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Abstract In this paper, we first propose a new stabilized finite element method for the

Stokes eigenvalue problem. This new method is based on multiscale enrichment, and is

derived from the Stokes eigenvalue problem itself. The convergence of this new stabilized

method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues

are also obtained. Moreover, we combine this new stabilized finite element method with the

two-level method to give a new two-level stabilized finite element method for the Stokes

eigenvalue problem. Furthermore, we have proved a priori error estimates for this new two-

level stabilized method. Finally, numerical examples confirm our theoretical analysis and

validate the high effectiveness of the new methods.
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1 Introduction

The eigenvalue problems [1] are extensively used in many areas such as structural mechanics

and fluid mechanics. Therefore, providing more efficient computational methods for eigenvalue
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problems is a significant element of computing science, and many works [2–17] had addressed

this.

In this paper, we turn our attention to the stabilized finite element method for the Stokes

eigenvalue problem. It is well known that the simplest confirming elements of this problem,

like the lowest equal-order elements, may work well and be of practical importance in scientific

computation, because they provide a simple and practical uniform data structure and enough

accuracy. However the core problem is that the lowest equal-order finite elements do not satisfy

the inf-sup condition and lead to nonphysical pressure oscillations.

In order to overcome these difficulties, stabilized techniques [18–30] have been used to

ameliorate the compatibility condition. In particular, Araya, Barrenechea and Valentin in [24]

proposed a new stabilized finite element method based on multiscale enrichment for the source

Stokes problem. Based on their work, we derive a stabilized finite element method based on

multiscale enrichment with the lowest equal order elements for the Stokes eigenvalue problem,

prove the convergence of this new method, and obtain the optimal a priori error estimates

for the eigenfunctions and eigenvalues. Furthermore, we combine this new stabilized method

with two-level method to give a new two-level stabilized finite element method for the Stokes

eigenvalue problem. Finally, numerical examples confirm our theory analysis for this new

stabilized finite element method and two-level stabilized finite element method and validate the

high effectiveness of these methods for the Stokes eigenvalue problem.

The rest of this paper is arranged as follows: in the second section we introduce some basic

Sobolev spaces and the Stokes eigenvalue problem. In the third section, a new stabilized finite

element approximation based on multiscale enrichment for the Stokes eigenvalue problem is

proposed. In the fourth section, we establish convergence analysis of this new method for the

Stokes eigenvalues and eigenfunctions and obtain the optimal a priori error estimates. In the

fifth section, a new two-level stabilized finite element method for the Stokes eigenvalue problem

is given. In the last section, we provide some numerical examples that confirm our theoretical

analysis.

2 Preliminaries

2.1 Statement of the problem

Let Ω be a bounded and convex domain in ℜ2 with a Lipschitz-continuous boundary ∂Ω. In

this paper we consider the following classic Stokes eigenvalue problem with Dirichlet boundary

conditions:














−ν∆u + ∇p = λu in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where ν > 0 is the viscosity, u = (u1(x1, x2), u2(x1, x2)) the velocity, p = p(x1, x2) the pressure

and λ ∈ ℜ the eigenvalue.

Set

X , (H1
0 (Ω))2, Y , (L2(Ω))2, M , L2

0(Ω) = {q ∈ L2(Ω) :

∫

Ω

qdx = 0}.
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These are Sobolev spaces. Furthermore, (L2(Ω))m for m = 1, 2, 4 are endowed with the

L2−scalar product (·, ·) and L2−norm ‖ · ‖0, and X is equipped with the usual scalar product

and norm, which are defined as follows:

((u,v)) , (∇u,∇v)Ω, |u|1 , ((u,u))
1

2 = (∇u,∇u)
1

2

Ω.

Meanwhile, we use the standard Sobolev spaces Wm,p(Ω) with the norm ‖ · ‖m,p and the

seminorm | · |m,p, where m, p ≥ 0. In particular, we will denote Hm(Ω) for Wm,2(Ω), ‖ · ‖m for

‖ · ‖m,2 and | · |m for | · |m,2.

We use the following inequalities [31]:

‖u‖0 ≤ γ0|u|1 ∀ u ∈ X, (2.2)

|u|1 ≤ γ0‖Au‖0 ∀ u ∈ D(A), (2.3)

where γ0 is a positive constant depending only on Ω and A is a Laplace operator that is defined

as

Au = −∆u ∀u ∈ D(A) := (H2(Ω))2 ∩ X. (2.4)

The weak form of problem (2.1) is to find (u, p, λ) ∈ X × M ×ℜ with ‖u‖0 = 1 such that

C((u, p); (v, q)) = λ(u,v)Ω, (2.5)

where

C((u, p); (v, q)) , a(u,v) − d(p,v) + d(q,u) ∀ (u, p) , (v, q) ∈ X × M,

with a(u,v) , ν(∇u,∇v)Ω, d(p,v) , (p,∇ · v)Ω.

