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Abstract This paper considers the inverse acoustic wave scattering by a bounded penetra-

ble obstacle with a conductive boundary condition. We will show that the penetrable scatterer

can be uniquely determined by its far-field pattern of the scattered field for all incident plane

waves at a fixed wave number. In the first part of this paper, adequate preparations for

the main uniqueness result are made. We establish the mixed reciprocity relation between

the far-field pattern corresponding to point sources and the scattered field corresponding to

plane waves. Then the well-posedness of a modified interior transmission problem is deeply

investigated by the variational method. Finally, the a priori estimates of solutions to the

general transmission problem with boundary data in Lp(∂Ω) (1 < p < 2) are proven by the

boundary integral equation method. In the second part of this paper, we give a novel proof

on the uniqueness of the inverse conductive scattering problem.

Key words Acoustic wave; uniqueness; mixed reciprocity relation; modified interior trans-

mission problem; a priori estimates
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1 Introduction

The inverse scattering problem we are concerned with here is determining the shape of

an obstacle by measurements of the far-field patterns of acoustic waves. We are interested in

the scattering of a penetrable obstacle covered by a thin layer of high conductivity; that is,

the so-called conductive boundary condition ([1, 2]), which is a generalization of the classical

transmission problem.

Let Ω denote a penetrable bounded open domain in R3 with R3\Ω connected. Let n(x)

be the refractive index, let k > 0 be the wave number, and set a jump parameter λ ∈ C\{0}

and a complex-valued function µ on the smooth boundary ∂Ω. Then the conductive scattering
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problem we consider is modeled as follows:




∆u+ k2u = 0, in R3\Ω,

∆u+ k2nu = 0, in Ω,

u+ − u− = 0, on ∂Ω,

∂u+

∂ν
− λ

∂u−
∂ν

+ µu+ = 0, on ∂Ω,

(1.1)

where u = ui+us is the total field, which is a superposition of the incident wave ui = ui(x, d) :=

eikx·d (note that the incident wave will be a plane wave or a point source in our later proofs

and that d denotes the incident direction) and the scattered wave us, and ν is the unit outward

normal to the boundary ∂Ω. Here, u± and ∂u±

∂ν denote the limit of u and ∂u
∂ν from the exterior

(+) and interior (−), respectively. Furthermore, the scattered field us satisfies the Sommerfeld

radiation condition

lim
r→∞

r
(∂us

∂r
− ikus

)
= 0, r = |x|, (1.2)

and the convergence holds uniformly with respect to x̂ = x/|x| ∈ S, where S denotes the unit

sphere in R
3.

Referring to Section 2 of paper [4], we make following assumptions on n, λ and µ to

guarantee the well-posedness of the direct problem (1.1):

Assumption 1.1 (1) The refractive function n ∈ L∞(Ω) satisfies Re(n) > 0 and Im(n) ≥

0 almost everywhere (a.e.) in Ω.

(2) λ is a non-zero complex constant, such that there exists ĉ > 0, such that Re(λ) ≥ ĉ and

Im(λ) ≤ 0, Im(λn) ≥ 0 a.e. in Ω.

(3) µ ∈ L∞(∂Ω) with Re(µ) ≤ 0 and Im(µ) ≥ 0 a.e. on ∂Ω.

It is well known that the radiating solution us has the asymptotic expansion

us(x) =
eikr

r

{
u∞(x̂) +O

(1

r

)}
, as r = |x| −→ ∞ (1.3)

uniformly for all directions x̂ = x/|x| ∈ S. Here, u∞ is called the far-field pattern of us, which

is an analytic function defined on S.

The problem of uniqueness in the inverse obstacle scattering theory is of central importance

both for the theoretical study and the implementation of numerical algorithms in acoustic,

electromagnetic, fluid-solid interaction and elastic waves, etc.. The first uniqueness result was

shown by Schiffer [20] in acoustic waves with a Dirichlet boundary condition whose argument

cannot be transferred to other boundary conditions. In 1990, Isakov [17] gave a uniqueness

proof for transmission problems (ui = ue, ∂ue/∂ν = µ∂ui/∂ν, µ 6= 1) based on the variational

method by constructing a sequence of singular solutions. In 1993, Kirsch and Kress [18] sim-

plified Isakov’s proof and also transferred it to the Neumann boundary condition by proving a

continuous dependence result in a weighted Banach space of continuous functions. In the same

year, Ramm [31] used a new method to prove the uniqueness of the impenetrable obstacle with

a Dirichlet or Neumann boundary condition.

In 1994, Hettlich [16] achieved the uniqueness theorem for the general conductive boundary

condition (u+−u− = 0, ∂u+/∂ν−µ∂u−/∂ν = λu, the interior wave number is a constant) based

on the idea of Isakov. Furthermore, the uniqueness of coefficients µ, λ and the constant interior

wave number were also proven. Later, in 1996, Gerlach and Kress [12] simplified and shortened
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the analysis of Hettlich. In order to present a refinement in the case when the boundary of the

scatterer is allowed to have irregularities, in 1998, Mitrea [24] studied its uniqueness dependent

upon boundary integral techniques and the Calderón-Zygmund theory. In 2004, Valdivia [33]

worked on the uniqueness again based on the original idea of Isakov. Since then, there have

been many other uniqueness problems, such as impenetrable scatterers with an unknown type

of boundary condition ([10, 19]), local uniqueness ([13, 32]), penetrable orthotropic [11] or

anisotropic inhomogeneous obstacles ([14, 25]), a piecewise homogeneous medium ([21–23]),

etc..

In this paper, we again consider the uniqueness of the inverse transmission scattering with

a conductive boundary condition by an inhomogeneous medium. The idea is inspired by [29]

(an inhomogeneous acoustic cavity), [30] (fluid-solid interaction with embedded obstacles) and

[34] (penetrable obstacles with embedded objects in acoustic and electromagnetic scattering).

Hence, before showing the main uniqueness proof, we discuss some important preparations,

which are also of interest in their own right.

