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1 Introduction

Lately, problems involving nonlocal operators and singular terms have recently received

considerable attention in the literature. A good amount of investigations have focused on the

existence and/or regularity of solutions to such problems governed by the fractional Laplacian

with a singularity due to a negative power of the unknown or described by a potential, see for

instance, [1, 2, 4, 7, 8, 12] and related papers.

A prototype of nonlocal operators is the fractional Laplacian operator of the form (−∆)s,

0 < s < 1, which is actually the infinitesimal generator of the radially symmetric and s-

stable Lévy processes [6]. Fractional Laplacian operators naturally arise from a wide range of

applications. They appear, for instance, in thin obstacle problems [14], crystal dislocation [18],

phase transition [30] and others.

In this paper, we are interested in the existence and regularity of solutions to the following
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Dirichlet problem






















(−∆)su =
f(x)

uγ
+ µ in Ω,

u > 0 in Ω,

u = 0 on RN\Ω,

(1.1)

where Ω is an open bounded subset in RN , N > 2s, of class C0,1, s ∈ (0, 1), γ > 0, f is a

non-negative function on Ω, µ is a non-negative bounded Radon measure on Ω and (−∆)s is

the fractional Laplacian operator of order 2s defined by

(−∆)su = α(N, s)P.V.

∫

RN

u(x) − u(y)

|x − y|N+2s
dy,

where “P.V.” stands for the integral in the principal value sense and α(N, s) is a positive

renormalizing constant, depending only on N and s, given by

α(N, s) =
4sΓ(N

2 + s)

π
N
2

s

Γ(1 − s)

so that the identity (−∆)su = F−1(|ξ|2sFu), ξ ∈ RN , s ∈ (0, 1) and u ∈ S(RN ) holds, where

Fu stands for the Fourier transform of u belonging to the Schwartz class S(RN ) (cf. [23]).

More details on the operator (−∆)s and the asymptotic behaviour of α(N, s) can be found in

[17].

The case s = 1 corresponds to the classical Laplacian operator. If further µ = 0, an

important result is due to Lazer-McKenna [24]. Under regularity assumptions on Ω and f , the

authors present an obstruction to the existence of an energy solution. In fact, such a solution

lying in H1
0 (Ω) should exists if and only if γ < 3 while it is not in C1(Ω) if γ > 1. As far as

problem with L1-data are concerned, the threshold 3 essentially due to the boundedness of the

datum was sharpened in [32] while in [11] the existence of a distributional solution u is proved.

In fact, it is proved in [11] that if γ < 1 and f ∈ Lm(Ω), 1 ≤ m <
(

2∗

1−γ

)′
, then u ∈ W 1,q

0 (Ω)

where q = Nm(γ+1)
N−m(1−γ) while u ∈ H1

0 (Ω) if f ∈ Lm(Ω) with m =
(

2∗

1−γ

)′
. In the case where

f ∈ L1(Ω), if γ = 1 then u ∈ H1
0 (Ω); while u ∈ H1

loc(Ω) if γ > 1. We note that in the latter

case, the boundary datum is only assumed in a weaker sense than the usual one of traces, that

is u
γ+1
2 ∈ H1

0 (Ω). Let us point out here that solutions with infinite energy may exist if γ > 1

even for smooth data ([24]).

The nonhomogeneous case (i.e., µ 6= 0) has been considered. In [26] the authors studied

the existence of weak solutions for the problem

−∆u =
f(x)

uγ
+ µ, (1.2)

where f ∈ L1(Ω) and µ is a bounded Radon measure. They prove the existence of a weak

solution u of the problem (1.2) such that u ∈ W 1,q
0 (Ω) for every q < N

N−1 when γ ≤ 1 while if

γ > 1, u ∈ W 1,q
loc (Ω) for every q < N

N−1 with the regularity
(

Tk(u)
)

γ+1
2 ∈ H1

0 (Ω), Tk being the

truncation function at levels ±k. Other related singular equations can be found for instance in

[13, 15, 21, 27, 31].

Regarding nonlocal problems, the study of (1.2) with µ = 0 was extended in [7, 12] where the

Laplacian is substituted by the fractional Laplacian (−∆)s
p, 0 < s < 1 and p > 1. The authors

obtain some existence and regularity results for the solutions depending on the summability of
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the datum f and γ (splitting in the cases γ < 1, γ = 1, γ > 1). Some fractional equations with

measure data are studied in [5, 20, 28].

It is our purpose in this paper, to consider the problem (1.1) in the nonlocal framework

and prove existence results of solutions to problem (1.1) with µ a bounded Radon measure and

data f ∈ L1(Ω). We use an approximation method that consists in analyzing the sequence of

approximated problems truncating the datum f and the singular term 1
uγ and approximating

µ by smooth functions, obtaining non singular problems with L∞-data whose approximated

solutions un can be obtained by a direct application of the Schauder fixed point theorem. We

faced many difficulties in dealing with the nonlocal problem (1.1), but the main one is how to

get estimations in appropriate fractional Sobolev spaces.

Observe that in the local setting, if the approximated solutions are such that the sequence

{∇un}n is uniformly bounded in the Marcinkiewicz space M
N

N−1 (Ω), then we conclude that

the sequence {un}n is uniformly bounded in the Sobolev spaces W 1,q
0 (Ω) for every q < N

N−1

(see [9]).

However, we underline here that given the fractional structure of the operator of the prin-

cipal part, we can not retrieve the gradient of the approximate solutions and so appears the

problem of getting a priori estimates in some fractional Sobolev spaces. To overcome this diffi-

culty, we first prove the key result Lemma 4.1 (Section 4) and use suitable test functions and

algebraic inequalities that enable us to get appropriate a priori estimates in both cases γ ≤ 1

and γ > 1.

The paper is organized as follows: in Section 2 we give some basic notations and necessary

results that we will use in the accomplishment of the paper. We also give the main results. In

Section 3, we construct a series of approximate problems to which we show the existence and

uniqueness of the approximate solution. In Section 4, we prove some a priori estimates of the

approximate solutions in fractional Sobolev spaces. Section 5, is devoted to the proof of the

main results (Theorems 2.7 and 2.8). While in Section 6 we give a regularity result. Finally, in

Appendix we expose and prove the technical and functional results that we used in the previous

sections.

2 Some Useful Notations and Main Results

In this section we provide some basic facts about fractional Sobolev spaces. We refer to

[10, 16, 17, 29] for more details. Let Ω be an open subset in RN and let CΩ := RN\Ω. For any

0 < s < 1 and for any 1 ≤ q < +∞, the fractional Sobolev space W s,q(Ω) is defined as the set

of all functions (equivalence class) u in Lq(Ω) such that
∫

Ω

∫

Ω

|u(x) − u(y)|q

|x − y|N+qs
dxdy < ∞.

W s,q(Ω), also known as Aronszajn, Gagliardo or Slobodeckij spaces, is a Banach space when

equipped with the natural norm

‖u‖W s,q(Ω) =

(

‖u‖q

Lq(Ω) +

∫

Ω

∫

Ω

|u(x) − u(y)|q

|x − y|N+qs
dxdy

)
1
q

. (2.1)

It can be regarded as an intermediate space between Lq(Ω) and W 1,q(Ω). Recall that the space

W s,q(Ω) is reflexive for all q > 1 (see [22, Theorem 6.8.4]). We point out that if 0 < s ≤ s′ < 1
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then W s′,q(Ω) is continuously embedded in W s,q(Ω) (see [17, Proposition 2.1]). Let us define

W s,q
0 (Ω) as the closure of C∞

0 (Ω) in W s,q(Ω) with respect to the norm defined in (2.1) where

C∞
0 (Ω) =

{

f : RN → R/f ∈ C∞(RN ), Supp f is compact and Supp f ⊂ Ω
}

.

Here and in the sequel Supp f stands for the support of the function f . W s,q
0 (Ω) is a Banach

space under the norm ‖u‖W s,q(Ω).

If Ω is bounded and is of class C0,1, we can give a fractional version of the Poincaré inequality

in W s,q
0 (Ω), 1 ≤ q < +∞, whose proof in the case where q = 2 can be found in [3]. For the

convenience of the reader, we are giving the proof here.

Lemma 2.1 (fractional Poincaré-type inequality) Let Ω be a bounded open subset of RN

of class C0,1, 1 ≤ q < +∞ and let 0 < s < 1. Then there exists a constant C(N, s, Ω) such that

for any ϕ ∈ W s,q
0 (Ω) one has

‖ϕ‖q

Lq(Ω) ≤ C(N, s, Ω)

∫

Ω

∫

Ω

|ϕ(x) − ϕ(y)|q

|x − y|N+qs
dxdy.

Proof Let ϕ ∈ C∞
0 (Ω). Observe first that the above inequality holds if ϕ = 0. Assume

that ϕ 6= 0 and set

λ(Ω) = inf
{ϕ∈C∞

0 (Ω),ϕ 6=0}

∫

Ω

∫

Ω
|ϕ(x)−ϕ(y)|q

|x−y|N+qs dxdy
∫

Ω |ϕ(x)|qdx
.

We shall prove that λ(Ω) > 0. To do so, we argue by contradiction assuming that λ(Ω) = 0.

Thus, there exists a sequence {ϕn} of C∞
0 (Ω) such that

∫

Ω

|ϕn(x)|qdx = 1 and

∫

Ω

∫

Ω

|ϕn(x) − ϕn(y)|q

|x − y|N+qs
dxdy → 0 as n → ∞.

