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1 Introduction

The two layer shallow water equations, which can be used to describe the interaction of

Mediterranean and Atlantic water in the strait of Gibraltar [16], are written as follows [21]:
hye + div(hyuy) = 0,

p1(hiur) + prdiv(hiu; @ uy) + gp1h1 Vhy + gpah1Vhe

—BihiV(Ahy) — Bl V(Ahs) = 2v1div(hy - Vuy),

hat + div(houg) = 0, (1.1)
p2(hauz); + padiv(houg ® uz) + gp2haVhy + gpahaVhs

—BohoV(Ahy) — BahaV(Ahg) = 2vadiv(hsy - Vug),

(h1, a1, ha,u2)|t=0 = (hio, w10, koo, U20),

where index 1 refers to the deeper layer and index 2 the upper layer of the flow; p; and
p2 denote the densities and ps < p1; 1 and v denote the viscosity coefficients; (51 and (s

denote the interface and free surface tension coefficients, respectively; and g is the gravitational
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acceleration. All of these physical coefficients are positive constants. h; = h;(t,x) and u; =
u,(t,x) denote the thickness and velocity field of each layer, where j = 1,2.

Distinguished from the single layer model, the two layer shallow water equations capture
something of the density stratification of the ocean, and it is a powerful model of many geophys-
ically interesting phenomena, as well as being physically realizable in the laboratory [4, 9, 19].
However, there are only a few mathematical analyse of the two layer model. Zabsonré-Reina
[21] obtained the existence of global weak solutions in a periodic domain and Roamba-Zabsonré
[18] proved the global existence of weak solutions for the two layer viscous shallow water equa-
tions without friction or capillary term. There are other results regarding weak solutions of the
two layer shallow water equations in [10, 15]. To the best of our knowledge, there are no results
about the strong solution to the 2-D two layer viscous shallow water equations. In the present
paper, our aim is to prove the existence and uniqueness of the global strong solution of (1.1)
in the whole space x € R2.

Dividing the second and the fourth equations in (1.1) by pi1h1 and pahe, respectively, we

have

hit + div(hlul) =0,

div(hy -
- Vs 4 gV + 0220 — 2ov(an) = 2g(any) = 922 dVUL VU
P1 P1 P1 P1 hy
hgt + diV(h,QllQ) = O, (12)
P2 Po ve div(he - Vug)

U + ug - VUQ =+ thl =+ thQ — —V(Ahl) — —V(Ahg) =2= s
P2 P2 P2 ha

(h1, a1, ha,us)|t=0 = (hio, w10, h2o, u20).

We seek the solution of (1.2) near the equilibrium state (hq,uy, he,u2) = (1,0,1,0). To this
end, putting the transform h; =1+ ﬁj, hjo =1+ ﬁjo, 7 = 1,2 into the above equations, and
dropping the tilde, we have

hit + div(hiuy) 4+ divuy =0,

B B2

Vhi -V
u;; +ug - Vu1 + QVhl + &QVh,Q — —V(Ahl) - _V(Ah/Q) = 2EAU1 + 21/1 17111
P1 P1 P1 P1

o l+h

)

haot + div(houg) + divug = 0,
B2 B2 v2 Vha - Vug

gt + Uz - Vg + gVA1 + gVhg — 2V (Ahy) — 22V(Ahy) = 222 Auy + 222 202 12
02 p2 p2 p2 1+ h

(hi,u1, ho,u2)|t=0 = (hio, W10, h2o, U20).

Now we state the main result of this paper. For convenience, we set

E, = {(hl,ul,hg,ug) € (cb(w;ég,‘l“) NLY(RY; B34 *2)
. ) 2\ 2
X (cb(R+;B§31)le(R+;B§jl)) ) }

E(0) = [|(h10, w10, h2o, u20) | 501 (159 ,)2)2

E(hi,u1, hg,up,T) = [|(h1,uy, h, UZ)||(L?(Bg:i)x@;sv(ggyl)yy

+ || (h1,u, ha, u2||(L}(B;’T)X(L}(Bg,l))z)z’
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where Cp(R™1; X) is the subset of functions of L (R™; X) which are continuous and bounded
on R* with values in X and L7.(X) = L?(0,T; X). Then we have

Theorem 1.1 Assume that (1o, U10, hoo, u20) € (By1 x (B9;)%)2 For any positive

constants p1, (1 v1 and vs, if po and [o satisfy the following conditions:

vZ Qv v v
52<miﬂ{’/2<\/—§+ v __1)’1—11/1}7 (1.4)
Piooeer o) il o)

. v
p2 < min {plv —2P1}, (1.5)
vy

there exist positive constants o and M such that if

EQ0) < o,

then the Cauchy problem (1.3) admits a unique solution (h1,us, ho,u2) € E7 and the following
estimate holds:
E(h17u17h27u27+oo) < ME(O)7
where o and M depend only on the physical coefficients p1, p2,v1,v2, 81, 82 and g.
Remark 1.2 The conditions (1.4) and (1.5) could imply

ax{ﬂl_gz,&(&+ﬂ>}<ﬂ,
pi B \2vr2 p1

1% 1 v v 1%
max{p2—21,52<—+ ! >}<—1<—27
P1 2v1 - p1B p1 P2

which are used to deal with the linear terms in the a priori estimates in Section 3.2.

In the proof of Theorem 1.1, the main difficulties arise from the complexity of the system
and the coupling of pressure terms in momentum equations. We could not directly split the
system into the two independent parts, and the method for the single layer shallow water
equations in [12, 13] couldn’t work in our case. To dispose of the coupling, we perform a careful
combination of the elementary estimates (see (3.19)). However, some other nonlinear coupling
terms appear in the new combination estimates for which Lemma 6.2 in [7], used in [3, 12, 13]
to deal with the convection terms in single layer shallow water system, cannot be applied.
Therefore, we construct a proposition in the Appendix to estimate these troublesome terms in
our problem, which is a standard generalization of Lemma 6.2 in [7].

In this paper, the Littlewood-Paley decomposition will be used to construct the a priori
estimates in a hybrid Besov space and the solution of (1.3) is obtained by the Friedrichs’
regularization method. Finally, the uniqueness of the solution will be proved directly with the
help of the estimates we construct. Some ideas of this paper are motivated by Danchin [6].

We also mention some results regarding the Cauchy problem for the 2-D single layer shallow
water equations. For example, Wang-Xu [20] obtained the local solution for any initial data
and obtained the global solution for small initial data in Sobolev space H?**(R?) with s > 0.
Then, Chen-Miao-Zhang [3] improved the result of Wang-Xu by getting the global existence in
time for small initial data ho — ho € BY, N B}, and up € BY ;. In [13], Haspot considered the
compressible Navier-Stokes equation with density dependent viscosity coefficients and a term
of capillarity, and obtained the global existence and uniqueness in critical space. In [12], Hao-
Hsiao-Li studied the single layer viscous equations with both rotation and capillary term, and
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also obtained the global well-posedness in Besov space. In addition, there are some researchs
on the global weak solutions of the single layer shallow water equations in [2, 11, 14]. Other
results related to the regularities of the oceanic flow can be found in [5, 17].