Moreover, the bilinear form C((u, p); (v, q)) satisfies the following property and inf-sup

condition [32]:

|C((u, p); (v, q))| ≤ C(ν‖∇u‖0 + ‖p‖0)(‖∇v‖0 + ‖q‖0) ∀(u, p), (v, q) ∈ X × M,

β(ν‖∇u‖0 + ‖p‖0) ≤ sup
(v,q)∈X×M

|C((u, p); (v, q))|

‖∇v‖0 + ‖q‖0
∀(u, p) ∈ X × M,

where C and β are the positive constants depending only on Ω.

Recalling the spectral theory [1], we know that the Stokes eigenvalue problem (2.5) has a

positive eigenvalue sequence λj which is assumed to be increasingly ordered as follows:

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · ≤ lim
j→+∞

λj = +∞.

We also know the corresponding eigenfunctions

(u1, p1), (u2, p2), · · ·, (uj , pj), · · ·,

with (ui,uj) = δij . In this paper, for simplicity, we only consider simple eigenvalues.

Furthermore, C will denote a positive constant depending only on the data (Ω, ν, f) and

not on the mesh parameter h.

3 New Stabilized Finite Element Method

In this section, we introduce the finite element approximation for problem (2.1). Let τh

be a triangulation of Ω formed by closed triangle elements K with boundary ∂K. {pj, j =

1, 2, · · · , N} is the set of all vertices of τh. εh denotes the set of all edges of τh and εint
h denotes
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the set of the interior edges of τh that are no part of ∂Ω. Furthermore, hK denotes the diameter

of the element K, and h = max
K∈τh

hK is the mesh parameter. Assume that the partition τh is

regular and quasi-uniform; that is to say, there exists C > 0 such that

hK

̺K

≤ C, ∀ K ∈ τh, (3.1)

where ̺K denotes the diameter of the largest ball contained in K. Xh and Mh denote the

standard finite element spaces of the approximation for velocity and pressure on τh, respectively.

These spaces are defined as

Xh , {v ∈ X ∩ (C0(Ω))2 : v|K ∈ P1(K)2, ∀ K ∈ τh},

Mh , {q ∈ M : q|K ∈ P1(K), ∀ K ∈ τh},

where P1(K) denotes the space of linear functions in domain K.

3.1 Some useful lemmas

Lemma 3.1 ([31]) We have the trace inequalities

‖v‖2
(L2(E))2 ≤ C(h−1

K ‖v‖2
(L2(K))2 + hK |v|2(H1(K))2) ∀ v ∈ (H1(K))2, (3.2)

‖∂nv‖
2
(L2(E))2 ≤ C(h−1

K |v|2(H1(K))2 + hK |v|2(H2(K))2) ∀ v ∈ (H2(K))2, (3.3)

where E ∈ ∂K, and C depends on the minimum angle of K ∈ τh.

Lemma 3.2 ([36]) Under the regular and quasi-uniform assumption of τh, the following

properties hold:

|vh|1 ≤ Ch−1‖vh‖0 ∀vh ∈ Xh, (3.4)

‖vh‖∞,K ≤ Ch−1‖vh‖0,K ∀vh ∈ Xh, (3.5)

|ph|1 ≤ Ch−1‖ph‖0 ∀ph ∈ Mh. (3.6)

3.2 Stabilized finite element method for the stokes eigenvalue problem

In this section, we introduce a new stabilized finite element method based on multiscale

enrichment for the Stokes eigenvalue problem. The specific process is as follows:

Let Eh be a finite dimensional space called a multiscale space, such that

Eh ⊂ (H1(τh))2, Eh ∩ Xh = {0},

where (H1(τh))2 , {v ∈ Y : v|K ∈ (H1(K))2}.

Then, according to the above notations we consider the following Petrov-Galerkin varia-

tional formulation: find uh + ue ∈ Xh ⊕ Eh and qh ∈ Mh such that

ν(∇(uh + ue),∇vh)Ω − (ph,∇ · vh)Ω + (qh,∇ · (uh + ue))Ω = λh(uh,vh)Ω (3.7)

for all vh ∈ Xh ⊕ E0
h and qh ∈ Mh, where E0

h := {v ∈ (H1(τh))2 : v|K ∈ (H1
0 (K))2}.

