

ϕ(x) =

(
4

π
·
arctanx

x
+

1 − x2

x(1 + x2)
· m

)q−1

·

[
−4x

(1 + x2)2
· m +

4

π
·

1

1 + x2

]
,

where x ∈ (0, 1), m ∈ [0, 2/π). Then we have

ϕ′(x) =

[
4(3x2 − 1)

(1 + x2)3
· m −

8

π
·

x

(1 + x2)2

]
·

(
4

π
·
arctanx

x
+

1 − x2

x(1 + x2)
· m

)q−1



964 ACTA MATHEMATICA SCIENTIA Vol.41 Ser.B

+ (q − 1)

[
−4x

(1 + x2)2
· m +

4

π
·

1

1 + x2

]
·

(
4

π
·
arctanx

x
+

1 − x2

x(1 + x2)
· m

)q−2

×

[
x4 − 4x2 − 1

x2(1 + x2)
· m +

4

π
·
x − (1 + x2) arctanx

x2(1 + x2)

]

= Aq−2 ·

{[
4(3x2 − 1)

x(1 + x2)3
· m −

8

π
·

1

(1 + x2)2

]
·

(
4

π
· arctanx +

1 − x2

1 + x2
· m

)
+ (q − 1)

×

[
−4x

(1 + x2)2
· m +

4

π
·

1

1 + x2

]
·

[
x4 − 4x2 − 1

x2(1 + x2)
· m +

4

π
·
x − (1 + x2) arctanx

x2(1 + x2)

]}
,

where A = 4
π
· arctan x

x
+ 1−x2

x(1+x2) · m. Obviously, we have

4

π
· arctanx +

1 − x2

1 + x2
· m ≥ 0

and
−4x

(1 + x2)2
· m +

4

π
·

1

1 + x2
≥

−2m(1 + x2)

(1 + x2)2
+

4

π
·

1

1 + x2
> 0,

when x ∈ (0, 1), m ∈ [0, 2/π). In addition, the elementary inequality x
1+x2 ≤ arctanx ≤ x

1−x2

implies that inequality

x4 − 4x2 − 1

x2(1 + x2)
· m +

4

π
·
x − (1 + x2) arctanx

x2(1 + x2)
< 0

holds for any x ∈ (0, 1), m ∈ [0, 2/π). Finally, we verify that

j(x) :=
3x2 − 1

x(1 + x2)
· m −

2

π
< 0 (2.5)

for any x ∈ (0, 1), m ∈ [0, 2/π). Since

j′(x) =
−3x4 + 6x2 + 1

x2(1 + x2)2
· m > 0,

j is monotonically increasing on (0, 1), which implies that j(x) < j(1) = m− 2
π

< 0. Hence, we

have ϕ′(x) < 0 for any x ∈ (0, 1), m ∈ [0, 2/π). Therefore, by L’Hospital’s rules for monotonicity

[2], we see that φ(x) is monotonically decreasing on (0, 1). Using L’Hospital’s law, we get

φ(x) ≥ lim
x→1−

φ(x) = 2
π
− m. This completes the proof. �

Lemma 2.3 For any 0 ≤ y < 1, 0 ≤ ε < 1, q > 1, we have

(y + ε)q ≤ yq + 2q−1q · ε. (2.6)

Proof Let k(y) = (y + ε)q − yq, y ∈ [0, 1). Then we have k′(y) = q[(y + ε)q−1 − yq−1] ≥ 0.