Throughout this paper, the subscript j takes on the values j = 1,2, and we omit this for the
sake of convenience. We denote the Fourier transform of f by Ff or f , and denote the inverse
Fourier transform by F~!f. The notation A ~ B means that A < CB, while B < C A for some
‘irrelevant’ constant C. (-,-) is the L? inner product. The integral [ f means [y f(2)dz, and
lullo = (f |u|?)? is the L? norm of u.

The paper is arranged as follows: in Section 2 we recall the definitions and some properties
of Besov spaces; in Section 3 we give the a priori estimates of the linear system of (1.3) in a
hybrid Besov space; in Section 4 we prove Theorem 1.1 by the classical Friedrichs’ regularization

method. Finally in appendix we give a proposition that is used in this paper.

2 Littlewood-Paley Theory and Besov Spaces

In this section, we recall the definitions and some properties of Littlewood-Paley decompo-
sition and Besov spaces. The details can be found in [1, 7, §].
2.1 Littlewood-Paley decomposition
Let ¢ € C§°(RY), supported in the annular C = {£ € RV : 3 < [¢] < 8} such that
doer) =1 if ¢ £0.
kEZ
Setting h = F 1, and defining
Apu(z) = (27 D)u(x) = 2kN/ h(2*y)u(z — y)dy and Spu = Z Apu,
Y p<k—1
we have the properties
DNpDgu=0 if |p—gq| > 2,
Ap(Sq—1ulgv) =0 if |p—q| >4,
and the homogeneous Littlewood-Paley decomposition
u= Z JANRTS (2.1)
kEZ

However, the right-hand side in (2.1) does not necessarily converge in S'(R¥). Even if it does,
the equality is not always true in S'(RY) (consider the case u = 1). Hence we will define the

homogeneous Besov spaces in the following way:

2.2 Homogenous Besov spaces

Definition 2.1 Let s € R, 1 <p, r < oo, for u € S'(RY), and define

1

lulls;, = (@Il )

keZ

Indeed, |- HBS cannot be a norm in &’ (RY) since ||u||B = 0 means that u is a polynomial.

This forces us to adopt the following definition for homogenous Besov space [7]:
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Definition 2.2 Let s be a real number and (p,r) be in [1, 00]?. The homogeneous Besov

space B;_T consists of those distributions u in S}, (RY) such that [jul| 5. < occ.
, s,

We emphasize that the definition of B;)T does not depend on the choice of the function ¢.
We have the following properties of homogenous Besov spaces.

Proposition 2.3 (1) Density: If p < +00, 1 <7 < 400 and |s| < %, then C§° is dense
in By ;

(2) Derivatives: There exists a universal constant C' such that

1
clulls, < IVullgg-r < Cllullg, s

. Cs—N(L_ L
(3) Sobolev embedding: If py < ps and 71 < 72, then B, , — Bpwa(m pa)

(4) Algebra properties: For s > 0, B;_’T N L is an algebra. Moreover, for any p € [1, +00],

LN LN . N
B — B, NL>, and B, is an algebra if p is finite.

2.3 Hybrid Besov spaces
In this paper, we will use the following hybrid Besov spaces:

Definition 2.4 Let s,t € R, 1 < p,r < +o0, and define

lull g5 = (Z(zkﬂAkuup)wz(zktmkuupy) ,

k<0 k>0

and

B;:i = {u €S (RY): lullgse < oo}

Some embedding properties, interpolation inequalities and the action of multiplication on

hybrid Besov spaces are involved in the following propositions:

Proposition 2.5 Some properties of f?;;ﬁ:
(1) By = By

Rs,t _ s t o Rs,t _ Ns ot .
(2) If s < t, then By} = By .N B, ., and if s > ¢, then By} = By . + B, .;

(3) If s1 < s9 and t1 > to, then B;}Tvtl (N B;?T*t?

For the convenience of notation, we set L{.(X) = L°(0,T;X), and if T = 400, we set
LP(X) = LE(X).

Proposition 2.6 Let s, t, s1, S2, t1, t2 € R, 7, p, p1, p2 € [1,400]. We have the
following interpolation property:

6 -0
lullzg sy < Mullpon ggen 1l g gy

with £ = £ 1205 = fs1 + (1 — 0)s, and t = 611 + (1 - 0)1.

Proposition 2.7 Let p, r € [1,4+00]. We have for some universal constant C' that

(1) If we let s >0, ¢ >0, p%'i‘p% = p—ll—i—p% = % <1, u e LP(Byl)n Ly (L) and
ve LN (Byt) N L (L™), then uv € L (BL) and

H“U”L;(é;;fq < CH“HL‘;I(LOO)HU||L§4(B§3£) + ||UHL‘;2(L°°)H“HL?(B,?;W
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1 11
’P1+Pz_P

) and

(2) If 51, s2, t1, t2 < %,S1+S2>0, t1+t2>0

~81+52—%;t1+t2—%

ve Ly (f?;f;“), then wv € LE.(Byp,»

<1l,uelLll} (B;}T’tl) and

HUUHLP (le+sg—%,t1+t27%) < C”uanTl(B;l;tl) ”UHL;’?(B;?T’Q)'
T DT
2.4 Some estimates
The action of some smooth functions on Besov spaces is involved in the following proposition
[7].

Proposition 2.8 (1) Let s >0 and F € W/I[S]+2’°O(RN) such that F(0) = 0. Then there

ocC
exists a function of one variable Cy depending only on s, N and F', such that

1)l g, < Colllull)lulls;

(2) Let s € (§,5] and G € VVI[O%HS’OO(RN) such that G’(0) = 0. Then there exists a

function of two variables C; which only depends on s, N and G such that

1G(u) = G(v)]

5, < Ol ol )l 5+ ol )llw = vl g,

For m € R, we define A™ f = F~1(|¢]™f). A™ is a well-known pseudo-differential operator
of degree m, and has been widely used. The following two basic properties for A™ will be

frequently used in this paper:
Proposition 2.9 (1) A™ and Ay are commutative, i.e., Ap(A™u) = A™(Agu);
(2) A™ is self-adjoint, i.e., (A™f,g) = (f,A™g);
(3) [IAk(A™u)lo ~ 2| Aulo-

We will also use the following proposition to estimate the convection terms in the equations,

for the proof and the more general state of the proposition, we refer to Lemma 6.2 in [7]:

Proposition 2.10 For —% <s,t <1+ %, m > 0, we have

[Am (24 Ta) Bu(ama) < Carz vy alg; 1A4A™ ) o

/Am(Ak(V . Va))Akb + / Ak(v . Vb)Ak(Ama)
<Caullvl g0 x (271840 ) ol 5, + 27— all | Akblo).

where > g < 1.
kEZ

3 A Priori Estimates

3.1 Preparation for the estimates
Let ¢; = A~ 'divuy, d; = A~ diviu;, where diviu; = V- uj, V& = (=0,,0;) and A~ is
defined in Section 2.4. It is easy to check that
u; = —A71VCJ‘ — Ailvldj.
For convenience, we set
P2 Rz 2 53} B B
Y=, =, P2 = o, Q= el

P1 P1 P2 P1 P1 P2
@ Springer
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With these notations, system (1.3) could be changed into the following:

hit+uy - Vhy + Acy = Fy,

cie +uy - Ver +2u1A%c; — gAhy — ygAhy — a1 A2hy — aaA3hy = G,
diy + 2 A2dy = A~ divt Hy,

hot + g - Vho + Acy = F3,

Cor + s - Vo + 2uaA2coy — gAhy — gAho — asA3hy — asA3he = G,
dot + 2u9A2dy = A~ 1divt Hy,

u; = —A"'Ve; — A7V,

where
Fj = —hjdiVU.j,
Gj = Uj . VCJ' —+ A_ldiVHj,
Vh; - Vu;
H; = —u;-Vu; + 2;571:_ h J.