The formulation (3.7) can be rewritten as

ν(∇(uh + ue),∇vh)Ω − (ph,∇ · vh)Ω + (qh,∇ · (uh + ue))Ω = λh(uh,vh)Ω, (3.8)

ν(∇(uh + ue),∇vb)K − (ph,∇ · vb)K = λh(uh,vb)K (3.9)

for all vh ∈ Xh,vb ∈ E0
h, qh ∈ Mh and K ∈ τh. The formulation (3.9) is equivalent to







−ν∆ue = ν∆uh + λhuh −∇ph in Ω,

ue = ge on E ⊂ ∂K, K ∈ τh,
(3.10)
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where ge = 0 if E ∈ ∂Ω, and on the interval edges, ge is the solution of






−ν∂ssge =
1

hE

[[ν∂nuh + phI · n]]E in E,

ge = 0 at the vertices,
(3.11)

where hE = |E| = meas(E) denotes the length of E ⊂ ∂K, n is the normal outward vector

on ∂K, ∂s is the tangential derivative, ∂n is the normal derivative, and I is the ℜ2×2 identity

matrix. Furthermore, we use [[v]]E to denote the jump of function v ∈ (H1(τh))2 across the

edge E; that is,

[[v]]E := (v|K1
)|E · n1 + (v|K2

)|E · n2, ∀ K1, K2 ∈ τh,

and K1∩K2 = E ∈ εint. Here, n1 and n2 are the outer normals about K1 and K2, respectively

(see Figure 1). In particular, if E ∈ ∂Ω, then we define [[v]]E = v · n.

Figure 1 Two neighboring elements K1, K2 ∈ τh sharing the edge E ∈ εint

On each K ∈ τh, we can set ue = uK
e + u∂K

e and get the following auxiliary problems:






−ν∆uK
e = ν∆uh + λhuh −∇ph in K ∈ τh,

uK
e = 0 on ∂K ∈ τh,

(3.12)

and






−ν∆u∂K
e = 0 in K ∈ τh,

u∂K
e = ge on ∂K ∈ τh,

(3.13)

where ge is the solution of (3.11). Such problems as (3.12) and (3.13) are well-posed, and (3.9)

is satisfied.

Now we define two operators, MK : (L2(K))2 → (H1
0 (K))2 and BK : (L2(∂K))2 →

(H1(K))2, such that

uK
e :=

1

ν
MK(ν∆uh + λhuh −∇ph) ∀K ∈ τh (3.14)

and

u∂K
e :=

1

ν
BK([[ν∂nuh + phI · n]]) ∀K ∈ τh. (3.15)

Now, the enriched part ue is identified via (3.14) and (3.15). Therefore, we can perform the

static condensation to derive a new multiscale finite element method for the Stokes eigenvalue

problem (2.1). Firstly, integrating by parts, we have the following equalities on each K ∈ τh:

ν(∇ue,∇vh)K = −ν(ue, ∆vh)K + (ue, ν∂nvh)∂K , (3.16)

(qh,∇ · ue)K = −(ue,∇qh)K + (ue, qhI · n)∂K . (3.17)
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We make use of (3.16) and (3.17), and after a static condensation process, which is similar to

the method presented in [24], we can rewrite the formulation (3.8) in the following form:

Ch((uh, ph); (vh, qh)) = λh(uh,vh)Ω +
∑

K∈τh

τ1

ν
(λhuh,∇qh)K , (3.18)

where τ1 =
h2

K

α1

, τ2 = hE

α2

, α1, α2 > 0, and Ch(·; ·) is defined as

Ch((uh, ph); (vh, qh)) = ν(∇uh,∇vh)Ω − (ph,∇ · vh)Ω + (qh,∇ · uh)Ω

+
∑

K∈τh

τ1

ν
(∇ph,∇qh)K +

∑

E∈εint

h

τ2

ν
([[ν∂nuh]]E , [[ν∂nvh]]E)E . (3.19)

Problem (3.18) can be simplified to a generalized eigenvalue problem which attains a finite

number of eigenpairs (λh,j , (uh,j , ph,j)), 1 ≤ j ≤ N , with positive eigenvalues. We assume the

eigenvalues to be increasingly ordered as follows:

0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,j ≤ · · · ≤ λh,N ,

and (uh,i,uh,j) = δi,j , 1 ≤ i, j ≤ N .

In order to simplify the notations, in the ensuing paragraphs the subindex j in λj , λh,j ,uj ,uh,j,

pj and ph,j will be dropped.

Our first goal is to prove that the approximation solutions of the discrete eigenvalue problem

(3.18) converge to the solutions of the spectral problem (2.5). We first present the a priori error

estimates for the following classic Stokes problem: ∀f ∈ Y , find (u, p) ∈ X × M such that

C((u, p); (v, q)) = (f,v)Ω ∀(v, q) ∈ X × M. (3.20)

Since the inf-sup condition holds and Ω is convex, problem (3.20) has a unique solution and for

a given f ∈ Y it holds that [31, 32]

ν|u|2 + |p|1 ≤ C‖f‖0. (3.21)

The stabilized finite element method for the classic Stokes problem is arrived at by finding

(uh, ph) ∈ Xh × Mh such that

Ch((uh, ph); (vh, qh)) = (f,vh) +
∑

K∈τh

τ1

ν
(f,∇qh)K , ∀(vh, qh) ∈ Xh × Mh. (3.22)

Here we introduce the following mesh-dependent norms:

|||v|||2h , ν|v|21 +
∑

E∈εh

τ2

ν
‖[[ν∂nv]]E‖

2
0,E , ‖q‖2

h ,
∑

K∈τh

τ1

ν
|q|21,K .

