

Acta Mathematica Scientia, 2020, 40B(4): 1105–1115 https://doi.org/10.1007/s10473-020-0416-y c Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences, 2020

ON SELECTIONS OF SET-VALUED EULER-LAGRANGE INCLUSIONS WITH APPLICATIONS[∗]

Hamid KHODAEI¹ Iz-iddine EL-FASSI² Bahman HAYATI¹

1. Faculty of Mathematical Sciences and Statistics, Malayer University, P.O. Box 65719-95863, Malayer, Iran

2. Department of Mathematics, Faculty of Sciences and Techniques, Sidi Mohamed ben Abdellah University, B.P. 2202, Fez, Morocco

 $E-mail: \,hkhodaei@malayeru.ac.ir; \,hkhodaei.math@qmail.com, \,izidd-math@hotmail.fr;$ izelfassi.math@gmail.com, hayati@malayeru.ac.ir

Abstract We discuss the set-valued dynamics related to the theory of functional equations. We look for selections of convex set-valued functions satisfying set-valued Euler-Lagrange inclusions. We improve and extend upon some of the results in [13, 20], but under weaker assumptions. Some applications of our results are also provided.

Key words set-valued dynamics; Euler-Lagrange inclusion; composite operator; selection 2010 MR Subject Classification 54C60; 54C65; 28B20; 39B82; 52A07

1 Introduction

Functional inclusions play a significant role in various branches of mathematics and they are a tool for defining many notions of set-valued analysis, e.g., linear, affine, convex, concave, subadditive, superadditive, subquadratic and superquadratic set-valued functions. Finding a selection of such set-valued functions, with some special properties, is one of the main problems of set-valued analysis (see [1, 3, 4, 8, 10, 16, 18, 19, 23, 24, 26, 27]).

Park et al. [15, 20] investigated the stability of some set-valued functional equations. Brzdęk and Piszczek [4–6, 21, 22] obtained many results on selections of some set-valued functional equations satisfying some inclusions and on the approximation of those inclusions. Let us recall that the notion of stability for functional equations was motivated by a problem of Ulam [28] and a paper of Hyers [12] in which was published a solution to it (for further information, see the recent monograph [7]).

In the rest of this paper, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$, K stands for a commutative group, Y is a real Banach space and $\ell, \alpha_1, \cdots, \alpha_n$ are fixed positive integers, unless explicitly stated otherwise.

The main goal of this paper is to obtain some results on selections of a convex set-valued

[∗]Received March 19, 2019; revised August 30, 2019.

function $F: K \to 2^Y$ satisfying one of the following Euler-Lagrange functional inclusions:

$$
\biguplus_{\alpha_2 x_2, \cdots, \alpha_n x_n}^{n-1} F(\alpha_1 x_1) + 2^{n-1} \alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 F(x_1)
$$
\n
$$
\subseteq 2^{n-2} \alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 \biguplus_{x_i} F(x_1) + 2^{n-1} \alpha_1^{\ell} F(x_1) \tag{1.1}
$$

and

$$
\biguplus_{\alpha_2 x_2, \cdots, \alpha_n x_n}^{n-1} F(\alpha_1 x_1) + 2^{n-1} \sum_{i=1}^n \alpha_i^2 \left(\sum_{j=1, j \neq i}^n \alpha_j^2 \right) F(x_i)
$$
\n
$$
\subseteq 2^{n-2} \sum_{1 \leq i < j \leq n} \alpha_i^2 \alpha_j^2 \biguplus_{x_j}^n F(x_i) + 2^{n-1} \sum_{i=1}^n \alpha_i^4 F(x_i) \tag{1.2}
$$

for all $x_1, \dots, x_n \in K$. Here, the operator $\biguplus_{x_2} F(x_1)$ is defined by the formula $\biguplus_{x_2} F(x_1) =$ $F(x_1+x_2)+F(x_1-x_2)$. The composite operator $\biguplus_{x_2,\dots,x_{n+1}}^n F(x_1)$ is defined by $\biguplus_{x_2,\dots,x_{n+1}}^n F(x_1)$ $=\biguplus_{x_{n+1}} \left(\biguplus_{x_2,\dots,x_n}^{n-1} F(x_1)\right)$ for all $n\in\mathbb{N}\setminus\{1\}$. Note that

$$
\biguplus_{x_2,x_3,0,\cdots,0}^{n-1} F(x_1) = 2^{n-3} \biguplus_{x_2,x_3}^{2} F(x_1) = 2^{n-3} \biguplus_{x_3,x_2}^{2} F(x_1)
$$

and

 $x₂$

$$
\biguplus_{n=1}^{n} F(x_1) = \biguplus_{x_2, \cdots, x_n}^{n-1} F(x_1 + x_{n+1}) + \biguplus_{x_2, \cdots, x_n}^{n-1} F(x_1 - x_{n+1}).
$$

