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Abstract In this article, we study the initial boundary value problem of coupled semi-linear

degenerate parabolic equations with a singular potential term on manifolds with corner sin-

gularities. Firstly, we introduce the corner type weighted p-Sobolev spaces and the weighted

corner type Sobolev inequality, the Poincaré inequality, and the Hardy inequality. Then, by

using the potential well method and the inequality mentioned above, we obtain an existence

theorem of global solutions with exponential decay and show the blow-up in finite time of

solutions for both cases with low initial energy and critical initial energy. Significantly, the

relation between the above two phenomena is derived as a sharp condition. Moreover, we

show that the global existence also holds for the case of a potential well family.
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tials; asymptotic stability; blow-up
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1 Introduction and Main Results

Let M ⊂ [0, 1) × X × [0, 1) be a corner type domain with finite corner measure |M| =
∫

M

dr
r

dxdw
rw

, which is a local model of stretched corner-manifolds (i.e., the manifolds with corner

singularities) with dimension N = n + 2 ≥ 3. Here, let X is a closed compact sub-manifold

of dimension n emdedded in the unit sphere of R
n+1. Let M0 denote the interior of M and

∂M = {0} ×X × {0} denote the boundary of M. The corner-Laplacian is defined as

∆M = (r∂r)
2 + (∂x1)

2 + · · · + (∂xn
)2 + (rw∂w)2,
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which is a degenerate elliptic operator on the boundary ∂M. The present paper is concerned

with the initial boundary value problem of a class of coupled semi-linear corner-degenerate

parabolic equations with singular potential term of the form


























∂tu− ∆Mu− µV1u = Fu(u, v), in M0 × (0, T ),

∂tv − ∆Mv − µV2v = Fv(u, v), in M0 × (0, T ),

u(z, 0) = u0, v(z, 0) = v0, in M0,

u = 0, v = 0, on ∂M × (0, T ),

(1.1)

where z := (r, x, w) ∈ M, 0 < T ≤ +∞ is the maximal existence time. The singular potential

term Vi(i = 1, 2) is unbounded on ∂M and satisfies the corner Hardy inequality

‖V
1
2ϕ‖

L
N−1

2
, N
2

2 (M)
≤ C‖∇Mϕ‖

L
N−1

2
, N
2

2 (M)
(1.2)

for ϕ ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Chen et al. [13] obtained two kinds of singular potential functions V =

r−2e
−

1
r2

e
−

1
r2 +x2

1+···+x2
n+w2

and V = 1
r2+x2

1+···+x2
n+w2 , which satisfy the corner type Hardy inequality

(1.2). Define

C∗ = sup

{ ‖V
1
2ϕ‖

L
N−1

2
, N

2
2 (M)

‖∇Mϕ‖
L

N−1
2

, N
2

2 (M)

;ϕ ∈ H
1,( N−1

2 , N
2 )

2,0 (M), ϕ 6= 0

}

, (1.3)

and then let

0 < µ <
1

C∗2
.

The function F : R
2 → R is a C1-function given by

F (u, v) = α|u + v|p+1 + 2β|uv|
p+1
2 , (1.4)

where 1 < p < N+2
N−2 , α > 1 and β > 0. In addition,

f1(u, v) :=
∂F

∂u
(u, v) = (p+ 1)[α|u+ v|p−1(u + v) + β|u|

p−3
2 |v|

p+1
2 u],

f2(u, v) :=
∂F

∂v
(u, v) = (p+ 1)[α|u+ v|p−1(u + v) + β|v|

p−3
2 |u|

p+1
2 v],

uf1(u, v) + vf2(u, v) = (p+ 1)F (u, v) for all (u, v) ∈ R
2.

(1.5)

Chen et al. [4] studied the initial-boundary problem of a single semi-linear parabolic equa-

tion on a stretched cone. The corresponding cone is Laplacian ∆B = (x1∂x1)
2 + ∂2

x2
+ · · ·+ ∂2

xn
,

which is degenerate at x1 = 0. This kind of operator is a simple example of conical dfferential

operators. Alimohammady and Kalleji [2] studied a similar problem for a class of single semi-

linear parabolic equations with a positive potential function on stretched cone. The authors of

this paper [3] studied the initial-boundary problem of a single semi-linear parabolic equation

with a singular potential function for the edge Laplacian ∆E = (w∂w)2 + ∂2
x1

+ · · · + ∂2
xn

+

(w∂y1)
2 + · · · + (w∂yq

)2, with edge singularity at w = 0. A powerful technique for treating the

above problems is the so-called potential well method, which was developed by Sattinger [21] in

the context of hyperbolic equations. At the same time, the pseudo-differential operators with

conical singularities and edge singularities have been widely studied with various motivations

by Egorov and Schulze [14], Schulze [23], Schrohe and Seiler [22], Melrose and Mendoza [18]

and Mazzeo [17], Chen et al. [5–10].
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Motivated by the above work, in this article we generalize the above results for scale

parabolic equations to a coupled system of nonlinear parabolic equations. We further study a

class of coupled systems of semi-linear parabolic equations with singular potentials on a man-

ifold with corner singularities. Here the so-called corner Laplacian ∆M = (r∂r)
2 + (∂x1)

2 +

· · · + (∂xn
)2 + (rw∂w)2 is degenerate at both r = 0 and w = 0, and it is named after the

local structure of a manifold with corner singularities. Recently, Chen et al. [11] established

the so-called corner type Sobolev inequality and Poincaré inequality in the weighted Sobolev

spaces. Such kinds of inequalities will be of fundamental importance in proving the existence of

weak solutions for nonlinear problems with corner degeneracy. Melrose and Piazza studied the

structure of manifolds with corners in [19]. Schulze discussed the calculus of corner degenerate

pseudo-dfferential operators in [24]. Chen et al. studied multiple solutioms and multiple sign

changing solutions for semi-linear corner degenerate elliptic equations with singular potential

in [13] and [12], respectively.

First, we introduce the following definition of the weak solution:

Definition 1.1 Function (u, v) = (u(z, t), v(z, t)) is called a weak solution of prob-

lem (1.1) on M × [0, T ), with 0 < T ≤ +∞ being the maximal existence time, if u, v ∈

L∞(0, T ;H
1,(N−1

2 , N
2 )

2,0 (M)) with ut, vt ∈ L2(0, T ;L
N−1

2 , N
2

2 (M)) satisfies problem (1.1) in the dis-

tribution sense, i.e.,
∫

M

rut · ϕdσ +

∫

M

r∇Mu · ∇Mϕdσ −

∫

M

rµV1u · ϕdσ =

∫

M

rf1(u, v) · ϕdσ,

∫

M

rvt · ϕdσ +

∫

M

r∇Mv · ∇Mϕdσ −

∫

M

rµV2v · ϕdσ =

∫

M

rf2(u, v) · ϕdσ

(1.6)

for any ϕ ∈ H
1,( N−1

2 , N
2 )

2,0 (M), t ∈ (0, T ) with u(z, 0) = u0(z), v(z, 0) = v0(z) for z ∈ M.

From the variational point of view, there are two natural functionals on H
1,( N−1

2 , N
2 )

2,0 (M)

associated with problem (1.1): the energy functional and the Nehari functional. These are

defined respectively, by

E(u, v) =
1

2

∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ −
1

2

∫

M

rµ(V1|u|
2 + V2|v|

2)dσ −

∫

M

rF (u, v)dσ, (1.7)

K(u, v) =

∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ −

∫

M

rµ(V1|u|
2 + V2|v|

2)dσ − (p+ 1)

∫

M

rF (u, v)dσ.

(1.8)

Remark 1.2 The weak solution in the above definition satisfies the conservation of energy
∫ t

0

‖(∂τu, ∂τv)‖
2

L
N−1

2
, N
2

2 (M)
dτ + E(u, v) = E(u0, v0), 0 ≤ t < T. (1.9)

We are now in a position to state our main results. Our main results are concerned with the

global existence with exponential decay and the finite time blow-up of a solution for problem

(1.1). Let

d := inf
{

sup
λ≥0

E(λu, λv)|(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2 \ {(0, 0)}
}

. (1.10)

Theorem 1.3 Let u0, v0 ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Assume that E(u0, v0) ≤ d and K(u0, v0) ≥

0. Then problem (1.1) admits a global weak solution u, v ∈ L∞(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) with
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ut, vt ∈ L2(0,∞;L
N−1

2 , N
2

2 (M)). Moreover, there exist constants λ > 0 and C > 0, such that

‖(u(t), v(t))‖2

L
N−1

2
, N

2
2 (M)

≤ Ce−λt for 0 ≤ t <∞.

Theorem 1.4 Let u0, v0 ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Assume that E(u0, v0) ≤ d and K(u0, v0) ≤

0. Then the weak solution of problem (1.1) blows up in finite time, i.e., the maximal existence

time T is finite and

lim
t→T−

‖(u(t), v(t))‖2

L
N−1

2
, N
2

2 (M)
= +∞.

This paper is organized as follows: in Section 2 we give some preliminaries, such as the

definition of a corner type weighted p-Sobolev space, the properties of corner type weighted

p-Sobolev space and some useful inequalities, such as the Sobolev inequality, the Poincaré

inequality and the Hardy inequality (more details can be seen in [11, 13]). In Section 3, we

introduce a family of potential wells relative to problem (1.1) and prove a series of corresponding

properties. Then, we discuss the invariance of some sets under the solution flow of (1.1) and

the vacuum isolating behavior of solutions. Finally, we give the proof of Theorem 1.3 and

Theorem 1.4 in Section 4. Moreover, we show that the global existence also holds for the case

of a potential well family.

2 Corner Type Weighted p-Sobolev Spaces

Let X ⊂ Sn be a bounded open set in the unit sphere of R
n+1
x̃ . Then the finite corner is

defined as

M = (E × [0, 1))/(E × {0}),

where the base E is a finite cone defined as E = ([0, 1) × X)/({0} × X). Thus, the finite

stretched corner is

M ⊂ E × [0, 1) = [0, 1)×X × [0, 1), (2.1)

with the smooth boundary ∂M = {0} ×X × {0}. Here we denote M0 as the interior of M. In

this paper, we shall use the coordinates (r, x, w) ∈ M.