Lemma 3.3 ([37]) It holds that

sup
06=(vh,qh)∈Xh×Mh

Ch((uh, ph); (vh, qh))

|vh|1 + ‖qh‖0
≥ β1(|uh|1 + ‖ph‖0) ∀ (uh, ph) ∈ Xh × Mh,

where β1 > 0 depending on ν, but not on h.

Theorem 3.4 ([24]) Assume that (u, p) ∈ D(A) × (M ∩ H1(Ω)) is the solution of (3.20)

and (uh, ph) is the solution of (3.22). Then it holds that

‖u− uh‖0 + h(ν‖∇(u − uh)‖0 + ‖p− ph‖0) ≤ Ch2(ν|u|2 + |p|1), (3.23)

|||u − uh|||h + ‖p − ph‖h ≤ Ch(ν|u|2 + |p|1). (3.24)
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4 Error Analysis

4.1 Spectral approximation

In this section, we use the classic spectral approximation theory [1, 2] to obtain the conver-

gence of the eigenvalues and eigenfunctions with optimal order. Let N = (X, M). Then (3.20)

is expressed equivalently as follows: ∀f ∈ Y , so there exists an unique solution (u, p) ∈ N such

that

C((u, p); (v, q)) = (f,v)Ω ∀(v, q) ∈ N. (4.1)

Then we define the operators T : N → N and R : Y → Y as follows:

TF = (u, p), F = (f, σ),

Rf = u.

From the definitions of the operators T and R, we know that T and R are continuous operators.

In fact, making use of (3.21) and the Poincaré inequality, we get

‖TF‖N = ‖(u, p)‖N = ‖∇u‖0 + ‖p‖0 ≤ C‖f‖0 ≤ C‖F‖N ,

‖Rf‖0 = ‖u‖0 ≤ C‖f‖0.

On the other hand, there exits a unique solution (uh, ph) ∈ (Xh, Mh) ⊆ N such that

Ch((uh, ph); (vh, qh)) = (f,vh)Ω +
∑

K∈τh

τ1

ν
(f,∇qh)K ∀(vh, qh) ∈ N. (4.2)

Then we define the operators Th : N → N and Rh : Y → Y as follows:

ThF = (uh, ph), F = (f, σ),

Rhf = uh.

Th and Rh are also continuous operators. In fact, making use of (3.21), Theorem 3.4 and the

Poincaré inequality, we get

‖ThF‖N = ‖(uh, ph)‖N = |||uh|||h + ‖ph‖h

≤ C|||u − uh|||h + ‖p − ph‖h + |||u|||h + ‖p‖h

≤ C‖f‖0 ≤ C‖F‖N ,

‖Rhf‖0 = ‖uh‖0 ≤ ‖u− uh‖0 + ‖u‖0 ≤ C‖f‖0.

Letting λ 6= 0, we notice that f is an eigenfunction of R of eigenvalue λ if and only if (f, p, 1
λ
)

is the solution of (2.5) for some p ∈ M , and F = (f, p) is an eigenfunction of T of eigenvalue λ

if and only if (f, p, 1
λ
) is the solution of (2.5). Meanwhile, letting λh 6= 0, f is an eigenfunction

of Rh of eigenvalue λh if and only if (f, ph, 1
λh

) is the solution of (3.18) for some ph ∈ Mh , and

F = (f, ph) is an eigenfunction of Th of eigenvalue λh if and only if (f, ph, 1
λh

) is the solution of

(3.18).

4.2 Error analysis

In order to get the error estimate, we first need to introduce the Galerkin projection

(Rh(u, p), Qh(u, p)) : (X, M) → (Xh, Mh) defined by

Ch((Rh, Qh); (vh, qh)) = C((u, p); (vh, qh)) ∀(vh, qh) ∈ Xh × Mh; (4.3)
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that is to say,

ν(∇Rh,∇vh)Ω − (Qh,∇ · vh)Ω + (qh,∇ · Rh)Ω

+
∑

K∈τh

h2
K

8ν
(∇Qh,∇qh)K +

∑

E∈εint

h

hE

12ν
([[ν∂nRh]], [[ν∂nvh]])E

= ν(∇u,∇vh)Ω − (p,∇ · vh)Ω + (qh,∇ · u)Ω. (4.4)

We remark that if u ∈ D(A) and p ∈ H1(Ω) ∩ M , we know that

Ch((Rh, Qh); (vh, qh)) = Ch((u, p); (vh, qh)) −
∑

K∈τh

h2
K

8ν
(∇p,∇qh)K (4.5)

for all (vh, qh) ∈ Xh × Mh, because [[ν∂nu]]E = 0.