To begin with, we study the following linear system:

hit +vi-Vhi + Acy = Fy,

cie +v1 - Ver +2uA%c; — gAhy — ygAhy — o ABhy — aoA3he = Gy,
di + 2u1A%dy = Py,

hot +vo - Vho + Acy = F3,

Cor + Vo - Vo + 2192y — gAhy — gAhg — azA3hy — asA3hy = G,
dot + 2u2A%dy = Py,

where v;, F;, G, P; are regarded as given functions of (¢,x). Set

V(t)_/o ||(V1av2)(7')||B§’ldT.

Proposition 3.1 Assume that the physical coeflicients p1, p2, V1, V2, 81, B2 satisfy the con-
ditions in Theorem 1.1, and that (hi,c1,dy, ha,c2,ds2) is a solution of (3.2) on [0,T), T > 0.
Then for any s € (0, 2], we have

H(h’17 C1, d17 h’27 C2, dQ)(t)H(B;;LSxB;Hle;HIP
t
+ /0 H(hl, Ci, dl, hg, Co, d2)(7’)||(é;ﬁl,s+2xggjlXB;jl)ng

< AeKV® (||(h1, c1,dy, ha, c2,dz)(0)

B33 xpss sty
t
+ / H(Fl, Gl, Pl, FQ, GQ, PQ)(T)”(BS11‘3><B§11><B§11)2d7—> 5 (33)
0 s s s

where A and K are constants which depend on s, g, p1, p2, V1, V2, B1 and [s.

The next part of this section is devoted to proving Proposition 3.1.
For K > 0 to be determined, take the transform

(hj,cj,dj, Fj, Gy, Py) = "V (R, 8, d;, Fy, G,

i

).

<.
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Then (3.2) can be changed into

hig+vi1-Vhy 4+ Aé, = Fy — KV (t)hy,

Cry + Vi - Véy + 2u1 A28 — gAhy — ygAhy — a1 A3hy — aaN3hy = Gy — KV (1)éy,
dit 4 2 A%dy = Py — KV (t)d,,

hot + vo - Vhy 4+ Aéy = Fy — KV'(t)hs,

Cor + Vo - Vg + 20285 — gAhy — gAhy — asA3hy — asA3hy = Gy — KV (t)és,
dot + 21 N%dy = Py — KV’ (t)da.

Applying A to (3.4), we have

Aghiy + Ap(vy - Vhy) + AR(AG) = ApFy — KV (£)Agha,
Agérs + Dgp(vi - VE) + 2 Ap(A%E) — gAp(Ahy) — vg/r(Ahs)
— a1 AR(A3hy) — AR (A3hy) = MGy — KV (t) Agéy,

Apdyy + 20 Ap(A2dy) = APy — KV (1) Ady,

Arhat + Ap(va - Vho) + AR(Aéy) = ApFy — KV (£)Aghs,
Agéas + DNg(va - VEr) + 20 (M%) — gAk(Ah1) — g (Ahs)
—asAR(A3hy) — asAR(A3hy) = NGy — KV () Agéa,

Apdoy + 202N (A2dy) = APy — KV (1) Agdo.

Now we deduce some identities which will be used later. Taking the L? scalar product of

the equations in (3.5) with Aphi, ARér, Dpdy, Dipha, Akcs and Apds, we get

1d - B - - - - -
§E”Akh1”g +/Ak(Acl)Akh1 = /Ak(Fl —vy-Vhy — KV’(t)hl)Akhl,
1d - 12 .2 . -
- kC1llo M1 k\ACL)|lp — 9 k 1)8kC1
SN+ 2 DA — g [ Ap(AR)A
—vg/Ak(Aﬁg)Akél - al/Ak(A3ﬁ1)Akél —az/Ak(A%)Akél
= /Ak(él —vy-Vé — KV/(t)El)Akél,
1d 32 72 5 RN 3
ST kQ1llo M1 k 1)llo = kL1 — 1) k01,
2dtHA d1 |5 + 2u1]| Dk (Ady)]| Ap(Py— KV'(t)d1) Axd
1d 72 ~ 7 - 7 1T, 7
§E||Akh2”0 =+ Ak(ACQ)AkhQ = Ak(FQ —vy-Vhy — KV (t)h/Q)AkhQ,
1d - 12 -2 ~ 5
=37 kC2]|o H2 k\AC2)|lg — 9 k 1 kC2
S Ikl + 202l A A — g [ Ar(AR)A

—g/Ak(Aﬁg)Akég - ag/Ak(A3ﬁ1)Ak52 _ag/Ak(A%)AkaQ
= /Ak(é2 — vy - Véy — KV (t)é) Apéo,

1d ~ - - - .
§a|\ﬁkd2||3 + 2p0|| Ak (Ady)[|§ = /Ak(Pz — KV'(t)dz) Agds.

@ Springer
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Then taking the L2 scale product of the first equation in (3.5) with Ag(A2hy), of the second
equation with Ay (Ah,), of the fourth equation with Ax(A2hy), and of the fifth equation with
A (Ahs), we have

2dtHAk(Ah1 ||0 /Ak Acl)Ak(A hl /Ak F1 — V- Vhl KV ( )hl)Ak(A hl)

(3.12)
% / Aper Ap(Ahy) + 2 / AR(A2E) Ap(Ahy) — oo / Ak(A3hy) A (Ahy)

— | AR(A2R) 2 = gl Ax(h) 2 = g / Ar(Ara)Ap(AFn) + [ Ap(Aér)]2
:/Ak(él — vy - V& — KV (1)é) Ap(Ahy) +/Ak(13“1 — vy -Vhy — KV'(t)h1) AR (AG),
(3.13)

SRR + [ Arae) 50 = [ Bu(Fo = v - Tha = KV (a) AN,
(3.14)

N =

d ) - ) - - -
&/AkCQAk(Ahg)+2M2/Ak(A202)Ak(Ah2) —Cm/Ak(AShl)Ak(Ahg)
— as|| AR(Ah) 1§ — gllAk(Ah2) I — Q/Ak(/\fw)ﬁk(/\ﬁl) + [ Ak(Ac)|
= / Ak(ég — vy - Viég — KV/(t)Eg)Ak(A;LQ) + /Ak(ﬁg — Vo - Vilg — KV/(t)Bg)Ak(Aég).
(3.15)

Finally, taking the L? scale product of the first equation in (3.5) with Aphs, and of the fourth

equation with Akﬁl, we obtain
d ~ ~ ~ ~
E/AkhlAkhg+/Ak(A51)Akh2+/Ak(A52)Akh1
= /Ak(pl — V- Vill - KV/(t)ill)AkiLQ +/Ak(F2 — Vo - ViLQ - KV/(t)iLQ)Akill (316)

Now we take K, K5 such that

ax{lflpz 62(&+V1>}<K1<—
Bi\2v2  p1 p1

max {pzyl,ﬁg( ! )}<Kz<ﬂ<2.
2v1  p1B p1 P2

The reason for the choice of K7, K5 will be explicit. We first see from (1.6) that the constants
K1, K in the above inequalities do exist, and also that (3.17) could imply

B2 [ B2 vips Bo [ Bo
mx{ K2’51<%+K2)}<max{ 51<2V2+P1)}<K1<E

(3.17)

1 K (3.18)
v v
max{ K1,62< )}<max{p2 1,52< + = >}<K2<—2.
B p3 21 ;b P2
Taking the flowing combination of the identities obtained above, i.e.,
(g x (3.6) + (3.7) — K x (3.13)) . (g % (3.9) + (3.10) — K» x (3.15))
+ g % (3.16) + (a1 + 2MK1) X (3.12) + v x (a3 + 2;@1@) x (3.14), (3.19)
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we have

5&142 + B + KV'(t)A? = Ly, + Ny, (3.20)

where
A2 = g|| Arhall2 + |AkE |12+ (1 + 201 K1) || Ak(Ah1) |12 + vgl| Axhal|?

