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Abstract In this article, we study optimal reinsurance design. By employing the increasing

convex functions as the admissible ceded loss functions and the distortion premium principle,

we study and obtain the optimal reinsurance treaty by minimizing the VaR (value at risk)

of the reinsurer’s total risk exposure. When the distortion premium principle is specified

to be the expectation premium principle, we also obtain the optimal reinsurance treaty by

minimizing the CTE (conditional tail expectation) of the reinsurer’s total risk exposure. The

present study can be considered as a complement of that of Cai et al. [5].
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1 Introduction

Reinsurance is an effective risk management tool, which can help an insurer to reduce

its risk exposure by means of buying reinsurance contracts. A traditional reinsurance contract

must deal with the trade-off between the insurer and the reinsurer. In order to make an optimal

reinsurance agreement, three aspects should be taken into account: (1) an optimal objective;

(2) an admissible class of ceded loss functions; (3) a principle of reinsurance premium.

There has been a great deal of literature on the subject of optimal reinsurance study; see,

for example, [1–31] and the references therein. Among those listed above [1] and [3] are the

seminal articles.

Under the expected value premium principle, Arrow [1] showed that stop-loss reinsurance

is optimal. In [10] and [11] the authors considered VaR and CVaR risk measures with premium

principles which preserve the convex ordering. Lu, et al. [21] studied the optimal reinsurance
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under the VaR and TVaR risk measures, and showed that two-layer reinsurance is always the

optimal reinsurance policy under both the VaR and TVaR risk measures. From the perspective

of an insurer, Cai et al. [5] studied the optimal reinsurance treaty by means of an approximation

approach by minimizing the VaR and CTE of the insurer’s liability, where the admissible

ceded loss functions were assumed to be the increasing convex functions. This method is quite

complicated, as pointed out by Chi and Tan [9]. For any increasing convex ceded loss function

I(x), Chi and Tan [9] demonstrated that it can be rewritten as

I(x) = c

∫ ∞

0−

(x− t)+ν(dt)

for some constant c ∈ [0, 1] and a probability measure ν defined on [0,∞], where (x)+ :=

max{x, 0}. This representation can greatly simplify the proof of Cai et al. [5]. Later, Huang

and Yu [17] further studied the optimal safety loading of the reinsurance premium principle

based on the work of Cai et al. [5]. However, it is well known that the insurer and the reinsurer

have a conflict interest in a few of reinsurance contracts. Therefore, a natural and interesting

question arises: with the admissible class of increasing convex ceded loss functions, and from

the reinsurer’s perspective, what is the corresponding optimal reinsurance treaty?

In the present article, we will investigate the above-mentioned question. Namely, by em-

ploying the increasing convex functions as the admissible ceded loss functions, and from the

reinsurer’s perspective, we study the optimal reinsurance treaty by minimizing the VaR of the

reinsurer’s liability under the distortion premium principle. When the distortion premium prin-

ciple is specified to the expected value premium principle, we study the optimal reinsurance

treaty by minimizing the CTE of the reinsurer’s liability. The optimal reinsurance treaties are

provided. It turns out that the obtained optimal reinsurance treaties are quite different from

those of Cai et al. [5]. The present study can be considered as a complement of that of Cai et

al. [5].

The rest of this article is organized as follows: in Section 2, we briefly introduce the pre-

liminaries. In Section 3, the optimal reinsurance design is studied under VaR, and the optimal

reinsurance treaty is obtained in general. In Section 4, the optimal reinsurance design is studied

under CTE, and the optimal reinsurance treaty is obtained in general. Finally, a conclusion of

this article is provided.

2 Preliminaries

Let a non-negative random variable X with positive and finite expectation E[X ] be the

loss initially faced by an insurer. We denote by X all the non-negative random variables with

positive and finite expectations. We denote by FX(x) the distribution function of X , and by

SX(x) := 1 − FX(x) the survival function of X . Assume that X has a continuous strictly

increasing distribution function on (0,+∞) with a possible jump at 0. Furthermore, we assume

that the survival function SX(x) is differentiable with a negative derivative; that is, S′
X(x) < 0

for all x > 0. We denote by I the class of ceded loss functions, which consists of all increasing

convex functions I(x) defined on [0,∞) satisfying 0 ≤ I(x) ≤ x for x ≥ 0, but excluding

I(x) ≡ 0.