Lemma 4.1 ([37]) Let (u, p) ∈ X × M and (4.3) hold. Then the Galerkin projection

(Rh, Qh) satisfies

|u− Rh|1 + ‖p− Qh‖0 ≤ C(|u|1 + ‖p‖0). (4.6)

Furthermore, if ∀(u, p) ∈ D(A) × (H1(Ω) ∩ M), then it holds that

‖u− Rh‖0 + h(ν|u − Rh|1 + ‖p − Qh‖0) ≤ Ch2(ν|u|2 + |p|1) (4.7)

and

|||u − Rh|||h + ‖p − Qh‖h ≤ Ch(ν|u|2 + |p|1). (4.8)

Theorem 4.2 Assume that (u, p, λ) ∈ X × M ×ℜ with ‖u‖0 = 1 is the solution of (2.5)

and that (u, p) ∈ D(A) × (M ∩ H1(Ω)). Then there exists a discrete solution (uh, ph, λh) ∈

Xh × Mh ×ℜ of (3.18) with ‖uh‖0 = 1 such that

|λ − λh| ≤ Ch2,

ν‖∇(u − uh)‖0 + ‖p − ph‖0 ≤ Ch,

|||u− uh|||h + ||p − ph||h ≤ Ch,

‖u− uh‖0 ≤ Ch2.

Proof We will use the spectral approximation theory [1] to prove that the operator Th

converges to T and that Rh converges to R as h goes to zero.

Using Theorem 3.4 and (3.21), we can get that for ∀f ∈ Y and F ∈ N ,

‖Rf− Rhf‖0 = ‖u− uh‖0 ≤ Ch2‖f‖0,

‖TF− ThF‖N = |||u − uh|||h + ||p − ph||h ≤ Ch‖f‖0 ≤ Ch‖F‖N ,

so Rh → R and Th → T in the norm when h goes to zero.

For any Hilbert space χ, the space of compact operators in χ is close in B(χ), where

B(χ) = {L : χ → χ, L is linear and continuous}.

Letting (u, p, λ), ‖u‖0 = 1, λ 6= 0 be the solution of (2.5), by Remark 7.3 and 7.4 in [1], for

small h we obtain that there exists (uh, ph, λh), ‖uh‖0 = 1, λh 6= 0 such that

|λ − λh| ≤ C‖R − Rh‖ ≤ Ch2,

|||u− uh|||h + ||p − ph||h ≤ C‖T − Th‖ ≤ Ch,

‖u− uh‖0 ≤ C‖R − Rh‖ ≤ Ch2.
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Now, in what follows, our main work is to estimate the term ‖p − ph‖0. Making use of

(4.3), Lemma 3.3 and the Poincaré inequality, we have

‖Qh − ph‖0

≤
1

β1
sup

06=(vh,qh)∈Xh×Mh

Ch((Rh − uh, Qh − ph); (vh, qh))

|vh|1 + ‖qh‖0

=
1

β1
sup

06=(vh,qh)∈Xh×Mh

Ch((Rh, Qh); (vh, qh)) − λh(uh,vh)Ω −
∑

K∈τh

h2

K

8ν
(λhuh,∇qh)K

|vh|1 + ‖qh‖0

=
1

β1
sup

06=(vh,qh)∈Xh×Mh

{

C((Rh, Qh); (vh, qh)) − Ch((u, p); (vh, qh))

|vh|1 + ‖qh‖0

+

−
∑

K∈τh

h2

K

8ν
(λhuh,∇qh)K + λ(u,vh)Ω − λh(uh,vh)Ω

|vh|1 + ‖qh‖0

}

=
1

β1
sup

06=(vh,qh)∈Xh×Mh

λ(u,vh)Ω − λh(uh,vh)Ω −
∑

K∈τh

h2

K

8ν
(λhuh,∇qh)K

|vh|1 + ‖qh‖0

= I + II. (4.9)

Now we estimate the terms I and II as follows:

I =
1

β1
sup

06=(vh,qh)∈Xh×Mh

λ(u,vh)Ω − λh(uh,vh)Ω
|vh|1 + ‖qh‖0

=
1

β1
sup

06=(vh,qh)∈Xh×Mh

λ(u − uh,vh)Ω + (λ − λh)(uh,vh)Ω
|vh|1 + ‖qh‖0

≤
1

β1

λ‖u − uh‖0γ0|vh|1 + |λ − λh| · ‖uh‖0γ0|vh|1
|vh|1 + ‖qh‖0

≤ Ch2, (4.10)

and

II =
1

β1
sup

06=(vh,qh)∈Xh×Mh

−
∑

K∈τh

h2

K

8ν
(λhuh,∇qh)K

|vh|1 + ‖qh‖0

=
1

β1
sup

06=(vh,qh)∈Xh×Mh

(λ − λh)
∑

K∈τh

h2

K

8ν
(uh,∇qh)K − λ

∑

K∈τh

h2

K

8ν
(uh,∇qh)K

|vh|1 + ‖qh‖0

=
1

β1
sup

06=(vh,qh)∈Xh×Mh

{ (λ − λh)
∑

K∈τh

h2

K

8ν
(uh − u,∇qh)K + (λ − λh)