+ 7| Akéellf + v(as + 22 K2) | Ak (Ah2) |} — 2K / Apé1 A (Ahy)

—2"ng/Ak52Ak(AiL2)+2’Yg/Akﬁlﬂkﬁg,

BE = (2u1 — K1)||Ak(A&) 13 + 9K || Ak(Ahy) |1 + a1 K1 || Ae(A%Ry) |12
+ (202 — K2)|| Ak(A&2) |1 + vgEal| Ak(Ah2)||§ + yas Ko || Ak(A%hs)][3,

Ly :a2/Ak(A3B2)Ak51 —VgKl/Ak(Aﬁl)Ak(Aiw)
— sk [ AW Ta)An(AR1) +90a [ Au(A) Az
~ 99K [ AN A(Ne) ~ G0aKa [ A0 Bu(ARe),
N :g/Ak(Fl — vy - Vhi)Arhy +/Ak(él — vy - Vé) Aréy
- Kl/Ak(Gl — vy - Vé) Ar(Ahy) — Kl/Ak(Fl — vy - Vhi)Ap(AG)
+ Vg/Ak(Fz — Vo - Vho) Apho +7/Ak(é2 — vy - Vér)Apés
- VKQ/A,C(GQ — vy - Vég) Ap(Ahy) — Ky / AR(Fy — Vo - Vhy) Ap(Aéy)
+ Vg/Ak(Fl —vi - Vhi)Apho +79/Ak(ﬁ2 — Vo - Vho) Aphy
+ (o1 + 2u1K1)/Ak(F1 — vy - Vhi)Ap(A%hy)

+ "y(ozg + 2'[LQK2) / Ak(FQ — Vo - V;lQ)Ak(AQiLQ)
Since 0 < K7 < ”1 <2u1, 0 < Ko < ”1 < ”2 2 < 2u2, we have
Bk ~ ||Ak(Ah1,A hl,Acl,AhQ,A h2,A52)”g (321)

3.2 Estimates of linear terms

By Hoélder’s inequality, we have
A} < gllAkhall§ + | Akénllf + (o1 + 20 K1) | Ak(Ah)[|§ + vgll Axhall§ + ]| Akézl]

- 1 _ -
+w<a3+2u2K2>||Ak<Ah2>H3+2K1(4—M|\Akc1n3+m||Ak<Ah1>H3)
1 ~ 12 7 2
+ 29K (14l + (AR ) + 21 (T 1Tl + 2 N Auu )
1+ 1 -
=o(1+ el + (14 5K ) Aua 3+ (o + 4M1K1>||Ak<Ah1>Ho
2y
10 (14 25 ) Nwfall 1 (1 4 3 Ko [ aal + 7l + o) | Ax AR

@ Springer



No.6 P.C. Mu& Q.C. Ju: CAUCHY PROBLEM FOR SHALLOW WATER EQUATIONS 1793

We could also have
A2 2 gll ekl + 180203 + (a1 + 2001 K0) [ k(AR I + 1l Aiallf + 7] A0 3
- 1 _ -
(s + 22K |8 (AR2) I = 203 (1 8aa [ + muAk(Ahl)né)
1 ~ 12 7 2
— 2o (TN niall + el AN ) — 299 (T 1Rl + A )

147 1 N ~
=g(1= =) 1o+ (1 - —Kl)nAkclH% + | Ak (M) |2

2y 3
+0(1= 5 NAwfall + 1 (1 = 5= Ko 1Al + vas | Ax(ARa) 3
Since v = Z—f <1,0< Ky <2u1, 0< Ky < 2us, we have
1 2 1 1
-2 S0 12 01— K, >0, 1— — Ky >0.
FY+1 2,“1 2[&2

Hence the above equations imply that
A2 2 || A(h, ARy, 1, ha, Ao, E)]|2. (3.22)
By noting (3.21) and Proposition 2.9 we also obtain
B? ~ 2%k A2, (3.23)

Now we estimate Lj. Invoking the definitions in (3.1), the commutativity of A and Ay,
and applying Holder’s inequality, we obtain

Li <as (—1||Ak<Ac1>|3 n @mk(zx%)u%)
Ba 411
P1 7 2 P2 7 2
K| —||AL(AR —Z |AL(AR
gk ( -8RI + 22 1848}
ks <ﬂ|Ak<A2fu>|3 n &mk(A%Q)n%)
239 264
+m3(—2|Ak<ACQ>u% n @umm%ma)
6 vy
1 . 1 .
+aga(F1ALARDIE + J154 W}
1 - 1 -
+aaka (GI6ARI + 31407 17)
. 1 ~
= Ljanae)li + —g(m n ”—QKQ) 1A (AR

b (Ml 25 @m) 82T + 22 (A

2p1 2vy
L2 ( 2K+ ) [ BeATE + 22 (& 22 K ) [0
2p o1 2 B
Due to (3.18), we have
ﬂ < 2ﬂ - Klu
1 1
1
59(1{1 + _2K2> < gK17
1
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J653 B
o (51K1 + 2, +52K2) < —Kl,
2
2 _(ﬂ _ K2)7
P1 P1 N P2
rz ( K +K2) < QQK%
2p1 P1 P1
B2 (52 B2 B2
D2 (P2 P2 K) o,
2p1 \2v1 [ M ?

hence there is a positive constant C' independent of k such that

1
B} — L > 63,3.

Therefore we have

55A + OBk + KV'(t)A} < Ny. (3.24)
Combining (3.24) with (3.23), we obtain
§&Ak + 522’24@ + KV'(t)A < Ny. (3.25)

3.3 Estimates of nonlinear terms

Now we estimate the nonlinear terms in Nj. Assume that s € (0,2]. We are not going
to estimate all of the terms in Ni, but only some of them. For example, by Proposition 2.3,
Proposition 2.9 and Proposition 2.10, we have

/Ak Vh1) Ak < Cer2 Vvl ga 1l g | Aralo

where > e <1, and
kEZ

Kl/Ak Vhl Ak(Acl +K1/Ak V&l)Ak(Aﬁl)
=K, /A(Ak(vl . Vhl))Akél —i—Kl/Ak(Vl -Vél)Ak(Aﬁl)
< C‘gk”VlHBz x (2_k(s_1)||Ak(/\ﬁ1)|\0||51|\3;;1 + 2_k(s_1)|\ﬁ1|\3311HAkélHO)

< Cer2H Vv gy | (||Ak(/\711)|\0||51|\3;;1 + ||A711|\B;31||Ak51||0)7

(041 + 2u1K1)/Ak(V1 . Vﬁl)Ak(A2]~11) = (041 + 2u1K1)/A(A;€(V1 Vﬁl))Ak(AiLl)

< Cer2 ¥V vl ga N1l g IA0(AR) ]l

B,
< Cex2 MV vil| g | AT| g | Ak (AR o-

The following estimate could not be obtained by Proposition 2.10 or Lemma 6.2 in [7], however,

by applying Proposition 4.4 in the Appendix, we have:
Vg/ﬂk(vlv%)ﬂkﬁz < Cer27 PV vl g 1Bl oo (18kA2 o + 121 (AR2) o).