It follows that

‖ϕn‖W s,q(Ω) ≤ C.

By virtue of [17, Corollary 7.2], there exists a function f and a subsequence of {ϕn}, still

indexed by n, such that

ϕn → f in norm in Lq(Ω),

ϕn → f a.e. in Ω.

Therefore,
∫

Ω

|f(x)|qdx = 1 and
|ϕn(x) − ϕn(y)|q

|x − y|N+qs
→

|f(x) − f(y)|q

|x − y|N+qs
a.e. in Ω × Ω.

Applying Fatou’s lemma, we get
∫

Ω

∫

Ω

|f(x) − f(y)|q

|x − y|N+qs
dxdy ≤ lim inf

n→∞

∫

Ω

∫

Ω

|ϕn(x) − ϕn(y)|q

|x − y|N+qs
dxdy → 0

and thus
∫

Ω

∫

Ω

|f(x) − f(y)|q

|x − y|N+qs
dxdy = 0. (2.2)

Thus, we have f ∈ W s,q(Ω). On the other hand, in view of (2.2) we can write
∫

Ω

∫

Ω

|(ϕn(x) − f(x)) − (ϕn(y) − f(y))|q

|x − y|N+qs
dxdy

≤ 2q−1

∫

Ω

∫

Ω

|ϕn(x) − ϕn(y)|q

|x − y|N+qs
dxdy + 2q−1

∫

Ω

∫

Ω

|f(y) − f(x)|q

|x − y|N+qs
dxdy
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= 2q−1

∫

Ω

∫

Ω

|ϕn(x) − ϕn(y)|q

|x − y|N+qs
dxdy → 0.

Hence, ϕn → f in W s,q(Ω) and so f ∈ W s,q
0 (Ω). By (2.2), the function f has a constant value

on Ω. The only possible value is f ≡ 0 which yields a contradiction with the fact that
∫

Ω

|f(x)|qdx = 1.

So, we get

‖ϕ‖q

Lq(Ω) ≤ C(N, s, Ω)

∫

Ω

∫

Ω

|ϕ(x) − ϕ(y)|q

|x − y|N+qs
dxdy, ∀ϕ ∈ C∞

0 (Ω). (2.3)

Now, for every ϕ ∈ W s,q
0 (Ω), there exists a sequence {ϕn} of C∞

0 (Ω) functions such that

ϕn → ϕ in norm in W s,q(Ω).

Applying the inequality (2.3) for ϕn and passing to the limit, we conclude the result. �

Under the same assumptions of Lemma 2.1, the Banach space W s,q
0 (Ω) can be endowed

with the norm

‖u‖W
s,q
0 (Ω) =

(
∫

Ω

∫

Ω

|u(x) − u(y)|q

|x − y|N+qs
dxdy

)
1
q

which is equivalent to ‖u‖W s,q(Ω). Now, we define the space

W s,q
loc (Ω) =

{

u : Ω → R : u ∈ Lq(K),

∫

K

∫

K

|u(x) − u(y)|q

|x − y|N+qs
dxdy < ∞,

for every compact K ⊂ Ω

}

.

In the case where q = 2, we note W s,2(Ω) = Hs(Ω) and W s,2
0 (Ω) = Hs

0(Ω). Endowed with the

inner product

〈u, v〉Hs
0 (Ω) =

∫

Ω

∫

Ω

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dxdy,

(Hs
0(Ω), ‖ · ‖Hs

0 (Ω)) is a Hilbert space.

It is worth recalling that for any u and ϕ belonging to Hs(RN ), we have the following

duality product
∫

RN

(−∆)suϕdx =
α(N, s)

2

∫

R2N

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx.

Thus, it can be seen that

(−∆)s : Hs(RN ) → H−s(RN )

is a continuous and symmetric operator defined on Hs(RN ).

In the particular case, if u and ϕ belong to Hs(RN ) with u = ϕ = 0, on CΩ, we have
∫

RN

(−∆)suϕdx =
α(N, s)

2

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx,

where Q := R2N\(CΩ × CΩ). For N > 2s we define the fractional Sobolev critical exponent

2∗s = 2N
N−2s

. The following result is a fractional version of the Sobolev inequality which provides

a continuous embedding of Hs
0(Ω) in the critical Lebesgue space L2∗

s (Ω). The proof can be

found in [17, 29].
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Theorem 2.2 (Fractional Sobolev embedding) Let 0 < s < 1 be such that N > 2s. Then,

there exists a constant S(N, s) depending only on N and s, such that for all f ∈ C∞
0 (RN )

‖f‖2
L2∗s (RN )

≤ S(N, s)

∫

RN

∫

RN

|f(x) − f(y)|2

|x − y|N+2s
dxdy.

Remark 2.3 In particular, if Ω is an open bounded subset in RN of class C0,1 with N > 2s

and 0 < s < 1 and f ∈ C∞
0 (Ω) we have

‖f‖2
L2∗s (Ω)

≤ S(N, s, Ω)

∫

Ω

∫

Ω

|f(x) − f(y)|2

|x − y|N+2s
dxdy.

Indeed, by [17, Theorem 5.4] we can write
∫

RN

∫

RN

|f(x) − f(y)|2

|x − y|N+2s
dxdy ≤ ‖f‖2

Hs(RN ) ≤ C‖f‖2
Hs(Ω)

= C‖f‖2
L2(Ω) + C

∫

Ω

∫

Ω

|f(x) − f(y)|2

|x − y|N+2s
dxdy.

The result follows then by Theorem 2.2 and Lemma 2.1.

We will prove some estimates in the usual Marcinkiewicz space Mq(Ω), 0 < q < ∞, which

consists of all measurable functions u : Ω → R such that there exists a constant c = c(u) > 0

satisfying

tqmeas({x : |u(x)| > t}) ≤ c

for every t > 0. Here and in what follows, meas(E) denotes the Lebesgue measure of a measur-

able subset E of Ω. It is worth recalling the following connection between Marcinkiewicz and

Lebesgue spaces

Lq(Ω) →֒ M q(Ω) →֒ Lq−ε(Ω)

for every 1 < q < ∞ and 0 < ε ≤ q − 1 (see for instance [22]). We will also use the following

truncation functions Tk and Gk, k > 0, defined for every s ∈ R by

Tk(s) = max{−k; min{k, s}} and Gk(s) = s − Tk(s).

We denote by Mb(Ω) the space of all bounded Radon measures on Ω. The norm of a measure

µ ∈ Mb(Ω) is given by ‖µ‖Mb(Ω) =
∫

Ω
d|µ|.

Definition 2.4 We say that the sequence of measurable functions {µn} is converging

weakly to µ in the sense of the measures if

lim
n→∞

∫

Ω

ϕ(x)µn(x)dx =

∫

Ω

ϕdµ, ∀ϕ ∈ C∞
0 (Ω).

In what follows we make use of the following technical algebraic inequalities.

Lemma 2.5 i) Let α > 0. For every x, y ≥ 0 one has

(x − y)(xα − yα) ≥
4α

(α + 1)2
(x

α+1
2 − y

α+1
2 )2.

ii) Let 0 < α < 1. For every x, y ≥ 0 with x 6= y one has

x − y

xα − yα
≤

1

α
(x1−α + y1−α).

iii) Let α ≥ 1. Then

|x + y|α−1|x − y| ≤ cα|x
α − yα|,

where cα is a constant depending only on α.
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Taking into account that less regular data are involved, the classical notion of finite energy

solution cannot be used. Instead, we shall consider the notion of weak solution whose meaning

is defined as follows.

Definition 2.6 Let f ∈ L1(Ω) and let µ be a non-negative bounded Radon measure. By

a weak solution of problem (1.1), we mean a measurable function u satisfying

∀ω ⊂⊂ Ω, ∃cω > 0 : u(x) ≥ cω > 0, in ω

and
α(N, s)

2

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dxdy =

∫

Ω

fϕ

uγ
dx +

∫

Ω

ϕdµ

for any ϕ ∈ C∞
0 (Ω).

Theorem 2.7 Let Ω be an open bounded subset in RN of class C0,1 with N > 2s and

0 < s < 1. Let 0 < γ ≤ 1 and let f ∈ L1(Ω). Then the problem (1.1) admits a weak solution

u ∈ W s1,q
0 (Ω) for every 1 < q < N

N−s
and for every s1 < s.

Theorem 2.8 Let Ω be an open bounded subset in RN of class C0,1 with N > 2s and

0 < s < 1. Let γ > 1 and let f ∈ L1(Ω). Then the problem (1.1) admits a weak solution

u ∈ W s1,q
loc (Ω) for every 1 < q < N

N−s
, for all s1 < s. Furthermore, T

γ+1
2

k (u) ∈ Hs
0(Ω) for every

k > 0.

We point out that the inclusion W s1,q
0 (Ω) ⊂ W s2,q

0 (Ω) holds for any s2 < s1 (see [17]).

Therefore, the range of s1 in both Theorem 2.7 and Theorem 2.8 can be that of the set of the

exponents s1 close to s. Indeed, we can consider s1 to be such that s
2−s

≤ s1 < s. So that

when s tends to 1 one has also s1 tends to 1−. In addition, letting s tends to 1− the operator

(−∆)s is nothing but the standard Laplacian. So that the equation in (1.1) becomes

−∆u =
f(x)

uγ
+ µ

and then the results in both Theorem 2.7 and Theorem 2.8 covers those obtained in [26].