Under a reinsurance contract, the insurer cedes part of its loss, say I(X) with 0 ≤ I(X) ≤
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X , to a reinsurer, and thus the retained loss of the insurer is RI(X) := X − I(X), where

the function I(x), satisfying 0 ≤ I(x) ≤ x, is called the ceded loss function, and the function

RI(x) := x − I(x) is called the retained loss function. In exchange, the insurer agrees to pay

a reinsurance premium to the reinsurer. Denote by πI(X) the reinsurance premium which

corresponds to the ceded loss I(X). By definition, a distortion function r : [0, 1] → [0, 1]

is a non-decreasing function such that r(0) = 0, r(1) = 1. The inverse of r is defined by

r−1(x) := inf{y : r(y) ≥ x}. Corresponding to a distortion function r, the distortion premium

principle π is defined by

π(X) = (1 + ρ)

∫ ∞

0

r(SX(x))dx (2.1)

for X ∈ X , where ρ > 0 is the safety loading.

If r(x) = x, then the distortion premium principle recovers the expected value principle.

Throughout this article, we assume that the distortion function r(x) has at least finitely many

discontinuous points, with x = 0 being a continuous point of r.

Upon the issuing of a reinsurance contract, the total risk exposure of the reinsurer is

TI(X) := I(X) − πI(X). (2.2)

Next, we introduce the definitions of VaR and CTE.

Definition 2.1 Let α ∈ (0, 1), and for any random variable Y , the VaR (value at risk) of

Y at the confidence level (1 − α) is defined by

VaRα(Y ) := inf{y ∈ R : P{Y > y} ≤ α}. (2.3)

Definition 2.2 Let α ∈ (0, 1), and for any random variable Y , the CTE (conditional tail

expectation) of Y at confidence level (1 − α) is defined by

CTEα(Y ) := E[Y |Y ≥ VaRα(Y )]. (2.4)

Now, we collect some properties of VaR and CTE.

Proposition 2.3 Let α ∈ (0, 1), and for any random variable Y we have that

(i) For any increasing and continuous function φ(y),

VaRα(φ(Y )) = φ(VaRα(Y )). (2.5)

(ii) If that the functions ψn(y) and ψ(y) are increasing and continuous, and if lim
n→∞

ψn(y) =

ψ(y) for any y ∈ R, then

lim
n→∞

VaRα(ψn(Y )) = VaRα(ψ(Y )). (2.6)

(iii) The relationship between VaR and CTE is

CTEα(Y ) = E[Y |Y ≥ VaRα(Y )] =
1

α

∫ α

0

VaRq(Y )dq. (2.7)

Note that (i) is from (15) of Dhaene et al. [16]. (ii) follows from (i). (iii) is from Porth,

Tand and Weng [23].

Next, we state the following lemma, the proof of which can be found in Lemma 2.1 of

Cheung and Lo [14]:
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Lemma 2.4 For any distortion function r and ceded loss function I in I , we have that

πI(X) =

∫ ∞

0

r(SI(X)(x))dx =

∫ ∞

0

r(SX(x))dI(x). (2.8)

Now, we introduce the optimal reinsurance models with which we are concerned in the

present article:

VaR-based optimization model

VaRα[TI∗(X)] = min
I∈I

VaRα[TI(X)] (2.9)

and

CTE-based optimization model

CTEα[TI∗(X)] = min
I∈I

CTEα[TI(X)], (2.10)

where I∗ are the resulting optimal ceded loss functions, respectively.

The following formulas can be derived from the properties and definitions of VaR and CTE:

VaRα[TI(X)] = VaRα[I(X)] − πI(X) (2.11)

and

CTEα[TI(X)] = CTEα[I(X)] − πI(X). (2.12)

For notational convenience, we denote

ρ∗ :=
1

1 + ρ
, d∗1 := S−1

X (r−1(ρ∗)), d∗2 := S−1
X (ρ∗), (2.13)

g1(x) := x−
1

ρ∗

∫ x

0

r(SX(q))dq, x ≥ 0, (2.14)

g2(x) := x−
1

ρ∗

∫ x

0

SX(q)dq, x ≥ 0, (2.15)

u1(x) := x+
1

ρ∗

∫ ∞

x

r(SX(q))dq, x ≥ 0,

u2(x) := x+
1

ρ∗

∫ ∞

x

SX(q)dq, x ≥ 0.