In particular, the inclusion (1.1) includes the *n*-dimensional Euler-Lagrange cubic inclusion for $\ell = 3$ (see [13]), the cubic inclusion for $n = 2$, $\ell = 3$, $\alpha_1 = 2$ and $\alpha_2 = 1$ (see [20]), the quadratic inclusion for $n = 2$, $\ell = 2$, $\alpha_1 = 2$ and $\alpha_2 = 1$ (the equation related to this inclusion has been studied in [9]) and the Cauchy inclusion for $n = 2$, $\ell = 1$, $\alpha_1 = 2$ and $\alpha_2 = 1$ (the equation related to this inclusion has been studied in [2]). Also, the inclusion (1.2) includes the n-dimensional quartic inclusion for $\alpha_1 = \cdots = \alpha_n = 1$ (the equation related to this inclusion has been studied in [14]) and the quartic inclusion for $n = 2$, $\alpha_1 = 2$ and $\alpha_2 = 1$ (see [20]).

By some results in [17, 21, 25], we extend the conclusions of [13, 20], but under weaker assumptions. Furthermore, a few applications of our results to the stability of some functional equations are given. Our results can be regarded as an important extension of stability results corresponding to single-valued functional equations.

2 Euler-Lagrange Functional Inclusions in Several Variables

We start this section by recalling some basic concepts. In a real normed space Y , we denote by $n(Y)$ the family of all nonempty subsets of Y and we define the following families of sets:

 $\operatorname{ccl}(Y) := \{ A \in n(Y) : A \text{ is a closed and convex set } \},\$

 $\operatorname{cclz}(Y) := \{ A \in n(Y) : A \text{ is a closed and convex set containing zero} \},$

 $ccz(Y) := \{A \in n(Y): A \text{ is a compact and convex set containing zero}\}.$

For $A, B \in n(Y)$ and $\lambda \in \mathbb{R}$, the Minkowski addition is defined as $A + B = \{x + y : x \in A,$ $y \in B$ and the scalar multiplication as $\lambda A = {\lambda x : x \in A}$. We say that a set C is the $\textcircled{2}$ Springer

Hukuhara difference of A and B, i.e., $C = A - B$, whenever $A = B + C$. If this difference exists, then it is unique (by Lemma 2.1 below). The number $\delta(A) := \sup \{ ||a - b|| : a, b \in A \}$ is said to be the diameter of $A \in n(Y)$. Let D be a nonempty set. Any function $f: D \to Y$ such that $f(x) \in F(x)$ for all $x \in K$ is said to be a selection of the set-valued function $F: D \to n(Y)$.

Lemma 2.1 (see [17, 25]) Let Y be a real normed space, $\beta, \gamma \in \mathbb{R}$ and $A, B, C \in n(Y)$. Then,

(i) $\beta(A + B) = \beta A + \beta B$ and $(\beta + \gamma)A \subseteq \beta A + \gamma A$. If, additionally, A is convex and $\beta \geq \gamma \geq 0$, then we have $(\beta + \gamma)A = \beta A + \gamma A$;

(ii) If $B \in \text{ccl}(Y)$, C is bounded and $A + C \subseteq B + C$, then $A \subseteq B$. If, additionally, $A \in \text{ccl}(Y)$ and $A + C = B + C$, then $A = B$.

Now we deal with some results corresponding to inclusions in a single variable and applications to the inclusions in several variables.

Theorem 2.2 (see [21]) Let $\mu \in (0, +\infty)$, S be a nonempty set, (X, d) be a metric space, $\tau : S \to S$ be a function defined by $\tau^0(x) = x$ for $x \in S$ and $\tau^{n+1} = \tau^n \circ \tau$ for $n \in \mathbb{N}_0$, $F : S \to S$ $n(X), \Gamma: X \to X, d(\Gamma(x), \Gamma(y)) \leq \mu d(x, y)$ for all $x, y \in X$, and $\lim_{n \to \infty} \mu^n \delta(F(\tau^n(x))) = 0$ for all $x \in S$. Then,

(i) If X is complete and $\Gamma(F(\tau(x))) \subseteq F(x)$ for all $x \in S$, then the limit $\lim_{n \to \infty} c \Gamma^n \circ F$ $\tau^{n}(x) =: f(x)$ exists for each $x \in S$, and f is a unique selection of the multifunction clF such that $\Gamma \circ f \circ \tau = f$, where $\text{cl } F$ is defined by $(\text{cl } F)(x) = \text{cl } F(x)$, $x \in S$;

(ii) If $F(x) \subseteq \Gamma(F(\tau(x)))$ for all $x \in S$, then F is single-valued and $\Gamma \circ F \circ \tau = F$.