3 Approximated Problems: Existence Result and Comparison Prin-

ciple

Consider the sequence of approximate problems






















(−∆)sun =
fn

(un + 1
n
)γ

+ µn in Ω,

un > 0 in Ω,

un = 0 on RN\Ω,

(3.1)

where fn = Tn(f) is the truncation at level n of f and µn is a sequence of bounded non-negative

smooth functions in L1(Ω) converging weakly to µ in the sense of the measures.

We shall prove that for every fixed integer n ∈ N, the problem (3.1) admits a unique weak

solution un in the following sense :

α(N, s)

2

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dxdy =

∫

Ω

fnϕ

(un + 1
n
)γ

dx +

∫

Ω

µnϕdx

for any ϕ ∈ Xs
0(Ω).
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Lemma 3.1 For each integer n ∈ N, the problem (3.1) admits a non-negative weak

solution un ∈ Hs
0(Ω) ∩ L∞(Ω).

Proof Let n ∈ N be fixed and let v ∈ L2(Ω). We define the map

S : L2(Ω) → L2(Ω),

v 7→ S(v),

where w = S(v) is the weak solution to the following problem






















(−∆)sw =
fn

(|v| + 1
n
)γ

+ µn in Ω,

w > 0 in Ω,

w = 0 on RN\Ω.

(3.2)

The existence of w can be derived by classical minimization argument. Indeed, since fn

(|v|+ 1
n

)γ +

µn ∈ L∞(Ω), we already know (see [12, Lemma 2.1]) that problem (3.2) has a unique weak

solution w ∈ Xs
0(Ω), where

Xs
0(Ω) =

{

ϕ ∈ Hs(RN ) such that ϕ = 0 a.e. in RN\Ω

}

,

in the following sense

α(N, s)

2

∫

Q

(w(x) − w(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dxdy =

∫

Ω

fnϕ

(|v| + 1
n
)γ

dx +

∫

Ω

µnϕdx

for any ϕ ∈ Xs
0(Ω). Since Ω is regular enough, by [19, Theorem 6] the linear space Xs

0(Ω) is

the completion of C∞
0 (Ω) with respect to the norm

‖u‖Hs(RN ) =

(

‖u‖2
L2(RN ) +

∫

RN

∫

RN

|u(x) − u(y)|2

|x − y|N+2s
dxdy

)
1
2

.

Hence, by density arguments it follows that Xs
0(Ω) ⊂ Hs

0(Ω). Thus, w ∈ Hs
0(Ω). As regards

the uniqueness of w in Hs
0(Ω), we suppose there exist two solutions w1, w2 ∈ Hs

0(Ω) of (3.2).

Summing up the both equations satisfied by w1 and w2 respectively, we get (−∆)s(w1−w2) = 0.

Thus, taking (w1 − w2) as a test function in this last equation and then integrating over RN ,

we obtain

0 ≤ ‖w1 − w2‖
2
Hs

0(Ω) ≤

∫

Q

|(w1(x) − w2(x)) − (w1(y) − w2(y))|2

|x − y|N+2s
dxdy = 0.

So we get w1(x) = w2(x), for almost every x ∈ Ω. Since w1 = w2 = 0 on RN\Ω, we get

w1(x) = w2(x) for almost every x ∈ RN . Furthermore, by the comparison principle [8, Lemma

2.1] we get w ≥ 0. Now, inserting w as a test function in (3.2) we obtain

α(N, s)

2

∫

Q

(w(x) − w(y))2

|x − y|N+2s
dydx =

∫

Ω

fnw

(|v| + 1
n
)γ

dx +

∫

Ω

wµndx

≤ nγ+1

∫

Ω

wdx + C(n)

∫

Ω

wdx.

By the Hölder inequality and the Sobolev embedding, we get

‖w‖Hs
0(Ω) ≤ C′(nγ+1 + C(n)), (3.3)
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with C′ and C(n, s, N, Ω) are independent of v, so that the ball of radius C′(nγ+1 + C(n)) is

invariant under S in Hs
0(Ω).

Now, using the Schauder’s fixed point theorem over S to prove the existence and uniqueness

of solution of (3.1), we need to verify the continuity and compactness of S as an operator from

Hs
0(Ω) to Hs

0(Ω).

First, we go to prove the continuity of S as an operator from L2(Ω) to L2(Ω). Let us

consider a sequence vk that converges to v in L2(Ω), then up to a subsequence, we have

vk → v a.e. in Ω. (3.4)

Denoting wk = S(vk) and w = S(v), we have

(−∆)swk =
fn

(|vk| +
1
n
)γ

+ µn. (3.5)

(−∆)sw =
fn

(|v| + 1
n
)γ

+ µn. (3.6)

Taking wk(x)−w(x) ∈ Xs
0(Ω) as a test function in (3.5) and (3.6) respectively, then subtracting

term at term the both resulting equations and using Hölder’s inequality we arrive at

α(N, s)

2

∫

Q

(

wk(x) − w(x) −
(

wk(y) − w(y)
)

)2

|x − y|N+2s
dydx

=

∫

Ω

(

fn

(|vk| +
1
n
)γ

−
fn

(|v| + 1
n
)γ

)

(wk(x) − w(x))dx

≤ ‖wk − w‖L2∗s (Ω)

(
∫

Ω

(

fn

(|vk| +
1
n
)γ

−
fn

(|v| + 1
n
)γ

)(2∗

s)′

dx

)
1

(2∗s )′

.

Applying the fractional Sobolev embedding and Hölder’s inequality with the exponents
2∗

s

2 and
N
2s

, we get

‖wk − w‖L2(Ω) ≤
2S(N, s, Ω)

α(N, s)
|Ω|

s
N

(
∫

Ω

(

fn

(|vk| +
1
n
)γ

−
fn

(|v| + 1
n
)γ

)(2∗

s)
′

dx

)
1

(2∗s )
′

.

Since
∣

∣

∣

∣

fn

(|vk| +
1
n
)γ

−
fn

(|v| + 1
n
)γ

∣

∣

∣

∣

(2∗

s)
′

≤ 2(2∗

s)
′

n(γ+1)(2∗

s)
′

(3.7)

and
fn

(|vk| +
1
n
)γ

−
fn

(|v| + 1
n
)γ

→ 0 a.e. in Ω,

then by the dominated convergence theorem we conclude that

‖wk − w‖L2(Ω) → 0 as k → +∞.

So S is continuous from L2(Ω) to L2(Ω) and it follows that S is continuous from Hs
0(Ω) to

Hs
0(Ω).

Now, we prove that S is compact from Hs
0 (Ω) to Hs

0(Ω), let us consider a sequence {vk}k∈N

such that ‖vk‖Hs
0 (Ω) ≤ C, then by the compact embedding Hs

0 (Ω) in Lr(Ω) for every 1 ≤ r < 2∗s
(see [17, Corollary 7.2]), we have

vk ⇀ v weakly in Hs
0 (Ω),

vk → v in norm in L2(Ω).
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Denoting wk = S(vk) and w = S(v), by (3.3) we have

‖wk‖Hs
0 (Ω) ≤ C,

where C is a constant not depending on k, then by the previous compact embedding and by

the continuity of S on L2(Ω) we get

S(vk) = wk ⇀ w, weakly in Hs
0(Ω),

S(vk) = wk → S(v) = w, in norm in L2(Ω).
(3.8)

So, by the uniqueness of the limit we have w = w. In view of the previous equations (3.5) and

(3.6) we have

(−∆)s(wk − w) =
fn

(|vk| +
1
n
)γ

−
fn

(|v| + 1
n
)γ

.

Taking wk − w as a test function in the previous equation, using Hölder’s inequality and (3.7)

we obtain
α(N, s)

2
‖S(vk) − S(v)‖2

Hs
0 (Ω) ≤ 2nγ+1C(Ω)‖S(vk) − S(v)‖L2(Ω).

It follows that

lim
k→+∞

‖S(vk) − S(v)‖Hs
0 (Ω) = 0.

Hence, S is a compact operator from Hs
0(Ω) to Hs

0 (Ω) and therefore by Schauder’s fixed point

theorem there exists un ∈ Hs
0(Ω) such that un = S(un). This means that un is a weak solution

to the problem






















(−∆)sun =
fn

(un + 1
n
)γ

+ µn in Ω,

un > 0 in Ω,

un = 0 on RN\Ω.

In addition, since the right hand side of belongs to L∞(Ω) by [25] we obtain un ∈ L∞(Ω). �

Lemma 3.2 (comparison principle) The sequence {un}n∈N is such that for every subset

ω ⊂⊂ Ω there exists a positive constant cω, independent on n, such that

un(x) ≥ cω > 0, for every x ∈ ω and for every n ∈ N.

Proof Consider the following problem






















(−∆)svn =
fn

(vn + 1
n
)γ

in Ω,

vn > 0 in Ω,

vn = 0 on RN\Ω.

(3.9)

In [7], the authors proved the existence of a weak solution vn of (3.9) such that

∀ω ⊂⊂ Ω, ∃cω > 0 : vn(x) ≥ cω > 0,

for every x ∈ ω and for every n ∈ N. Here the constant cω is independent on n. On the other

hand, we have

(−∆)svn =
fn

(vn + 1
n
)γ
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and

(−∆)sun =
fn

(un + 1
n
)γ

+ µn.

Then

(−∆)s(vn − un) = fn

(

1

(vn + 1
n
)γ

−
1

(un + 1
n
)γ

)

− µn.

