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Abstract We discuss the set-valued dynamics related to the theory of functional equations.
We look for selections of convex set-valued functions satisfying set-valued Euler-Lagrange
inclusions. We improve and extend upon some of the results in [13, 20], but under weaker

assumptions. Some applications of our results are also provided.
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1 Introduction

Functional inclusions play a significant role in various branches of mathematics and they
are a tool for defining many notions of set-valued analysis, e.g., linear, affine, convex, concave,
subadditive, superadditive, subquadratic and superquadratic set-valued functions. Finding a
selection of such set-valued functions, with some special properties, is one of the main problems
of set-valued analysis (see [1, 3, 4, 8, 10, 16, 18, 19, 23, 24, 26, 27)).

Park et al. [15, 20] investigated the stability of some set-valued functional equations. Brzdek
and Piszczek [4-6, 21, 22] obtained many results on selections of some set-valued functional
equations satisfying some inclusions and on the approximation of those inclusions. Let us recall
that the notion of stability for functional equations was motivated by a problem of Ulam [28]
and a paper of Hyers [12] in which was published a solution to it (for further information, see
the recent monograph [7]).

In the rest of this paper, Ny := N U {0}, K stands for a commutative group, Y is a real
Banach space and ¢, a4, - - - , , are fixed positive integers, unless explicitly stated otherwise.

The main goal of this paper is to obtain some results on selections of a convex set-valued
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function F': K — 2" satisfying one of the following Euler-Lagrange functional inclusions:

n—1 n
tI-J Fayz) + 2" tat™? Z aZF(x)
Q2T2, " ,Qn Ty =2
C 2"_20/17220412@F(x1) + 2" Yot F(x) (1.1)
1=2 x;
and
n—1 n n
L—H F(ozlxl)—l—Z"_lZa?( Z a?)F(:z:l)
Q2X2, ,AnTn =1 j=1,j#i
c2? N ajaf[HF () + 2" el F(x) (1.2)
1<i<j<n x; i=1
for all z1,---,x, € K. Here, the operator §,, F'(z1) is defined by the formula [, F(x1) =
F(z1+22)+F (21 —x2). The composite operator 4, . . F(x1)isdefined by W, . F(z1)
=W,... (@Z;l . F(xl)) for all n € N\ {1}. Note that
n—1 2 2
W Fay=2"* Far)=2""* |4 F(x)
z2,23,0,:,0 z2,23 z3,T2
and
n n—1 n—1
W Fa)= i Fai+z)+ [ Fle—2a0).
X2, Tn+1 X2, ,Tn X2, ,Tn

In particular, the inclusion (1.1) includes the n-dimensional Euler-Lagrange cubic inclusion for
¢ = 3 (see [13]), the cubic inclusion for n = 2, £ = 3, a3 = 2 and az = 1 (see [20]), the
quadratic inclusion for n =2, £ = 2, a3 = 2 and a3 = 1 (the equation related to this inclusion
has been studied in [9]) and the Cauchy inclusion for n = 2, £ = 1, oy = 2 and a3 = 1 (the
equation related to this inclusion has been studied in [2]). Also, the inclusion (1.2) includes the
n-dimensional quartic inclusion for oy = -+ = a,, = 1 (the equation related to this inclusion
has been studied in [14]) and the quartic inclusion for n =2, a1 = 2 and ag =1 (see [20]).

By some results in [17, 21, 25], we extend the conclusions of [13, 20], but under weaker
assumptions. Furthermore, a few applications of our results to the stability of some functional
equations are given. Our results can be regarded as an important extension of stability results

corresponding to single-valued functional equations.

2 Euler-Lagrange Functional Inclusions in Several Variables

We start this section by recalling some basic concepts. In a real normed space Y, we denote
by n(Y) the family of all nonempty subsets of Y and we define the following families of sets:

ccl(Y):={Aen(Y): Aisaclosed and convex set},
cclz(Y):={Aen(Y): Aisaclosed and convex set containing zero} ,

cez(Y):={A en(Y): Aisacompact and convex set containing zero} .

For A, B € n(Y) and X € R, the Minkowski addition is defined as A+ B = {x +y: x €A,
y € B} and the scalar multiplication as AA = {Az: z € A}. We say that a set C' is the
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Hukuhara difference of A and B, i.e., C = A— B, whenever A = B+ C. If this difference exists,
then it is unique (by Lemma 2.1 below). The number 6(A) := sup {||a —b|| : a,b € A} is said
to be the diameter of A € n(Y'). Let D be a nonempty set. Any function f: D — Y such that
f(z) € F(x) for all z € K is said to be a selection of the set-valued function F : D — n(Y).