∑

K∈τh

h2

K

8ν
(u,∇qh)K

|vh|1 + ‖qh‖0

+

−λ
∑

K∈τh

h2

K

8ν
(uh − u,∇qh)K − λ

∑

K∈τh

h2

K

8ν
(u,∇qh)K

|vh|1 + ‖qh‖0

}

≤ Ch. (4.11)

Then, gathering (4.9), (4.10) and (4.11), it holds that

‖Qh − ph‖0 ≤ Ch. (4.12)
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Furthermore, we can apply the triangular inequality and (4.7) to yield that the following in-

equality holds:

‖p − ph‖0 ≤ ‖p − Qh‖0 + ‖Qh − ph‖0 ≤ Ch. (4.13)

This finishes the proof of Theorem 4.2. �

5 Two-level Stabilized Finite Element Method

In this section, we combine the two-level method with our new stabilized finite element

method given in (3.18) to present the two-level stabilized finite element method for the Stokes

eigenvalue problem and to derive the optimal error estimates. This two-level stabilized finite

element involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a

Stokes problem on a fine mesh with mesh size h = O(H2) which can still maintain the optimal

accuracy. The method provides an approximation solution with the convergence rate of the

same order as the one-level stabilized finite element solution, which solves a Stokes eigenvalue

problem on a fine mesh with mesh size h. From now on, H and h ≪ H will be two real positive

parameters tending to 0. The two-level stabilized finite element method is as follows:

Algorithm Two-level stabilized finite element approximation

Step I Solve the Stokes eigenvalue problem on a coarse mesh by finding (uH , pH , λH) ∈

XH × MH ×ℜ with ‖uH‖0 = 1 such that

CH((uH , pH); (vH , qH)) = λH(uH ,vH) + λH

∑

K∈τH

τ1

ν
(uH ,∇qH)K ∀(vH , qH) ∈ (XH , MH).

(5.1)

Step II Solve the Stokes problem on a fine mesh by finding (uh, ph) ∈ (Xh, Mh) such

that

Ch((uh, ph); (vh, qh)) = λH(uH ,vh) + λH

∑

K∈τh

τ1

ν
(uH ,∇qh)K ∀(vh, qh) ∈ (Xh, Mh). (5.2)

Step III Set

λh =

Ch((uh, ph); (uh, ph)) − λH

∑

K∈τh

τ1

ν
(uH ,∇ph)K

(uh,uh)
, (5.3)

where uh ∈ Xh\{0}.

In order to do the error estimates, we first need the following lemma:

Lemma 5.1 ([15]) Let (u, p, λ) be an eigenvalue pair of (2.5). For any w ∈ X\{0} and

s ∈ M , it holds that

C((w, s), (w, s))

(w,w)
− λ =

C((w − u, s − p), (w − u, s − p))

(w,w)
− λ

(w − u,w − u)

(w,w)
.

Theorem 5.2 Let (u, p, λ) be an eigenvalue pair of (2.5) and (u, p) ∈ D(A)×(M∩H1(Ω)).

The (uh, ph) is the solution of (5.2). Then (uh, ph, λh) satisfies the error estimates

ν‖∇(u − uh)‖0 + ‖p − ph‖0 ≤ C(h + H2)(ν|u|2 + |p|1) (5.4)

and

|λ − λh| ≤ C(h + H2)2(ν|u|2 + |p|1)
2. (5.5)
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Proof Subtracting (5.2) from (2.5), we get the following error equation:

ν(∇(u − uh),∇vh)Ω − (p − ph,∇ · vh)Ω + (qh,∇ · (u − uh))Ω

−
∑

K∈τh

τ1

ν
(∇ph,∇qh)K −

∑

E∈εint

h

τ2

ν
([[ν∂nu

h]]E , [[ν∂nvh]]E)E

= λ(u − uH ,vh)Ω + (λ − λH)(uH ,vh)Ω − λH

∑

K∈τh

τ1

ν
(uH ,∇qh)K . (5.6)

Using the Galerkin projection, the above formulation (5.6) can be rewritten as

Ch((Rh − uh, Qh − ph); (vh, qh))

= λ(u − uH ,vh)Ω + (λ − λH)(uH ,vh)Ω − λH

∑

K∈τh

τ1

ν
(uH ,∇qh)K . (5.7)