Firstly, we establish a mixed reciprocity relation between the far-field pattern corresponding

to point sources and the scattered field corresponding to plane waves of this general transmission

problem. The mixed reciprocity relation was shown in [26] (Theorem1) for sound-soft and

sound-hard obstacles, in [9] (Theorem 3.24) for generalized impedance objects, in [28] (Theorem

2.2.4) for inhomogeneous media, and in [23] for a piecewise homogeneous medium, etc.. In the

derivation of (2.1) and the above references, we can conclude that the relation for y ∈ R3\Ω is

valid for all possible boundary conditions of penetrable or impenetrable scatterers. Furthermore,

for y ∈ Ω, relation (2.1) has a close connection with the jump parameter λ (Lemma 3.2 in [23]),

but that disregards the complex-valued function µ.

Secondly, we study the well-posedness of a modified interior transmission problem by the

variational method. Though the interior transmission problems have been deeply investigated

in the book [6], there are few results about the conductive boundary ([3, 15] for λ = 1). The

well-posedness is achieved under some limitations on λ and µ, and the discreteness of interior

transmission eigenvalues is a by-product. In the future, we want to conduct further research on

the interior transmission eigenvalues problem.

Thirdly, we prove the a priori estimates of solutions to the general transmission problem

with boundary data in Lp(∂Ω) (1 < p < 2) by the boundary integral equation method. In a

manner different from Section 2.2 in [34] (Theorem 2.5), where the authors make a small mod-

ification to the boundary conditions (2.14), we revise the representations of potential functions

(refer to Section 3.8 in the book [8]) and keep the conductive boundary conditions unchanged.

Those two different modifications are made in order to obtain compactness of the matrix A in

Theorem 2.12 (or the matrix L in [34] Theorem 2.5). The key point is that the operators Sk,

Kk, K
′

k and the difference Tk1
−Tk are compact in Lp(∂Ω) for 1 < p < 2 (Lemma 9 in [26] and

Lemma 1 in [27]).

Finally, the novel and simple method for proving the uniqueness of the conductive boundary

by its far field pattern is easy to implement for our inverse transmission problem.

The remainder section of the paper is organized as follows: Section 2 is devoted to making

preparations; we show a mixed reciprocity relation, investigate the well-posedness of a modified

interior transmission problem, and construct the a priori estimates of solutions to the general
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transmission problem with boundary data in Lp(∂Ω) (1 < p < 2) by the boundary integral

equation method. In Section 3, the main result on the uniqueness of the inverse penetrable

transmission problem is proven in detail.

2 Preparations

In this section, we make some necessary preparations before showing the uniqueness of the

inverse problem (1.1).

2.1 Mixed reciprocity relation

In this subsection, we establish the mixed reciprocity relation, which has been proven

both for impenetrable and penetrable scatterers. In the sequel, we view Φk(x, y) = eik|x−y|

4π|x−y| as

an incident point source wave, and correspondingly, denote by us(x; y), u(x; y) and u∞(x̂; y)

the scattered, total wave and the far-field pattern associated with Φk(x, y) to problem (1.1).

Similarly, us(x, d), u(x, d) and u∞(x̂, d) denote the scattered, total wave and the far-field pattern

associated with ui(x, d) to problem (1.1), respectively.

Theorem 2.1 (Mixed reciprocity relation) For the scattering of plane waves ui(·, d) and

the far-field pattern of point sources Φk(·, y), we have

4πu∞(−d; y) =




us(y, d), d ∈ S, y ∈ R3\Ω,

λus(y, d) + (λ − 1)ui(y, d), d ∈ S, y ∈ Ω.
(2.1)

Proof Firstly, we consider the case y ∈ R3\Ω. Since us(x; y) and us(x, d) both fulfil the

Sommerfeld radiation condition (1.2), it holds that
∫

∂Ω

[
us

+(z; y)
∂us

+(z, d)

∂ν(z)
−
∂us

+(z; y)

∂ν(z)
us

+(z, d)
]
ds(z) = 0. (2.2)

From Green’s representation theorem [5], for the radiating solution us(x; y) to the Helmholtz

equation, one can derive the following integral representation for x ∈ R3\Ω:

us(x; y) =

∫

∂Ω

{∂Φk(x, z)

∂ν(z)
us

+(z; y) − Φk(x, z)
∂us

+(z; y)

∂ν(z)

}
ds(z).

Letting |x| −→ ∞, we have

u∞(x̂; y) =
1

4π

∫

∂Ω

{∂e−ikx̂·z

∂ν(z)
us

+(z; y)− e−ikx̂·z ∂u
s
+(z; y)

∂ν(z)

}
ds(z).

Hence,

4πu∞(−d; y) =

∫

∂Ω

{∂eikd·z

∂ν(z)
us

+(z; y) − eikd·z ∂u
s
+(z; y)

∂ν(z)

}
ds(z)

=

∫

∂Ω

{∂ui(z, d)

∂ν(z)
us

+(z; y) − ui(z, d)
∂us

+(z; y)

∂ν(z)

}
ds(z)

=

∫

∂Ω

{∂u+(z, d)

∂ν(z)
us

+(z; y) − u+(z, d)
∂us

+(z; y)

∂ν(z)

}
ds(z), (2.3)

where the last equality is obtained by adding formula (2.2).

Using Green’s representation theorem again, for y ∈ R3\Ω,

us(y, d) =

∫

∂Ω

{∂Φk(z, y)

∂ν(z)
us

+(z, d) − Φk(z, y)
∂us

+(z, d)

∂ν(z)

}
ds(z).
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Applying Green’s second integral theorem to ui(·, d) and Φk(·, y) in Ω yields
∫

∂Ω

[∂Φk(z, y)

∂ν(z)
ui(z, d) − Φk(z, y)

∂ui(z, d)

∂ν(z)

]
ds(z) = 0.

Adding up the previous two equalities, we arrive at

us(y, d) =

∫

∂Ω

{∂Φk(z, y)

∂ν(z)
u+(z, d) − Φk(z, y)

∂u+(z, d)

∂ν(z)

}
ds(z). (2.4)

Combining (2.3) with (2.4), we find that

4πu∞(−d; y) − us(y, d) =

∫

∂Ω

{∂u+(z, d)

∂ν(z)
us

+(z; y) − u+(z, d)
∂us

+(z; y)

∂ν(z)

}
ds(z)

+

∫

∂Ω

{
Φk(z, y)

∂u+(z, d)

∂ν(z)
−
∂Φk(z, y)

∂ν(z)
u+(z, d)

}
ds(z)

=

∫

∂Ω

{∂u+(z, d)

∂ν(z)
u+(z; y) − u+(z, d)

∂u+(z; y)

∂ν(z)

}
ds(z).