Other terms in Nj could be estimated in the same way. Combine these estimates with (3.22),

and note that .
~ [ vl g 0
i |
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we obtain the following estimate for Ng:
Ni < CA (|| 8k(Fy, Gi, APy, By, G, AF) o
4 e, 2 KDY ()| (R, Ahy, &1, B, Ao, aQ)H(B;;l)G).
Taking the estimate for Ny into (3.25) and dividing by A, we obtain

d 1
At 52%‘4’“ + KV'(t) Ay,

EOA AE B A AT k(s—1)77 AT s T AT =L
> B .
<C(||Ak(FlaGlaAF17F2aG2aAF2)”0 +ex2 |4 (f)|\(h17Ah17017h27Ah2,C2)H( ;11)s>

Noting that Ay ~ 5k2_k(s_1)||(ﬁ1, Ah1, @1, ha, Aha, 52)”(3;;1)6 for k € Z, we have, by taking K
large enough, that

1
c

where C' is independent of k.

d . . .
&Ak—F 22kAk < OHAk(Fl,Gl,AFl,FQ,GQ,AFQ)H(), ke Z, (326)
3.4 Accomplishment of the proof of Proposition 3.1

Multiplying (3.26) by 2k(s=1) " taking the summation on k, and integrating the result over

[0,t], we have

t
> 2T AL (1) + / > 2D Ay (r)dr
0

keZ keZ

t
< 022]6(571)14]@(0)4'0/ Z2k(571)”Ak(ﬁ‘laélvAF17F25GQaAFQ)(T)HOdT' (327)
keZ 0 kez

Since Ak ~ ||Ak(]~7,1, Aill, él, ]~7,2, Ailg, EQ)HQ, we have

3" 2H D AL () & (T, A, 1, B, Ao, ) ()]
keZ

Byt
Due to Proposition 2.3 and Proposition 2.5, we have, for j = 1,2, that
s, ARG (O gt g (Ol g+ ARG O] 550

~ [l )l gy + 17 (1))

~ (1 (0) g

AS
B3,

Hence

kz 2k(5—1)Ak(t) ~ || (ill, C1, ]~7,2, ég)(t)|‘(B§;1,s XB§;1)2'
€L

Applying the discussions above to other terms in (3.27), we obtain
t
[(h1s €1, ha, ) ()l e g7ry2 +/O [(h1s €1, ha, E2)(T) [ ggtrose s pgny2dT
t
< C(H(hlv ¢1, he, 62)(O)||(1§;”11’5><B’§;1)2 + /0 H(Flv G, Fz, G2)(t)||(1§§,11’3XBS,II)?dT) : (3'28)

To complete the proof, it suffices to show the estimate of d;. From (3.8), we have that
1d

5 [AkdL||§ + 20| Ak(Ady) 1§+ BV (&) Awda|lf < |AkdL o]l AkPy o,
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hence

d ~ 1 ~ .

L) ardillo + =22 Andillo < 184 P o (3.20)
dt C

Multiplying (3.29) by 2¥(*=1) and taking sum on k € Z and integral over [0, ], we have

t t
@Ol + [ 10O lsgar < (1Ol + [ IREOgpar). 630

We also have the same estimate about d~22
t t
IOl + [ 1algspodr < (12Ol + [ 1P gar). a1
, o : : 0 :
Combining (3.30), (3.31) with (3.28), we have
H (ile 617 le i:l’27 627 JQ)(t)|‘(B;;1’S xB;Hl xB;HIP
t
+ ‘/0 H (h17 ¢1,d1, ha, Ca, d2)(7—)”(§;ﬁ1’5+2><35’+11 XBgﬁl)sz
< C<||(}~11, &1, d1, ha, &2, Jz)(O)H(E};;Lsngjlxgsjly
t
+ /0 H(Fl, Gl, Pl, FQ, GQ, PQ)(T)”(B;ILSXB;leB;ll)ng> .
Finally, taking the inverse transform
(hy, &5, d;, Fy, Gy, Py) = e KV O (hy, ¢5,d5, Fy, Gy, Py),
we get the following estimate for the original functions:
|| (hla C1, dl; h?a C2, d2)(t)||(3;*11v°><3331 X3331)2
t
+ eKV(t) ‘/0 e_KV(T) H (h17 c1,dy, ha, ca, d2)(7-)H(B§,+11’S+2 XBgﬁl X35ﬁ1)2d7-

<C (eKV(t) |(h1,c1,dn, he, ca, dz)(o)”(B;jl‘st;jle;jl)?

t
+ / eKV(t)*KV(T)||(]—7‘17 Gl, Pl, FQ, GQ, P2)(T)||(§;11’SXB§IIXBSII)QdT)’
0 . , ,

which leads to (3.3). Now we have completed the proof of Proposition 3.1.

4 Existence and Uniqueness

With Proposition 3.1 in hand, we can prove the existence of the solution of (1.3) through
the classical Friedrichs’ regularization method, which was used in [12, 13] and the references

therein.
4.1 Construction of the approximate solutions
Define the operators {J,, }nen by

Jnf = fﬁl]‘B(l,n)fAv
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and consider the approximate system

B2 4 Jn(Jpu} - VI, hi) + Adchd = FP,

Y+ o (Jpult - Vdue) + 2u1 A2 J, et — gA T, hY

—ygAJ,hE — a1 A3 T, hY — asA3J,hE = GT,

A7, + 201 A2 T, dp = J, A" divtHY,

B, 4 Jn(Jpud - VJ,h3) + AJ,ch = Fy,

4 Jn(Jpuly - VJnch) + 2p0A? Jpcd — gAJ,hY

—gAJ B — asA3J,hY — azA3 T, hy = GY,

A3, + 2ueA2J,dy = J, A" divt HY,

u? = A"V — ATIVEd,

(R, e, d)(0) = (hly, ¢y, d7) = Jn(hjo, A~ divujo, A~ Hdiv=uyo),

377377

where

FI' = —J, (Ju b7 divJ,ul),
n __ n n —1 73 n
G} = Jn(Jnuj V] )+ A divJ, H}',
Vb - V!

HY = —Jou? - VJgu? + 2 Ty
J u; u; + 245 H(Jnh?)—f—l

with (s) a smooth function satisfying

—g, s < —%;

S |s| < 1
0(s) = 7 — 2

3 3

) T

smooth, otherwise.