Lemma 2.1 (see [17, 25]) Let Y be a real normed space, 3,7 € R and A, B,C € n(Y).
Then,

(i) B(A+ B) = A+ 8B and (8 +v)A C A + vA. If, additionally, A is convex and
B>~ >0, then we have (84 v)A = BA+ ~vA4;

(i) If B € ccl(Y), C is bounded and A+ C C B + C, then A C B. If, additionally,
A€cc(Y)and A+ C =B+ C, then A= B.

Now we deal with some results corresponding to inclusions in a single variable and appli-

cations to the inclusions in several variables.

Theorem 2.2 (see [21]) Let p € (0,400), S be a nonempty set, (X, d) be a metric space,
7:5 — S be a function defined by 7°(z) = x for z € S and 7"t =7t o7 forn € N, F : § —
n(X), T': X — X, dI(z),T(y)) < pd(x,y) for all z,y € X, and lim p"6(F(7"(z))) = 0 for
all x € S. Then, n_)oo

(i) If X is complete and I'(F(7(z))) C F(z) for all € S, then the limit lim clI'™ o F o
7™ (z) =: f(z) exists for each z € S, and f is a unique selection of the multifug;c%n clF such
that T'o f o7 = f, where clF is defined by (clF)(z) = clF(z), z € S;

(ii) If F(z) CT(F(7(x))) for all z € S, then F is single-valued and 'o F o7 = F.
We are now going to deal with the inclusion (1.1).

Theorem 2.3 Suppose F : K — cclz(Y) is a set-valued function such that sup 6 (F(z)) <
zeK

+o0o and there exists a y € {2,---,n} such that a; # o, = 1. Then,

(i) If F satisfies the inclusion (1.1), there exists a unique selection f : K — Y of F such
that, for all 1,2, € K,

(1) f(z1 +z,) = f(x1) + f(z,;) when £ =1,

(2) W, f(z1) =2f(21) + 2f(x;) when £ =2,

(3) W, f(221) =2, f(z1) +12f(21) when £ = 3;

(i) If

n2pt2 Z o? L—H F(x1) + 2" 'l F(x1)
=2 x;

n—1 n
- L—ij F(ayx) +2"_104§7220412F(:61) (2.1)
Q2T2," " y;&nTn 1=2
for all z1, -+ ,x, € K, F is single-valued.

Proof (i) Setting 1 =« and z; =0 for (i =2,3,---,n) in (1.1), we have

(Flar)+ oo+ Flana) ) + 20l Y aFlo)
= ~ - i=2
2n—1times

C2"2af72) "o (F(z) + F(z)) + 2" af F(z)
1=2
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for all € K. Since the set F'(x) is convex, we can conclude from Lemma 2.1 (i) that

2" IR (ayz) + 2" Lok i Q?F(z) C 2" tat™? i 2F(z) + 2" Yok F(x)
' i=2
for all € K. Using Lemma 2.1 (ii), one obtains
ol *F(ayx) C F(x)
for all x € K. Next, by Theorem 2.2, with
M(z) =o'z, 71(2)=mz, 2K,
for every x € K there exists the limit

g TP @) = o Flaf'a) = 1),

and moreover

f(z) € F(z), xz€K.

Thus, in view of (1.1), for every x1,--- ,x, € K, m € N one has
n—1 n
o™ e 20 el Ty el F(a )
azaTa, oAl Ty 1=2
n
C 2" 2q Z 1-m)=2 Z U F(af'z) 2"_1af(17m)F(a’1":vl),
=2 af*z;

and letting m — oo, we observe that

n—1 n
B flaaz) +27a ) al f(a)
Q2X2, ", Ty 1=2
=2n"2q472 Z o? H—J fzy) +2" Yol f(zy) (2.2)
=2 €T

for all z1,---,x, € K. Putting ; = 0 for ({ = 1,2,--- ,n) in (2.2), we get f(0) = 0, since
ay # 1. Setting 2; =0 for (i =2,--- ,n and i # j) in (2.2) and using f(0) = 0, we have
22 |4 floam) =2"2af %0l [H f(a1) + 270l 2 (af — o) f(an)

for all z1,z, € K. Since o; = 1, we can conclude that

W flaran) = of 2Uf (1) + 20472 (af — 1) f(21)

for all 21,2, € K. Then it follows from Theorem 2.1 of [11] that, for all z1,2, € K, if £ =1,
then f(z1+a;) = f(z1)+ f(x)), if £ =2, then |, f(21) =2f(21)+2f(x)) (ie., f is quadratic)
and if £ = 3, then L—tjmj f2x) =2 &Jw] f(z1) +12f(x) (i-e., f is cubic).