Hence, k is monotonic increasing when 0 ≤ y < 1, 0 ≤ ε < 1, q > 1, which implies that

k(y) = (y + ε)q − yq ≤ k(1) = (1 + ε)q − 1. (2.7)

Let λ(ε) = (1 + ε)q − 2q−1qε − 1. Then, λ′(ε) = q[(1 + ε)q−1 − 2q−1] ≤ 0. Therefore, λ(ε) ≤

λ(0) = 0; namely, for any 0 ≤ ε < 1, it holds that (1 + ε)q − 1 ≤ 2q−1qε. Combining this

inequality with (2.7), we get the desired inequality. �

Lemma 2.4 For any t ∈ [0, 1), we have

4

π
· arctan t ≤

2

π
(t − 1) + 1. (2.8)
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Proof Considering the function φ(t) = 4
π
· arctan t, t ∈ [0, 1) we get






φ′(t) =
4

π
·

1

1 + t2
> 0,

φ′′(t) =
4

π
·

−2t

(1 + t2)2
< 0.

(2.9)

This shows that φ is monotonically increasing and concave in [0, 1), which implies that the

tangent of φ at the point (1, 1) lies above the image of φ. Hence, the desired inequality (2.8)

follows. �

The following result, obtained by Heinz-Bernstein [4, 8], is crucial for us to get a Schwarz-

Pick type inequality for mappings satisfying the Poisson differential inequality (1.9) under

certain conditions:

Lemma 2.5 ([4, 8]) Let u : D → D be continuous in D, u|D ∈ C2, u|T ∈ C2 and satisfy the

inequality

|∆u| ≤ a|Du|2 + b,

and
∣∣∂2u(eiϕ)

∂ϕ2

∣∣ ≤ K, where 0 < a < 1
2 , 0 < b, K < ∞. Then |Du| ≤ L(a, b, K) holds on D, where

L(a, b, K) is a positive constant that depends only on a, b, K.

3 Proof of Theorem 1.2

To finish the proof, we find a self-mapping of the unit disk that satisfies the Poisson differ-

ential inequality (1.5) and f(0) = 0, but that has no inequality (1.8); that is, it does not satisfy
1−|z|2

1−|f(z)|2 ≤ M for any z ∈ D and M ≥ 0. To do this, we take the function f(z) = 3z−z2z
2 , z ∈ D.

A simple calculation shows that fz(z) = 3−2|z|2

2 , fz(z) = − z2

2 , ∆f(z) = −4z, f(eiθ) = eiθ,

|f(z)| < 1 and f(0) = 0. Hence, f is a self-mapping of the unit disk satisfying the Poisson

differential inequality

|∆f(z)| ≤ a · |Df(z)|2

for any a ≥ 4. Next, by letting t = |z|2 ∈ [0, 1), we get that

lim
|z|→1−

1 − |z|2

1 − |f(z)|2
= lim

|z|→1−

1 − |z|2

1 − |z|2
(

3−|z|2

2

)2 = lim
t→1−

4

t2 − 5t + 4
= +∞. (3.1)

This finishes the proof.

4 Proof of Theorem 1.3

By Lemma 2.5, there is constant L(a, b, K) > 0 such that |Df | ≤ L(a, b, K) holds for any

z ∈ D. Now, let

∆f(z) = h(z), z ∈ D, (4.1)

where h(z) = l(z)(|Df(z)|2 + 1) and ||l||∞ ≤ max{a, b}; one can simply define l(z) := ∆f(z) ·(
|Df(z)|2 + 1

)−1
, z ∈ D. By assumption, we have h ∈ C(D). Hence, we get that ||h||∞ ≤

max{a, b} ·
(
L2(a, b, K) + 1

)
, by Lemma 2.5. Now, using formula (1.1), we have

f(z) = P [k](z) − G[h](z), (4.2)
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where f |T := k. For the case of q = 1, by using formula (4.2) and Lemma 2.4, we get

1 − |f(z)|

1 − |z|
=

1 −
∣∣∣P [k](z) − 1−|z|2

1+|z|2 · P [k](0) + 1−|z|2

1+|z|2 · P [k](0) − G[h](z)
∣∣∣

1 − |z|

≥
1 −

(∣∣∣P [k](z) − 1−|z|2

1+|z|2 · P [k](0)
∣∣∣ + 1−|z|2

1+|z|2 · |P [k](0)| + |G[h](z)|
)