We are now going to deal with the inclusion (1.1) .

Theorem 2.3 Suppose $F: K \to \text{cclz}(Y)$ is a set-valued function such that sup $\delta(F(x))$ x∈K $+\infty$ and there exists a $j \in \{2, \dots, n\}$ such that $\alpha_1 \neq \alpha_j = 1$. Then,

(i) If F satisfies the inclusion (1.1), there exists a unique selection $f: K \to Y$ of F such that, for all $x_1, x_2 \in K$,

(1) $f(x_1 + x_1) = f(x_1) + f(x_1)$ when $\ell = 1$, (2) $\biguplus_{x_j} f(x_1) = 2f(x_1) + 2f(x_j)$ when $\ell = 2$, (3) $\biguplus_{x_j} f(2x_1) = 2 \biguplus_{x_j} f(x_1) + 12f(x_1)$ when $\ell = 3$; (ii) If

$$
2^{n-2}\alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 \biguplus_{x_i}^{\ell} F(x_1) + 2^{n-1} \alpha_1^{\ell} F(x_1)
$$

$$
\subseteq \biguplus_{\alpha_2 x_2, \dots, \alpha_n x_n}^{n-1} F(\alpha_1 x_1) + 2^{n-1} \alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 F(x_1)
$$
(2.1)

for all $x_1, \dots, x_n \in K$, F is single-valued.

Proof (i) Setting $x_1 = x$ and $x_i = 0$ for $(i = 2, 3, \dots, n)$ in (1.1), we have

$$
\left(\underbrace{F(\alpha_1 x) + \dots + F(\alpha_1 x)}_{2^{n-1} \text{ times}}\right) + 2^{n-1} \alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 F(x)
$$

$$
\subseteq 2^{n-2} \alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 (F(x) + F(x)) + 2^{n-1} \alpha_1^{\ell} F(x)
$$

 \mathcal{Q} Springer

for all $x \in K$. Since the set $F(x)$ is convex, we can conclude from Lemma 2.1 (i) that

$$
2^{n-1}F(\alpha_1x) + 2^{n-1}\alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 F(x) \subseteq 2^{n-1}\alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 F(x) + 2^{n-1}\alpha_1^{\ell} F(x)
$$

for all $x \in K$. Using Lemma 2.1 (ii), one obtains

$$
\alpha_1^{-\ell} F(\alpha_1 x) \subseteq F(x)
$$

for all $x \in K$. Next, by Theorem 2.2, with

$$
\Gamma(x) = \alpha_1^{-\ell} x, \quad \tau(x) = \alpha_1 x, \quad x \in K,
$$

for every $x \in K$ there exists the limit

$$
\lim_{m \to +\infty} \Gamma^m \left(F \left(\tau^m(x) \right) \right) = \lim_{m \to +\infty} \alpha_1^{-\ell m} F(\alpha_1^m x) = f(x),
$$

and moreover

$$
f(x) \in F(x), \quad x \in K.
$$

Thus, in view of (1.1), for every $x_1, \dots, x_n \in K$, $m \in \mathbb{N}$ one has

$$
\alpha_1^{-\ell m} \biguplus_{\alpha_2 \alpha_1^m x_2, \cdots, \alpha_n \alpha_1^m x_n}^{n-1} F(\alpha_1^{m+1} x_1) + 2^{n-1} \alpha_1^{\ell(1-m)-2} \sum_{i=2}^n \alpha_i^2 F(\alpha_1^m x_1)
$$

$$
\subseteq 2^{n-2} \alpha_1^{\ell(1-m)-2} \sum_{i=2}^n \alpha_i^2 \biguplus_{\alpha_1^m x_i} F(\alpha_1^m x_1) + 2^{n-1} \alpha_1^{\ell(1-m)} F(\alpha_1^m x_1),
$$

and letting $m \to \infty$, we observe that

$$
\biguplus_{\alpha_2 x_2, \cdots, \alpha_n x_n}^{n-1} f(\alpha_1 x_1) + 2^{n-1} \alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 f(x_1)
$$