Next, let us prove the uniqueness of f. Suppose that f and p are selections of F'. We have
(arm)tf(z) = f(aama) € F(aamz) and (aym)’p(x) = playmz) € F(ayma) for all € K and
m € N. Thus

(crm) || f(x) = p(@)|| = [[(arm)* f () = (cxm)p(a)|
= ||f(eamz) — P(Oélmx)ll < 20 (F(aymaz))
@ Springer
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for all x € K and m € N. It follows from sup 0 (F(x)) < +oo that f(x) = p(x) for all x € K.
zeK

(ii) Letting 1 = z and x; =0 for (i = 2,3,---,n) in (2.1) and using the convexity of F(x)

and Lemma 2.1, we obtain
F(z) Cay'Flox)

for all z € K. Therefore, using Theorem 2.2 with I' and 7 defined as in the previous case, we

deduce that if £ = 1, then F is single-valued and additive, if £ = 2, then F' is single-valued and

quadratic and if £ = 3, then F is single-valued and cubic. O
We are now going to deal with the inclusion (1.2).

Theorem 2.4 Suppose that F : K — cclz(Y) is a set-valued function such that
sup § (F(z)) < +o0, > a?(a? — Y a?) > 1 and there exists a j € {2,---,n} such that

. ) ) L J
reK i=1 j=i+1
ay # oy = 1. Then,
(i) If F satisfies the inclusion (1.2), there exists a unique selection f : K — Y of F such
that L—tjmj f(2z1) +6f(z,) = 4@-ij f(z1) +24f(z1) for all &, x, € K;

(ii) If

on—2 Z ata? tI-J F(x;) 421 zn: alF(z;)
T 1=1

1<i<j<n
n—1 n n
- L—H F(ajzy) +2"_1Za12( Z af)F(xl) (2.3)
Q2L , Oy Ty, i=1 J=1,5#1
for all x1,--- ,x, € K, then F is single-valued.

Proof (i) Letting x; =0fori=1,2,---,nin (1.2), we get

(5(0) +F0_)/> +on- 1Za( Z .)F(o)

J=1,j#1
on - ltlmes 7
E afa? 0) + F(0)) + 2! E alF(0
1<i<j<n

Now it follows from the convexity of F'(0) and Lemma 2.1 that

FO)+ Y alalF(0)C ) afF(0
1=1

1<i<j<n
Using Y a(of — > o?) > 1 and Lemma 2.1 (i), one obtains
i=1 j=i+1
10} € F(0). (2.4

Letting 1 = « and x; =0 for (1 =2,3,--- ,n) in (1.2), we have

(F(alx) -+ F(a12) )—1—2” ! ZaQF +2"71ia?( i a?)F(O)

-

on— ltlmes =2 =Ly
n
c 2202 Z af (F(z) + F(x)) +2" 2 Z afa’ (F(0) 4+ F(0))
j=2 2<i<j<n
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2n 1 4F 2n 1 Z 044F
for all z € K. Hence, from the convexity of F(x) and Lemma 2.1, we see that

Flaz)+ Y, a2afF(0) C ofF(x +Za4F (2.5)

1<i<j<n
for all x € K. It follows from (2.4), (2.5) and Lemma 2.1 (i) that

F(aiz) C Faqz) + ( Z

,)F(O)

|
-
@Qg;

1<i<j<n
CFlawx)+ Y aalF(0)—> ajF(0)
1<i<j<n =2

C a1F(z)
for all x € K. Next, by Theorem 2.2, with
() =o'z, 7(z)=az, =€k,
for every x € K there exists the limit
Jlim T(E (@) = T oy M E(af'e) = f(2),

and moreover,

f(z) € F(z), xz€K.