Use the conductive boundary condition and Green’s formula in Ω, we conclude that

4πu∞(−d; y) − us(y, d) =

∫

∂Ω

{[
λ
∂u−(z, d)

∂ν(z)
− µu−(z, d)

]
u−(z; y)

− u−(z, d)
[
λ
∂u−(z; y)

∂ν(z)
− µu−(z; y)

]}
ds(z)

= λ

∫

∂Ω

{
∂u−(z, d)

∂ν(z)
u−(z; y) − u−(z, d)

∂u−(z; y)

∂ν(z)

}
ds(z)

= λ

∫

Ω

[
u(z; y)∆u(z, d)− u(z, d)∆u(z; y)

]
dz = 0.

This implies that 4πu∞(−d; y) = us(y, d) for all d ∈ S, y ∈ R3\Ω.

Secondly, we consider the case y ∈ Ω. Recalling equality (2.3), which holds also for y ∈ Ω,

using the conductive boundary condition, we obtain

4πu∞(−d; y) =

∫

∂Ω

{∂u+(z, d)

∂ν(z)
us

+(z; y)− u+(z, d)
∂us

+(z; y)

∂ν(z)

}
ds(z)

=

∫

∂Ω

{
µΦk(z, y)u−(z, d) − (λ− 1)

∂Φk(z, y)

∂ν(z)
u−(z, d)

}
ds(z)

+ λ

∫

∂Ω

{∂u−(z, d)

∂ν(z)
us
−(z; y) − u−(z, d)

∂us
−(z; y)

∂ν(z)

}
ds(z)

=

∫

∂Ω

{
µΦk(z, y)u−(z, d) − (λ− 1)

∂Φk(z, y)

∂ν(z)
u−(z, d)

}
ds(z)

+ λ

∫

Ω

k2(n− 1)Φk(z, y)u(z, d)dz. (2.5)

The last equality is obtained completely similar to the proof of (3.13) to (3.14) in Lemma 3.2

([23]).

On the other hand, with the help of Green’s representation formula, we know that

u(y, d) =

∫

∂Ω

{
Φk(z, y)

∂u−(z, d)

∂ν(z)
−
∂Φk(z, y)

∂ν(z)
u−(z, d)

}
ds(z)

+

∫

Ω

k2(n− 1)Φk(z, y)u(z, d)dz. (2.6)
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Combining (2.5) with (2.6) and using the conductive boundary condition, we have

4πu∞(−d; y) − λu(y, d)

=

∫

∂Ω

{
µΦk(z, y)u−(z, d) − (λ− 1)

∂Φk(z, y)

∂ν(z)
u−(z, d)

}
ds(z)

+

∫

∂Ω

{
λ
∂Φk(z, y)

∂ν(z)
u−(z, d) − λΦk(z, y)

∂u−(z, d)

∂ν(z)

}
ds(z)

=

∫

∂Ω

{∂Φk(z, y)

∂ν(z)
u−(z, d) +

[
µu−(z, d) − λ

∂u−(z, d)

∂ν(z)

]
Φk(z, y)

}
ds(z)

=

∫

∂Ω

{∂Φk(z, y)

∂ν(z)
u+(z, d) −

∂u+(z, d)

∂ν(z)
Φk(z, y)

}
ds(z).

For y ∈ Ω, both Φk(·, y) and us(·, d) satisfy the Helmholtz equation in R3\Ω and the Sommerfeld

radiation condition (1.2), hence
∫

∂Ω

{∂Φk(z, y)

∂ν(z)
us

+(z, d) −
∂us

+(z, d)

∂ν(z)
Φk(z, y)

}
ds(z) = 0.

Consequently,

4πu∞(−d; y) − λu(y, d) =

∫

∂Ω

{∂Φk(z, y)

∂ν(z)
ui(z, d) −

∂ui(z, d)

∂ν(z)
Φk(z, y)

}
ds(z)

= −ui(y, d).

This implies that 4πu∞(−d; y) = λus(y, d) + (λ − 1)ui(y, d) for all d ∈ S, y ∈ Ω. The proof is

complete. �

Remark 2.2 If there is a buried object inside Ω, Theorem 2.1 also holds. Lemma 3.2 in

[23] is a special case when n is a constant and µ = 0 a.e. on ∂Ω.

Remark 2.3 Theorem 2.1 also holds in two dimensional space with some modifications

of the coefficient.

2.2 Modified interior transmission problem

Given ℓ1, ℓ2 ∈ L2(Ω), f1 ∈ H1/2(∂Ω), f2 ∈ H−1/2(∂Ω), we consider the following modified

interior transmission problem:




∆v − v = ℓ1, in Ω,

∆w − w = ℓ2, in Ω,

v − w = f1, on ∂Ω,

∂v

∂ν
− λ

∂w

∂ν
+ µv = f2, on ∂Ω.

(2.7)

In order to reformulate (2.7) as an equivalent variational problem, we define the Hilbert space

X :=
{
ψ ∈ [L2(Ω)]2 : ∇ ·ψ ∈ L2(Ω) and ∇×ψ = 0

}
,

equipped with the norm ‖ψ‖2
X = ‖ψ‖2

[L2(Ω)]2 + ‖∇ · ψ‖2
L2(Ω).

Now, we multiply the second equation in (2.7) by a test function ϕ ∈ H1(Ω) to get
∫

Ω

ℓ2ϕdx =

∫

Ω

(∆w − w)ϕdx =

∫

∂Ω

∂w

∂ν
ϕds−

∫

Ω

(∇w · ∇ϕ+ wϕ)dx.
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Using the conductive boundary condition in (2.7), we see that

λ

∫

∂Ω

∂w

∂ν
ϕds =

∫

∂Ω

(∂v
∂ν

+ µv − f2

)
ϕds

=

∫

∂Ω

(
v · ν

)
ϕds+

∫

∂Ω

µ
(
w + f1

)
ϕds−

∫

∂Ω

f2ϕds,

where v = ∇v, and then v ∈ X . After arranging, we obtain that

λ

∫

Ω

(∇w · ∇ϕ+ wϕ)dx −

∫

∂Ω

(v · ν)ϕds−

∫

∂Ω

µwϕds

=

∫

∂Ω

µf1ϕds−

∫

∂Ω

f2ϕds− λ

∫

Ω

ℓ2ϕdx.