The typical degenerate differential operator A on the stretched cone E is as follows:

A = r−µ
∑

j≤µ

aj(r)(r∂r)
j = r−µAE,

with coefficients aj(r) ∈ C∞(R+,Diffµ−j(X)). Here AE is degenerate cone operator. Denote

Diffµ
deg(E) for the set of cone differential operators as A. The typical differential operator B on

the stretched corner M is then of the form

B = w−ν
∑

j≤(ν−l)

bjl(w)(w∂w)j ,

where we have the coefficients bl(w) ∈ C∞(R+,Diffν−l
deg (E)), i.e.,

bl(w) = r−(ν−l)
∑

j≤(ν−l)

ajl(r, w)(r∂r)
j ,

with ajl(r, w) ∈ C∞(R+,Diffµ−l−j(X)). This implies that

B = (rw)−ν
∑

j+l≤ν

ãjl(r, w)(r∂r)
j(rw∂w)l = (rw)−νBM,
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where ãjl(r, w) ∈ C∞(R+,Diffµ−l−j(X)) and BM is called a degenerate corner operator. In

fact, we have following Riemannian metric on the corner M :

dw2 + w2(dr2 + r2gX),

where gX is a Riemannian metric on X . Then the corresponding gradient operator with corner

degeneracy is

∇M = (r∂r , ∂x1 , · · · , ∂xn
, rw∂w).

Now we define the weighted Lγ1,γ2
p space on R+ × R

n × R+ as follows:

Definition 2.1 Let (r, x, w) ∈ R+ × R
n × R+, with weight data γi ∈ R, i = 1, 2 and

1 ≤ p < +∞. Then Lγ1,γ2
p (R+ × R

n × R+,
dr
r

dxdw
rw

) denotes the space of all u(r, x, w) ∈

D
′

(R+ × R
n × R+) such that

‖u‖Lγ1,γ2
p

=

(
∫

R+×Rn×R+

|r
N
p
−γ1w

N
p
−γ2u(r, x, w)|p

dr

r
dx

dw

rw

)
1
p

< +∞.

By the above weighted Lγ1,γ2
p space, we can define the following weighted p-Sobolev spaces

on R+ × R
n × R+, with a natural scale for all 1 ≤ p < +∞:

Definition 2.2 Let m ∈ N, γi ∈ R, i = 1, 2, and set N = n+2, with the weighted Sobolev

space

Hm,(γ1,γ2)
p (R+ × R

n × R+) =

{

u ∈ D′(R+ × R
n × R+)|(r∂r)

l∂α
x (rw∂w)ku(r, x, w)

∈ Lγ1,γ2
p (R+ × R

n × R+,
dr

r
dx

dw

rw
)

}

for k, l ∈ R and the multi-index α ∈ R
n, with k + |α| + l ≤ m. Moreover, the closure of C∞

0

functions in H
m,(γ1,γ2)
p (R+ × R

n × R+) is denoted by H
m,(γ1,γ2)
p,0 (R+ × R

n × R+).

Similarly, we can define the following weighted p-Sobolev spaces on an open stretched corner

R+ × R
n × R+:

Hm,(γ1,γ2)
p (R+ ×X × R+) =

{

u ∈ D′(R+ ×X × R+)|(r∂r)
l∂α

x (rw∂w)ku(r, x, w)

∈ Lγ1,γ2
p (R+ ×X × R+,

dr

r
dx

dw

rw
)

}

,

for k, l ∈ R and the multi-index α ∈ R
n, with k + |α| + l ≤ m, which is a Banach space with

the norm

‖u‖
H

m,(γ1,γ2)
p

=
∑

l+|α|+k≤m

{
∫

R+×Rn×R+

|r
N
p
−γ1w

N
p
−γ2(r∂r)

l∂α
x (rw∂w)ku(r, x, w)|

dr

r
dx

dw

rw

}
1
p

.

Moreover, the subspace H
m,(γ1,γ2)
p,0 (R+ × X × R+) denoting the closure of C∞

0 functions in

H
m,(γ1,γ2)
p (R+ ×X × R+) is denoted by H

m,(γ1,γ2)
p,0 (R+ ×X × R+).

In a fashion similar to the definition in [11], we can introduce the following weighted p-

Sobolev space on the finite stretched corner M defined in (2.1):

Definition 2.3 Letting m ∈ N, i = 1, 2, 1 ≤ p < ∞, γi ∈ R, Wm,p
loc (M0) is the classical

local Sobolev space. Then H
m,(γ1,γ2)
p (M) denotes the subspace of all u ∈Wm,p

loc (M0), such that

Hm,(γ1,γ2)
p (M) = {u ∈Wm,p

loc (M0)|(ωσ)u ∈ Hm,(γ1,γ2)
p (R+ × R

n × R+)}
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for any cut-off functions ω = ω(r, x) and σ = σ(x,w), supported by collar neighborhoods

of (0, 1) × ∂M and ∂M × (0, 1), respectively. Moreover, the complement of C∞
0 functions in

H
m,(γ1,γ2)
p (M) is H

m,(γ1,γ2)
p,0 (M).

It can be deduced from Definition 2.3 that H
m,(γ1,γ2)
p (M) is a Banach space with 1 ≤ p <∞,

and a Hilbert space with p = 2. Also we have that rγ′

1wγ′

2H
m,(γ1,γ2)
p (M) = H

m,(γ1+γ′

1,γ2+γ′

2)
p (M).

Next, the following proposition gives us the embedding property for the weighted Sobolev space

H
m,(γ1,γ2)
p (M):

Proposition 2.4 The embedding H
m′,(γ′

1,γ′

2)
p (M) →֒ H

m,(γ1,γ2)
p (M) is continuous for m′ ≥

m, γ′1 ≥ γ′2.

Proof See [11], Proposition 2.4. �

Proposition 2.5 (corner Sobolev inequality) Assume 1 ≤ p < N, 1
p∗

= 1
p
− 1

N
, N =

1 + n+ 1 and γ1, γ2 ∈ R. For u(r, x, w) ∈ C∞
0 (R+ × R

n × R+), the following estimate holds:

‖u‖
L

γ∗

1
,γ∗

2
p∗ (R+×Rn×R+)

≤ α(c3 + c4)‖r∂ru‖L
γ1,γ2
p (R+×Rn×R+)

+ α(c1 + c2 + c3 + c4)

n
∑

i=1

‖ ∂xi
u ‖L

γ1,γ2
p (R+×Rn×R+)

+ α(c2 + c4)‖rw∂wu‖L
γ1,γ2
p (R+×Rn×R+)

+ (c1 + c2)‖u‖L
γ1,γ2
p (R+×Rn×R+)

+ (c1 + c3)‖u‖L
γ1−1,γ2
p (R+×Rn×R+)

, (2.2)

where γ∗1 = γ1 − 1, γ∗2 = γ2 − 1, and α = (N−1)p
N−p

with constants c1 = 1
N
| (N−1)(N−γ1p)

N−p
|

1
N ×

| (N−1)(N−γ2p)
N−p

|
1
N , c2 = 1

N
| (N−1)(N−γ1p)

N−p
|

1
N , c3 = 1

N
| (N−1)(N−γ2p)

N−p
|

1
N , and c4 = 1

N
.

Proof See [11], Proposition 3.1. �

In the case of γ1 = γ2 = N
p

, we have the constant in (2.2): c1 = c2 = c3 = 0. Then the

Hölder inequality implies that, for u ∈ H
1,(γ1,γ2)
p (M),

‖u‖
L

γ1−1,γ2−1

p∗ (R+×Rn×R+)
≤ c‖∇Mu‖Lγ1,γ2

p (R+×Rn×R+), (2.3)

where ∇M = (r∂r , ∂x1 , · · · , ∂xn
, rw∂w) is the corner type gradient operator on M = R+×X×R+,

and the constant c = (N−1)p
(N−p)N is the best constant (as we had in standard Sobolev spaces).

Proposition 2.6 The embedding

H
1,( N−1

2 , N
2 )

2,0 (M) →֒ H
0,( N−1

l
, N

l
)

l,0 (M)

is compact for 2 < l < 2∗.

Proof See [11], Proposition 3.3. �

If u ∈ L
1,( N−1

p
, N

p
)

p (M), v ∈ L
1,( N−1

p′
, N

p′
)

p′ (M), with p, p′ ∈ (1,∞) and 1
p

+ 1
p′

= 1, then we have

the following corner type Hölder inequality:
∫

M

r|uv|dσ ≤

(
∫

M

r|u|pdσ

)
1
p
(

∫

M

r|v|p
′

dσ

)
1
p′

. (2.4)

Proposition 2.7 (corner Poincaré inequality) For u(r, x, w) ∈ H
1,(γ1,γ2)
p,0 (M), 1 ≤ p <∞,

it holds that

‖u‖
L

γ1−1,γ2
p (M)

≤ dM‖∇Mu‖Lγ1−1,γ2
p (M)

, (2.5)
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where dM is the diameter of M.

Proof See [11], Proposition 3.2. �

Proposition 2.8 Let (r, x, w) ∈ M = [0, 1)×X × [0, 1) and 1 ≤ p <∞. Then

(i) let

V1(r, x, w) =
r−2e−

1
r2

e−
1

r2 + x2
1 + · · · + x2

n + w2
,

so for u ∈ H
1,( N−1

2 , N
2 )

2,0 (M), we have

(
N − 2

2
)2

∫

M

rV1u
2dσ ≤

∫

M

r|∇Mu|
2dσ, (2.6)

where dσ = dr
r

dxdw
rw

;

(ii) let

V2(r, x, w) =
1

r2 + x2
1 + · · · + x2

n + w2
,

so for u ∈ H
1,( N−1

2 , N
2 )

2,0 (M), we have

(
N − 4

2
)2

∫

M

rV2u
2dσ ≤

∫

M

r|∇Mu|
2dσ. (2.7)

Proof See [13], Proposition 3.1. �

Using the corner Hardy inequality (1.2), the operator −∆Mu − µV u, for 0 < µ < 1
C∗2 , is

a positive operator defined on the Hilbert space H
1,( N−1

2 , N
2 )

2,0 (M). Thus, in a fashion similar to

the result of Proposition 2.5 in [11], we have the following lemma:

Proposition 2.9 Let 0 < µ < 1
C∗2 . Then the Dirichlet problem







−∆Mψ − µV ψ = λψ, in M0,

ψ = 0, on ∂M

has a discrete set of positive eigenvalues {λk}k≥1 which can be ordered, after counting (finite)

multiplicity, as 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · , and λk → ∞ as k → +∞. Also,

the corresponding eigenfunctions {ψk}k≥1 constitute an orthonormal basis of the Hilbert space

H
1,( N−1

2 , N
2 )

2,0 (M).