Setting vh = Rh − uh, qh = Qh − ph in (5.7), we get

|||Rh − uh|||2h + ‖Qh − ph‖2
h = λ(u − uH ,Rh − uh)Ω + (λ − λH)(uH ,Rh − uh)Ω

− λH

∑

K∈τh

τ1

ν
(uH ,∇(Qh − ph))K . (5.8)

Now applying Young’s inequality and Poincaré’s inequality, we estimate the terms on the right

hand side of (5.8):

λ(u − uH ,Rh − uh)Ω + (λ − λH)(uH ,Rh − uh)Ω − λH

∑

K∈τh

τ1

ν
(uH ,∇(Qh − ph))K

≤ λ‖u− uH‖0γ0|Rh − uh|1 + |λ − λH |‖uH‖0γ0|Rh − uh|1

+ λH

(

∑

K∈τh

τ1

ν
‖uH‖2

0,K

)
1

2

‖Qh − ph‖h

≤ Cν−1‖u− uH‖2
0 +

ν

2
‖∇(Rh − uh)‖2

0 + C|λ − λH |2‖uH‖2
0 + Cλ2

Hh2‖uH‖2
0

+
1

2
‖Qh − ph‖2

h. (5.9)

Using Theorem 4.2, and combining (5.8) with (5.9), we get

ν‖∇(Rh − uh)‖2
0 + ‖Qh − ph‖2

h

≤ CH4(ν|u|2 + |p|1)
2 + CH4(ν|u|2 + |p|1)

4‖uH‖2
0 + C|λH |2h2‖uH‖2

0

≤ C(h + H2)2(ν|u|2 + |p|1)
2. (5.10)

The above inequality implies that

ν‖∇(Rh − uh)‖0 + ‖Qh − ph‖h ≤ C(h + H2)(ν|u|2 + |p|1). (5.11)

We now use the triangular inequality, Lemma 4.1 and (5.11) to get

ν‖∇(u − uh)‖0 ≤ ‖∇(u − Rh)‖0 + ‖∇(Rh − uh)‖0 ≤ C(h + H2)(ν|u|2 + |p|1) (5.12)

and

‖p − ph‖h ≤ ‖p − Qh‖h + ‖Qh − ph‖h ≤ C(h + H2)(ν|u|2 + |p|1). (5.13)

In order to prove ‖p − ph‖0, we need to apply Lemma 3.3, Theorem 4.2 and (5.7) to obtain

β1‖Qh − ph‖0 ≤
Ch((Rh − uh, Qh − ph); (vh, qh))

|vh|1 + ‖qh‖0
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≤

λ(u − uH ,vh)Ω + (λ − λH)(uH ,vh)Ω − λH

∑

K∈τh

τ1

ν
(uH ,∇qh)K

|vh|1 + ‖qh‖0

≤ C(h + H2)(ν|u|2 + |p|1). (5.14)

Again using the triangular inequality, Lemma 4.1 and (5.14), we get that

‖p− ph‖0 ≤ ‖p− Qh‖0 + ‖Qh − ph‖0 ≤ C(h + H2)(ν|u|2 + |p|1). (5.15)

Gathering together (5.12) and (5.15), the formulation (5.4) of Theorem 5.2 holds.

In what follows, we prove (5.5) of Theorem 5.2 to complete the proof. Here we use Lemma

5.1 and get

λh − λ =

Ch((uh, ph); (uh, ph)) − λH

∑

K∈τh

τ1

ν
(uH ,∇ph)K

(uh,uh)
− λ

=

C((uh − u, ph − p); (uh − u, ph − p)) − λH

∑

K∈τh

τ1

ν
(uH ,∇ph)K

(uh,uh)

+

∑

K∈τh

τ1

ν
‖∇ph‖2

0,K +
∑

E∈εint

h

τ2

ν
‖[[ν∂nu

h]]E‖
2
0,E

(uh,uh)
− λ

(uh − u,uh − u)

(uh,uh)
. (5.16)

Now, taking the norm and using Young’s inequality, Lemma 3.1, Lemma 3.2, (5.4) and (5.13),

we obtain that

|λh − λ| ≤ C(‖∇(uh − u)‖2
0 + ‖ph − p‖2

0) + C‖ph − p‖2
h + C

∑

K∈τh

τ1

ν
‖∇p‖2

0,K

+ Cλ2
Hh2‖uH‖2

0 + C(‖∇(uh − u)‖2
0 + h2|u|22) + λ‖uh − u‖2

0

≤ C(h + H2)2(ν|u|2 + |p|1)
2. (5.17)

Thus the formulation (5.5) holds. This completes the proof of Theorem 5.2. �

6 Numerical Example

In this section, we have two aims: one is to present a numerical example to confirm the

theoretical results of Theorem 4.2 for this new stabilized finite element method; the other is to

use the same example to check the theoretical results for our two-level stabilized finite element

method for this Stokes eigenvalue problem. The algorithms are implemented by the finite

element software Freefem++ [38].