We multiply the first equation in (2.7) by a test function ψ ∈ X . Similarly, integrating in Ω

and using the boundary condition, we obtain
∫

Ω

(∇ · v)(∇ · ψ)dx =

∫

Ω

(∇ · (∇v))(∇ ·ψ)dx =

∫

Ω

(v + ℓ1)(∇ · ψ)dx

=

∫

∂Ω

v(ψ · ν)ds−

∫

Ω

(∇v) ·ψdx+

∫

Ω

ℓ1(∇ · ψ)dx

=

∫

∂Ω

(w + f1)(ψ · ν)ds−

∫

Ω

v ·ψdx+

∫

Ω

ℓ1(∇ · ψ)dx;

that is∫

Ω

[
(∇ · v)(∇ ·ψ) + v · ψ

]
dx−

∫

∂Ω

w(ψ · ν)ds =

∫

Ω

ℓ1(∇ · ψ)dx+

∫

∂Ω

f1(ψ · ν)ds.

Based on the above calculations, we introduce the sesquilinear form A1(U,V), defined on

{H1(Ω) ×X}2 by

A1(U,V) = λ

∫

Ω

(∇w · ∇ϕ+ wϕ)dx −

∫

∂Ω

(v · ν)ϕds−

∫

∂Ω

µwϕds

+

∫

Ω

[
(∇ · v)(∇ ·ψ) + v · ψ

]
dx−

∫

∂Ω

w(ψ · ν)ds,

where U := (w,v) and V := (ϕ,ψ) are in H1(Ω) ×X . We denote by L1 : H1(Ω) ×X −→ C

the bounded antilinear functional given by

L1(V) =

∫

∂Ω

(µf1 − f2)ϕds− λ

∫

Ω

ℓ2ϕdx+

∫

Ω

ℓ1(∇ · ψ)dx+

∫

∂Ω

f1(ψ · ν)ds.

Therefore, the variational formulation of problem (2.7) is to find U = (w,v) ∈ H1(Ω)×X such

that

A1(U,V) = L1(V), ∀ V ∈ H1(Ω) ×X. (2.8)

Changing the roles of w and v, we can obtain another different variational formulation of

problem (2.7); namely, we multiply the first equation in (2.7) by a test function ϕ ∈ H1(Ω) and

the second equation by a test function ψ ∈ X , integrate in Ω, and use the boundary condition

to obtain∫

Ω

(∇v · ∇ϕ+ vϕ)dx− λ

∫

∂Ω

(w · ν)ϕds+

∫

∂Ω

µvϕds =

∫

∂Ω

f2ϕds−

∫

Ω

ℓ1ϕdx

and ∫

Ω

[
(∇ · w)(∇ · ψ) + w · ψ

]
dx−

∫

∂Ω

v(ψ · ν)ds =

∫

Ω

ℓ2(∇ · ψ)dx−

∫

∂Ω

f1(ψ · ν)ds,
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where w = ∇w, and then w ∈ X .

We introduce the sesquilinear form A2(U,V) defined on {H1(Ω) ×X}2 and the bounded

antilinear functional L2 : H1(Ω) ×X −→ C given by

A2(U,V) =

∫

Ω

(∇v · ∇ϕ+ vϕ)dx− λ

∫

∂Ω

(w · ν)ϕds+

∫

∂Ω

µvϕds

+ λ

∫

Ω

[
(∇ · w)(∇ · ψ) + w · ψ

]
dx− λ

∫

∂Ω

v(ψ · ν)ds,

L2(V) =

∫

∂Ω

f2ϕds−

∫

Ω

ℓ1ϕdx+ λ

∫

Ω

ℓ2(∇ · ψ)dx− λ

∫

∂Ω

f1(ψ · ν)ds,

where U := (v,w) and V := (ϕ,ψ) are in H1(Ω) × X . Then, the variational formulation of

problem (2.7) is to find U = (v,w) ∈ H1(Ω) ×X such that

A2(U,V) = L2(V), ∀ V ∈ H1(Ω) ×X. (2.9)

The following Theorem states the equivalence between problems (2.7) and (2.8) or (2.9)

(the detailed proof is the same as that of Theorem 3.3 in the paper [7] and Theorem 6.5 in the

book [5], so for brevity we omit it here):

Theorem 2.4 Problem (2.7) has a unique solution (w, v) ∈ H1(Ω) ×H1(Ω) if and only

if problem (2.8) has a unique solution U = (w,v) ∈ H1(Ω) ×X or problem (2.9) has a unique

solution U = (v,w) ∈ H1(Ω) ×X .

Now, we investigate the modified interior transmission problem in the variational formula-

tions (2.8) and (2.9).

Theorem 2.5 (1) If Re(λ) ≥ ĉ > 1 and Re(µ) ≤ 0, then the variational problem (2.8)

has a unique solution U = (w,v) ∈ H1(Ω) ×X that satisfies

‖w‖H1(Ω) + ‖v‖X ≤ c1
(
‖ℓ1‖L2(Ω) + ‖ℓ2‖L2(Ω) + ‖f1‖H1/2(∂Ω) + ‖f2‖H−1/2(∂Ω)

)
.

(2) If 0 < ĉ ≤ Re(λ) < 1 and Re(µ) ≡ 0, then the variational problem (2.9) has a unique

solution U = (v,w) ∈ H1(Ω) ×X that satisfies

‖v‖H1(Ω) + ‖w‖X ≤ c2
(
‖ℓ1‖L2(Ω) + ‖ℓ2‖L2(Ω) + ‖f1‖H1/2(∂Ω) + ‖f2‖H−1/2(∂Ω)

)
,

where cj > 0 (j = 1, 2) is independent of ℓ1, ℓ2, f1 and f2.

Proof The trace theorems and Schwarz’s inequality ensure the continuity of the antilinear

functional Lj (j = 1, 2) on H1(Ω)×X and the existence of a constant cj which is independent

of ℓ1, ℓ2, f1 and f2 such that

‖Lj‖ ≤ cj
(
‖ℓ1‖L2(Ω) + ‖ℓ2‖L2(Ω) + ‖f1‖H1/2(∂Ω) + ‖f2‖H−1/2(∂Ω)

)
.