We end this section with a proposition concerning the properties of g1(x) defined by (2.14)

and g2(x) defined by (2.15).

Proposition 2.5 (i) If we let the continuous function g1(x) be defined as in (2.14), then

g1(x) is decreasing on (0, d∗1), while increasing on (d∗1,∞), and there exists a θ∗1 > d∗1 such that

g1(θ
∗
1) = g1(0). If 0 ≤ x ≤ θ∗1 , then g1(x) ≤ 0, and if x ≥ θ∗1 , then g1(x) ≥ 0.

(ii) If we let the continuous function g2(x) be defined as in (2.15), then g2(x) is decreasing

on (0, d∗2), while increasing on (d∗2,∞), and there exists a θ∗2 > d∗2 such that g2(θ
∗
2) = g2(0). If

0 ≤ x ≤ θ∗2 , then g2(x) ≤ 0, and if x ≥ θ∗2 , then g2(x) ≥ 0.

Proof (i) Note that

g′1(x) = 1 −
1

ρ∗
r(SX(x)). (2.16)
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Hence,

g′1(x) ≤ 0 if x < d∗1,

g′1(x) = 0 if x = d∗1,

g′1(x) ≥ 0 if x > d∗1.

From (2.16) it follows that lim
x→+∞

g′1(x) = 1, which implies that g1(x) is strictly increasing for

large enough x > d∗1. Note that g1(d
∗
1) ≤ g1(0) and lim

x→+∞
g1(x) = +∞, therefore, by the

intermediate value theorem for the continuous function g1(x), there exists a θ∗1 > d∗1 such that

g1(θ
∗
1) = g1(0). Note again that g1(0) = 0, consequently, if 0 ≤ x ≤ θ∗1 , then g1(x) ≤ 0, and if

x ≥ θ∗1 , then g1(x) ≥ 0.

(ii) The proof of (ii) is similar to that of (i). �

3 VaR-based Optimal Reinsurance

In this section, we will derive the optimal solution to model (2.9) under the admissible

ceded loss functions. We begin this section with the following lemma, which is from Chi and

Tan ([10], Lemma 3.1):

Lemma 3.1 We have

I =

{

I(x) = c

∫ ∞

0−

(x−t)+ν(dt) : 0 ≤ c ≤ 1 and ν is a probability measure defined on [0,∞]

}

.

For any I ∈ I , it follows from (2.5), (2.8), (2.11) and Lemma 3.1 that

VaRα(TI(X)) = VaRα(I(X)) − πI(X)

= I(VaRα(X)) − (1 + ρ)

∫ ∞

0

r(SX(x))dI(x)

= I(VaRα(X)) + (1 + ρ)

∫ ∞

0

I(x)dr(SX (x))

= c

∫ ∞

0−

w(t)ν(dt)

for some 0 ≤ c ≤ 1 and probability measure ν, where

w(t) := (VaRα(X) − t)+ + (1 + ρ)

∫ ∞

0

(x− t)+dr(SX(x)).

Now, we are in a position to state the main result of this section.

Theorem 3.2 Let α ∈ (0, 1) and X ∈ X .

(i) Assume that VaRα(X) < θ∗1 . If VaRα(X) > u1(0), then

I∗(x) = 0.

If VaRα(X) = u1(0), then

I∗(x) = cx,

where c is any number in [0, 1]. If VaRα(X) < u1(0), then

I∗(x) = x.
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(ii) Assume that VaRα(X) = θ∗1 . Then either

I∗(x) = (x − VaRα(X))+ or I∗(x) = 0,

if VaRα(X) > u1(0),

I∗(x) = cx,

where c is any number in [0, 1], if VaRα(X) = u1(0), and

I∗(x) = x,

if VaRα(X) < u1(0).

(iii) Assume that VaRα(X) > θ∗1 , then I∗(x) = (x− VaRα(X))+.