The existence of the solution of (4.1) in some time interval could be obtained by the Cauchy-
Lipschitz theorem. Indeed, by setting X (t) = (hY, ¢}, dy, by, c5,d5)(t), (4.1) can be written in
the form d

EX(t) = Z7(X). (4.2)
We regard (4.2) as an initial data problem of the ODE system in (L?)5. Due to the Cauchy-
Lipschitz theory, it suffices to check that Z2(X) is local Lipschitz to X in (L?)%. For example,

we have

y A_ldiv(wnh;{l VIl VI VJnu;{2>

O(Jnh7)+1  0(J.h0,) +1

L2
Vb7 -Vdu?,  VJ,h?, - VJ,u?
—1 -1 7 . F n%j,1 n=5l n7"5,2 nj,2
B(xm €l (61, 62) ( 0(Jh2 ) + 1 0(Jnhy) + 1
VJnhy - VJauly  VJh?y - Viul,

O(Jnh,) +1 0(Jnhfq) +1
ViJn (b}, = hYy) - VIuf,
0(Jnh}q) +1

L2

IN

L2
H VJnhys - VJn(u;{l — u}‘)2)
12 0(Jnhj ) +1

IN

L2
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O(Juh2s) — 0(Juh2y)
[O(Tuh ) + 1][0(TnhT ) + 1]l 2

+ HVJnh}fg VI,

VJ,ul o VI, .
J s HVJn(hj,l —hi9)llLe + W”LWHVJ n(ufy —uj,) L

10(Inhi o) = O(Tnhia)| L2

H Vi h -Vl
LOO

0(Jnh? ) +1][0(Jnh7 ) +1]
(”)H|§|1B (L,n) ]:U-?,1| Lthnl - h’?2||L2 +C(n )|||§|1B(1 ,n)]:h 2||L1||u] 1 ?,2HL2
COEMp(x ol €N sz oy FufsllLllJnhfs — JnhfillLe
< C(”)(”uj,lHL?th,l - j,2||L2 + th.,2||L2||U-j.,1 - U—j.,zHL2
+ [1BGall L2 ll10f ol 2R 2 — h54ll22),

where we have used Plancherel theorem, Hausdorff-Young’s inequality, Holder’s inequality and
the smoothness and boundedness of §(s) above. Since other terms in &?(X) are either linear or
bilinear, the verification of the local Lipschitz in (L?)® of these terms are simpler. Therefore, by

the Cauchy-Lipschitz theorem, we conclude that (4.1) admits a unique solution (h},c},d}) €

C([0,Ty), (L?)°) for some T, > 0. Since J2 = J,, it is easy to verify that J, (], ¢}, d}) is also
a solution of (4.1). Hence, uniqueness implies that J, (h7,c},d}) = (h},c},d}). So (h},c},d})

is also a solution of the system

hiy + Ju(uf - VAY) + Act = FT,

Y+ Ju(ul - Ver) + 2u1 A%t — gAhY — ygAhY — a A3hY — aaA3hE = G,
A7y, + 2 A2dy = J, A" YdivHY,

hgy + Jn(ug - VAE) + Acy = FY',

(4.3)
B+ Ju(ud - Vel) + 2uaA2eh — gAhY — gAhY — asA3hT — azA3hY = G2,
d3, + 2uaA\2dy = J, A divTHY,
ul = —A_IVdI — A_IVJ-d;?,
(R, e, dm)(0) = (R, ¢y, d7) = Jn(hjo, A~ divujo, A~ Hdiv=uyo),
where
F' = —Ju(h}diva}),
G} = Jn(u) - V) + A" div, HY,
gn - v 5 VhY - Vul
T uf +“J9(hg)+1
Note that (4.3) is an ODE system in the space
p 1
L2 = {f € L*(R?) : suppf C B(—,n)}. (4.4)
n

According to the Cauchy-Lipschitz theorem, (4.3) admits a unique solution in C([0,T}), (£2)9)
where[0, T¥) is the maximal time interval in which the solution exists.
4.2 Uniform estimates

In this subsection, we derive the uniform estimates for {(h,c},d})},en and prove the
global existence of the approximate solutions.
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Setting
E™ = ||(h71107u71107hgw‘17210)||(Bg;}x(133’1)2)27
we have, for n large enough, that
E™ < 2E(0).
Hence, from Proposition 3.1, we have that

K|[(uy';uz)

E(hy,uf, b3 g, ) < Ac g2 (B

+ ||(F1na 7711517{115}7‘2717 7;15H;)||(L%(ég:i)XL%(BS,I)XL%(BS’I))Z)

< 461Dtz 02 (o5

+ ||(F1na 77115 H{Ia F2nv 7;15 H;)||(L%(ég:i)XL%(BS,I)XL%(BS’I))Z)
Assume that A > 1, otherwise we can substitute A by A + 1 in the above inequality. Denote
T,, = sup {t €1[0,7;) : E(h},ul,hy,uj,t) < 3AE(O)}.

Since 34 > 1, we have T), > 0 by continuity. Assume that 6C1AE(0) < 1, where C} is the

continuity modulus of B%l < L. For any T < T,,, we have

n n n 1
175 |25 (o) < CullRf [l Lge s,y < Cullh; ||L;°(Bg;}) < 3C1AE(0) < >
hence
H VAT . Vul _ H VAT . Vul
O(hF) +1 ey s9,) iy +1 e
< VA v +‘ h?-Vh?-Vu?
< i VWi |1 po ——n 1
R et W+l e )
< CIVAG I Loy VUG Lr 1 )
o] L Ivu|
— u; 131
WA g,y R
< OV o 19 s (14| )
J 7( 2,1) J 7( 2,1) hj +1 LIO?(B;,I)

< CUIR e g 0D s iz ) (1 + CIAY e g )-
Similarly, we can deduce that
IS G H L (B9 x 1 (589 <2 (B9 )

< Ol e gy 195 oy g (1 O e oy ) + Ol ey Il g,

<9CA%E(0)%(1 + 3CAE(0)),
hence we have

E(hT,ub, b ub, T) < ASKAEO) (2B(0) + 9CAZE(0)2(1 + 3CAE(0))).
Therefore, by taking F(0) small enough, we can obtain the key estimate
E(h},ut,hy,uy, T) < gAE(O) < 3AE(0)
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for any T < Tn. Hence Tn = Ty. Indeed, due to the arbitrariness of T' < Tn, and con-
tinuity, we know that E(h},u},hy,ug,T,) < 5AFE(0). Hence, there is a € > 0 such that
E(h?,u?, hi,u2, T, + €) < 3AFE(0), which is in contradiction to the definition of T},.

Finally, we claim that T, = T = +oo. Indeed, if T)¥ < 400, then, due to the discussion

above, we have that [|(hy,uf, h,u3)|[ e (r2) < +00, which is in contradiction to the definition

of T*. Therefore T,, = T* = 400, and hence
E(ht,uf, hy,uy, +00) < AE( ) < 400, Vn € N. (4.5)

4.3 Existence of the solution

In the previous subsections, we have proved that when the initial data is small enough,
(4.3) admits a solution (A}, uy,hl,ul) which is global in time. Now we prove that, up to an
extraction, the sequence {(h}, u?, h%,u%)},en converges to a solution of (1.3) in D'(R* x R?).
Firstly, we give a lemma.