3 A Family of Potential Wells and Vacuum Isolating of Solutions

In this section, we shall introduce a family of potential wells, the exterior of the correspond-

ing potential well sets, and give a series of properties of these. Then, the invariant sets and

the vacuum isolating of solutions for problem (1.1) are discussed. First, let the definitions of

functionals E(u, v) and K(u, v) be defined by (1.7) and (1.8). Next, we give some properties of

the above functionals as follows:

Lemma 3.1 Let (u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2 \ {(0, 0)}. Then we have

(i) lim
λ→0

E(λu, λv) = 0, and lim
λ→+∞

E(λu, λv) = −∞;

(ii) on the interval 0 < λ <∞, there exists a unique λ∗ = λ∗(u, v) > 0 such that

d

dλ
E(λu, λv)|λ=λ∗ = 0;
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(iii) E(λu, λv) is strictly increasing on 0 ≤ λ < λ∗, strictly decreasing on λ > λ∗, and

takes the maximum at λ = λ∗;

(iv) K(λu, λv) > 0 for 0 < λ < λ∗, K(λu, λv) < 0 for λ > λ∗ and K(λ∗u, λ∗v) = 0, which

means that λ∗ = 1.

Proof (i) Let (u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2 \ {(0, 0)}. From the definition of E(u, v), we

have

E(λu, λv) =
λ2

2

∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ −
λ2

2

∫

M

rµ(V1|u|
2 + V2|v|

2)dσ

− λp+1

∫

M

rF (u, v)dσ,

which gives

lim
λ→0

E(λu, λv) = 0,

and

lim
λ→+∞

E(λu, λv) = −∞.

(ii) An easy calculation shows that

d

dλ
E(λu, λv) = λ

[
∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ −

∫

M

rµ(V1|u|
2 + V2|v|

2)dσ

− (p+ 1)λp−1

∫

M

rF (u, v)dσ

]

, (3.1)

which leads to the conclusion.

(iii) By a direct calculation, (3.1) gives that for (u, v) 6= (0, 0), there exists a unqiue

λ∗ =

[

∫

M
r(|∇Mu|

2 + |∇Mv|
2)dσ −

∫

M
rµ(V1|u|

2 + V2|v|
2)dσ

(p+ 1)
∫

M
rF (u, v)dσ

]
1

p−1

> 0

such that d
dλ
E(λ∗u, λ∗v) = 0. Moreover,

d

dλ
E(λu, λv) > 0 for 0 < λ < λ∗,

d

dλ
E(λu, λv) < 0 for λ∗ < λ <∞.

Hence, the conclusion of (iii) holds.

(iv) The conclusion follows from

K(λu, λv) = λ2

∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ − λ2

∫

M

rµ(V1|u|
2 + V2|v|

2)dσ

− (p+ 1)λp+1

∫

M

rF (u, v)dσ

= λ
d

dλ
E(λu, λv).

�

Define the Nehari manifold by

N = {(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|K(u, v) = 0, (u, v) 6= (0, 0)}.

Then the definition of d (1.10) and Lemma 3.1 implies that

d = inf
(u,v)∈N

E(u, v) > 0. (3.2)
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Thus, the potential well associated with problem (1.1) is the set

W = {(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|E(u, v) < d,K(u, v) > 0} ∪ {(0, 0)}.

Here, d is the depth of the potential well, which is defined by (1.10) and satisfies (3.2).

The exterior of the potential well is the set

Z = {(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|E(u, v) < d,K(u, v) < 0}.

For δ > 0, we further define

Kδ(u, v) = δ

∫

M

r(|∇Mu|
2+ |∇Mv|

2)dσ−δ

∫

M

r(V1|u|
2+V2|v|

2)dσ−(p+1)

∫

M

rF (u, v)dσ (3.3)

and

r(δ) =

[

δ(1 − µC∗2)

(p+ 1)(2pα+ β)Cp+1
∗

]
1

p−1

,

where

C∗ = sup

{

‖ϕ‖
L

N−1
p+1

, N
p+1

p+1 (M)

‖∇Mϕ‖
L

N−1
2

, N
2

2 (M)

;ϕ ∈ H
1,( N−1

2 , N
2 )

2,0 (M), ϕ 6= 0

}

, (3.4)

and the constant C∗ can be obtained from Proposition 2.7 and Proposition 2.6.

The following lemmas are given to exhibit the relation between ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)

and Kδ(u, v):

Lemma 3.2 Assume that u, v ∈ H
1,( N−1

2 , N
2 )

2,0 (M). If ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
< r(δ),

then Kδ(u, v) > 0. In particular, if ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
< r(1), then K(u, v) > 0.

Proof From ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
< r(δ), we have

(p+ 1)

∫

M

rF (u, v)dσ ≤ (p+ 1)(2pα+ β)

∫

M

r(|u|p+1 + |v|p+1)dσ

≤ (p+ 1)(2pα+ β)(‖u‖2

L
N−1
p+1

, N
p+1

p+1 (M)

+ ‖v‖2

L
N−1
p+1

, N
p+1

p+1 (M)

)
p+1
2

≤ (p+ 1)(2pα+ β)Cp+1
∗ (‖∇Mu‖

2

L
N−1

2
, N
2

2 (M)
+ ‖∇Mv‖

2

L
N−1

2
, N

2
2 (M)

)
p+1
2

≤ (p+ 1)(2pα+ β)Cp+1
∗ r(δ)p−1‖(∇Mu,∇Mv)‖

2

L
N−1

2
, N

2
2 (M)

= δ(1 − µC∗2)‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N
2

2 (M)
,

δ

∫

M

rµ(V1|u|
2 + V2|v|

2)dσ ≤ δµC∗2‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N

2
2 (M)

,

and so by the definition of Kδ(u, v) by (3.3), the lemma is proved. �

Lemma 3.3 Assume that u, v ∈ H
1,( N−1

2 , N
2 )

2,0 (M). If Kδ(u, v) < 0, then

‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
> r(δ).

In particular, if K(u, v) < 0, then ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
> r(1).
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Proof From Kδ(u, v) < 0, we have

δ(1 − µC∗2)‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N
2

2 (M)

≤ δ

∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ − δ

∫

M

r(V1|u|
2 + V2|v|

2)dσ

< (p+ 1)

∫

M

rF (u, v)dσ

≤ (p+ 1)(2pα+ β)

∫

M

r(|u|p+1 + |v|p+1)dσ

≤ (p+ 1)(2pα+ β)Cp+1
∗ ‖(∇Mu,∇Mv)‖

p+1

L
N−1

2
, N

2
2 (M)

,

which leads to

‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
>

[

δ(1 − µC∗2)

(p+ 1)(2pα+ β)Cp+1
∗

]
1

p−1

= r(δ).

�

Lemma 3.4 Assume that u, v ∈ H
1,( N−1

2 , N
2 )

2,0 (M) and (u, v) 6= (0, 0). If Kδ(u, v) = 0, then

‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
≥ r(δ).

In particular, if K(u, v) = 0, then ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
≥ r(1).

Proof If Kδ(u, v) = 0 and (u, v) 6= (0, 0), then from

δ(1 − µC∗2)‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N
2

2 (M)

≤ δ

∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ − δ

∫

M

r(V1|u|
2 + V2|v|

2)dσ

= (p+ 1)

∫

M

rF (u, v)dσ

≤ (p+ 1)(2pα+ β)

∫

M

r(|u|p+1 + |v|p+1)dσ

≤ (p+ 1)(2pα+ β)Cp+1
∗ ‖(∇Mu,∇Mv)‖

p+1

L
N−1

2
, N

2
2 (M)

,

we get

‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
≥

[

δ(1 − µC∗2)

(p+ 1)(2pα+ β)Cp+1
∗

]
1

p−1

= r(δ).

�

For δ > 0, we define the depth of a family of potential wells as

d(δ) = inf
(u,v)∈Nδ

E(u, v), (3.5)

where the Nehari manifold is

Nδ = {(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|Kδ(u, v) = 0, (u, v) 6= (0, 0)}. (3.6)

Then, the depth d(δ) and its expression can be estimated as follows:

Lemma 3.5 Let 0 < δ < p+1
2 . Then

d(δ) ≥ a(δ)r2(δ),
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where a(δ) = (1
2 − δ

p+1 )(1 − µC∗2). In particular,

d ≥
p− 1

2(p+ 1)
(1 − µC∗2)

[

1 − µC∗2

(p+ 1)(2pα+ β)Cp+1
∗

]
2

p−1

> 0.

Moreover, we have

d(δ) =
2(p+ 1)

p− 1

(1

2
−

δ

p+ 1

)

δ
2

p−1 d. (3.7)

Proof From the definition of Nδ by (3.6), we have ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
≥ r(δ) for

any (u, v) ∈ Nδ, by Lemma 3.4. Thus, from the definition of E(u, v) by (1.7) and the definition

of Kδ(u, v) by (3.3), we deduce that

E(u, v) = (
1

2
−

δ

p+ 1
)

[
∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ −

∫

M

r(V1|u|
2 + V2|v|

2)dσ

]

+
1

p+ 1
Kδ(u, v)

≥ (
1

2
−

δ

p+ 1
)(1 − µC∗2)‖(∇Mu,∇Mv)‖

2

L
N−1

2
, N

2
2 (M)

≥ a(δ)r2(δ) (3.8)

for any (u, v) ∈ Nδ, which infers that

d(δ) ≥ a(δ)r2(δ),

from the definition of d(δ) when 0 < δ < p+1
2 .