From (1.2) we see that, for every x1, -+ ,z, € K, m € N,
n—1
a;4m H_J F( m+1 )_|_2'n, 1 74mza ( Z )F(O&l xz)
aza'Ta, o ana Ty j=1,5#1
C 2"7204174m Z 2 U (af'x;) 2"7104174m ZQ?F(QT@),
1<i<j<n af*z; i=1

and letting m — oo, we observe that

7@1 flarz) 2"12 (Z ‘)f(:vi)

Q2T2, " ,QnTn j=1,5#1
=22 Y aladlH f(a) + 2" Zaff(xi) (2.6)
1<i<j<n T i=1
for all z1,--- , 2, € K. Putting ; =0 for (i =1,2,--- ,n) in (2.6), we obtain
o (Lat(at - 3 at)-1)s0 =0,
i=1 j=i+1

so, f(0) =0. Setting z; =0 for (i =2,--- ,n and i # j) in (2.2) and using f(0) = 0, we have
2" % |4 flarz) = 2" %atal [+ Uf (z1) + 2" af(af — ) f(a1) + 2" af(af — i) f(x))

Q,yTy

for all z1,z, € K. Since o; = 1, we can conclude that

[ flrer) = ot [H fla1) + 203 (af = 1) f(@1) + 2(1 = ) f(z,)
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for all z1,z, € K. Then it follows from Theorem 2.1 of [11] that, for all 1, x, € K, &Jw] f(2z1)+
6f(z;) =4, f(z1)+24f(21) (Le., f is quartic).

Also the uniqueness of f can be easily deduced from Theorem 2.3.

(ii) Letting 21 = 2 and x; = 0 for (i = 2,3, -+ ,n) in (2.3) and using the convexity of F(x)
and Lemma 2.1, we obtain

i F(x) + ZafF( ) C F(ax) Z aFaF (0 (2.7)

=2 1<i<j<n

for all x € K, which, by replacing x by 0, yields

Y aiF(0)CFO)+ > afalF(0
i=1

1<i<j<n
and thus we get the inclusion
F(0) C {0}. (2.8)
It follows from (2.7) and (2.8) that

oiF(z) C Fayx) ( > ofal zn:a > ) C F(ayz)

1<i<j<n =2

for all x € K. Hence
F(x) C a; *F(ayx)
for all x € K. Thus, using Theorem 2.2 with I and 7 defined as in the previous case, we deduce
that F' must be single-valued and quartic. O
Theorem 2.4 with n = 2 implies the following:

Corollary 2.5 Suppose F' : K — cclz(Y) is a set-valued function such that sup ¢ (F(z)) <
rcK
+00. Then,

(i) If F satisfies the inclusion (1.2) with n = 2 and a3 # az = 1, there exists a unique
selection f : K — Y of F such that f is quartic;
(i) If
o2 L—ij F(z1) + 2 (a]F(z1) + F(22)) UF a1z1) + 202 (F(z1) + F(x))
T2 T2
for all z1, x5 € K, F' is single-valued.
From Theorems 2.3 and 2.4, we can deduce the same conclusions as in [13, 20], but under
weaker assumptions. Corollary 2.5 with a; = 2 implies.
Corollary 2.6 (see [20, Theorem 5.1]) Let F': K — cclz(Y) be a set-valued function
such that su}p;zs (F(z)) < +o0. If F satisfies the inclusion (1.2) with n =2, oy =2 and ag =1,
ze

then there exists a unique selection f : K — Y of F such that f is quartic.

As a consequence of Theorem 2.4, we obtain the following result:

Corollary 2.7 (see [13, Theorem 2.5]) Let F : K — cclz(Y) be a set-valued function
such that Supé(F(x)) < +oo. If F satisfies the inclusion (1.2) with oy # «a, = 1 and

— n—l
E Hog— > af) > E a?, then there exists a unique selection f : K — Y of F such that
J=i+1
f quartic.
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From Theorem 2.3, we easily obtain the following results:

Corollary 2.8 (see [13, Theorem 2.3]) Let F': K — cclz(Y) be a set-valued function

such that sup d (F'(z)) < +oo. If F satisfies the inclusion (1.1) with £ = 3 and a3 # an = 1,
reK
then there exists a unique selection f : K — Y of F such that f is cubic.

Corollary 2.9 (see [20, Theorem 4.1]) Let F': K — cclz(Y) be a set-valued function

such that sup ¢ (F(z)) < 4+o0. If F satisfies the inclusion (1.1) with n =2, a3 =2 and ag = 1,
rcK
then there exists a unique selection f : K — Y of F such that f is cubic.