Hence

(−∆)s(vn − un) = fn

(

(un + 1
n
)γ − (vn + 1

n
)γ

(vn + 1
n
)γ(un + 1

n
)γ

)

− µn. (3.10)

Since
(

(un +
1

n
)γ − (vn +

1

n
)γ

)

(vn − un)+ ≤ 0,

we obtain the following inequality

fn

(

(un + 1
n
)γ − (vn + 1

n
)γ

(vn + 1
n
)γ(un + 1

n
)γ

)

(vn − un)+ − µn(vn − un)+ ≤ 0.

Now, taking (vn − un)+ as a test function in (3.10) and then integrating over RN , we get
∫

RN

(−∆)s(vn − un)(vn − un)+dx ≤ 0.

Observe that for any function g : RN → R the following inequality

(g(x) − g(y))(g+(x) − g+(y)) ≥ (g+(x) − g+(y))2

holds true for every x, y ∈ RN , where g+ = max(g, 0). Therefore, we obtain

0 ≤ ‖(vn − un)+‖2
Hs

0(Ω) ≤ 0

which implies that un ≥ vn in Ω and so

∀ω ⊂⊂ Ω, ∃cω > 0 : un(x) ≥ cω > 0

for every x ∈ ω and for every n ∈ N. �

Remark 3.3 Lemma 3.2 shows that the problem (3.1) has a unique solution. Indeed,

if un and wn are two solutions of problem (3.1), then as above taking (un − wn)+ as a test

function in the problem satisfied by (un−wn), we conclude that un ≤ wn in Ω and again taking

(wn − un)+ as a test function we get wn ≤ un in Ω. Hence, follows un = wn in Ω.

4 A Priori Estimates in Fractional Sobolev Spaces

In order to prove the existence of solutions for problem (1.1), we first need some a priori

estimates on un. We start by proving the following lemma that we will use in both cases γ ≤ 1

and γ > 1.

Lemma 4.1 Let vn ∈ Hs
0(Ω) be a sequence that satisfies the following assumptions

1) The sequence {vn}n is uniformly bounded in Lr(Ω), for all r < N
N−2s

.

2) For any sufficient small θ ∈ (0, 1)
∫

Ω

∫

Ω

|wn(x) − wn(y)|

|x − y|N+2s

|wθ
n(x) − wθ

n(y)|

wθ
n(x)wθ

n(y)
dydx ≤ C,
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where C is a constant not depending on n and wn = vn + 1. Then the sequence {vn}n is

uniformly bounded in the fractional Sobolev space W s1,q
0 (Ω) for every q < N

N−s
and for all

s1 < s.

Proof We shall prove that the sequence {vn} is uniformly bounded in the fractional

Sobolev space W s1,q
0 (Ω) for every q < N

N−s
and for all s1 < s. That is there is a constant C

not depending on n such that
∫

Ω

∫

Ω

|vn(x) − vn(y)|q

|x − y|N+qs1
dydx ≤ C for all q <

N

N − s
and for all s1 < s. (4.1)

To this aim, let q < 2 which will be chosen in a few lines. We can write
∫

Ω

∫

Ω

|vn(x) − vn(y)|q

|x − y|N+qs1
dydx =

∫

Ω

∫

Ω

|wn(x) − wn(y)|q

|x − y|N+qs1
dydx

=

∫

Ω

∫

{y∈Ω:wn(y) 6=wn(x)}

|wn(x) − wn(y)|q

|x − y|
q
2 N+qs

×
(wθ

n(x) − wθ
n(y))

(wn(x) − wn(y))(wθ
n(x)wθ

n(y))

×
(wn(x) − wn(y))(wθ

n(x)wθ
n(y))

(wθ
n(x) − wθ

n(y))|x − y|
2−q
2 N−q(s−s1)

dydx.

Pointing out that the quantity in the middle of the product inside the integral can be written

as follows

(wθ
n(x) − wθ

n(y))

(wn(x) − wn(y))(wθ
n(x)wθ

n(y))

=

(

(wθ
n(x) − wθ

n(y))

(wn(x) − wn(y))(wθ
n(x)wθ

n(y))

)

q
2
(

(wθ
n(x) − wθ

n(y))

(wn(x) − wn(y))(wθ
n(x)wθ

n(y))

)1− q
2

and using Hölder’s inequality, we obtain
∫

Ω

∫

Ω

|vn(x) − vn(y)|q

|x − y|N+qs1
dydx

≤

[
∫

Ω

∫

{y∈Ω:wn(y) 6=wn(x)}

|wn(x) − wn(y)|2

|x − y|N+2s

|wθ
n(x) − wθ

n(y)|

|wn(x) − wn(y)|(wθ
n(x)wθ

n(y))
dydx

]

q
2

×

[
∫

Ω

∫

{y∈Ω:wn(y) 6=wn(x)}

(

(wn(x) − wn(y))(wθ
n(x)wθ

n(y))

(wθ
n(x) − wθ

n(y))

)
2

2−q

×
(wθ

n(x) − wθ
n(y))

(wn(x) − wn(y))(wθ
n(x)wθ

n(y))

dydx

|x − y|N−β

]

2−q
2

,

where β = 2q(s−s1)
2−q

> 0. Using Lemma 2.5, we get

∫

Ω

∫

Ω

|vn(x) − vn(y)|q

|x − y|N+qs1
dydx

≤ C
q
2

(
∫

Ω

∫

{y∈Ω:wn(y) 6=wn(x)}

(

(wn(x) − wn(y))(wθ
n(x)wθ

n(y))

[wθ
n(x) − wθ

n(y)]

)

q
2−q dydx

|x − y|N−β

)

2−q
2

≤
(C

θ

)

q
2

(
∫

Ω

∫

Ω

(

(w1−θ
n (x) + w1−θ

n (y))wθ
n(x)wθ

n(y)

)

q
2−q dydx

|x − y|N−β

)

2−q
2
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=
(C

θ

)

q
2

(
∫

Ω

∫

Ω

(

(wn(x)wθ
n(y) + wn(y)wθ

n(x))

)

q
2−q dydx

|x − y|N−β

)

2−q
2

.

Applying the Young inequality with the exponents θ+1
θ

and θ + 1, we have

∫

Ω

∫

Ω

|vn(x) − vn(y)|q

|x − y|N+qs1
dydx

≤
(C

θ

)

q
2

(
∫

Ω

∫

Ω

(

w1+θ
n (x) + w1+θ

n (y)

)

q
2−q dydx

|x − y|N−β

)

2−q
2

≤ 2
2(q−1)
2−q

(C

θ

)

q
2

(
∫

Ω

∫

Ω

(

w
q(1+θ)
2−q

n (x) + w
q(1+θ)
2−q

n (y)

)

dydx

|x − y|N−β

)

2−q
2

≤ 2
2(q−1)
2−q

(C

θ

)

q
2

(
∫

Ω

w
q(1+θ)
2−q

n (x)

[
∫

Ω

dy

|x − y|N−β

]

dx

)

2−q
2

+2
2(q−1)
2−q

(C

θ

)

q
2

(
∫

Ω

w
q(1+θ)
2−q

n (y)

[
∫

Ω

dx

|x − y|N−β

]

dy

)

2−q
2

.

Observe that
∫

Ω

dy

|x − y|N−β
=

∫

Ω∩|x−y|>1

dy

|x − y|N−β
+

∫

Ω∩|x−y|≤1

dy

|x − y|N−β

≤ |Ω| +

∫

|z|≤1

dz

|z|N−β
= |Ω| +

|SN−1|

β
. (4.2)

Here, |SN−1| stands for the Lebesgue measure of the unit sphere in RN . By x/y symmetry,

there exists a constant C, not depending on n, such that

∫

Ω

∫

Ω

|vn(x) − vn(y)|q

|x − y|N+qs1
dydx ≤ C

(
∫

Ω

w
q(1+θ)
2−q

n (y)dy

)

2−q
2

.

Now we choose θ > 0 in order to get q(1+θ)
2−q

< N
N−2s

. That is θ < 2N−2q(N−s)
q(N−2s) . To ensure the

existence of θ we must have 2N − 2q(N − s) > 0 which yields q < N
N−s

. We then conclude that

(4.1) is fulfilled and the sequence {vn} is uniformly bounded in W s1,q
0 (Ω) for every q < N

N−s

and for all s1 < s. �

4.1 The case γ ≤ 1

Lemma 4.2 Let un ∈ Hs
0 (Ω) be the solution of the problem (3.1). If 0 < γ ≤ 1, then the

sequence {un} is uniformly bounded in W s1,q
0 (Ω) for every q < N

N−s
and for all s1 < s.

Proof Let k ≥ 1 be fixed. By Lemma 6.4 (in Appendix) the function Tk(un) is an

admissible test function in (3.1). Thus, inserting it in (3.1) we obtain

α(N, s)

2

∫

Q

(un(x) − un(y))(Tk(un(x)) − Tk(un(y)))

|x − y|N+2s
dydx

=

∫

Ω

fn

(un + 1
n
)γ

Tk(un)dx +

∫

Ω

µnTk(un)dx.

By using Proposition 6.2 (in Appendix), we get

α(N, s)

2

∫

Q

|Tk(un(x)) − Tk(un(y))|2

|x − y|N+2s
dydx ≤ k1−γ‖f‖L1(Ω) + k‖µn‖L1(Ω) ≤ Ck,
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where C = ‖f‖L1(Ω) + ‖µ‖Mb(Ω) is a constant not depending on n. Applying the Sobolev

embedding theorem we get

1

S

(
∫

Ω

|Tk(un)(x)|2
∗

s dx

)
2
2∗s

≤ Ck.