Proof It follows from the above results that to analyze the minimization of VaRα(TI(X)),

it is sufficient to focus on the minimum value of w. For any t ≥ VaRα(X), we have that

w(t) = (1 + ρ)

∫ ∞

0

(x − t)+dr(SX(x)) = −(1 + ρ)

∫ ∞

t

r(SX(x))dx. (3.1)

This leads to w′(t) = (1 + ρ)r(SX (t)) > 0, so the minimum value of w on [VaRα(X),∞] is

attained at VaRα(X). On the other hand, when 0 ≤ t ≤ VaRα(X), we have that

w(t) = VaRα(X) − t+ (1 + ρ)

∫ ∞

0

(x− t)+dr(SX(x))

= VaRα(X) − t− (1 + ρ)

∫ ∞

t

r(SX(x))dx;

this leads to w′(t) = (1 + ρ)r(SX(t)) − 1.

If we assume that d∗1 ≥ VaRα(X), then the minimum value of w on [0,VaRα(X)] is attained

at 0. Combining this with (3.1) yields

min
x∈R+

w(x) = min{w(0), w(VaRα(X))}.

Recalling that g1(x), we have VaRα(X) ≤ d∗1 < θ∗1 , so g1(VaRα(X)) < 0, and thus

min
x∈R+

w(x) = w(0) = VaRα(X) − u1(0).

If VaRα(X) > u1(0), we set ν(0) = 1 and c = 0, so the corresponding optimal ceded loss

function becomes I∗(x) = 0. If VaRα(X) = u1(0), we set ν(0) = 1, so the corresponding

optimal ceded loss function becomes I∗(x) = cx for some c ∈ [0, 1]. If VaRα(X) < u1(0), we

set ν(0) = 1 and c = 1, so the corresponding optimal ceded loss function becomes I∗(x) = x.

On the other hand, assume that d∗1 < VaRα(X). In this case, the minimum value of w on

[0,VaRα(X)] is attained at 0 or VaRα(X). Combining this with (3.1) yields

min
x∈R+

w(x) = min{w(0), w(VaRα(X))}.

Recalling that g1(x), and supposing that VaRα(X) < θ∗1 , we have g1(VaRα(X)) < 0, so

min
x∈R+

w(x) = w(0) = VaRα(X) − u1(0).

If VaRα(X) > u1(0), we set ν(0) = 1 and c = 0, so the corresponding optimal ceded loss

function becomes I∗(x) = 0. If VaRα(X) = u1(0), we set ν(0) = 1, so the corresponding
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optimal ceded loss function becomes I∗(x) = cx for some c ∈ [0, 1]. If VaRα(X) < u1(0), we

set ν(0) = 1 and c = 1, so the corresponding optimal ceded loss function becomes I∗(x) = x.

Supposing that VaRα(X) = θ∗1 , we have g1(VaRα(X)) = 0, and the minimum value of w oc-

curs at both 0 and VaRα(X). In this case, we need only to set ν with support on {0,VaRα(X)}.

Then either the corresponding optimal ceded loss function becomes I∗(x) = (x − VaRα(X))+

for c = 1, or if VaRα(X) > u1(0), we set ν(0) = 1 and c = 0, so the corresponding optimal ceded

loss function becomes I∗(x) = 0; if VaRα(X) = u1(0), we set ν(0) = 1 and the corresponding

optimal ceded loss function becomes I∗(x) = cx for some c ∈ [0, 1]; if VaRα(X) < u1(0), we set

ν(0) = 1 and c = 1, and the corresponding optimal ceded loss function becomes I∗(x) = x.

If VaRα(X) > θ∗1 , we have g1(VaRα(X)) > 0, so min
x∈R+

w(x) = w(VaRα(X)). In this case,

we set ν(VaRα(X)) = 1 and c = 1, so the corresponding optimal ceded loss function becomes

I∗(x) = (x− VaRα(X))+.

Theorem 3.2 is proved. �

Remark 3.3 Theorem 3.2 shows that from the reinsurer’s perspective, the optimal rein-

surance treaty is different from that of the insurer; see [5] for the optimal reinsurance treaty

from the insurer’s perspective. These different ideas as to what constitutes the optimal treaty

reflects the conflict interest between the insurer and the reinsurer in a reinsurance contract.

How to balance both the insurer’s and the reinsurer’s interests in a reinsurance contract is an

interesting issue, and this will be the subject of further work.

In the special case where the distortion function r(x) = x, x ≥ 0,

VaRα(TI(X)) = I(VaRα(X)) − (1 + ρ)E[I(X)] = c

∫ ∞

0−

w1(t)ν(dt)

for some 0 ≤ c ≤ 1 and probability measure ν, where

w1(t) := (VaRα(X) − t)+ − (1 + ρ)E[(X − t)+].