Lemma 4.1 {(h},u}, h},u})}pen is uniformly bounded in
(CHRYBY)) x (CHRY: B, 1))
Proof We use u.b for that which is uniformly bounded. It suffices to show that 861: hY is
uw.b in L2(B2 D), 2erisubin Ls (B;l%) + L4(B;71%), and 2.d7 is w.b in Lg(Bgl%) Indeed,

’BtJ oty

N dH

1A I Laepg ) < NefllLagay ) < C||c”|\Ll B,

oo(B[z),l)7

[ Jndiv(uj - h?)”N(Bgl) < uj - h?”w(}.@; oS C”“?HB(B;J)Hh?||L°°(]§3:i)7

I 4 g1 < CU g ) < OIS g Iy
—1q:. L/ n n n
| JnA™ div (u] -Vuj)HL%(B;I%)SCHu -Vu] ||L s 51 h)
< Ol g IV 4
21
< C”un”LOO BO’I)HUUHE(B; )HunHLz Bl )
<C||un||4oo BO ||un||L1(B2 )7
VA - Vu”? VAT - Vu”
o () A
hi+b s, 2) hi+1 e b
Vi [vurl
u’; 1,
W+ U,y 7 L3 (B2,)
where
‘ Vh;? < HthH +Hh"Vh"
n . Lee B0 n .
hi + L s ) El RS 41 ey
< CIA 1 e 00 VA e po || ——
= || ]HL (Bg,})_FH ]HL (B(QJJ) h;L+1 LOO(B%J)

< OlRF Nl Lo 591y (1 + ClRT | oo 33:1)):
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and
IVeily g s, = O g 8 SC”u;’l”iu%, A B2,)
< OHU"HLl B2, Jllu J||"‘oo (5L,
A1 g, < O, 3 < OIS g Wy
< ouh"nLl(Bm ||h”||4m .
IR g < O g8 < OME sy MR g

< IR g V5 o

Other terms in (4.3) could be verified similarly. The lemma could be proved by collecting the

estimates above and the uniform bound (4.5). O
Now we prove the existence of the solution of (1.3). We need the following Ascoli theorem:

Theorem 4.2 Let X be a compact metric space and Y a complete metric space. Let A
be an equicontinuous part of C(X,Y"). Then we have the following two equivalent propositions:

1. A is relatively compact in C(X,Y);

A(z) = {f(x) : f € A} is relatively compact in Y.

Let {Xp}pen C C5°(R?) be cut-off functions such that suppx, € B(0,p + 1), xp, = 1 in
B(0,p). Due to Lemma 4.1, we have that for any p € N, {(xph}, xpu})}nen is equicontinuous
in C(RT; Bg 1 X (B ) ). Therefore, for any € > 0, 3§ > 0 such that for any ¢, to € RT, and
[t1 — t2] < 0, we have

sup [|[xph (t1) = xph (t2) [l o < sup [xph (t1) = xph (t2) 5y | < e,
neN neN >

where in the first inequality we have used the fact that ||ul| 0 = HUHB;{Z < ||u||B(2)Y1, and in
the second inequality we have used the equicontinuity of {x,h} }nen in C(RF; Bg)l). There-
fore, we obtain that {x,h} },en is equicontinuous in C(R*; HY), and hence equicontinuous
in C([0,p]; H®). In a similar way we could also show that {xpu} fnen is equicontinuous in
C([0,p; H™3).

On the other hand, according to (4.5), Lemma 4.1 and Proposition 2.5 we could obtain that
{(h}(t),u%(t))}nen is uniformly bounded in Eg% X EQ_%O Since the application u — x,u is
compact from Eg% into H°, and from B;)l%’o into 2, by Theorem 4.2 we know that for any
p € N, the sequence {(x,h}, Xpu})}nen is compact in C([0,p], H® x (H~2)?). By a standard
diagonal process, we obtain a distribution (h;,u;) € C(RT, H? x (H~2)?) and a subsequence
which is still labeled by {(h},u’)},en such that, for any p € N, we have

(xph xpu?) — (xphy, xpu;) in C([0,p], HO x (H™2)?), as n — +oc.

Hence (h%,u}) tends to (hj,u;) in D'(RT x R?).

The next part of the discussion is to show that (h1,uy, ha, ug) is alsolution of (1.3). First,
due to the property of Jy, (hjy, u%,) tends to (hjo, ujo) in 3871 X (B;f )%, where ujjy = J,ujo.
To show that the limit (hq,uq, hg, up) solves (1.3), we should pass to the limit of the nonlinear
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terms of (4.3) in D'(R* x R?). We only prove that

Vh_;l . divu;‘l th . diVUj
—
h;—l +1 h;j +1

, in D'(RT x R?), as n — +o0, (4.6)

n

for other terms could be verified similarly. Indeed,

Vi -diva?  Vh; - divu;

TR AT kit
VR 1 " :
J
1 1 Vh; - divu;
Jn| (—— Vh;d Jp —Id)—L—3
+ <(h;.l+1 h+1) W“J)Jr( )1

AL+ L+ I3+ 1,

—For any 1 € C§°(RT x R?), we take p € C5°(RT x R?), ¢ = 1 on a neighborhood of supp.
We then have, for n large enough, that

VR VR
(10 = (g ivees = ). ) = Gtqaiviens = o), 2t )

1
<C I_div(pu” — pu; Jn
< O|ranton —om)| |l
T 1 = ) 10,

< O e gty (1 + RS Dt (0 = I, I 3

1
< ORIl gy (U IR o)) oo} = )

LI(H™%)
H(p( )HLI Hz)”anHLm(H%)
1
< ClA ey U+ ClIAG e ag )l (ay — w7 oy
lp(af )HL1 B3 )1Vl e 8
1 1
hj +1 J J hj +1
1
< C|le(h? = hi)|| oo oy || m——di n
= ”90( J J)HL (HO) hn+1 1Vll] Q/J LA
1
< Cllo(h} — hi)ll g 10y || 75— divu;Jn :
< Cll(R] Iz (E0) S Loo(HI)H vu; 1/’”Ll(Hl)
1
< Clle(h? = hi)ll ;o7 divu, 21y || In oo (1]
< ||50( i J)HL (E0) h}l—l—l LDO(Hl)” lvu_]HLl(Hl)H 1bHL (H1)
0 0 (h)*
SC”SD(hj _hj)HLoo(HO) ”hj ||L°°(H1)+ R+ 1 (i) ||U-jHL1(H2)||Jn¢||Loo(Hl)

< Clle(h} = hy)ll oo oy 105 1l Lo (g2 (1 + C”h?”Lm(B’g:i))Huj”Ll(B;l)”anHLOO(Hl)’

_ 1 1 p(hj — h7) .
(I3, ¢) = <(h;‘ 1 h n 1)Vh divu;, n’l/1> <W(hj]+1)thdlvuj,an>
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1
<Cll———— hi — B ;oof 7ron | VR - divua, won || n o (L0
< | G | 1 5 i s 9y )
<0 1 il = )l
=AY A+ Ul pee gy 15 + Ll oo (1) o e

VR oo groy 1divag gy [0l poe (o)
< CIRG N oo iy (U4 CURG N oo g P oo g1y (1 + CllAG I oo 71)
ey = B e oy 1 g 183 1 Tt e 1)
< Ol oo gy (L + ClIRGF | oo 2R | oo 891y (1 + CllAll oo 39:1))
ey = B oo oy 1 e oy I s 53 1Tt -
The convergence of (I4,v) is just a consequence of the property of J,,. Combining the above
estimates with (4.5), (4.6) can be proved.
Hence, we have found a global solution (hi,uy, ha, uz) of (1.3) which obviously satisfies the
estimate -
E(hl, u, h,2, ug, —|—OO) < §AE(O) < +4o00.
4.4 Uniqueness of the solution