For the left hand side, observing that on the set {un ≥ k}, we have Tk(un) = k, we get

1

S
k2(meas({un ≥ k}))

2
2∗s ≤ Ck,

which yields

meas({un ≥ k}) ≤
C

k
N

N−2s

. (4.3)

Thus, the sequence {un} is uniformly bounded in M
N

N−2s (Ω) and then so it is in Lr(Ω), for all

r < N
N−2s

. Let s1 ∈ (0, s) be fixed. For every x ≥ 0 we define the function

φ(x) = 1 −
1

(1 + x)θ
, where 0 < θ ≤ 1. (4.4)

Observe that the function φ satisfies

φ(x) ≤ 1 and φ(x) ≤ xγ for any 0 < θ ≤ γ ≤ 1.

The function φ(un) is an admissible test function in (3.1). So that inserting it as a test function

in (3.1) we obtain

α(N, s)

2

∫

Q

(un(x) − un(y))(φ(un)(x) − φ(un)(y))

|x − y|N+2s
dydx

=

∫

Ω

fn(x)φ(un)

(un + 1
n
)γ

+

∫

Ω

µn(x)φ(un)dx ≤ ‖f‖L1(Ω) + ‖µn‖L1(Ω) ≤ C.

Being φ non-decreasing and Ω × Ω ⊂ Q, the integral in the left-hand side can be treated as

follows
∫

Q

(un(x) − un(y))(φ(un)(x) − φ(un)(y))

|x − y|N+2s
dydx

≥

∫

Ω

∫

Ω

(un(x) − un(y))

|x − y|N+2s

(un(x) + 1)θ − (un(y) + 1)θ

(un(x) + 1)θ(un(y) + 1)θ
dydx.

So that we obtain
∫

Ω

∫

Ω

(wn(x) − wn(y))

|x − y|N+2s

(wn(x))θ − (wn(y))θ

(wn(x))θ(wn(y))θ
dydx ≤

2C

α(N, s)
,

where we have set wn = un + 1. Therefore, by Lemma 4.1 with 0 < θ ≤ γ the sequence {un}

is uniformly bounded in W s1,q
0 (Ω) for every q < N

N−s
and for all s1 < s. �

4.2 The case γ > 1

Lemma 4.3 Let f ∈ L1(Ω) and let un be the solution of (3.1). For k > 0 and γ > 1 the

sequence
{

T
γ+1
2

k (un)
}

n
is uniformly bounded in Hs

0(Ω).

Proof Let us fix k > 0. Inserting T γ
k (un) as a test function in (3.1), we get

α(N, s)

2

∫

Q

(un(x) − un(y))(T γ
k (un(x)) − T γ

k (un(y))

|x − y|N+2s
dydx
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=

∫

Ω

fn

(un + 1
n
)γ

T γ
k (un)dx +

∫

Ω

µnT γ
k (un)dx

≤ ‖f‖L1(Ω) + kγ‖µn‖L1(Ω) ≤ C1,

where C1 = ‖f‖L1(Ω) +kγ‖µ‖Mb(Ω) is a constant not depending on n. By applying Proposition

6.2 (in Appendix) and Lemma 2.5, we have
∫

Q

(un(x) − un(y))(T γ
k (un(x)) − T γ

k (un(y))

|x − y|N+2s
dydx

≥

∫

Q

(Tk(un(x)) − Tk(un(y)))(T γ
k (un(x)) − T γ

k (un(y)))

|x − y|N+2s
dydx

≥
4γ

(γ + 1)2

∫

Q

|T
γ+1
2

k (un(x)) − T
γ+1
2

k (un(y))|2

|x − y|N+2s
dydx.

Therefore, we obtain

‖T
γ+1
2

k (un)‖2
Hs

0(Ω) ≤

∫

Q

|T
γ+1
2

k (un(x)) − T
γ+1
2

k (un(y))|2

|x − y|N+2s
dydx ≤

(γ + 1)2

4γ

2

α(N, s)
C1.

The proof is then achieved. �

Lemma 4.4 Let un be the solution of the problem (3.1). If γ > 1, then the sequence

{un} is uniformly bounded in W s1,q
loc (Ω) for every q < N

N−s
and for all s1 < s.

Proof For every ω ⊂⊂ Ω, for all q < N
N−s

and for all s1 < s, we shall prove that there

exists a constant C = C(q, s1, w), not depending on n, such that
∫

ω

∫

ω

|un(x) − un(y)|q

|x − y|N+qs1
dydx ≤ C and

∫

ω

|un|
qdx ≤ C. (4.5)

We begin by proving the left estimate in (4.5). Let k0 ≥ 1 be fixed. Let q < 2 and s1 < s.

Using the fact that un = Tk0(un) + Gk0 (un), we can write
∫

ω

∫

ω

|un(x) − un(y)|q

|x − y|N+qs1
dydx

=

∫

ω

∫

ω

|Tk0(un(x)) + Gk0(un(x)) − Tk0(un(y)) − Gk0(un(y))|q

|x − y|N+qs1
dydx

≤ 2q−1

∫

ω

∫

ω

|Tk0(un(x)) − Tk0(un(y))|q

|x − y|N+qs1
dydx

+2q−1

∫

Ω

∫

Ω

|Gk0(un(x)) − Gk0(un(y))|q

|x − y|N+qs1
dydx.

Applying the Hölder inequality, we get
∫

ω

∫

ω

|un(x) − un(y)|q

|x − y|N+qs1
dydx

≤ 2q−1

(
∫

ω

∫

ω

|Tk0(un(x)) − Tk0(un(y))|2

|x − y|N+2s
dydx

)

q
2
(

∫

Ω

∫

Ω

dydx

|x − y|N−β

)

2−q
2

+2q−1

∫

Ω

∫

Ω

|Gk0(un(x)) − Gk0(un(y))|q

|x − y|N+qs1
dydx,

where β = 2q(s−s1)
2−q

> 0. Thanks to (4.2), we have

2q−1

(
∫

Ω

∫

Ω

dydx

|x − y|N−β

)

2−q
2

≤ C3 := 2q−1

(

|Ω| +
|SN−1|

β

)

2−q
2
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which implies

∫

ω

∫

ω

|un(x) − un(y)|q

|x − y|N+qs1
dydx ≤ C3

(
∫

ω

∫

ω

|Tk0(un(x)) − Tk0(un(y))|2

|x − y|N+2s
dydx

)

q
2

+2q−1

∫

Ω

∫

Ω

|Gk0(un(x)) − Gk0(un(y))|q

|x − y|N+qs1
dydx.

So, it is sufficient to prove that {Gk0(un)}n and {Tk0(un)}n are uniformly bounded in W s1,q
0 (Ω)

and Hs
loc(Ω) respectively. We begin by proving that Gk0(un) is uniformly bounded in W s1,q

0 (Ω)

for all q < N
N−s

and for all s1 < s. To do so, for k > k0 we take Tk(Gk0 (un)) as a test function

in (3.1) and use the fact that Gk0(un) = 0 on {un ≤ k0}, we obtain

α(N, s)

2

∫

Q

(un(x) − un(y))[Tk(Gk0(un(x))) − Tk(Gk0 (un(y)))]

|x − y|N+2s
dydx

=

∫

Ω

fnTk(Gk0(un))

(un + 1
n
)γ

dx +

∫

Ω

µnTk(Gk0 (un))dx

≤ k

∫

{un>k0}

f

(un + 1
n
)γ

dx + k‖µn‖L1(Ω) ≤ C1k,

where C1 = k−γ
0 ‖f‖L1(Ω)+‖µ‖Mb(Ω), is a constant not depending on n. Using the decomposition

of un as un = Tk0(un) + Gk0(un), we can write
∫

Q

(un(x) − un(y))[Tk(Gk0(un(x))) − Tk(Gk0(un(y)))]

|x − y|N+2s
dydx

=

∫

Q

(Tk0(un(x)) − Tk0(un(y)))[Tk(Gk0(un(x))) − Tk(Gk0(un(y)))]

|x − y|N+2s
dydx

+

∫

Q

(Gk0(un(x)) − Gk0(un(y)))[Tk(Gk0(un(x))) − Tk(Gk0 (un(y)))]

|x − y|N+2s
dydx.

Let us observe that since Tk0 and Tk(Gk0 ) are non-decreasing functions, we get

(Tk0(un(x)) − Tk0(un(y)))[Tk(Gk0(un(x))) − Tk(Gk0 (un(y)))] ≥ 0 a.e. in Q.

Hence, it follows
∫

Q

(un(x) − un(y))[Tk(Gk0(un(x))) − Tk(Gk0(un(y)))]

|x − y|N+2s
dydx

≥

∫

Q

(Gk0(un(x)) − Gk0(un(y)))[Tk(Gk0 (un(x))) − Tk(Gk0 (un(y)))]

|x − y|N+2s
dydx.

In the right-hand side of the above inequality, we decompose Gk0(un) as follows Gk0(un(x)) =

Gk(Gk0(un(x))) + Tk(Gk0(un(x))) and we apply Proposition 6.2 (in Appendix) with α = 1

obtaining
∫

Ω

∫

Ω

|Tk(Gk0(un(x))) − Tk(Gk0 (un(y)))|2

|x − y|N+2s
dydx ≤

2kC1

α(N, s)
.