Therefore, in this special case, by Theorem 3.2, we have the following corollary:

Corollary 3.4 Let α ∈ (0, 1) and X ∈ X .

(i) Assume that VaRα(X) < θ∗2 . If VaRα(X) > u2(0), then

I∗(x) = 0.

If VaRα(X) = u2(0), then

I∗(x) = cx,

where c is any number in [0, 1]. If VaRα(X) < u2(0), then

I∗(x) = x.

(ii) Assume that VaRα(X) = θ∗2 . Then either

I∗(x) = (x− VaRα(X))+

or

I∗(x) = 0,

if VaRα(X) > u2(0),

I∗(x) = cx,
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where c is any number in [0, 1], if VaRα(X) = u2(0), and

I∗(x) = x,

if VaRα(X) < u2(0).

(iii) Assume that VaRα(X) > θ∗2 . Then I∗(x) = (x− VaRα(X))+.

4 CTE-based Optimal Reinsurance

In this section, we will derive the optimal solution to model (2.10) under the admissible

ceded loss functions with the expectation premium principle. Recall that from (2.7) and (2.11),

we obtain

CTEα[TI(X)] =
1

α

∫ α

0

VaRq(TI(X))dq

=
1

α

∫ α

0

I(VaRq(X))dq − πI(X)

= c

∫ ∞

0−

w2(t)ν(dt)

for some 0 ≤ c ≤ 1 and probability measure ν, where

w2(t) :=
1

α

∫ α

0

(VaRq(X) − t)+dq − (1 + ρ)E(X − t)+.

Now, by virtue of Lemma 3.1, we obtain the following theorem, which is the main result of

this section:

Theorem 4.1 Let α ∈ (0, 1) and X ∈ X .

(I) Assume that α ≥ ρ∗,

(i) Suppose that VaRα(X) < θ∗2 . If CTEα(X) > u2(0), then I∗(x) = 0.

If CTEα(X) = u2(0), then

I∗(x) = cx,

where c is any number in [0, 1].

If CTEα(X) < u2(0), then I∗(x) = x.

(ii) Suppose that VaRα(X) = θ∗2 . If CTEα(X) > u2(0) = u2(VaRα(X)), then I∗(x) = 0.

If CTEα(X) = u2(0) = u2(VaRα(X)), then

I∗(x) = cx,

where c is any number in [0, 1], or

I∗(x) = c(x− VaRα(X))+,

where c is any number in [0, 1].

If CTEα(X) < u2(0) = u2(VaRα(X)), then

I∗(x) = x,

or

I∗(x) = (x− VaRα(X))+.
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(iii) Suppose that VaRα(X) > θ∗2 . If CTEα(X) > u2(VaRα(X)), then

I∗(x) = 0.

If CTEα(X) = u2(VaRα(X)), then

I∗(x) = c(x− VaRα(X))+,

where c is any number in [0, 1].

If CTEα(X) < u2(VaRα(X)), then

I∗(x) = (x− VaRα(X))+.

(II) Assume that α < ρ∗.

(i) Suppose that VaRα(X) < θ∗2 . If CTEα(X) > u2(0), then I∗(x) = 0.

If CTEα(X) = u2(0), then

I∗(x) = cx,

where c is any number in [0, 1], or

I∗(x) = 0.

If CTEα(X) < u2(0), then I∗(x) = x.

(ii) Suppose that VaRα(X) = θ∗2 . If CTEα(X) > u2(0) = u2(VaRα(X)), then I∗(x) = 0.

If CTEα(X) = u2(0) = u2(VaRα(X)), then

I∗(x) = cx,

where c is any number in [0, 1], or

I∗(x) = c(x− VaRα(X))+,

where c is any number in [0, 1], or

I∗(x) = 0.

If CTEα(X) < u2(0) = u2(VaRα(X)), then

I∗(x) = x,

or

I∗(x) = (x− VaRα(X))+.

(iii) Suppose that VaRα(X) > θ∗2 . If CTEα(X) > u2(VaRα(X)), then I∗(x) = 0.

If CTEα(X) = u2(VaRα(X)), then

I∗(x) = c(x− VaRα(X))+,

where c is any number in [0, 1], or

I∗(x) = 0.