For the first part, if U = (w,v) ∈ H1(Ω) × X , the assumptions that Re(λ) ≥ ĉ > 1 and

Re(µ) ≤ 0 imply that

|A1(U,U)| ≥ |Re(A1(U,U))| =
∣∣∣Re(λ)

∫

Ω

(|∇w|2 + |w|2)dx−

∫

∂Ω

Re(µ)|w|2ds

+

∫

Ω

(|∇ · v|2 + |v|2)dx−

∫

∂Ω

(v · ν)wds−

∫

∂Ω

w(v · ν)ds
∣∣∣

≥ Re(λ)‖w‖2
H1(Ω) + ‖v‖2

X − 2
∣∣∣
∫

∂Ω

w(v · ν)ds
∣∣∣

≥ (ĉ− ε−1
1 )‖w‖2

H1(Ω) + (1 − ε1)‖v‖
2
X , ĉ−1 < ε1 < 1.
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For the second part, if U = (v,w) ∈ H1(Ω) ×X , the assumptions that 0 < ĉ ≤ Re(λ) < 1

and Re(µ) ≡ 0 imply that

|A2(U,U)| ≥ |Re(A2(U,U))| =
∣∣∣
∫

Ω

(|∇v|2 + |v|2)dx+

∫

∂Ω

Re(µ)|v|2ds

+ Re(λ)

∫

Ω

(|∇ · w|2 + |w|2)dx − 2Re(λ)Re
( ∫

∂Ω

(w · ν)vds
)∣∣∣

≥ ‖v‖2
H1(Ω) + Re(λ)‖w‖2

X − 2Re(λ)
∣∣∣
∫

∂Ω

(w · ν)vds
∣∣∣

≥ (1 − Re(λ)ε−1
2 )‖v‖2

H1(Ω) + Re(λ)(1 − ε2)‖w‖2
X , Re(λ) < ε2 < 1.

Hence Aj (j = 1, 2) is coercive. The continuity of Aj follows easily from Schwarz’s inequality

and the classical trace theorems. Then Theorem 2.5 is a direct consequence of the Lax-Milgram

Lemma applied to (2.8) and (2.9). �

Combining the above two Theorems 2.4 and 2.5, we obtain the well-posedness of the mod-

ified interior transmission problem (2.7).

Theorem 2.6 Assume that Re(λ) ≥ ĉ > 1, Re(µ) ≤ 0 or 0 < ĉ ≤ Re(λ) < 1, Re(µ) ≡ 0.

Then the modified interior transmission problem (2.7) has a unique solution (w, v) ∈ H1(Ω) ×

H1(Ω) that satisfies

‖w‖H1(Ω) + ‖v‖H1(Ω) ≤ c
(
‖ℓ1‖L2(Ω) + ‖ℓ2‖L2(Ω) + ‖f1‖H1/2(∂Ω) + ‖f2‖H−1/2(∂Ω)

)
,

and c > 0 is independent of ℓ1, ℓ2, f1 and f2.

Using the analytic Fredholm theory (see Section 8.5 in the book [9]), we get a by-product

regarding the discreteness of the following interior transmission eigenvalues problem:




∆v + k2v = 0, in Ω,

∆w + k2nw = 0, in Ω,

v − w = 0, on ∂Ω,

∂v

∂ν
− λ

∂w

∂ν
+ µv = 0, on ∂Ω.

(2.10)

Definition 2.7 Values of k for which the above interior transmission problem (2.10) has

a nontrivial solution pair (v, w) ∈ H1(Ω) ×H1(Ω) are called transmission eigenvalues.

Before we establish the discreteness result, we first study the case when there are no real

transmission eigenvalues.

Lemma 2.8 Assume that n, λ and µ satisfy Assumption 1.1. If either Im(λ) < 0 or

Im(n) > 0 almost everywhere in Ω, then there are no real transmission eigenvalues of the

problem (2.10).

Proof Let v and w be a solution pair of the interior transmission problem (2.10). Ap-

plying Green’s identity to v and w, we have
∫

Ω

(|∇v|2 − k2|v|2)dx =

∫

∂Ω

v
∂v

∂ν
ds = λ

∫

∂Ω

w
∂w

∂ν
ds−

∫

∂Ω

µ|v|2ds

= λ

∫

Ω

(|∇w|2 − k2n|w|2)dx −

∫

∂Ω

µ|v|2ds.
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Since Im(µ) ≥ 0, Im(λ) ≤ 0, Im(λn) ≥ 0, we have that

Im(λ)

∫

Ω

|∇w|2dx = 0, Im
( ∫

Ω

λn|w|2dx
)

= 0, Im
(∫

∂Ω

µ|v|2ds
)

= 0.

If Im(λ) < 0 a.e. in Ω, then ∇w = 0 in Ω, from the equation w = 0. From the boundary

condition in (2.10) and the integral representation formula, v also vanishes in Ω.

If Im(λ) = 0 and Im(n) > 0 a.e. in Ω, then λ ≥ ĉ > 0 and Im(λn) = λIm(n) > 0. Hence,

w = 0 and v = 0 in Ω. This completes the proof. �

Remark 2.9 From the proof of Lemma 2.8, we conclude that k may be an interior

transmission eigenvalue of (2.10) if Im(λ) = 0 and Im(n) = 0. In this case, if Im(µ) > 0 almost

everywhere on ∂Ω, we further obtain that v = 0 on ∂Ω, whence the eigenvalues of (2.10) form

a subset of the classical Dirichlet eigenvalues of −∆ in Ω.

Theorem 2.10 Assume that n, λ and µ satisfy Assumption 1.1 and that Im(λ) = 0

and Im(n) = 0. If either λ ≥ ĉ > 1, Re(µ) ≤ 0 or 0 < ĉ ≤ λ < 1, Re(µ) ≡ 0, then the

transmission eigenvalues of (2.10) form a discrete (possibly empty) set with +∞ as the only

possible accumulation point.

Proof Let us set

H(Ω) =
{
(v, w) ∈ H1(Ω) ×H1(Ω) : ∆v ∈ L2(Ω) and ∆w ∈ L2(Ω)

}
,

and consider the operator Fk,n from H(Ω) into L2(Ω)×L2(Ω)×H1/2(∂Ω)×H−1/2(∂Ω) defined

by

Fk,n(v, w) =
(
∆v + k2v,∆w + k2nw, (v − w)|∂Ω,

(∂v
∂ν

− λ
∂w

∂ν
+ µv

)∣∣∣
∂Ω

)
.