Hence, using the fractional Sobolev inequality, we get again the inequality (4.3) for the function

Gk0(un) that is

meas({Gk0(un) ≥ k}) ≤ Ck− N
N−2s

which implies that {Gk0(un)}n is uniformly bounded in Lr(Ω) for every r < N
N−2s

.
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Let φ be the function defined in (4.4). Observe that for every 0 < θ < 1 the function φ

enjoys the following properties

φ(x) ≤ x and φ(x) ≤ 1.

Inserting φ(Gk0 (un)) as a test function in (3.1) we get

α(N, s)

2

∫

Q

(un(x) − un(y))
(

φ(Gk0 (un(x))) − φ(Gk0 (un(y)))
)

|x − y|N+2s
dydx

=

∫

{un≥k0}

fnφ(Gk0 (un))

(un + 1
n
)γ

dx +

∫

Ω

µn(x)φ(Gk0 (un))dx

≤

∫

{un≥k0}

fnGk0(un)

(un + 1
n
)γ

dx + ‖µn‖L1(Ω)

≤

∫

{un≥k0}

|f |

(un + 1
n
)γ−1

dx + ‖µn‖L1(Ω)

≤ C2 := k1−γ
0 ‖f‖L1(Ω) + ‖µ‖Mb(Ω).

Then, writing the decomposition un = Tk0(un) + Gk0(un) and using the fact that Tk0 and

φ(Gk0 ) are non-decreasing functions, we obtain

∫

Ω

∫

Ω

(Gk0 (un)(x) − Gk0(un)(y))
(

φ(Gk0 (un(x))) − φ(Gk0 (un(y)))
)

|x − y|N+2s
dydx ≤

2C2

α(N, s)

which yields
∫

Ω

∫

Ω

(wn(x) − wn(y))

|x − y|N+2s

(wn(x))θ − (wn(y))θ

(wn(x))θ(wn(y))θ
dydx ≤ C3 :=

2C2

α(N, s)
,

where we have set wn = Gk0(un) + 1. Thus, Lemma 4.1 ensures that the sequence {Gk0(un)}

is uniformly bounded in W s1,q
0 (Ω) for all q < N

N−s
and for all s1 < s.

Now, we shall prove that {Tk0(un)}n is uniformly bounded in Hs1

loc(Ω). To do so, we insert

T γ
k0

(un) as a test function in (3.1) obtaining

α(N, s)

2

∫

Q

(un(x) − un(y))
(

T γ
k0

(un(x)) − T γ
k0

(un(y))
)

|x − y|N+2s
dydx

=

∫

Ω

fnT γ
k0

(un)

(un + 1
n
)γ

dx +

∫

Ω

µnT γ
k0

(un)dx ≤ C4 := ‖f‖L1(Ω) + kγ
0‖µ‖Mb(Ω).

By Lemma 2.5 (item iii)) there exists a constant cγ > 0, depending only on γ such that

∫

Q

(un(x) − un(y))
(

T γ
k0

(un(x)) − T γ
k0

(un(y))
)

|x − y|N+2s
dydx

≥

∫

Ω

∫

Ω

|un(x) − un(y)||T γ
k0

(un(x)) − T γ
k0

(un(y))|

|x − y|N+2s
dydx

≥
1

cγ

∫

Ω

∫

Ω

∣

∣

∣
(un(x) − un(y))

(

Tk0(un(x)) − Tk0(un(y))
)∣

∣

∣

|x − y|N+2s

×(Tk0(un(x)) + Tk0(un(y)))γ−1dydx.

Let now ω be a compact subset in Ω. By Proposition 6.2 (in Appendix) we can write
∫

Q

(un(x) − un(y))[T γ
k0

(un(x)) − T γ
k0

(un(y))]

|x − y|N+2s
dydx
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≥
1

cγ

∫

ω

∫

ω

|Tk0(un(x)) − Tk0(un(y))|2(Tk0(un(x)) + Tk0(un(y)))γ−1

|x − y|N+2s
dydx.

Pointing out that by Lemma 3.2 we have Tk0(un(x)) ≥ min(k0, cω) for every x ∈ ω, we obtain
∫

Q

(un(x) − un(y))[T γ
k0

(un(x)) − T γ
k0

(un(y))]

|x − y|N+2s
dydx

≥
1

cγ

(2 min(k0, cω))γ−1

∫

ω

∫

ω

|Tk0(un(x)) − Tk0(un(y))|2

|x − y|N+2s
dydx

which proves that {Tk0(un)}n is uniformly bounded in Hs
loc(Ω).

We now prove the second estimate in (4.5). For q < N
N−s

and s1 < s, writing
∫

ω

|un|
qdx ≤ 2q−1

∫

ω

|Tk0(un)|qdx + 2q−1

∫

ω

|Gk0(un)|qdx

≤ 2q−1kq
0 |ω| + 2q−1‖Gk0(un)‖q

Lq(Ω)

we conclude the result. In fact, for every γ > 0 the sequence {un} is uniformly bounded in

Lq(Ω) for all 1 ≤ q < N
N−2s

. �

5 Proof of the Main Results

In this section, we show that in both cases γ ≤ 1 and γ > 1, the problem (1.1) has a weak

solution obtained as the limit of approximate solutions {un}n of the problem (3.1).

5.1 The case γ ≤ 1

Proof of Theorem 2.7. By virtue of Lemma 4.2 and the compact embedding of W s1,q
0 (Ω)

in L1(Ω) (see [17, Corollary 7.2]), there exist a subsequence of {un}n still indexed by n and a

measurable function v ∈ W s1,q
0 (Ω) such that

un ⇀ v weakly in W s1,q
0 (Ω),

un → v in norm in L1(Ω),

un → v a.e. in Ω.

Let u the function such that u = v in Ω and u = 0 in RN \ Ω. Thus, un → u a.e. in RN which

implies
|un(x) − un(y)|

|x − y|N+2s
→

|u(x) − u(y)|

|x − y|N+2s
a.e. in Q.

Let ρ > 0 be a small enough real number that we will choose later. For any ϕ ∈ C∞
0 (Ω) we

have
∫

Ω

∫

Ω

[

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s

]1+ρ

dydx

≤

∫

Ω

∫

Ω

|un(x) − un(y)|1+ρ(‖Dϕ‖L∞(Ω)|x − y|)1+ρ

|x − y|N+(1+ρ)s1

dydx

|x − y|ρN+(1+ρ)(2s−s1)

≤ ‖Dϕ‖1+ρ

L∞(Ω)

∫

Ω

∫

Ω

|un(x) − un(y)|1+ρ|x − y|(1+ρ)(1+s1−2s)−ρN

|x − y|N+(1+ρ)s1
dydx.

We need that the term |x − y|ρN+(1+ρ)(2s−s1) vanishes from within the integral. To get this, it

is sufficient to have (1 + ρ)(1 + s1 − 2s)− ρN ≥ 0. To this aim, we consider s1 to be very close
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of s. Precisely, we impose on s1 the condition

max(0, 1 − 3s) < s − s1 < 1 − s.

We point out that with this range of values of s1 and with the assumption N > 2s, we easily

get

1 + s1 − 2s > 0 and N − 1 − s1 + 2s > 0.

Thus, the fact that (1 + ρ)(1 + s1 − 2s) − ρN ≥ 0 is equivalent to 0 < ρ ≤ 1+s1−2s
N−1−s1+2s

. Hence,

we get
∫

Ω

∫

Ω

[

|un(x) − un(y)||ϕ(x) − ϕ(y)|

|x − y|N+2s

]1+ρ

dydx

≤ ‖Dϕ‖1+ρ

L∞(Ω)diam(Ω)(1+ρ)(1+s1−2s)−ρN

∫

Ω

∫

Ω

|un(x) − un(y)|1+ρ

|x − y|N+(1+ρ)s1
dydx,

where diam(Ω) stands for the diameter of Ω. Now we have to make a choice of ρ which enables

us to use the uniform boundedness of {un}n in W s1,q
0 (Ω) for every q < N

N−s
. This is the case

if 1 + ρ < N
N−s

. Finally, we choose ρ to be such that

0 < ρ < min
( s

N − s
,

1 + s1 − 2s

N − 1 − s1 + 2s

)

.

Therefore, there is a constant C > 0 not depending on n such that

sup
n

∫

Ω

∫

Ω

[

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s

]1+ρ

dydx ≤ C.

Consequently by De La Valle Poussin and Dunford-Pettis theorems the sequence
{(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s

}

is equi-integrable in L1(Ω × Ω). Now, taking ϕ ∈ C∞
0 (Ω) as a test function in (3.1) we get

α(N, s)

2

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

Ω

fnϕ

(un + 1
n
)γ

dx +

∫

Ω

ϕµndx. (5.1)

We split the integral in left-hand side into three integrals as follows
∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

Ω

∫

Ω

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx

+

∫

Ω

∫

CΩ

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx

+

∫

CΩ

∫

Ω

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx

= I1 + I2 + I3. (5.2)

By Vitali’s lemma we have

lim
n→∞

∫

Ω

∫

Ω

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

Ω

∫

Ω

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx.

For the second integral I2 in (5.2), we start noticing that since un(y) = ϕ(y) = 0 for every

y ∈ CΩ we can write
∣

∣

∣

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s

∣

∣

∣
=

|un(x)ϕ(x)|

|x − y|N+2s
for every (x, y) ∈ Ω × CΩ.
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Since Suppϕ is a compact subset in Ω, we have

|x − y| ≥ d1 := dist(Supp ϕ, ∂Ω) > 0 for every (x, y) ∈ Supp ϕ × CΩ.