If CTEα(X) < u2(VaRα(X)), then

I∗(x) = (x− VaRα(X))+.
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Proof It follows from the above results that to analyze the minimization of CTEα(TI(X)),

it is sufficient to focus on the minimum value of w2.

Assume that α ≤ SX(t), that is, that 0 ≤ t ≤ VaRα(X). Then

w2(t) =
1

α

∫ α

0

(VaRq(X) − t)dq − (1 + ρ)E(X − t)+,

which leads to w′
2(t) = (1 + ρ)SX(t) − 1. Suppose that VaRα(X) ≤ d∗2, that is, that α ≥ ρ∗.

Then the minimum value of w2 on [0,VaRα(X)] is attained at 0. Suppose that VaRα(X) > d∗2,

that is, that α < ρ∗. Then the minimum value of w2 on [0,VaRα(X)] is attained at 0 or

VaRα(X).

Assume that α ≥ SX(t), that is, that t ≥ VaRα(X). Then

w2(t) =
1

α

∫ SX(t)

0

(VaRq(X) − t)dq − (1 + ρ)E(X − t)+,

which leads to w′
2(t) = ( 1

ρ∗
− 1

α
)SX(t). If 1

ρ∗
< 1

α
, that is, α < ρ∗, then the minimum value of

w2 on [VaRα(X),∞] is attained at ∞. If 1
ρ∗

≥ 1
α
, that is, α ≥ ρ∗, then the minimum value of

w2 on [VaRα(X),∞] is attained at VaRα(X).

To sum up: (I) If we have that α ≥ ρ∗, then

min
x∈R+

w2(x) = min{w2(0), w2(VaRα(X))}.

(i) If we have that VaRα(X) < θ∗2 , then

min
x∈R+

w2(x) = w2(0) =
1

α

∫ α

0

VaRq(X)dq − u2(0).

If CTEα(X) > u2(0), we set ν(0) = 1 and c = 0, so the corresponding optimal ceded loss

function becomes I∗(x) = 0. If CTEα(X) = u2(0), we set ν(0) = 1, so the corresponding

optimal ceded loss function becomes I∗(x) = cx for some c ∈ [0, 1]. If CTEα(X) < u2(0), we

set ν(0) = 1 and c = 1, so the corresponding optimal ceded loss function becomes I∗(x) = x.

(ii) If we have that VaRα(X) = θ∗2 , then

min
x∈R+

w2(x) = w2(0) = w2(VaRα(X)) =
1

α

∫ α

0

VaRq(X)dq − u2(VaRα(X)).

In this case, we need only to set ν with support on {0,VaRα(X)}. If CTEα(X) > u2(0) =

u2(VaRα(X)), we set c = 0, so the corresponding optimal ceded loss function becomes I∗(x) = 0.

If CTEα(X) = u2(0) = u2(VaRα(X)), then the corresponding optimal ceded loss function

becomes I∗(x) = cx for some c ∈ [0, 1] or I∗(x) = c(x − VaRα(X))+ for some c ∈ [0, 1]. If

CTEα(X) < u2(0) = u2(VaRα(X)), we set c = 1, so the corresponding optimal ceded loss

function becomes I∗(x) = x or I∗(x) = (x− VaRα(X))+.

(iii) Suppose that VaRα(X) > θ∗2 . Then min
x∈R+

w2(x) = w2(VaRα(X)).

If CTEα(X) > u2(VaRα(X)), we set ν(VaRα(X)) = 1 and c = 0, so the corresponding

optimal ceded loss function becomes I∗(x) = 0. If CTEα(X) = u2(VaRα(X)), then the corre-

sponding optimal ceded loss function becomes I∗(x) = c(x−VaRα(X))+ for some c ∈ [0, 1]. If

CTEα(X) < u2(VaRα(X)), we set ν(VaRα(X)) = 1 and c = 1, so the corresponding optimal

ceded loss function becomes I∗(x) = (x− VaRα(X))+.

(II) Assuming that α < ρ∗,

min
x∈R+

w2(x) = min{w2(0), w2(VaRα(X)), w2(∞)}.
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(i) If we have that VaRα(X) < θ∗2 , then g2(VaRα(X)) < 0; that is, w2(0) < w2(VaRα(X)).

If CTEα(X) < u2(0), then

min
x∈R+

w2(x) = w2(0).