In the example that follows, the velocity and pressure are approximated by the lowest

equal-order finite element pairs by using uniform triangulation. The algorithm for the Stokes

eigenvalue problem with the viscosity ν = 1.0 is carried out in the domain Ω = {(x, y)|0 <

x, y < 1}. For simplicity, we here only consider the first eigenvalue of the Stokes eigenvalue

problem. Since the exact solution for this problem is unknown, we solve the problem by using

the Galerkin finite element method with a P2/P1 element on a very fine mesh (6724 grid points)

to take its approximation solution as the exact solution for the purpose of comparison. Here

we take λ = 52.3447 as the first exact eigenvalue, and we select α1 = 8, α2 = 72, because they

can deal with the considered problem well.

(1) Results for the new stabilized finite element method.
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The result of the new multiscale finite element method for the Stokes eigenvalue problem

is presented in Table 1. From Table 1, we see that the new stabilized finite element method

keeps the convergence rate just as the theoretical analysis in Theorem 4.2; that is to say that

our new stabilized finite element method is efficient.

Table 1 Result of the new multiscale finite element method for the

Stokes eigenvalue problem

1/h CPU-time λh

|λ−λh|
|λ|

λh-rate

9 0.14 55.7956 0.065926

18 0.53 53.2441 0.017182 1.93998

27 1.232 52.7478 0.007702 1.979

36 2.382 52.572 0.004342 1.99224

45 3.806 52.4902 0.002780 1.99751

54 5.959 52.4458 0.001931 1.99998

63 8.658 52.4189 0.001418 2.00127

Furthermore, in order to show the stability and efficiency of the new stabilized finite element

method for the Stokes eigenvalue problem, we present the velocity streamline and the pressure

contour with h = 1
63 in Figure 3. For comparison, we also present the results of the standard

Galerkin finite element method with a P2/P1 element on a very fine mesh (6724 grid points) in

Figure 2. From these two figures, we can see that the new stabilized finite element method for

the Stokes eigenvalue problem has good stability and computational efficiency.

Figure 2 The velocity streamlines (left) and the pressure contour map (right)

for the standard Galerkin method with P2/P1 element

Figure 3 The velocity streamlines (left) and the pressure contour map (right)

for the stabilized finite element method with P1/P1 element
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(2) Results for the new two-level stabilized finite element method.

Now our goal is to validate the superiority of this new two-level stabilized finite element

method while comparing it with the one-level method. Here we compare the solution of the

one-level method solved at a fixed mesh size h with the results obtained by using the two-level

method to solve the Stokes eigenvalue problem at the fine mesh size h and coarse mesh size

H , which is chosen such that h = H2. The result is shown in Table 2. From Table 2, we see

that the two-level stabilized finite element method can save computation time compared to the

one-level method. Moreover, this becomes more and more significant as h decreases. The other

interesting discovery is that the value of λh becomes too small to converge to the exact solution.

Table 2 Comparing the one-level method with the two-level method

1/H 1/h CPU λh

|λ−λh|
λ

λh-rate

one-level 16 0.43 53.4781 0.02165223

two-level 4 16 0.415 54.5241 0.0416365

one-level 25 1.077 52.8144 0.00897387 1.9736

two-level 5 25 0.993 53.138 0.0151551 2.26455

one-level 36 2.832 52.572 0.00434181 1.99106

two-level 6 36 2.064 52.7215 0.00719769 2.04193

one-level 49 4.767 52.4674 0.002345 1.99806

two-level 7 49 3.9 52.5502 0.00392511 1.9668

one-level 64 9.116 52.4166 0.00137424 2.00097

two-level 8 64 6.848 52.4672 0.00234077 1.93556

one-level 81 16.635 52.3896 0.0008575 2.00224

two-level 9 81 11.423 52.4226 0.0014877 1.92403

one-level 100 29.249 52.3741 0.000562 2.00286

two-level 10 100 19.288 52.3966 0.00099209 1.92284

one-level 121 50.983 52.3648 0.000384 2.00325

two-level 11 121 28.142 52.3807 0.00068714 1.92673

7 Conclusion

Firstly, a new stabilized finite element method for the Stokes eigenvalue problem has been

proposed in this paper. The convergence of this new stabilized finite element method for the

Stokes eigenvalue problem has been proved and the optimal a priori error estimates for the

eigenfunctions and eigenvalues have also been obtained. Secondly, combining the above new

stabilized finite element method with the two-level method, a new two-level stabilized finite

element method for the Stokes eigenvalue problem have been given. The a priori error esti-

mates for the new two-level stabilized method have been gained. Finally, numerical examples

confirming our theoretical analysis and validating the high effectiveness of new methods have

been given.
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