The first part of this lemma is proved. Now let us prove eq. (3.7).

(1) If δ > 0, (ū, v̄) ∈ Nδ is a minimizer of d(δ) = inf
(u,v)∈Nδ

E(u, v), i.e., E(ū, v̄) = d(δ). In

this case we define λ = λ(δ) by (λū, λv̄) ∈ N . Then, there exists a unique λ which satisfies

λ =

[

∫

M
r(|∇Mū|2 + |∇Mv̄|2)dσ −

∫

M
r(V1|ū|2 + V2|v̄|2)dσ

(p+ 1)
∫

M
rF (ū, v̄)dσ

]
1

p−1

= δ−
1

p−1

for each δ > 0. Thus, from the definition of d(δ) by (3.5) for δ = 1 and (λū, λv̄) ∈ N , we can

obtain that

d ≤ E(λū, λv̄)

=
p− 1

2(p+ 1)
λ2

[
∫

M

r(|∇Mū|
2 + |∇Mv̄|

2)dσ −

∫

M

r(V1|ū|
2 + V2|v̄|

2)dσ

]

+
1

p+ 1
K(λū, λv̄)

=
p− 1

2(p+ 1)
δ−

2
p−1

[
∫

M

r(|∇Mū|
2 + |∇Mv̄|

2)dσ −

∫

M

r(V1|ū|
2 + V2|v̄|

2)dσ

]

.

Notice that

d(δ) = E(ū, v̄) = (
1

2
−

δ

p+ 1
)

[
∫

M

r(|∇Mū|
2 + |∇Mv̄|

2)dσ −

∫

M

r(V1|ū|
2 + V2|v̄|

2)dσ

]

,

so we get

d ≤ δ−
2

p−1
p− 1

2(p+ 1)
(
1

2
−

δ

p+ 1
)−1d(δ),

which implies that

d(δ) ≥
2(p+ 1)

p− 1
(
1

2
−

δ

p+ 1
)δ

2
p−1 d (3.9)

for 0 < δ < p+1
2 .
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(2) If δ > 0, (ũ, ṽ) ∈ N is a minimizer of d = inf
(u,v)∈N

E(u, v), i.e., E(ũ, ṽ) = d. In this case,

we define λ = λ(δ) by (ũ, ṽ) ∈ Nδ. Then, there exists a unique λ which satisfies

λ =

[

δ
∫

M
r(|∇Mũ|2 + |∇Mṽ|2)dσ − δ

∫

M
r(V1|ũ|2 + V2|ṽ|2)dσ

(p+ 1)
∫

M
rF (ũ, ṽ)dσ

]
1

p−1

= δ
1

p−1

for each δ > 0. Thus, from the definition of d(δ) by (3.5) and (λũ, λṽ) ∈ Nδ, we can obtain that

d(δ) ≤ E(λũ, λṽ)

= (
1

2
−

δ

p+ 1
)λ2

[
∫

M

r(|∇Mũ|
2 + |∇Mṽ|

2)dσ −

∫

M

r(V1|ũ|
2 + V2|ṽ|

2)dσ

]

+
1

p+ 1
Kδ(λũ, λṽ)

= (
1

2
−

δ

p+ 1
)δ

2
p−1

[
∫

M

r(|∇Mũ|
2 + |∇Mṽ|

2)dσ −

∫

M

r(V1|ũ|
2 + V2|ṽ|

2)dσ

]

.

Notice that

d = E(ũ, ṽ) =
p− 1

2(p+ 1)

[
∫

M

r(|∇Mũ|
2 + |∇Mṽ|

2)dσ −

∫

M

r(V1|ũ|
2 + V2|ṽ|

2)dσ

]

,

so we get

d(δ) ≤
2(p+ 1)

p− 1
(
1

2
−

δ

p+ 1
)δ

2
p−1 d (3.10)

for 0 < δ < p+1
2 . From (3.9) and (3.10), we obtain the conclusion, (3.7). �

Additionally, we show how d(δ) behaves with respect to δ in the following lemma:

Lemma 3.6 d(δ) satisfies the following properties :

(i) lim
δ→0

d(δ) = 0, d(p+1
2 ) = 0 and d(δ) is continuous and d(δ) > 0 for 0 < δ ≤ p+1

2 ;

(ii) d(δ) is increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ p+1
2 , and takes the maximum

d = d(1) at δ = 1.

Proof From Lemma 3.5, we immediately obtain the result of (i) and we also have that

d′(δ) =
2(p+ 1)

(p− 1)2
δ

2
p−1−1(1 − δ),

which implies the conclusion of (ii). �

Lemma 3.7 Assume that 0 < E(u, v) < d for some u, v ∈ H
1,( N−1

2 , N
2 )

2,0 (M), and δ1 < δ2

are the two roots of the equation E(u, v) = d(δ). Then the sign of Kδ(u, v) does not change for

δ ∈ (δ1, δ2).

Proof E(u, v) > 0 implies ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
6= 0. If the sign of Kδ(u, v) is

changeable for δ ∈ (δ1, δ2), we can choose δ̄ ∈ (δ1, δ2) satisfying Kδ̄(u, v) = 0. Thus, by the

definition of d(δ), we have E(u, v) ≥ d(δ̄). However, from Lemma 3.6, E(u, v) = d(δ1) =

d(δ2) < d(δ̄), which is a contraction. �

After the definition of the depth of the family of potential wells d(δ), the following lemmas

are given to exhibit the relation between Kδ(u, v) and ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
when E(u, v) ≤

d(δ):

Lemma 3.8 Let u, v ∈ H
1,( N−1

2 , N
2 )

2,0 (M) and 0 < δ < p+1
2 . Assume that E(u, v) ≤ d(δ).
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(i) If Kδ(u, v) > 0, then 0 < ‖(∇Mu,∇Mv)‖2

L
N−1

2
, N
2

2 (M)

< d(δ)
a(δ) . In particular, ifK(u, v) > 0,

then

0 < ‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N
2

2 (M)
<

2(p+ 1)

p− 1
d(1 − µC∗2)−1.

(ii) If ‖(∇Mu,∇Mv)‖2

L
N−1

2
, N

2
2 (M)

> d(δ)
a(δ) , then Kδ(u, v) < 0. In particular, if

‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N

2
2 (M)

>
2(p+ 1)

p− 1
d(1 − µC∗2)−1,

then K(u, v) < 0.

(iii) If Kδ(u, v) = 0, then ‖(∇Mu,∇Mv)‖2

L
N−1

2
, N
2

2 (M)

≤ d(δ)
a(δ) . In particular, if K(u, v) = 0,

then

‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N

2
2 (M)

≤
2(p+ 1)

p− 1
d(1 − µC∗2)−1.

Proof (i) If E(u, v) ≤ d(δ) and Kδ(u, v) > 0, we can get

d(δ) ≥ E(u, v)

= (
1

2
−

δ

p+ 1
)

[
∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ −

∫

M

r(V1|u|
2 + V2|v|

2)dσ

]

+
1

p+ 1
Kδ(u, v)

≥ (
1

2
−

δ

p+ 1
)(1 − µC∗2)‖(∇Mu,∇Mv)‖

2

L
N−1

2
, N

2
2 (M)

+
1

p+ 1
Kδ(u, v)

> a(δ)‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N

2
2 (M)

.

(ii) If E(u, v) ≤ d(δ) and ‖(∇Mu,∇Mv)‖2

L
N−1

2
, N
2

2 (M)

> d(δ)
a(δ) , then

Kδ(u, v) = (p+ 1)E(u, v)

− (
p+ 1

2
− δ)

[
∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ −

∫

M

r(V1|u|
2 + V2|v|

2)dσ

]

≤ (p+ 1)d(δ) − (
p+ 1

2
− δ)(1 − C∗2)‖(∇Mu,∇Mv)‖

2

L
N−1

2
, N
2

2 (M)

< (p+ 1)d(δ) − (
p+ 1

2
− δ)(1 − C∗2)

d(δ)

a(δ)
= 0.

(iii) If E(u, v) ≤ d(δ) and Kδ(u, v) = 0, then

d(δ) ≥ E(u, v) ≥ (
1

2
−

δ

p+ 1
)(1 − µC∗2)‖(∇Mu,∇Mv)‖

2

L
N−1

2
, N

2
2 (M)

+
1

p+ 1
Kδ(u, v)

= a(δ)‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N

2
2 (M)

.

�

Remark 3.9 The results of Lemmas 3.2–3.4 and Lemma 3.8 show that the space

H
1,( N−1

2 , N
2 )

2,0 (M) is divided into two parts –Kδ(u, v) > 0 andKδ(u, v) < 0 – by surfaceKδ(u, v) =

0((u, v) 6= (0, 0)). The inside part of Kδ(u, v) = 0 is Kδ(u, v) > 0 and the outside part of

Kδ(u, v) = 0 isKδ(u, v) < 0. Sphere ‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
= r(δ) lies inside of Kδ(u, v) > 0

and sphere ‖(∇Mu,∇Mv)‖2

L
N−1

2
, N

2
2 (M)

= d(δ)
a(δ) lies inside of Kδ(u, v) < 0.
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Now we are in a position to introduce a family of potential wells. For 0 < δ < p+1
2 , define

Wδ =
{

(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|Kδ(u, v) > 0, E(u, v) < d(δ)} ∪ {(0, 0)
}

,

W̄δ = Wδ ∩ ∂Wδ =
{

(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|Kδ(u, v) ≥ 0, E(u, v) ≤ d(δ)
}

.

In addition, we define the exterior of the corresponding potential well sets by

Zδ =
{

(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|Kδ(u, v) < 0, E(u, v) < d(δ)
}

for 0 < δ < p+1
2 .

Lemma 3.10 Let 0 < δ < p+1
2 . Then

(i) Br1(δ) ⊂Wδ ⊂ Br2(δ), where

Br1(δ) =
{

(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N

2
2 (M)

< min{r2(δ), 2d(δ)}
}

,

Br2(δ) =
{

(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N

2
2 (M)

<
d(δ)

a(δ)

}

;

(ii) Zδ ⊂ Bc
δ , where

Bδ =
{

(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2|‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
< r(δ)

}

.