Then the family of operators Fk,n depends analytically on k. Based on Theorem 2.6 above, we

conclude that Fi,1 is invertible and has a bounded inverse operator F−1
i,1 if either λ ≥ ĉ > 1,

Re(µ) ≤ 0 or 0 < ĉ ≤ λ < 1, Re(µ) ≡ 0. Then,

Fk,n = Fi,1(I −F−1
i,1 (Fi,1 −Fk,n)).

Since (Fi,1−Fk,n)(w, v) = (−(1+k2)v,−(1+k2n)w, 0, 0) is compact based on the compact

embedding of H1(Ω) to L2(Ω), we conclude that the transmission eigenvalues form a discrete

(possibly empty) set with +∞ as the only possible accumulation point by the analytic Fredholm

theory (Section 8.5 of the book [9]). The proof is complete. �

Remark 2.11 For the case λ = 1, the discreteness and existence of the transmission

eigenvalues have been proven clearly in [3].

2.3 A priori estimates for the transmission problem with Lp data

By employing the boundary integral equation method ([8, 27, 34]), we establish the a priori

estimates of the solution to the following general transmission problem (2.11) with boundary

data in Lp(∂Ω) (1 < p < 2); that is, h1 ∈ Lp(∂Ω), h2 ∈ Lp(∂Ω) (these a priori estimates are

needed later in the uniqueness proof of the inverse problem and are also interesting in their
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own right): 




∆w1 + k2w1 = 0, in R
3\Ω,

∆w2 + k2nw2 = 0, in Ω,

w1 − w2 = h1, on ∂Ω,

∂w1

∂ν
− λ

∂w2

∂ν
+ µw1 = h2, on ∂Ω,

lim
r→∞

r(
∂w1

∂r
− ikw1) = 0.

(2.11)

We introduce the single- and double-layer boundary integral operators

(Skψ)(x) =

∫

∂Ω

Φk(x, y)ψ(y)ds(y), x ∈ ∂Ω,

(Kkψ)(x) =

∫

∂Ω

∂Φk(x, y)

∂ν(y)
ψ(y)ds(y), x ∈ ∂Ω,

and their normal derivative operators

(K
′

kψ)(x) =

∫

∂Ω

∂Φk(x, y)

∂ν(x)
ψ(y)ds(y), x ∈ ∂Ω,

(Tkψ)(x) =
∂

∂ν(x)

∫

∂Ω

∂Φk(x, y)

∂ν(y)
ψ(y)ds(y), x ∈ ∂Ω,

where Φk(x, y) = eik|x−y|

4π|x−y| is the fundamental solution of the Helmholtz equation in R3. Referring

to Lemma 9 in [26] and Lemma 1 in [27], we see that the operators Sk, Kk and K
′

k are both

bounded and compact in Lp(∂Ω) (1 < p < 2).

Theorem 2.12 Assuming that n, λ and µ satisfy Assumption 1.1. For h1, h2 ∈ Lp(∂Ω)

with 4/3 ≤ p < 2, the transmission problem (2.11) has a unique solution pair (w1, w2) ∈

L2(BR\Ω) × L2(Ω) satisfying that

‖w1‖L2(BR\Ω) + ‖w2‖L2(Ω) ≤ C
(
‖h1‖Lp(∂Ω) + ‖h2‖Lp(∂Ω)

)
, (2.12)

where BR denotes a large ball centered at the origin with radius R such that Ω ⊂ BR and C is

a positive constant depending on R.

Proof In order to apply the boundary integral equation method, we divide our proof into

two steps (refer to Theorem 2.5 in [34]).

Step One Assume that k2n(x) ≡ k2
1 > 0 is a constant. We seek a solution pair (ŵ1, ŵ2)

of problem (2.11) in the following form:

ŵ1(x) =

∫

∂Ω

{
λΦk(x, y)ϕ(y) +

∂Φk(x, y)

∂ν(y)
ψ(y)

}
ds(y), x ∈ R

3\Ω,

ŵ2(x) =

∫

∂Ω

{
Φk1

(x, y)ϕ(y) +
1

λ

∂Φk1
(x, y)

∂ν(y)
ψ(y)

}
ds(y), x ∈ Ω,

where Φk(x, y) = eik|x−y|

4π|x−y| , Φk1
(x, y) = eik1|x−y|

4π|x−y| and Re(λ) ≥ ĉ > 0, that is, λ 6= 0. Then by the

jump relations of the single- and double-layer potentials, we have

ŵ1|∂Ω = λSkϕ+Kkψ +
1

2
ψ,

∂ŵ1

∂ν

∣∣∣
∂Ω

= λK
′

kϕ−
λ

2
ϕ+ Tkψ,

ŵ2|∂Ω = Sk1
ϕ+

1

λ
Kk1

ψ −
1

2λ
ψ,

∂ŵ2

∂ν

∣∣∣
∂Ω

= K
′

k1
ϕ+

1

2
ϕ+

1

λ
Tk1

ψ.
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Note that the boundary integral operators Sk1
, Kk1

, K
′

k1
and Tk1

are defined as Sk, Kk, K
′

k and

Tk with wave number k in the fundamental solution replaced by k1. Recalling the conductive

boundary condition, we obtain that

h1 = (ŵ1 − ŵ2)|∂Ω = (λSk − Sk1
)ϕ+

(
Kk −

1

λ
Kk1

+
λ+ 1

2λ
I
)
ψ,

(λ + 1)ŵ1|∂Ω =
(
ŵ1 + λŵ2 + λ(ŵ1 − ŵ2)

)∣∣
∂Ω

= λ(Sk + Sk1
)ϕ+ (Kk +Kk1

)ψ + λh1,

h2 =
(∂ŵ1

∂ν
− λ

∂ŵ2

∂ν
+ µŵ1

)∣∣∣
∂Ω

=
(
λ(K

′

k −K
′

k1
) +

λµ

λ+ 1
(Sk + Sk1

) − λI
)
ϕ

+
(
Tk − Tk1

+
µ

λ+ 1
(Kk +Kk1

)
)
ψ +

λµ

λ+ 1
h1.