In this case, we set ν(0) = 1 and c = 1, so the corresponding optimal ceded loss function

becomes I∗(x) = x. If CTEα(X) = u2(0), then

min
x∈R+

w2(x) = w2(0) = w2(∞).

In this case, we need only to set ν with support on {0,∞}, so the corresponding optimal ceded

loss function becomes I∗(x) = cx for some c ∈ [0, 1] or I∗(x) = 0. If CTEα(X) > u2(0), and

min
x∈R+

w2(x) = w2(∞).

In this case, we set ν(∞) = 1, and the corresponding optimal ceded loss function becomes

I∗(x) = 0.

(ii) If we have that VaRα(X) = θ∗2 , then g2(VaRα(X)) = 0; that is, w2(0) = w2(VaRα(X)).

If CTEα(X) < u2(0) = u2(VaRα(X)), then

min
x∈R+

w2(x) = w2(0) = w2(VaRα(X)).

In this case, we need only to set ν with support on {0,VaRα(X)}, so the corresponding optimal

ceded loss function becomes I∗(x) = x for c = 1 or I∗(x) = (x − VaRα(X))+ for c = 1. If

CTEα(X) = u2(0) = u2(VaRα(X)), then

min
x∈R+

w2(x) = w2(0) = w2(VaRα(X)) = w2(∞).

In this case, we need only to set ν with support on {0,VaRα(X),∞}, so the corresponding

optimal ceded loss function becomes I∗(x) = cx for some c ∈ [0, 1] or I∗(x) = c(x−VaRα(X))+

for some c ∈ [0, 1] or I∗(x) = 0. If CTEα(X) > u2(0) = u2(VaRα(X)), then

min
x∈R+

w2(x) = w2(∞).

In this case, we set ν(∞) = 1, so the corresponding optimal ceded loss function becomes

I∗(x) = 0.

(iii) Suppose that VaRα(X) > θ∗2 . Then g2(VaRα(X)) > 0; that is, w2(0) > w2(VaRα(X)).

If CTEα(X) < u2(VaRα(X)), then

min
x∈R+

w2(x) = w2(VaRα(X)).

In this case, we set ν(VaRα(X)) = 1 and c = 1, so the corresponding optimal ceded loss function

becomes I∗(x) = (x− VaRα(X))+. If CTEα(X) = u2(VaRα(X)), then

min
x∈R+

w2(x) = w2(VaRα(X)) = w2(∞).

In this case, we need only to set ν with support on {VaRα(X),∞}, so the corresponding

optimal ceded loss function becomes I∗(x) = c(x−VaRα(X))+ for some c ∈ [0, 1] or I∗(x) = 0.

If CTEα(X) > u2(VaRα(X)), then

min
x∈R+

w2(x) = w2(∞).
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In this case, we set ν(∞) = 1, and the corresponding optimal ceded loss function becomes

I∗(x) = 0.

Theorem 4.1 is proved. �

Remark 4.2 Theorem 4.1 shows that from the reinsurer’s perspective, the optimal rein-

surance treaty is different from that of the insurer; see [5] for the optimal reinsurance treaty

from the insurer’s perspective.

Remark 4.3 Under the assumption that the class of increasing convex functions is the

admissible ceded loss functions, Huang and Yin [18] studied the optimal reinsurance treaty

by an approximation approach under the distortion risk measure and the distortion premium

principle from the perspectives of an insurer and a reinsurer. This method is quite complicated,

as pointed out by Chi and Tan [9]. For any increasing convex ceded loss function I(x), Chi and

Tan [9] demonstrated that it can be rewritten as

I(x) = c

∫ ∞

0−

(x− t)+ν(dt).

In this article, we have used this representation of an increasing convex function to derive the

optimal reinsurance treaty, and this method is different from the one used by Huang and Yin

[18].

5 Conclusion

In this article, we have studied two optimal reinsurance models from the reinsurer’s perspec-

tive. Under the assumption that the admissible ceded loss functions consist of all increasing

convex functions, when the reinsurance premium principle is calculated by a general distor-

tion premium principle, we obtained the optimal reinsurance treaties by minimizing the VaR

of the reinsurer’s total risk exposure. When the reinsurance premium principle is calculated

by a general expected value premium principle, we obtained the optimal reinsurance treaties

by minimizing the CTE of the reinsurer’s total risk exposure. It turns out that the optimal

reinsurance treaty for the reinsurer is quite different from that of the insurer.
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