Proof (i) If (u, v) ∈ Br1(δ), then

‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
< r(δ)

and

‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N

2
2 (M)

< 2d(δ).

Then, from Lemma 3.2 and E(u, v) ≤ 1
2‖(∇Mu,∇Mv)‖2

L
N−1

2
, N
2

2 (M)

, we have Kδ(u, v) > 0 and

E(u, v) < d(δ). Hence, we can obtain that (u, v) ∈ Wδ.

If (u, v) ∈Wδ, from Lemma 3.8 we can obtain that

‖(∇Mu,∇Mv)‖
2

L
N−1

2
, N
2

2 (M)
<
d(δ)

a(δ)
,

from which we can obtain that (u, v) ∈ Br2(δ).

(ii) If (u, v) ∈ Zδ, from Lemma 3.3 we can obtain that

‖(∇Mu,∇Mv)‖
L

N−1
2

, N
2

2 (M)
> r(δ),

from which we can obtain that (u, v) ∈ Bc
δ . �

From the definition of Wδ and Zδ and Lemma 3.6 we can obtain

Lemma 3.11 The potential well sets and its outsiders have the following properties:

(i) If 0 < δ′ < δ′′ ≤ 1, then Wδ′ ⊂Wδ′′ .

(ii) If 1 ≤ δ′ < δ′′ < p+1
2 , then Zδ′ ⊂ Zδ′′ .

Next, by using the above potential wells, we establish the invariant sets and the vacuum

isolating of solutions for problem (1.1).
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Proposition 3.12 Assume that u0, v0 ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Let 0 < δ < p+1
2 . Suppose that

0 < e < d, δ1 < δ2 are the two roots of equation d(δ) = e. Then all solutions of problem (1.1)

with 0 < E(u0, v0) ≤ e,K(u0, v0) > 0 belong to Wδ for δ1 < δ < δ2.

Proof Let (u(t), v(t)) be any solution of problem (1.1) with E(u0, v0) = e,K(u0, v0) > 0,

and let T is the maximal existence time of (u(t), v(t)). From Lemma 3.6, it follows that

0 < E(u0, v0) ≤ e = d(δ1) = d(δ2) < d(δ) < d

for δ1 < δ < δ2. From Lemma 3.7, it follows that Kδ(u0, v0) > 0 for δ1 < δ < δ2. Hence, we

can obtain that (u0, v0) ∈ Wδ for δ1 < δ < δ2.

Our goal is to prove that (u(t), v(t)) ∈ Wδ for t ∈ [0, T ) and δ1 < δ < δ2. We argue by

contradiction. Assume that there exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, T ) such that (u(t0), v(t0)) /∈

Wδ0 , which means that E(u(t0), v(t0)) ≥ d(δ0) or Kδ0(u(t0), v(t0)) ≤ 0 and (u(t0), v(t0)) 6=

(0, 0).

If Kδ0(u(t0), v(t0)) = 0 and (u(t0), v(t0)) 6= (0, 0), then (u(t0), v(t0)) ∈ Nδ0 , by the defini-

tion of Nδ itself. From the definition of d(δ), we can obtain that E(u(t0), v(t0)) ≥ d(δ0).

If Kδ0(u(t0), v(t0)) < 0 and (u(t0), v(t0)) 6= (0, 0), from the time continuity of Kδ(u, v)

and Kδ0(u0, v0) > 0, we can obtain that there exists at least one s ∈ (0, t0) such that

Kδ0(u(s), v(s)) = 0. Put

t∗ := sup{s ∈ (0, t0)|Kδ0(u(s), v(s)) = 0}.

Consequently, Kδ0(u(t
∗), v(t∗)) = 0 and Kδ0(u(t), v(t)) < 0 for t ∈ (t∗, t0).

We have two cases to consider:

Case 1 (u(t∗), v(t∗)) 6= (0, 0). In this case, (u(t∗), v(t∗)) ∈ Nδ0 , by the definition of Nδ

itself. From the definition of d(δ), we can obtain that E(u(t∗), v(t∗)) ≥ d(δ0).

By recalling the conservation of energy (1.9), we note that

E(u(t), v(t)) ≤ E(u0, v0) < d(δ)

for t ∈ [0, T ) and δ1 < δ < δ2. Hence, E(u(t0), v(t0)) ≥ d(δ) is impossible for any δ1 < δ < δ2.

Case 2 (u(t∗), v(t∗)) = (0, 0). In this case, we must haveKδ0(u(t), v(t)) < 0 for t ∈ (t∗, t0)

and lim
t→t∗+

(u(t), v(t)) = 0. Thus, from Lemma 3.3, we can obtain that

‖(∇Mu(t),∇Mv(t))‖
2

L
N−1

2
, N
2

2 (M)
> r(δ0)

for t ∈ (t∗, t0), which is in contradiction with lim
t→t∗+

(u(t), v(t)) = 0. �

Proposition 3.13 Assume that u0, v0 ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Let 0 < δ < p+1
2 . Suppose that

0 < e < d, δ1 < δ2 are the two roots of equation d(δ) = e. Then all solutions of problem (1.1)

with 0 < E(u0, v0) ≤ e,K(u0, v0) < 0 belong to Zδ for δ1 < δ < δ2.

Proof Let (u(t), v(t)) be any solution of problem (1.1) with E(u0, v0) = e,K(u0, v0) < 0,

and that T is the maximal existence time of (u(t), v(t)). From Lemma 3.6, it follows that

0 < E(u0, v0) ≤ e = d(δ1) = d(δ2) < d(δ) < d

for δ1 < δ < δ2. From Lemma 3.7, it follows that Kδ(u0, v0) < 0 for δ1 < δ < δ2. Hence, we

can obtain that (u0, v0) ∈ Zδ for δ1 < δ < δ2.



272 ACTA MATHEMATICA SCIENTIA Vol.41 Ser.B

Our goal is to prove that (u(t), v(t)) ∈ Zδ for t ∈ [0, T ) and δ1 < δ < δ2. We argue by

contradiction. Assume that there exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, T ) such that (u(t0), v(t0)) /∈

Zδ0 , which means that E(u(t0), v(t0)) ≥ d(δ0) or Kδ0(u(t0), v(t0)) ≥ 0.

If Kδ0(u(t0), v(t0)) ≥ 0, from the time continuity of Kδ(u, v) and Kδ0(u0, v0) < 0, we can

obtain that there exists at least one s ∈ (0, t0) such that Kδ0(u(s), v(s)) = 0. Put

t∗ := inf{s ∈ (0, t0)|Kδ0(u(s), v(s)) = 0}.

Consequently, Kδ0(u(t
∗), v(t∗)) = 0 and Kδ0(u(t), v(t)) < 0 for t ∈ (0, t∗).

We have two cases to consider:

Case 1 (u(t∗), v(t∗)) 6= (0, 0). In this case, (u(t∗), v(t∗)) ∈ Nδ0 , by the definition of Nδ

itself. From the definition of d(δ), we can obtain that E(u(t∗), v(t∗)) ≥ d(δ0).

By recalling the conservation of energy (1.9), we note that

E(u(t), v(t)) ≤ E(u0, v0) < d(δ)

for t ∈ [0, T ) and δ1 < δ < δ2. Hence, E(u(t0), v(t0)) ≥ d(δ) is impossible for any δ1 < δ < δ2.

Case 2 (u(t∗), v(t∗)) = (0, 0). In this case, we must have Kδ0(u(t), v(t)) < 0 for t ∈ (0, t∗)

and lim
t→t∗−

(u(t), v(t)) = 0. Thus, from Lemma 3.3, we can obtain that

‖(∇Mu(t),∇Mv(t))‖
L

N−1
2

, N
2

2 (M)
> r(δ0)

for t ∈ (0, t∗), which is in contradiction with lim
t→t∗−

(u(t), v(t)) = 0. �

The above propositions indicate the invariance of Wδ and Zδ, respectively. Moreover,

concerning their intersections with respect to δ, we have

Proposition 3.14 Assume that u0, v0 ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Let 0 < δ < p+1
2 . Suppose that

0 < e < d, δ1 < δ2 are the two roots of equation d(δ) = e. Then, for any δ ∈ (δ1, δ2), both sets

Wδ1δ2 =
⋃

δ1<δ<δ2

Wδ and Zδ1δ2 =
⋃

δ1<δ<δ2

Zδ

are invariant under the flow of problem (1.1), provided that 0 < E(u0, v0) ≤ e.

The following proposition shows that between these two invariance manifolds, Wδ1δ2 and

Zδ1δ2 , there exists a so called vacuum region, for which no solution exists:

Proposition 3.15 Assume that u0, v0 ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Let 0 < δ < p+1
2 . Suppose that

0 < e < d, δ1 < δ2 are the two roots of equation d(δ) = e. Then for all solutions of problem

(1.1) with 0 < E(u0, v0) ≤ e, we have

(u, v) /∈ Nδ1δ2 =
⋃

δ1<δ<δ2

Nδ.

Remark 3.16 The vacuum region becomes bigger and bigger with the decreasing of e.

As the limit case, we obtain

N0 =
⋃

0<δ<
p+1
2

Nδ.
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4 Sharp Threshold for Global Existence and Blow-up of Solutions

In this section we prove the main results by making use of the family of potential wells

introduced above. First we have the following lemma of Komornik [15], which plays a critical

role in the study of the exponential asymptotic behavior for global solutions of problem (1.1):

Lemma 4.1 Let y(t) : R
+ → R

+ be a non-increasing function, and assume that there is

a constant A > 0 such that
∫ +∞

s

y(t)dt ≤ Ay(s), 0 ≤ s < +∞.

Then for all t ≥ 0, we have

y(t) ≤ y(0)e1− t
A .

Proof of Theorem 1.3 We divide the proof in three steps.

Step 1 Proof of the global existence for the low initial energy case.

If E(u0, v0) < d, from the definition of d we can obtain that K(u0, v0) = 0 is impossible,

hence we only need to consider the cases E(u0, v0) < d and K(u0, v0) > 0.