Here, I denotes the identity operator. Then the transmission problem (2.11) can be reduced to

a system of the integral equations

A



ϕ

ψ



 +



ϕ

ψ



 =




µ

λ+ 1
h1 −

1

λ
h2

2λ

λ+ 1
h1


 , (2.13)

where the integral matrix operator A is given by

A =



K

′

k1
−K

′

k −
µ

λ+ 1
(Sk + Sk1

)
1

λ
(Tk1

− Tk) −
µ

λ(λ+ 1)
(Kk +Kk1

)

2λ

λ+ 1
(λSk − Sk1

)
2

λ+ 1
(λKk −Kk1

)


 .

Since all elements of A are compact operators in the corresponding Banach spaces, it is

easy to see that A + I (I denotes the identity matrix) is a Fredholm operator with index zero.

Together with the uniqueness of the direct transmission problem (2.11), there exists a unique

solution (ϕ, ψ) ∈ Lp(∂Ω) × Lp(∂Ω) of system (2.13) satisfying the estimate

‖ϕ‖Lp(∂Ω) + ‖ψ‖Lp(∂Ω) ≤ C
(
‖h1‖Lp(∂Ω) + ‖h2‖Lp(∂Ω)

)
.

Referring to inequalities (2.22) and (2.23) in the paper [34] (Theorem 2.5), that is,
∥∥∥

∫

∂Ω

Φk1
(·, y)ϕ(y)ds(y)

∥∥∥
L2(Ω)

≤ |∂Ω|1/q sup
y∈∂Ω

‖Φk1
(·, y)‖L2(Ω)‖ϕ‖Lp(∂Ω),

where 1/p+ 1/q = 1 and
∥∥∥

∫

∂Ω

∂Φk1
(·, y)

∂ν(y)
ψ(y)ds(y)

∥∥∥
L2(Ω)

≤ C‖ψ‖Lp(∂Ω), 2 < q ≤ 4,

we achieve estimate (2.12).

Step Two For the general case n(x) ∈ L∞(Ω), we consider the following problem:





∆w̃1 + k2w̃1 = 0, in R3\Ω,

∆w̃2 + k2nw̃2 = ℓ, in Ω,

w̃1 − w̃2 = 0, on ∂Ω,

∂w̃1

∂ν
− λ

∂w̃2

∂ν
+ µw̃1 = 0, on ∂Ω,

lim
r→∞

r(
∂w̃1

∂r
− ikw̃1) = 0,

(2.14)
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where l := (k2
1 − k2n(x))ŵ2 ∈ L2(Ω) and (ŵ1, ŵ2) denotes the solution of problem (2.11) with

k2n(x) ≡ k2
1 . By Step One, we have that

‖ŵ1‖L2(BR\Ω) + ‖ŵ2‖L2(Ω) ≤ C
(
‖h1‖Lp(∂Ω) + ‖h2‖Lp(∂Ω)

)
.

Note that problem (2.14) is a special case of the problem (2.1)–(2.4) in paper [4] (that is,

f2 = 0 in (2.3)), which has been deeply investigated by the variational method. Therefore, for

every ℓ ∈ L2(Ω), problem (2.14) has a unique solution (w̃1, w̃2) ∈ H1(BR\Ω)×H1(Ω) satisfying

the estimate ‖w̃1‖H1(BR\Ω) + ‖w̃2‖H1(Ω) ≤ C‖ℓ‖L2(Ω).

Define w1 := w̃1 + ŵ1 and w2 := w̃2 + ŵ2. Then (w1, w2) ∈ L2(BR\Ω)×L2(Ω) is a unique

solution of problem (2.11) satisfying estimate (2.12). Thus, the proof is complete. �

3 Uniqueness of the Inverse Transmission Problem

In this section, we consider the uniqueness of the inverse transmission problem (1.1). Under

some restrictions on λ and µ, we use a simple and novel method to show that the penetrable

obstacle can be uniquely determined by its far-field pattern associated with plane waves.

Theorem 3.1 Assume that (n, λ, µ) and (ñ, λ̃, µ̃) satisfy Assumption 1.1 and either ĉ > 1,

Re(µ) ≤ 0, Re(µ̃) ≤ 0 or 0 < ĉ ≤ Re(λ) < 1, 0 < ĉ ≤ Re(λ̃) < 1, Re(µ) ≡ Re(µ̃) ≡ 0. Let

u∞(x̂, d) and ũ∞(x̂, d) be the far-field patterns of the scattering solutions us(x, d) and ũs(x, d)

to the transmission problem (1.1), with respect to the penetrable scatterers (Ω, n, λ, µ) and

(Ω̃, ñ, λ̃, µ̃), respectively. If these satisfy

u∞(x̂, d) = ũ∞(x̂, d), for all x̂, d ∈ S, (3.1)

then Ω = Ω̃.

Proof Let G be the unbounded connected domain of R3\(Ω ∪ Ω̃). By Rellich’s lemma,

the assumption u∞(x̂, d) = ũ∞(x̂, d) for all x̂, d ∈ S implies that us(x, d) = ũs(x, d), x ∈ G.

According to Theorem 2.1, for the far-field pattern of incident point source Φk(x, y), we obtain

that u∞(−d;x) = ũ∞(−d;x), d ∈ S, x ∈ G. Thus, Rellich’s lemma again gives that us(y;x) =

ũs(y;x), x, y ∈ G.

Assume that Ω 6= Ω̃. Then, without loss of generality, we may assume that there exists a

point x∗ ∈ ∂G such that x∗ ∈ ∂Ω and x∗ /∈ ∂Ω̃. We can choose δ > 0 such that xj = x∗+ δ
j ν(x

∗),

j = 1, 2, · · · , is contained in G, where ν(x∗) is the unit outward normal vector to ∂Ω at x∗.