Therefore, an easy computation leads to
∫

CΩ

dy

|x − y|N+2s
≤

∫ +∞

d1

dz

|z|N+2s
≤

|SN−1|

2sd2s
1

. (5.3)

As a consequence of the convergence in norm of the sequence {un} in L1(Ω) there exist a

subsequence of {un} still indexed by n and a positive function g in L1(Ω) such that

|un(x)| ≤ g(x) a.e. in Ω,

which enables us to get

|(un(x) − un(y))(ϕ(x) − ϕ(y))|

|x − y|N+2s
≤

|g(x)ϕ(x)|

|x − y|N+2s
a.e. in (x, y) ∈ Ω × CΩ.

We observe that by (5.3) the function (x, y) → |g(x)ϕ(x)|
|x−y|N+2s belongs to L1(Ω × CΩ)

∫

Ω

∫

CΩ

|g(x)ϕ(x)|

|x − y|N+2s
=

∫

Suppϕ

∫

CΩ

|g(x)ϕ(x)|

|x − y|N+2s
≤

|SN−1|‖ϕ‖L∞(Ω)‖g‖L1(Ω)

2sd2s
1

.

Thus, by the dominated convergence theorem, we have

lim
n→∞

∫

Ω

∫

CΩ

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

Ω

∫

CΩ

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx.

For the third integral I3 in (5.2), we can follow exactly the same lines as above using the x/y

symmetry. We then conclude that

lim
n→∞

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx

for all ϕ ∈ C∞
0 (Ω). Now, for what concerns the right-hand side of (5.1), by virtue of lemma 3.2,

for any ϕ ∈ C∞
0 (Ω) with Supp ϕ = ω, there exists a constant cω > 0 not depending on n such

that

0 ≤

∣

∣

∣

∣

fnϕ

(un + 1
n
)γ

∣

∣

∣

∣

≤
|f‖ϕ|

cγ
ω

∈ L1(Ω)

obtaining by the dominated convergence theorem

lim
n→∞

∫

Ω

fnϕ

(un + 1
n
)γ

dx =

∫

Ω

fϕ

uγ
dx

and in the last term in (5.1), by the convergence of µn to µ we have

lim
n→∞

∫

Ω

ϕ(x)µn(x)dx =

∫

Ω

ϕ(x)dµ.

Finally, passing to the limit as n → +∞, we obtain

α(N, s)

2

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dxdy =

∫

Ω

fϕ

uγ
dx +

∫

Ω

ϕdµ

for all ϕ ∈ C∞
0 (Ω). Therefore, u is a weak solution of (1.1). �
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5.2 The case γ > 1

Proof of Theorem 2.8. By virtue of Lemma 4.4, there exist a subsequence of {un}n still

indexed by n and a measurable function v ∈ W s1,q
loc (Ω) such that

un ⇀ v in W s1,q
loc (Ω),

un → v in L1
loc(Ω),

un → v a.e. in Ω.

So that defining the function u by u = v in Ω and u = 0 in RN\Ω, one has

un ⇀ u in W s1,q
loc (Ω),

un → u in L1
loc(Ω),

un → u a.e. in RN ,

T
γ+1
2

k (un) → T
γ+1
2

k (u) a.e. in Ω.

Then for ϕ ∈ C∞
0 (Ω), we have

|(un(x) − un(y))(ϕ(x) − ϕ(y))|

|x − y|N+2s
→

|(u(x) − u(y))(ϕ(x) − ϕ(y))|

|x − y|N+2s
a.e. in Q.

Inserting ϕ ∈ C∞
0 (Ω) as a test function in (3.1), we have

α(N, s)

2

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

Ω

fnϕ

(un + 1
n
)γ

dx +

∫

Ω

ϕµndx. (5.4)

Let K be a compact subset of Ω such that Suppϕ ⊂ K and dist(Supp ϕ, ∂K) > 0. The integral

in the left-hand side of the previous equality can be splitted as
∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

RN

∫

RN

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx

=

∫

K

∫

K

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx

+

∫

K

∫

CK

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx

+

∫

CK

∫

K

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx.

As in the proof of the Theorem 2.7, the same ideas allow to obtain

lim
n→∞

∫

K

∫

K

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

K

∫

K

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx,

lim
n→∞

∫

K

∫

CK

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

K

∫

CK

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx

and

lim
n→∞

∫

CK

∫

K

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

CK

∫

K

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx.

Then we then conclude that

lim
n→∞

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx



1310 ACTA MATHEMATICA SCIENTIA Vol.40 Ser.B

for all ϕ ∈ C∞
0 (Ω). For what concerns the right-hand side of (5.4), it is exactly the same term

in Theorem 2.7. Finally, passing to the limit as n → +∞, we obtain

α(N, s)

2

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dydx =

∫

Ω

fϕ

uγ
dx +

∫

Ω

ϕdµ

for all ϕ ∈ C∞
0 (Ω), So u is a weak solution to (1.1). Now, by virtue of lemma 4.3, and Fatou’s

lemma, we have for every ω ⊂⊂ Ω

∫

Ω

∫

Ω

|T
γ+1
2

k (u(x)) − T
γ+1
2

k (u(y))|2

|x − y|N+2s
dxdy ≤ lim inf

n→+∞

∫

Ω

∫

Ω

|T
γ+1
2

k (un(x)) − T
γ+1
2

k (un(y))|2

|x − y|N+2s
dxdy

≤ C.

It follows that T
γ+1
2

k (u) ∈ Hs
0(Ω), for every k > 0. �

6 Regularity of Solutions

Now, we prove some regularities of the solution u of the problem (1.1).

Proposition 6.1 Assume that µ is a Radon measure, f ∈ L1(Ω) and 0 < γ ≤ 1. Then

the solution u of the problem (1.1) obtained by approximation is such that

u ∈ Lr(Ω), ∀ r ∈
(

1,
N

N − 2s

)

.

|(−∆)
s
2 u| ∈ Lr(Ω), ∀ r ∈

(

1,
N

N − s

)

.

Proof We follow closely the lines in [25]. By (4.3) and Theorem 2.7, we can apply

Fatou’s Lemma, we conclude that u ∈ Lr(Ω), for every 1 < r < N
N−2s

. Now, we will prove that

|(−∆)
s
2 un| is bounded in the Marcinkiewicz space M

N
N−s (Ω). We fix β > 0 and for any positive

k ≥ 1, we have

{|(−∆)
s
2 un| ≥ β} = {|(−∆)

s
2 un| ≥ β un < k} ∪ {|(−∆)

s
2 un| ≥ β un ≥ k}

⊂ {|(−∆)
s
2 un| ≥ β un < k} ∪ {un ≥ k}.

Then

meas({|(−∆)
s
2 un| ≥ β, un < k}) ≤

1

β2

∫

{un<k}

|(−∆)
s
2 un|

2dx.

By using [25, Corollary 1] and Lemma 4.2, we get

meas({|(−∆)
s
2 un| ≥ β, un < k}) ≤

1

β2

∫

{un<k}

|(−∆)
s
2 un|

2dx

≤
1

β2

∫

RN

|(−∆)
s
2 Tk(un)|2dx

≤
C(N, s)

β2

∫

Q

|Tk(un)(x) − Tk(un)(y)|2

|x − y|N+2s
dxdy ≤ C

k

β2
.

By using (4.3), we have

meas({|(−∆)
s
2 un| ≥ β}) ≤ meas({|(−∆)

s
2 un| ≥ β, un < k}) + meas({un ≥ k})

≤ C
k

β2
+

C

k
N

N−2s

.
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Choosing k = β
N−2s
N−s , we get

meas({|(−∆)
s
2 un| ≥ β}) ≤

C

β
N

N−s

.

This implies that |(−∆)
s
2 un| is bounded in the Marcinkiewicz space M

N
N−s (Ω). So, by the

converges almost everywhere in the proof of Theorem 2.7, we can apply Fatou’s Lemma, we

conclude the result. �

Appendix

In this Appendix we give the functional and technical results we have used in the previous

sections. We start with the following inequality whose proof in the cases where α = 1 can be

found [25]. Here we give a simple proof based on the monotony of the truncation functions.

Proposition 6.2 Let α ≥ 1 and let v : RN → R be a positive measurable function. Then

for every k > 0 and for every (x, y) ∈ RN × RN

(

Gk(v(x)) − Gk(v(y))
)(

Tk(v(x))α − Tk(v(y))α
)

≥ 0.

Proof Let x, y ∈ RN be arbitrary. Without loss of generality we can assume that

v(x) ≥ v(y). Since the functions s 7→ Tk(s) and s 7→ Gk(s) are non-decreasing on R, we have

Tk(v(x))α ≥ Tk(v(y))α and Gk(v(x)) ≥ Gk(v(y)).

Then

(Gk(v(x)) − Gk(v(y)))(Tk(v(x))α − Tk(v(y))α) ≥ 0.

�

The next result, well known in classical Sobolev spaces, provides a necessary condition for

a function to belong to the fractional Sobolev space W s,p
0 (Ω).

Lemma 6.3 Let Ω be an open set in RN of class C0,1 with bounded boundary, 1 ≤ p < +∞

and let 0 < s < 1. If u ∈ W s,p(Ω) with Suppu is a compact set in Ω, then u ∈ W s,p
0 (Ω).

Proof Let u ∈ W s,p(Ω) be a function with Suppu be a compact subset included in Ω.

Then there exists an open set ω such that

Supp u ⊂ ω and ω ⊂ Ω.

Then by [17, Corollary 5.5], there exists a sequence {un}n of functions un ∈ C∞
0 (RN ) such that

un → u in norm in W s,p(Ω).