From Proposition 2.9, we can choose {ϕj(r, x, w)} as the orthonormal basis of

H
1,( N−1

2 , N
2 )

2,0 (M). Construct the approximate solutions of the problem (1.1) as follows:

um(t, r, x, w) =
m

∑

j=1

gjm(t)ϕj(r, x, w), m = 1, 2, · · ·

vm(t, r, x, w) =
m

∑

j=1

hjm(t)ϕj(r, x, w), m = 1, 2, · · · ,

(4.1)

satisfying
∫

M

r∂tum · ϕkdσ +

∫

M

r∇Mum · ∇Mϕkdσ −

∫

M

rµV1um · ϕkdσ =

∫

M

rf1(um, vm) · ϕkdσ,

∫

M

r∂tvm · ϕkdσ +

∫

M

r∇Mvm · ∇Mϕkdσ −

∫

M

rµV2vm · ϕkdσ =

∫

M

rf2(um, vm) · ϕkdσ

(4.2)

for k = 1, 2, · · · ,m and, as m→ +∞,

um(0, r, x, w) =

m
∑

j=1

gjm(0)ϕj(r, x, w) → u0(r, x, w), in H
1,( N−1

2 , N
2 )

2,0 (M),

vm(0, r, x, w) =

m
∑

j=1

hjm(0)ϕj(r, x, w) → v0(r, x, w), in H
1,( N−1

2 , N
2 )

2,0 (M).

(4.3)

Multiplying (4.2) by g′km(t) and h′km(t) and then summing for k, we have
∫

M

r∂tum · ∂tumdσ +
1

2

d

dt

∫

M

r∇Mum · ∇Mumdσ −
1

2

d

dt

∫

M

rµV1|um|2dσ

=
1

p+ 1

d

dt

∫

M

rf1(um, vm)umdσ,

∫

M

r∂tvm · ∂tvmdσ +
1

2

d

dt

∫

M

r∇Mvm · ∇Mvmdσ −
1

2

d

dt

∫

M

rµV2|vm|2dσ

=
1

p+ 1

d

dt

∫

M

rf2(um, vm)vmdσ.

(4.4)
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By (4.3) we can get E(um(0), vm(0)) → E(u0, v0) < d as m→ ∞. Then, integrating (4.4) with

respect to t, we can obtain that for sufficiently large m,
∫ t

0

‖(∂τum, ∂τvm)‖2

L
N−1

2
, N

2
2 (M)

dτ + E(um, vm) = E(um(0), vm(0)) < d, 0 ≤ t < T. (4.5)

Next, we prove that (um(t), vm(t)) ∈ W for sufficiently large m and 0 ≤ t < T . In fact, if

this is false, from the time continuity of K(u, v), there exists t0 > 0 such that (um(t0), vm(t0)) ∈

∂W . Then E(um(t0), vm(t0)) = d orK(um(t0), vm(t0)) = 0 and (um(t0), vm(t0)) 6= (0, 0). From

(4.5) we can obtain that E(um(t0), vm(t0)) 6= d. IfK(um(t0), vm(t0)) = 0 and (um(t0), vm(t0)) 6=

(0, 0), then (um(t0), vm(t0)) ∈ N . By the definition of d = inf{E(u, v); (u, v) ∈ N}, we can

obtain that E(um(t0), vm(t0)) ≥ d, which contradicts (4.5).

Hence, from (4.5) and

E(um, vm) =
p− 1

2(p+ 1)

[
∫

M

r(|∇Mum|2 + |∇Mvm|2)dσ

−

∫

M

rµ(V1|um|2 + V2|vm|2)dσ

]

+
1

p+ 1
K(um, vm)

≥
p− 1

2(p+ 1)
(1 − µC∗2)‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N

2
2 (M)

,

it follows that
∫ t

0

‖(∂τum, ∂τvm)‖2

L
N−1

2
, N

2
2 (M)

dτ +
p− 1

2(p+ 1)
(1 − µC∗2)‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N
2

2 (M)
< d,

for 0 ≤ t < T and sufficiently large m which yields

‖∇Mum‖2

L
N−1

2
, N

2
2 (M)

<
2(p+ 1)

p− 1
(1 − µC∗2)−1d, 0 ≤ t < T,

‖∇Mvm‖2

L
N−1

2
, N

2
2 (M)

<
2(p+ 1)

p− 1
(1 − µC∗2)−1d, 0 ≤ t < T,

∫ t

0

‖∂τum‖2

L
N−1

2
, N
2

2 (M)
dτ < d, 0 ≤ t < T,

∫ t

0

‖∂τvm‖2

L
N−1

2
, N

2
2 (M)

dτ < d, 0 ≤ t < T,

and from Proposition 2.7, we can obtain that

‖um‖2

L
N−1

2
, N
2

2 (M)
≤ d2

M
‖∇Mum‖2

L
N−1

2
, N

2
2 (M)

< d2
M

2(p+ 1)

p− 1
(1 − µC∗2)−1d, 0 ≤ t < T,

‖vm‖2

L
N−1

2
, N
2

2 (M)
≤ d2

M
‖∇Mvm‖2

L
N−1

2
, N

2
2 (M)

< d2
M

2(p+ 1)

p− 1
(1 − µC∗2)−1d, 0 ≤ t < T.

It follows that there exist u, v and subsequences {uν} and {vν} of {um} and {vm} such that,

as ν → ∞,

uν → u in L∞(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) weakly star and a.e. in M × [0,∞),

vν → v in L∞(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) weakly star and a.e. in M × [0,∞),

∂tuν → ∂tu in L2(0,∞;L
N−1

2 , N
2

2 (M)) weakly,

∂tvν → ∂tv in L2(0,∞;L
N−1

2 , N
2

2 (M)) weakly.
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From the continuity of fi(u, v), i = 1, 2, in (4.2), for fixed k, letting m = ν → ∞, we obtain

that
∫

M

r∂tu · ϕkdσ +

∫

M

r∇Mu · ∇Mϕkdσ −

∫

M

rµV1u · ϕkdσ =

∫

M

rf1(u, v) · ϕkdσ,

∫

M

r∂tv · ϕkdσ +

∫

M

r∇Mv · ∇Mϕkdσ −

∫

M

rµV2v · ϕkdσ =

∫

M

rf2(u, v) · ϕkdσ

for k = 1, 2, · · · ,m, and
∫

M

r∂tu · ψdσ +

∫

M

r∇Mu · ∇Mψdσ −

∫

M

rµV1u · ψdσ =

∫

M

rf1(u, v) · ψdσ,

∫

M

r∂tv · ψdσ +

∫

M

r∇Mv · ∇Mψdσ −

∫

M

rµV2v · ψdσ =

∫

M

rf2(u, v) · ψdσ

for any ψ ∈ H
1,( N−1

2 , N
2 )

2,0 (M) and t ∈ (0,∞). On the other hand, from the time continuity of

the weak solution and (4.3), we can obtain that u(r, x, w, 0) = u0(r, x, w) and v(r, x, w, 0) =

v0(r, x, w) for (r, x, w) ∈ M. By the density, we can obtain that u, v ∈ L∞(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)),

with ut, vt ∈ L2(0,∞;L
N−1

2 , N
2

2 (M)) being a global weak solution of problem (1.1).

Step 2 Proof of the global existence for the critical initial energy case.

First E(u0, v0) = d implies that (u0, v0) 6= 0. Pick a sequence {λm} such that 0 < λm < 1,

m = 1, 2, · · · and λm → 1 as m → ∞. Let u0m = λmu0 and v0m = λmv0 for m = 1, 2, · · · .

Consider the initial conditions of the following problem:


























∂tu− ∆Mu− µV1u = Fu(u, v), in M0 × (0, T ),

∂tv − ∆Mv − µV2v = Fv(u, v), in M0 × (0, T ),

u(0, z) = u0m, v(0, z) = v0m, in M0,

u = 0, v = 0, on ∂M × (0, T ).

(4.6)

From K(u0, v0) ≥ 0 and Lemma 3.1, we have λ∗ = λ∗(u0, v0) ≥ 1, K(u0m, v0m) = K(λmu0,

λmv0) > 0 and E(u0m, v0m) = E(λmu0, λmv0) < E(u0, v0) = d. Thus, for each m ∈ N+, it fol-

lows from step 1 and Proposition 3.12 that problem (4.6) admits a global weak solution um, vm ∈

L∞(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) with umt, vmt ∈ L2(0,∞;L
N−1

2 , N
2

2 (M)) and (um(t), vm(t)) ∈ W for

0 ≤ t <∞. Therefore, we can obtain that
∫ t

0

‖(∂τum, ∂τvm)‖2

L
N−1

2
, N
2

2 (M)
dτ + E(um, vm) = E(u0m, v0m) < d, 0 ≤ t <∞. (4.7)

From (4.7) and K(um(t), vm(t)) > 0 for 0 ≤ t <∞, which means that

E(um, vm) =
p− 1

2(p+ 1)

[
∫

M

r(|∇Mum|2 + |∇Mvm|2)dσ

−

∫

M

r(V1|um|2 + V2|vm|2)dσ

]

+
1

p+ 1
K(um, vm)

≥
p− 1

2(p+ 1)
(1 − µC∗2)‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N

2
2 (M)

,

and we can obtain that
∫ t

0

‖(∂τum, ∂τvm)‖2

L
N−1

2
, N
2

2 (M)
dτ +

p− 1

2(p+ 1)
(1 − µC∗2)‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N

2
2 (M)

< d

for 0 ≤ t <∞. The remainder of the proof is similar to that of the proof of Step 1.



276 ACTA MATHEMATICA SCIENTIA Vol.41 Ser.B

Step 3 Proof of asymptotic behavior.