We let δ be sufficiently small such that xj ∈ Oδ(x
∗) for all j ∈ N, where Oδ(x

∗) is a small ball

centered at x∗ with radius δ > 0 such that Oδ(x
∗) ∩ Ω̃ = ∅ (see Figure 1). Then, we have that

us(x;xj) = ũs(x;xj), for x ∈ G, j ∈ N.

x
∗

ν(x∗) Oδ(x
∗)

D

Ω

G

f
Ω

Figure 1 Possible choice of x∗
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Since x∗ ∈ ∂Ω, x∗ /∈ ∂Ω̃ and ∂Ω is smooth enough, there exists a small smooth domain D

such that Oδ(x
∗) ∩ Ω ⊂ D ⊂ Ω\Ω̃. Denoting ũj(x) := ũ(x;xj), u

j(x) := u(x;xj) for simplicity,

we can then verify that (ũj , uj) solves the modified interior transmission problem




∆ũj − ũj = ℓj1, in D,

∆uj − uj = ℓj2, in D,

ũj
− − uj

− = f j
1 , on ∂D,

∂ũj
−

∂ν
− λ

∂uj
−

∂ν
+ µũj

− = f j
2 , on ∂D,

(3.2)

where ℓj1 := −(k2 + 1)ũj|D, ℓj2 := −(k2n+ 1)uj |D, f j
1 := (ũj

− − uj
−)|∂D, f j

2 := (
∂ũj

−

∂ν − λ
∂uj

−

∂ν +

µũj
−)|∂D. It has been proven that problem (3.2) is well-posed if Re(λ) ≥ ĉ > 1, Re(µ) ≤ 0 or

0 < ĉ ≤ Re(λ) < 1, Re(µ) ≡ 0 (see Theorem 2.6), and its solution (ũj , uj) satisfies the a priori

estimates

‖ũj‖H1(D) + ‖uj‖H1(D) ≤ C1

(
‖ℓj1‖L2(D) + ‖ℓj2‖L2(D) + ‖f j

1‖H1/2(∂D) + ‖f j
2‖H−1/2(∂D)

)
(3.3)

for some positive constant C1 independent of ℓj1, ℓ
j
2, f

j
1 and f j

2 .

Next, we claim that

‖ℓj1‖L2(D) + ‖ℓj2‖L2(D) + ‖f j
1‖H1/2(∂D) + ‖f j

2‖H−1/2(∂D) ≤ C2 (3.4)

uniformly for all j ∈ N, where C2 > 0 is independent of j.

In fact, let yj = x∗ − δ
j ν(x

∗) for sufficiently small δ > 0 such that yj ∈ Ω. Define U j(x) :=

us(x;xj)−Φk(x, yj) in R
3\Ω and V j(x) := u(x;xj) in Ω. Then (U j , V j) solves the transmission

problem: 




∆U j + k2U j = 0, in R3\Ω,

∆V j + k2nV j = 0, in Ω,

U j
+ − V j

− = hj
1, on ∂Ω,

∂U j
+

∂ν
− λ

∂V j
−

∂ν
+ µU j

+ = hj
2, on ∂Ω,

lim
r→∞

r(
∂U j

∂r
− ikU j) = 0,

(3.5)

where

hj
1 := −[Φk(x, yj) + Φk(x, xj)]|∂Ω,

hj
2 := −

[∂Φk(x, yj)

∂ν(x)
+
∂Φk(x, xj)

∂ν(x)
+ µ(Φk(x, yj) + Φk(x, xj))

]∣∣∣
∂Ω
.

Recalling the definition of the fundamental solution Φk(x, y), we conclude that hj
1 ∈ Lp(∂Ω)

and hj
2 ∈ Lp(∂Ω) for 1 < p < 2; that is, ‖hj

1‖Lp(∂Ω) ≤ C3 and ‖hj
2‖Lp(∂Ω) ≤ C4 for any j ∈ N,

where C3, C4 are positive constants independent of j.

Using Theorem 2.12, we conclude that, for 4/3 ≤ p < 2,

‖U j‖L2(BR\Ω) + ‖V j‖L2(Ω) ≤ C5(‖h
j
1‖Lp(∂Ω) + ‖hj

2‖Lp(∂Ω)) ≤ C6.

Since ℓj2 := −(k2n+ 1)uj|D = −(k2n+ 1)V j |D and D ⊂ Ω, we obtain that ℓj2 is uniformly

bounded in L2(D).
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Due to the fact that the distance between xj and Ω̃ is strictly positive, the well-posedness

of the transmission problem (1.1) implies that ũj is uniformly bounded in L2(D). Hence,

ℓj1 := −(k2 + 1)ũj|D is uniformly bounded in L2(D).

Next, we prove that f j
1 := (ũj

− − uj
−)|∂D and f j

2 := (
∂ũj

−

∂ν − λ
∂uj

−

∂ν + µũj
−)|∂D are uniformly

bounded in H1/2(∂D) and H−1/2(∂D), respectively. According to the above proof, for x ∈

∂G ∩ ∂D, we have

uj
− = uj

+ = Φk(x, xj) + us
+(x;xj) = Φk(x, xj) + ũs

+(x;xj) = ũj
+ = ũj

−,

λ
∂uj

−

∂ν
=
∂uj

+

∂ν
+ µuj

+ =
∂[us

+(x;xj) + Φk(x, xj)]

∂ν(x)
+ µ[us

+(x;xj) + Φk(x, xj)]

=
∂[ũs

+(x;xj) + Φk(x, xj)]

∂ν(x)
+ µ[ũs

+(x;xj) + Φk(x, xj)]

=
∂ũj

+

∂ν
+ µũj

+ =
∂ũj

−

∂ν
+ µũj

−;

that is, f j
1 = 0 and f j

2 = 0 on ∂G ∩ ∂D. Thus, it is sufficient to show that f j
1 and f j

2 are

uniformly bounded in H1/2(∂D\Γ) and H−1/2(∂D\Γ), where Γ = ∂G ∩ ∂D.

Now, considering the special small domain D∗ = D\Oδ(x∗), we find that ‖uj‖H1(D∗) and

‖ũj‖H1(D∗) are uniformly bounded for all j ∈ N. By the trace theorem, we obtain the uniformly

bounded properties of f j
1 and f j

2 .

Therefore, the claim is complete.

Combining the above with (3.3) and (3.4), we have

‖Φk(x, xj) + ũs(x;xj)‖H1(D) = ‖ũj‖H1(D) ≤ C, for all j ∈ N.

However, there is a contradiction; since ‖ũs(x;xj)‖H1(D) is uniformly bounded, ‖Φk(x, xj)‖H1(D)

is unbounded as j −→ ∞. Hence, Ω = Ω̃. This completes the proof. �

Remark 3.2 If there are impenetrable buried objects inside Ω, the penetrable obstacle

can also be uniquely determined by our method, with small modifications in subsections 2.1

(Remark 2.2) and 2.3 (Theorem 2.5 in [34]). Furthermore, the buried object will be determined

by the mixed reciprocity relation (2.1), after discovering the penetrable surface (Theorem 3.7

in [23]).
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