1 − |z|

≥

1 −

(
4
π
· arctan |z|+ 1−|z|2

1+|z|2 · |P [k](0)| + ||h||∞(1−|z|
2

)
4

)

1 − |z|

≥

1 −

(
2
π
· (|z| − 1) + 1 + 1−|z|2

1+|z|2 · |P [k](0)| + ||h||∞(1−|z|
2

)
4

)

1 − |z|

=
2

π
−

1 + |z|

1 + |z|2
· |P [k](0)| −

||h||∞(1 + |z|)

4

≥
2

π
−

1 + |z|

4(1 + |z|2)
· ||h||∞ −

||h||∞(1 + |z|)

4
≥

2

π
−

3||h||∞
4

≥
2

π
−

3 max{a, b} ·
(
L2(a, b, K) + 1

)

4
> 0. (4.3)

For the case of q ≥ 2, since f(0) = 0 and

max{a, b} ·
(
L2(a, b, K) + 1

)

4
<

(2q−1q + 1) · max{a, b} ·
(
L2(a, b, K) + 1

)

4
<

2

π
,

we get (by using estimate (1.3)) that

|P [k](0)| = |G[h](0)| ≤
||h||∞

4
≤

max{a, b} ·
(
L2(a, b, K) + 1

)

4
< 2/π. (4.4)

Hence, P [k] is a harmonic self-mapping of D satisfying |P [k](0)| < 2/π. By virtue of Lemma

2.2, we get that

1 − |P [k](z)|q

1 − |z|q
≥

2

π
− |P [k](0)| ≥

2

π
−

max{a, b} ·
(
L2(a, b, K) + 1

)

4
. (4.5)

Now, using (4.5) and Lemma 2.3, we get that

1 − |f(z)|q

1 − |z|q
≥

1 − (|P [k](z)| + |G[h](z)|)
q

1 − |z|q

≥

1 −

(
|P [k](z)| + ||h||∞(1−|z|

2

)
4

)q

1 − |z|q
≥

1 − |P [k](z)|q − 2q−1q ||h||∞(1−|z|
2

)
4

1 − |z|q

=
1 − |P [k](z)|q

1 − |z|q
−

2q−1q · ||h||∞
4

·
1 − |z|2

1 − |z|q
≥

2

π
− |P [k](0)| −

2q−1q · ||h||∞
4

≥
2

π
−

(2q−1q + 1)||h||∞
4

≥
2

π
−

(2q−1q + 1) · max{a, b} ·
(
L2(a, b, K) + 1

)

4

> 0. (4.6)

Hence, the proof of Theorem 1.3 is complete.
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5 Proof of Corollary 1.4

From above proof of Theorem 1.3, we see that if
5·max{a,b}·(L2(a,b,K)+1)

4 < 2
π
, then |Df | ≤

L(a, b, K) and
1 − |z|2

1 − |f(z)|2
≤

1
2
π
− 5·max{a,b}·(L2(a,b,K)+1)

4

.

These inequalities imply that

|Df |(1 − |z|2)

1 − |f(z)|2
≤

L(a, b, K)
2
π
− 5·max{a,b}·(L2(a,b,K)+1)

4

.

This completes the proof.

Acknowledgements The second and third authors would like to express their hearty

thanks to the Chern Institute of Mathematics, which provided them with a very comfortable

research environment. Also, the authors would like to express their sincere thanks to the referees

for their great efforts in improving this paper.

References

[1] Ahlfors L V. An extension of Schwarz’s lemma. Trans Amer Soc, 1938, 43: 359–381

[2] Anderson G D, Vamanamurthy M K and Vuorinen M. Monotonicity rules in Calculus. Amer Math Mon,

2006, 113: 805–816

[3] Beardon A F, Minda D. A multi-point Schwarz-Pick lemma. J d’ Anal Math, 2004, 92: 81–104
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