If E(u0, v0) < d and K(u0, v0) > 0, from Proposition 3.12 we can obtain that (u(t), v(t)) ∈

W , i.e., E(u(t), v(t)) < d,K(u(t), v(t)) > 0 for 0 ≤ t < ∞. If E(u0, v0) = d and K(u0, v0) ≥ 0,

from the approximative solution (um(t), vm(t)) ∈ W , we can obtain that (u(t), v(t)) ∈ W̄ , i.e.,

E(u(t), v(t)) ≤ d,K(u(t), v(t)) ≥ 0 for 0 ≤ t <∞. Hence, the definition of C∗ implies that

d ≥ E(u, v)

=
p− 1

2(p+ 1)

[
∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ − µ

∫

M

r(V1|u|
2 + V2|v|

2)dσ

]

+
1

p+ 1
K(u, v)

≥
p− 1

2(p+ 1)
(1 − µC∗2)‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N
2

2 (M)
.

Therefore, from the definition of C∗, or Proposition 2.6, we can obtain that

α(p+ 1)

∫

M

r|u + v|p+1dσ + 2β(p+ 1)

∫

M

r|uv|
p+1
2 dσ

≤ (p+ 1)(2pα+ β)

∫

M

r(|u|p+1 + |v|p+1)dσ

≤ (p+ 1)(2pα+ β)Cp+1
∗ (‖∇Mu‖

p+1

L
N−1

2
, N
2

2 (M)

+ ‖∇Mv‖
p+1

L
N−1

2
, N

2
2 (M)

)

≤ (p+ 1)(2pα+ β)Cp+1
∗ (‖∇Mu‖

2

L
N−1

2
, N
2

2 (M)
+ ‖∇Mv‖

2

L
N−1

2
, N

2
2 (M)

)
p+1
2

≤ (p+ 1)(2pα+ β)Cp+1
∗

[

2(p+ 1)

p− 1
d(1 − µC∗2)−1

]

p−1
2

‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N
2

2 (M)
.

Furthermore, the definition of C∗ implies that

µ

∫

M

r(V1|u|
2 + V2|v|

2)dσ ≤ µC∗2‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N
2

2 (M)
.

We set

σ := 2(p+ 1)(2pα+ β)Cp+1
∗

[

2(p+ 1)

p− 1
d(1 − µC∗2)−1

]

p−1
2

+ µC∗2,

and from Lemma 3.5 we have 0 < σ < 1. Hence,

µ

∫

M

r(V1|u|
2 + V2|v|

2)dσ + (p+ 1)

∫

M

rF (u, v)dσ ≤ σ‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N

2
2 (M)

.

For 0 < γ = 1 − σ < 1, we get

µ

∫

M

r(V1|u|
2 + V2|v|

2)dσ + (p+ 1)

∫

M

rF (u, v)dσ ≤ (1 − γ)‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N

2
2 (M)

,

i.e.,

γ‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N

2
2 (M)

≤ K(u, v). (4.8)

Let T > 0 be a fixed time. Since (u(t), v(t)) ∈ W̄ for 0 ≤ t < ∞ is a global weak solution of

problem (1.1), we can obtain that
∫

M

rut · udσ +

∫

M

r∇Mu · ∇Mudσ −

∫

M

rµV1u · udσ =

∫

M

rf1(u, v) · udσ,

∫

M

rvt · vdσ +

∫

M

r∇Mv · ∇Mvdσ −

∫

M

rµV2v · vdσ =

∫

M

rf2(u, v) · vdσ,
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which means that
d

dt
‖(u(t), v(t))‖2

L
N−1

2
, N

2
2 (M)

= −2K(u(t), v(t)) ≤ 0,

i.e., y(t) = ‖(u(t), v(t))‖2

L
N−1

2
, N

2
2 (M)

is a non-increasing function for 0 ≤ t < ∞. Hence, from

Proposition 2.7 and (4.8), we can obtain that

∫ T

s

‖(u(t), v(t))‖2

L
N−1

2
, N
2

2 (M)
dt ≤

∫ T

s

d2
M
‖(∇Mum,∇Mvm)‖2

L
N−1

2
, N

2
2 (M)

dt

≤

∫ T

s

d2
M

γ
K(u(t), v(t))dt

≤
d2

M

2γ

[

‖(u(s), v(s))‖2

L
N−1

2
, N

2
2 (M)

− ‖(u(T ), v(T ))‖2

L
N−1

2
, N
2

2 (M)

]

≤
d2

M

2γ
‖(u(s), v(s))‖2

L
N−1

2
, N

2
2 (M)

.

Then, by the arbitrary nature of T > 0, it follows that
∫ ∞

s

‖(u(t), v(t))‖2

L
N−1

2
, N
2

2 (M)
dt ≤

d2
M

2γ
‖(u(s), v(s))‖2

L
N−1

2
, N

2
2 (M)

for 0 ≤ s <∞, which means, from Lemma 4.1, that

‖(u(t), v(t))‖2

L
N−1

2
, N

2
2 (M)

≤ ‖(u0, v0)‖
2

L
N−1

2
, N

2
2 (M)

e1− t
A

for 0 ≤ t <∞, where A =
d2

M

2γ
> 0. Therefore, there exist constants C > 0 and λ > 0 such that

‖(u(t), v(t))‖2

L
N−1

2
, N

2
2 (M)

≤ Ce−λt for 0 ≤ t <∞.

�

Next, we show that the global existence also holds for the case of potential well family.

Corollary 4.2 Let u0, v0 ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Assume that E(u0, v0) ≤ d andKδ2(u0, v0) ≥

0, where δ1 < δ2 are two roots of equation d(δ) = E(u0, v0). Then problem (1.1) admits a

global weak solution u, v ∈ C(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) with ut, vt ∈ L2(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) and

(u(t), v(t)) ∈ Wδ for δ1 < δ < δ2, t ∈ [0,∞).

Proof From Theorem 1.3 and Proposition 3.12, we note that to prove Corollary 4.2, it

is sufficient to show that K(u0, v0) > 0, from Kδ2(u0, v0) > 0. Indeed, if this is false, then

there exists a δ̄ ∈ [1, δ2) such that Kδ̄(u0, v0) = 0. Combining the fact that (u0, v0) 6= (0, 0),

because of Kδ2(u0, v0) > 0, we get that E(u0, v0) ≥ d(δ̄). However, from Lemma 3.6, we have

E(u0, v0) = d(δ1) = d(δ2) < d(δ) for δ ∈ (δ1, δ2). This is a contradiction to Kδ̄(u0, v0) = 0, and

thus we have the proof. �

Instead of considering the global existence result that depends on K(u0, v0), we study the

global existence of problem (1.1) with initial data u0, v0, relying on the H
1,( N−1

2 , N
2 )

2,0 (M) norm.

Corollary 4.3 Let u0, v0 ∈ H
1,( N−1

2 , N
2 )

2,0 (M). Assume that E(u0, v0) ≤ d and

‖(∇Mu0,∇Mv0)‖
L

N−1
2

, N
2

2 (M)
< r(δ2),
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where δ1 < δ2 are two roots of equation d(δ) = E(u0, v0). Then problem (1.1) admits a global

weak solution u, v ∈ C(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) with ut, vt ∈ L2(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) satisfying

‖(∇Mu(t),∇Mv(t))‖
2

L
N−1

2
, N
2

2 (M)
<
E(u0, v0)

a(δ1)
, t ∈ [0,∞). (4.9)

Proof From ‖(∇Mu0,∇Mv0)‖
L

N−1
2

, N
2

2 (M)
< r(δ2), we get that Kδ2(u0, v0) > 0, by Lemma

3.2. Hence, the problem (1.1) has a global solution u, v ∈ C(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) with ut, vt ∈

L2(0,∞;H
1,( N−1

2 , N
2 )

2,0 (M)) and (u(t), v(t)) ∈ Wδ for δ1 < δ < δ2, t ∈ [0,∞), from Corollary 4.2.

Finally, (4.9) follows from Lemma 3.8. �

In view of Theorem 1.4, we need the following property for the depth of potential well d:

Lemma 4.4 For any ǫ > 0, we have

d ≤ dǫ +
2ǫ

p+ 1
,

where dǫ is defined by

dǫ := inf
{

E(u, v)|(u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2,K(u, v) = −ǫ
}

.

Proof First, we show that for any fixed ǫ > 0, dǫ > −∞.

Let (u, v) ∈ H
1,( N−1

2 , N
2 )

2,0 (M) × H
1,( N−1

2 , N
2 )

2,0 (M) satisfy K(u, v) = −ǫ. From the definitions

of C∗ (1.3) and C∗ (3.4), we can obtain that

(1 − µC∗2)

∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ

≤

∫

M

r(|∇Mu|
2 + |∇Mu|

2)dσ −

∫

M

rµ(V1|φ|
2 + V2|ψ|

2)dσ

≤ (p+ 1)

∫

M

rF (u, v)dσ

≤ (2pα+ β)

∫

M

r(|u|p+1 + |v|p+1)dσ

≤ (2pα+ β)Cp+1
∗

[(
∫

M

r|∇Mu|
2dσ

)

p+1
2

+

(
∫

M

r|∇Mv|
2dσ

)

p+1
2

]

≤ (2pα+ β)Cp+1
∗

[
∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ

]

p+1
2

.

Thus
∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ ≥

[

1 − µC∗2

(2pα+ β)Cp+1
∗

]
2

p−1

> 0

and

E(u, v) =
p− 1

2(p+ 1)

∫

M

r(|∇Mu|
2 + |∇Mv|

2)dσ

−
p− 1

2(p+ 1)

∫

M

r(V1|u|
2 + V2|v|

2)dσ +
1

p+ 1
K(u, v)

≥
p− 1

2(p+ 1)
(1 − µC∗2)

[

1 − µC∗2

(2pα+ β)Cp+1
∗

]
2

p−1

−
ǫ

p+ 1
.



No.1 H. Chen & N. Liu: COUPLED PARABOLIC EQUATIONS WITH SINGULAR POTENTIALS 279

Therefore,

dǫ ≥
p− 1

2(p+ 1)
(1 − µC∗2)

[

1 − µC∗2

(2pα+ β)Cp+1
∗

]
2

p−1

−
ǫ

p+ 1
> −∞.

Now, we choose a sequence (uj , vj) ∈ H
1,( N−1

2 , N
2 )

2,0 (M)×H
1,( N−1

2 , N
2 )

2,0 (M) \ {(0, 0)} satisfying

that

K(uj, vj) = −ǫ, E(uj , vj) → dǫ as j → ∞.