To finish the proof of Theorem 1.1, it suffices to prove the uniqueness of the solution.
Assume that (le, a, ng, 2) € E; and (hl,ﬂl, }LQ, ug) € F; are two different solutions of (1.3),
and set

(h’17 uj, h?a u2) = (},Lla ﬁlv 151’27 ﬁQ) - (i?’lv fllv i”27 fl?)
Then (hi,u1, ha,us) solves the following equations:

hiy + 0y - Vhy + divay = F,

uy — 2pu1Aug + 41 - Vug + gVhy +vgVhe — an V(Ahy) — aeV(Ahg) = G,
hat + iz - Vho + divuy = 3,

Ug; — 2ueAug + g - Vug + gVhy + gVhy — asV(Ahy) — asV(Ahy) = Go,
(h1,u, ha,u2)|i=0 = 0,

where
Fj = —iLjdiVUj —u- ViLJ — hjdivﬁj,
: Vh;-Vu;  Vh;- Vi 1 1 X
Gj:—uj'Vilj+2Mj< ,J u]‘f' ,] uJ)+2 j(f—_\ >VhJVi1J
hj+1 hj-l—l hj+1 hj+1

Due to Proposition 3.1, we have
E :=E(hy,uy, ha,us, +00)
SAeKH(ﬁl,ﬁz)l\@l(sé,lm (II(Fl,G1,F2, G2)H(Ll(ég”i)x(Ll(Bg,l)V)?)’
and
E = E(h1,11, ha, i, +00) < ME(0),
E = E(h1, 1, ha, 12, +00) < ME(0).
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Similarly to the previous subsections, we have
1Bl cag ) < C (Il g sl zne e + Isll e o pelslloas )

1 g 1 a2
< CE(E + F) < CEE(0),
||Fj||L1(B%’1) < C(||hjIILOO(B(Z;’I)||uj||(L1(Bg,1))2 + ||“J’||(L2<Bé,1>>2”hﬂ’”U(BS,l)
iy 1 a2
< Ol oy sl e + ”“ﬂ‘”%p(és,nﬁ”“j”%Lw(Bé’,lD?
sl gy sl sy WAy s g )

< CE(E + E) < CEE(0),

. X Vh;
||Gj||(L1(Bg’l))2 < C(H“j”(LDO(B’&JP||uj||(L1(B§,1))2 + ‘ [ (L“’(Bg,l))2HujH(Ll(BgJ)P

o sy il

7 1 22

Byt Ulweqpg e "

1 1 N .
1 Tt yen BB YRS
2,1

< C(H“]‘H(L“’(BSYI)P||1\1j||(L1(B§11))2 + ||flj||Loo(Bg;})(1 + C||]:Lj |Loo(1§g;;))

w5l sz 2 + 1l oo gy (1 + CliRsH oo eI L1 (32 ,))2
1 , 1 .

(|G ) - G o) oy

- |hjnm@;,l)||uj||<L1<Bg,l>>z),

1 , 1 N
H(— + hj) — (\— + hj)
hj+1 hj+1 Lm(le,1)

< C(Whsllzmay, + Ml gy ) ) Wslloe s,

Lm(le,l)

where

and hence
||Gj||(L1(Bg’l))2 < CE((E +E)+(E+E)?+(E+ E)g)
<CE (E(o) +E(0)? + E(0)3).
Collecting the above estimates, we obtain
E< ceCE<0>E(E(o) +E(0) + E(o)3),

where the constant C' is independent of the initial data. Hence, when E(0) is small enough, we
have E = 0, which means that (h1,uy, ho, uz) = 0. Therefore,

(h1, 41, ho, i) = (1,11, ha, o),
and hence the solution of (1.3) is unique.
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Appendix

This section is devoted to proving a proposition which is a supplement of Lemma 6.2 in

[7] and has been used in Section 3. We need the following Bony’s decomposition (modulo a

polynomial):

wv = Tyv + Tyu + R(u,v),
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where

T.,v = Z Skp_1ul\gv,

keZ

R(u,v) = Z Apu(Dg—10 + Ao + Agy1v).
kEZ

Proposition A.1 For any —% <s< % + 1, we have

/ Bilu- V) Drg < O 2Nl 1 llss, (180l + 126(Ag)lo ). (A1)

where C'is a constant independent of k, and Y e < 1.
keZ
Proof Due to Bony’s decomposition,

/ A(u-Vf)Arg = / AK(TuVf + Ty pu+ RV, ) Ak,
where

[otavnmg= Y [ susi s )L

lg—k|<N

= Z ([Ak; Sq—1u]8g(V ) Arg

lg—k|<N

+ Z (Sg—1u = Sp_1u) A Ay (V) Arg

lg—k|<N
+ ) Sk1uliAg(V ) Akg
lg—k|<N

AN+ L+

for some integer N. For the estimate of I;, we have
[Dk, Sq-1u] g (VF)(2) = 2N /RN h(2" (@ —y))(Sg-1u(y) — Sg-1u(2))2q(V f)(y)dy

<25 (Tl [ (@A = 0) (@ = 1) (T W)y

< 2,1 (V) e (H 5| 2 (V)] (@)).
where H(z) = |h(2¥z)||z|. Hence,
1185, S0 24 (VF) o < C2V(Soms (V) |z [ 21 24(V o
< 027K Vul = | 2 o

_k —
< C297%2 quqHuHB%HHﬂ

Bs
and
L< >0 |18k Se 1] Ag(VF)llollArgllo
lg—k|<N

—ks .
< C2Meylully 1Sl g 1800l

2
2,1
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To estimate I, noting that when |¢ — k| < N, Sq—1u — Sk—1u is supported in an annular
like C = {C12% < |¢] < C92F} for some positive constant Cy, Ca, we could easily pass the

operator V from f to u by Bernstein’s inequalities. We have

L<C > (IS 1= Skoqull e | Ak Ag(V o[ Argllo
lg—k|<N

<C D 27F|Vul e [ Arfllol Argllo

lg—k|<N

<O Feull gl | Sal
For I3, we have |
b= [ Sirube(V1)0g < [S-rulli= | 4T ol Seglo
< 02 % exllull 1715 124 (Ag) . (A.2)

We emphasize that I and I3 could be estimated together by the method used in (A.2), however,
we split them so as to see which one is responsible for the derivative term ||Ag(Ag)llo in (A.1).

To estimate [ Ap(Tysu)Lrg and [ Ag(R(V f,u))Arg, we apply Proposition 6.1 in [7] to
obtain

/ Ak(To ) Arg < || Ax(To pw)loll Argllo

B3, 11854ll0
<27 eplull gy [Vl 1 4kllo
2,1 ’

< C2_kSEkHvau|

< o2 elull g 155, 1 e o,

and similarly,
[ BB £ ) g < 02 Fenlul g, 20
2,1 ’

By collecting the estimates above, we obtain (A.1). O

Remark A.2 It is noted that there is a loss of one derivative in (A.1), due to the fact
that the gradient operator V could not be passed from f to u in I3.
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