Let ϕ ∈ C∞
0 (ω) be such that

ϕ = 1 on Supp u and 0 ≤ ϕ ≤ 1, a.e in ω.

It is clear that ϕun ∈ C∞
0 (ω). Therefore, it sufficient to prove that

ϕun → u in W s,p(Ω).

Using the fact that ϕu = u on Ω, we obtain
∫

Ω

|ϕun − u|pdx =

∫

Ω

|ϕun − ϕu|pdx ≤

∫

Ω

|un − u|pdx → 0.
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For the second part of the norm ‖ϕun − u‖W s,p(Ω), we can write it as follows.
∫

Ω

∫

Ω

|(ϕ(x)un(x) − ϕ(y)un(y)) − (u(x) − u(y))|p

|x − y|N+ps
dxdy

=

∫

Ω

∫

Ω

∣

∣

∣

∣

ϕ(x)un(x) − ϕ(y)un(y)

|x − y|
N+ps

p

−
u(x) − u(y)

|x − y|
N+ps

p

∣

∣

∣

∣

p

dxdy

=

∫

Ω

∫

Ω

|Fn(x, y) − F (x, y)|pdxdy,

where we have set

Fn(x, y) =
ϕ(x)un(x) − ϕ(y)un(y)

|x − y|
N+ps

p

and F (x, y) =
u(x) − u(y)

|x − y|
N+ps

p

.

Thus, in order to prove that ϕun converges to u in W s,p(Ω), it is sufficient to prove that up to a

subsequence, {Fn(x, y)} converges to F (x, y) in norm in Lp(Ω×Ω). Since, up to a subsequence

still indexed by n, un converges almost everywhere to u, we obtain

Fn(x, y) =
ϕ(x)un(x) − ϕ(y)un(y)

|x − y|
N+ps

p

→
u(x) − u(y)

|x − y|
N+ps

p

= F (x, y) a.e in Ω × Ω.

The norm convergence of un to u in W s,p(Ω), yields

un(x) − un(y)

|x − y|
N+ps

p

→
u(x) − u(y)

|x − y|
N+ps

p

in norm in Lp(Ω × Ω). (6.1)

According to (6.1) and the norm convergence of {un} in Lp(Ω), there exist a subsequence of

{un} still indexed by n and two positive functions g in L1(Ω × Ω) and h in L1(Ω) such that

|un(x) − un(y)|p

|x − y|N+ps
≤ g(x, y) a.e in Ω × Ω

and

|un(x)|p ≤ h(x) a.e in Ω.

So that writing

|Fn(x, y)|p =

∣

∣

∣
ϕ(x)un(x) − ϕ(x)un(y) + ϕ(x)un(y) − ϕ(y)un(y)

∣

∣

∣

p

|x − y|N+ps

≤ 2p−1

∣

∣

∣
un(x) − un(y)

∣

∣

∣

p

|x − y|N+ps
+ 2p−1 |un(y)|p|ϕ(x) − ϕ(y)|p

|x − y|N+ps
,

we obtain

|Fn(x, y)|p ≤ 2p−1|g(x, y)| + 2p−1 |h(y)||ϕ(x) − ϕ(y)|p

|x − y|N+ps
. (6.2)

We need to prove that the function in the second term in the right-hand side in (6.2) belongs

to L1(Ω × Ω). To do so we can write
∫

Ω

∫

Ω

|h(y)||ϕ(x) − ϕ(y)|p

|x − y|N+ps
dxdy =

∫

Ω

|h(y)|

[
∫

Ω∩|x−y|<1

|ϕ(x) − ϕ(y)|p

|x − y|N+ps
dx

]

dy

+

∫

Ω

|h(y)|

[
∫

Ω∩|x−y|≥1

|ϕ(x) − ϕ(y)|p

|x − y|N+ps
dx

]

dy.

Since ϕ belongs at least to C1
0(Ω) and 0 ≤ ϕ ≤ 1, a.e. in ω we have

∫

Ω

∫

Ω

|h(y)||ϕ(x) − ϕ(y)|p

|x − y|N+ps
dxdy ≤ Cp

lip

∫

Ω

|h(y)|

[
∫

Ω∩|z|<1

dz

|z|N+p(s−1)

]

dy
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+2p

∫

Ω

|h(y)|

[
∫

Ω∩|z|≥1

dz

|z|N+ps

]

dy

≤ 2 max

(

Cp
lip

|SN−1|

p(1 − s)
, 2p |S

N−1|

ps

)
∫

Ω

|h(y)|dy

< +∞,

where Clip stands for the Lipschitz constant of ϕ and |SN−1| stands for the Lebesgue measure

of the surface area of the unit N -sphere SN−1 of RN . Applying the dominated convergence

theorem, we conclude our claim and thus follows u ∈ W s,p
0 (Ω). �

Lemma 6.4 Let Ω be an open set in RN of class C0,1 with bounded boundary, 1 ≤ p < +∞

and let 0 < s < 1. Let φ : R → R be a uniformly Lipschitz function, with φ(0) = 0. Then for

every u ∈ W s,p
0 (Ω) one has φ(u) ∈ W s,p

0 (Ω).

Proof Let us denote by K the Lipschitz constant of φ and let u ∈ W s,p
0 (Ω). There exists

a sequence {un} of C∞
0 (Ω) functions which converges to u in norm in W s,p(Ω). That is there

exists n0 ∈ N such that for all n ∈ N with n ≥ n0 one has

‖un − u‖W s,p(Ω) < 1.

Defining vn = φ(un), Gn(x, y) = un(x) − un(y) and G(x, y) = u(x) − u(y), we can write for

every n ≥ n0
∫

Ω

∫

Ω

|vn(x) − vn(y)|p

|x − y|N+ps
dxdy =

∫

Ω

∫

Ω

|φ(un)(x) − φ(un)(y)|p

|x − y|N+ps
dxdy

≤ Kp

∫

Ω

∫

Ω

|un(x) − un(y)|p

|x − y|N+ps
dxdy

= Kp

∫

Ω

∫

Ω

|Gn(x, y)|p

|x − y|N+ps
dxdy

≤ 2p−1Kp

∫

Ω

∫

Ω

|Gn(x, y) − G(x, y)|p

|x − y|N+ps
dxdy

+2p−1Kp

∫

Ω

∫

Ω

|G(x, y)|p

|x − y|N+ps
dxdy

= 2p−1Kp‖un − u‖p

W s,p(Ω) + 2p−1Kp‖u‖p

W s,p(Ω)

≤ C0

and

‖vn‖Lp(Ω) ≤ K‖un‖Lp(Ω) ≤ K‖un − u‖W s,p(Ω) + K‖u‖W s,p(Ω) ≤ C1,

C0 and C1 are two constants not depending on n. Thus, {vn} is uniformly bounded in W s,p(Ω).

Since by φ(0) = 0 the function vn is compactly supported in Ω, so that by Lemma 6.3 we obtain

vn ∈ W s,p
0 (Ω). Now, we prove that

vn → φ(u) in W s,p(Ω).

Since the sequence {un} converges to u in norm in W s,p(Ω), then for a subsequence of {un},

still indexed by n, we have

un → u a.e. in Ω.

Then, it follows

vn = φ(un) → φ(u) a.e. in Ω.
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Furthermore,

‖vn − φ(u)‖Lp(Ω) = ‖φ(un) − φ(u)‖Lp(Ω) ≤ K‖un − u‖Lp(Ω) → 0.

On the other hand we can write
∫

Ω

∫

Ω

|(vn(x) − φ(u)(x) − (vn(y) − φ(u)(y))|p

|x − y|N+ps
dxdy

=

∫

Ω

∫

Ω

∣

∣

∣

∣

vn(x) − vn(y)

|x − y|
N+ps

p

−
φ(u(x)) − φ(u(y)

|x − y|
N+ps

p

∣

∣

∣

∣

p

dxdy

=

∫

Ω

∫

Ω

|Fn(x, y) − F (x, y)|pdxdy,

where we noted

Fn(x, y) =
vn(x) − vn(y)

|x − y|
N+ps

p

and F (x, y) =
φ(u(x)) − φ(u(y)

|x − y|
N+ps

p

.

In order to show that vn converges to φ(u) in W s,p(Ω), it sufficient to prove that for a subse-

quence of {Fn(x, y)}n≥1, still denoted by {Fn(x, y)}n≥1, ‖Fn(x, y) − F (x, y)‖Lp(Ω×Ω) → 0. By

the almost everywhere convergence of vn to φ(u), we have

Fn(x, y) =
vn(x) − vn(y)

|x − y|
N+ps

p

→
φ(u)(x) − φ(u)(y)

|x − y|
N+ps

p

= F (x, y), a.e. in Ω × Ω.

Observe that the norm convergence of un to u in W s,p(Ω) implies

un(x) − un(y)

|x − y|
N+ps

p

→
u(x) − u(y)

|x − y|
N+ps

p

in norm in Lp(Ω × Ω).

So that since

|Fn(x, y)| ≤ K
|un(x) − un(y)|

|x − y|
N+ps

p

,

the sequence {|Fn(x, y)|p}n is then equi-integrable. Applying Vitali’s theorem we get ‖Fn(x, y)−

F (x, y)‖Lp(Ω×Ω) → 0 which in turn implies ‖vn −φ(u)‖W s,p(Ω) as n → +∞. Since the sequence

{vn} belongs to the closed space W s,p
0 (Ω) forces the limit φ(u) to belong to W s,p

0 (Ω). �
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