3 Applications

Some significant applications follow on from these results. We assume throughout this

section that W € ccz(Y) and that there exists a y € {2,---,n} such that a; # o, = 1.
Theorem 3.1 If f: K — Y satisfies
n—1 n
W floam) - 22002 S a2 4 fla) + znlag( 2 Za - 1) yew (3.1)
Q22,0 Ty 1=2 x;
for all z1,---,z, € K, then there exists a unique function w : K — Y such that w satisfies
(2.2) and for all z € K,
1
— € w.
“@) = @) € s ey

Proof Let F(z):= f(z) + (2" taf — 2"~ 1) W for x € K. Then

n—1 n
L—ij F(ayz1) +2"_1af_22afF(x1)
Q2T2, 0Ty 1=2
n—1 1+ai72Y a2
_ n—1,0-2 2 i=2
= W flaax)+2 Zafacl o 1 W
Q2IL2, (AT
n 1+ 04?2 S a?
C 2"_2al172 Za? L—Ij flz) + 2" Lol f(z1) + o _11:2 W+ W
» 1

1
622<2n2UfI1 6_1W>+a€22<2n2fo1 €_1W>
Qg

L 1 L 1
+- +a§22(2 2Uf:cl Z_1W>+a§(2 1f($1)+ae 1W)

51
= 2" 2t Z o? L—ij F(xy) +2" 1l F(xy)
= T;
for all z1,--- ,x, € K. Now, according to Theorem 2.3, there exists a unique function w : K —

Y such that w satisfies (2.2) and w(z) € F(z) for all z € K. O

Corollary 3.2 Suppose that f : K — Y satisfies (3.1). Then there exists a unique
function w : K — Y such that (i) w is additive when ¢ = 1; (ii) w is quadratic when ¢ = 2; (iii)
w is cubic when £ = 3, and for all z € K, w(z) — f(z) € 2'7" (af — 1)71 w.
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n

Theorem 3.3 If Y of(af — Y of) >1and f: K — Y satisfies
=1

i j=it1
n—1
B fleww) -2 Y el flw)
Q22,0 T 1<i<j<n z;
+2nt Z (a? Z a? - a?)f(xi) eWw (3.2)
i=1 N =L
for all z1,---,z, € K, then there exists a unique function w : K — Y such that w satisfies
(2.6) and for all z € K,
1
w(w) — f(z) € w.

Q2X2, ,OnTn =1 J=1,j#i
QT2 ,QnTn i=1 J=1,57i Y aZ(a? - Y a?) -1

e ] e P AN
c2n? Z Oé?a?Lﬂf(Ii)ﬂL? lza?f(zi)ﬂL Y W+ W
Ij 1=1 . ~

1<i<j<n
i=1 j=it1
2 n—2 1
=aja; | 2 L—ijf(acl) + ., w
@2 Yai(af— 3 af) -1
i=1 j=it1
1
+o+ala? 2"_2H-Jf(:c1)+ n n w
Tn Zaf(af—_z a?)—l
=1 Jj=i1+1
2 2| gn—2 1
t+azas [ 2 L"jf(ﬁ)*' n n w
=2 Yaf(af— 3 o) -1
i=1 j=itl
1
+otada? 2"_2L-ij(:c2)+ n n W
T af(af - > a?) -1
i=1 j=it1
1
+otaiol | 27 S @) + " w
. YaZ(a?- X2 a?)—l
i=1 j=it1
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1
+ai [ 2V (@) + n w
3 ad(o?— 3 a2) -1
i=1 j=it1
4 n—1 1
+oton | 27 flaa) + n w
Za?(af— > a?) -1
=1 Jj=i1+1
=on—2 Z aja? L—Ij F(x;) +2"1 Z o F(x;)
1<i<j<n z; i=1
for all z1,--- ,x, € K. Now, according to Theorem 2.4, there exists a unique function w : K —
Y such that w satisfies (2.6) and w(z) € F(x) for all x € K. O

Corollary 3.4 Suppose that Y- a?(af — > af) > 1and f: K — Y satisfies (3.2).
i=1 j=it1
Then there exists a unique quartic function w : K — Y such that, for all z € K, w(z) — f(z) €

21’”( Zn: af (0412 — i a?) — 1)_1W.

i=1 j=it+1
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