Moreover, we also can suppose that E(uj , vj) is decreasing.

For each (uj , vj), one can choose a λj ∈ R such that K(λjuj, λjvj) = 0. In fact, λj can be

determined explicitly by

λp−1
j =

Hj

Ij
,

where

Hj =

∫

M

r(|∇Muj|
2 + |∇Mvj |

2)dσ −

∫

M

r(V1|uj|
2 + V2|vj |

2)dσ,

Ij = (p+ 1)

∫

M

rF (uj , vj)dσ.

Since K(uj, vj) = −ǫ and E(uj , vj) → dǫ as j → ∞, we have

Hj = Ij − ǫ,

and

E(uj , vj) =
1

2
Hj −

1

p+ 1
Ij = dǫ + ηj ,

where ηj → 0+, as j → ∞.

Then, using dǫ and ηj , Hj and Ij can be expressed by

Hj =
2(p+ 1)

p− 1
(dǫ + ηj +

2ǫ

p+ 1
), Ij =

2(p+ 1)

p− 1
(dǫ + ηj +

1

2
ǫ).

Notice that K(λjuj , λjvj) = 0, i.e., (λjuj, λjvj) ∈ N .

Thus, for all j ∈ N, E(λjuj , λjvj) ≥ d and a straightforward calculation yields that

d ≤ E(λjuj , λjvj) =
λ2

j

2
Hj −

λp+1
j

p+ 1
Ij =

1

2

(

Hj

Ij

)
2

p−1

Hj −
1

p+ 1

(

Hj

Ij

)

p+1
p−1

Ij

=
p− 1

2(p+ 1)

(

Hj

Ij

)
2

p−1

Hj =

(

dǫ + ηj + ǫ
p+1

dǫ + ηj + 1
2ǫ

)
2

p−1
(

dǫ + ηj +
ǫ

p+ 1

)

≤ dǫ + ηj +
ǫ

p+ 1
.

From ηj → 0+ as j → ∞, we have 0 < ηj <
ǫ

p+1 for sufficiently large j. Therefore,

d ≤ dǫ +
2ǫ

p+ 1
.

�

Now we can give the proof of Theorem 1.4.

Proof of Theorem 1.4 We divide the proof into two steps.

Step 1 Let us first consider the low initial energy case.
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If E(u0, v0) < d, from (3.2) we can obtain that K(u0, v0) = 0 is impossible. Hence, we only

need to consider the case where E(u0, v0) < d and K(u0, v0) < 0, i.e., (u0, v0) ∈ Z.

For (u0, v0) ∈ Z, we choose ǫ > 0 such that

ǫ < min{
1

2
(d− E(u0, v0)),−K(u0, v0)}.

From the choice of ǫ, it is obvious that K(u0, v0) < −ǫ.

We claim that K(u(t), v(t)) < −ǫ for all t ∈ (0, T ), where T > 0 is the maximal existence

time. Otherwise, from the time continuity of K(u(t), v(t)), there is t1 ∈ (0, T ) satisfying

K(u(t1), v(t1)) = −ǫ. By using Lemma 4.4, we know that

E(u0, v0) < d− ǫ < d−
2ǫ

p+ 1
≤ dǫ.

From the conservation of energy (1.9), we have E(u(t), v(t)) < dǫ for all t ∈ (0, T ). Thus

E(u(t1), v(t1)) < dǫ, which is in contradiction with the definition of dǫ.

For any (u, v) ∈ (H
1,( N−1

2 , N
2 )

2,0 (M))2 \ {(0, 0)}, let

L(t) =
1

2
‖(u(t), v(t))‖2

L
N−1

2
, N

2
2 (M)

.

Along the flow generated by problem (1.1), we can compute that

d

dt
L(t) =

∫

M

r(uut + vvt)dσ

= −

∫

M

r[(|∇Mu|
2 + |∇Mv|

2) − µ(V1|u|
2 + V2|v|

2) − (p+ 1)F (u, v)]dσ

= −K(u, v).

Since (u0, v0) ∈ Z, from Proposition 3.13 we know that (u(t), v(t)) ∈ Z. It follows that
d
dt
L(t) > 0 for t ≥ 0, i.e., L(t) is increasing along the flow generated by problem (1.1).

By the claim, we can obtain that d
dt
L(t) = −K(u(t), v(t)) > ǫ for any t ∈ (0, T ). Integrating

from 0 to t, we have

L(t) ≥

∫ t

0

ǫds+ L(0) = ǫt+ L(0). (4.10)

We now argue by contradiction. Assume that T = +∞. Then the above inequality implies

that L(t) → +∞ as t→ T . Since (u(t), v(t)) ∈ Z, we can obtain that

d

dt
L(t) = −2E(u, v) + (p− 1)

∫

M

rF (u, v)dσ

> −2d+ (p− 1)

∫

M

r(|u|p+1 + |v|p+1)dσ.

By corner type Hölder inequality (2.4), we have

d

dt
L(t) ≥ −2d+ (p− 1)C(M)

[(
∫

M

r|u|2dσ

)

p+1
2

+

(
∫

M

r|v|2dσ

)

p+1
2

]

≥ −2d+ (p− 1)C(M, p)L(t)
p+1
2 .

We choose ǫ > 0 and t0 > 0 such that

d

dt
L(t) ≥ ǫL(t)

p+1
2 , t > t0.
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From (4.10), we can obtain that L(t) ≥ 0 for 0 < t < T . Integrating the above inequality on

(t0, t), we can obtain that

0 ≤ L(t)−
p−1
2 ≤ −ǫ

p− 1

2
(t− t0) + L(t0)

− p−1
2 .

This is a contradiction, since the right-hand side of the above inequality goes to −∞ as t→ +∞.

Therefore, the solution of problem (1.1) blows up in a finite time.

Step 2 Now we consider the critical initial energy case.

Let (u(t), v(t)) be a weak solution of the problem (1.1) with E(u0, v0) = d > 0,K(u0, v0) <

0, and T being the maximal existence time of (u(t), v(t)). Let us prove T < ∞. From the

time continuity of E(u(t), v(t)) and K(u(t), v(t)), we know that there exists a sufficient small

t1 ∈ (0, T ) such that E(u(t1), v(t1)) > 0 and K(u(t), v(t)) < 0 for 0 ≤ t ≤ t1. Thus we

can deduce
∫

M
r(uut + vvt)dσ = −K(u, v) > 0 and ‖(ut, vt)‖2

L
(

N−1
2

, N
2

)

2 (M)

> 0 for 0 ≤ t ≤ t1.

Therefore
∫ t

0
‖(uτ , vτ )‖2

L
( N−1

2
, N
2

)

2 (M)

dτ is strictly increasing for 0 ≤ t ≤ t1, and we can choose t1

such that

0 < d1 = d−

∫ t1

0

‖(uτ , vτ )‖2

L
( N−1

2
, N
2

)

2 (M)
dτ < d.

Since E(u0, v0) = d, from the conservation of energy (1.9) and the above inequality, we can

obtain that

E(u(t1), v(t1)) = E(u0, v0) −

∫ t1

0

‖(uτ , vτ )‖2

L
( N−1

2
, N
2

)

2 (M)
dτ < d.

If we take t = t1 as the initial time, then E(u(t1), v(t1)) < d and K(u(t1), v(t1)) < 0. Hence,

Step 1 implies that the maximal existence time T of the weak solution (u(t), v(t)) for problem

(1.1) is finite, and that

lim
t→T−

‖(u(t), v(t))‖2

L
N−1

2
, N
2

2 (M)
= +∞.

�

References

[1] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct

Anal, 1973, 14: 349–381

[2] Alimohammady M, Kalleji M K. Existence result for a class of semilinear totally characteristic hypoelliptic

equations with conical degeneration. J Funct Anal, 2013, 265: 2331–2356

[3] Chen H, Liu N. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic

equations with singular potentials. Discrete Contin Dyn Syst, 2016, 36(2): 661–682

[4] Chen H, Liu G. Global existence and nonexistence for semilinear parabolic equations with conical degen-

eration. J Pseudo-Differ Oper Appl, 2012, 3(3): 329–349

[5] Chen H, Liu G. Global existence, uniform decay and exponential growth for a class of semi-linear wave

equation with strong damping. Acta Math Sci, 2013, 33B(1): 41–58

[6] Chen H, Liu X, Wei Y. Existence theorem for a class of semilinear totally characteristic elliptic equations

with critical cone Sobolev exponents. Ann Global Anal Geom, 2011, 39: 27–43

[7] Chen H, Liu X, Wei Y. Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on

manifold with concial singularities. Calc Var Partial Differ Equ, 2012, 43: 463–484

[8] Chen H, Liu X, Wei Y. Multiple solutions for semilinear totally characteristic elliptic equations with sub-

critical or critical cone Sobolev exponents. J Differential Equations, 2012, 252(7): 4200–4228

[9] Chen H, Wei Y, Zhou B. Existence of solutions for degenerate elliptic equations with singular potential on

concial singular manifolds. Math Nachr, 2012, 285: 1370–1384



282 ACTA MATHEMATICA SCIENTIA Vol.41 Ser.B

[10] Chen H, Liu X, Wei Y. Dirichlet problem for semilinear edge-degenerate elliptic equations with singular

potential term. J Differ Equ, 2012, 252: 4289–4314

[11] Chen H, Liu X C, Wei Y W. Multiple solutions for semi-linear corner degenerate elliptic equations. J Funct

Anal, 2014, 266: 3815–3839

[12] Chen H, Tian S Y, Wei Y W. Multiple sign changing solutions for semi-linear corner degenerate elliptic

equations with singular potential. J Funct Anal, 2016, 270: 1602–1621

[13] Chen H, Tian S Y, Wei Y W. Multiple solutions for semi-linear corner degenerate elliptic equations with

singular potential term. Communications in Contemporary Mathematics, DOI: 10.1142/S0219199716500437

[14] Egorov Ju V, Schulze B -W. Pseudo-Differential Operators, Singularities, Appliciations. Oper Theory Adv

Appl, Vol 93. Basel: Birkhäuser Verlag, 1997
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