=
$$
2^{n-2} \alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 \biguplus_{x_i} f(x_1) + 2^{n-1} \alpha_1^{\ell} f(x_1)
$$
 (2.2)

for all $x_1, \dots, x_n \in K$. Putting $x_i = 0$ for $(i = 1, 2, \dots, n)$ in (2.2) , we get $f(0) = 0$, since $\alpha_1 \neq 1$. Setting $x_i = 0$ for $(i = 2, \dots, n$ and $i \neq j)$ in (2.2) and using $f(0) = 0$, we have

$$
2^{n-2} \biguplus_{\alpha_j x_j} f(\alpha_1 x_1) = 2^{n-2} \alpha_1^{\ell-2} \alpha_j^2 \biguplus_{x_j} f(x_1) + 2^{n-1} \alpha_1^{\ell-2} (\alpha_1^2 - \alpha_j^2) f(x_1)
$$

for all $x_1, x_1 \in K$. Since $\alpha_1 = 1$, we can conclude that

$$
\biguplus_{x_j} f(\alpha_1 x_1) = \alpha_1^{\ell-2} \biguplus_{x_j} f(x_1) + 2\alpha_1^{\ell-2} (\alpha_1^2 - 1) f(x_1)
$$

for all $x_1, x_1 \in K$. Then it follows from Theorem 2.1 of [11] that, for all $x_1, x_1 \in K$, if $\ell = 1$, then $f(x_1+x_1) = f(x_1) + f(x_1)$, if $\ell = 2$, then $\biguplus_{x_1} f(x_1) = 2f(x_1) + 2f(x_1)$ (i.e., f is quadratic) and if $\ell = 3$, then $\biguplus_{x_j} f(2x_1) = 2 \biguplus_{x_j} f(x_1) + 12f(x)$ (i.e., f is cubic).

Next, let us prove the uniqueness of f. Suppose that f and ρ are selections of F. We have $(\alpha_1 m)^{\ell} f(x) = f(\alpha_1 m x) \in F(\alpha_1 m x)$ and $(\alpha_1 m)^{\ell} \rho(x) = \rho(\alpha_1 m x) \in F(\alpha_1 m x)$ for all $x \in K$ and $m \in \mathbb{N}$. Thus

$$
(\alpha_1 m)^{\ell} || f(x) - \rho(x) || = ||(\alpha_1 m)^{\ell} f(x) - (\alpha_1 m)^{\ell} \rho(x) ||
$$

= $|| f(\alpha_1 mx) - \rho(\alpha_1 mx) || \le 2\delta (F(\alpha_1 mx))$

Springer

for all $x \in K$ and $m \in \mathbb{N}$. It follows from sup $\delta(F(x)) < +\infty$ that $f(x) = \rho(x)$ for all $x \in K$. x∈K

(ii) Letting $x_1 = x$ and $x_i = 0$ for $(i = 2, 3, \dots, n)$ in (2.1) and using the convexity of $F(x)$ and Lemma 2.1, we obtain

$$
F(x) \subseteq \alpha_1^{-\ell} F(\alpha_1 x)
$$

for all $x \in K$. Therefore, using Theorem 2.2 with Γ and τ defined as in the previous case, we deduce that if $\ell = 1$, then F is single-valued and additive, if $\ell = 2$, then F is single-valued and quadratic and if $\ell = 3$, then F is single-valued and cubic.

We are now going to deal with the inclusion (1.2) .

Theorem 2.4 Suppose that $F : K \to \text{ccdz}(Y)$ is a set-valued function such that $\sup_{x \in K} \delta(F(x)) < +\infty, \sum_{i=1}^{n}$ $i=1$ $\alpha_i^2\big(\alpha_i^2 - \sum\limits_{i=1}^n$ $j=i+1$ α_j^2 > 1 and there exists a $j \in \{2, \dots, n\}$ such that $\alpha_1 \neq \alpha_2 = 1$. Then,

(i) If F satisfies the inclusion (1.2), there exists a unique selection $f: K \to Y$ of F such that $\biguplus_{x_j} f(2x_1) + 6f(x_j) = 4 \biguplus_{x_j} f(x_1) + 24f(x_1)$ for all $x_1, x_j \in K$; (ii) If

$$
2^{n-2} \sum_{1 \leq i < j \leq n} \alpha_i^2 \alpha_j^2 \biguplus_{x_j} F(x_i) + 2^{n-1} \sum_{i=1}^n \alpha_i^4 F(x_i)
$$
\n
$$
\subseteq \bigcup_{\alpha_2 x_2, \dots, \alpha_n x_n}^{n-1} F(\alpha_1 x_1) + 2^{n-1} \sum_{i=1}^n \alpha_i^2 \left(\sum_{j=1, j \neq i}^n \alpha_j^2 \right) F(x_i) \tag{2.3}
$$

for all $x_1, \dots, x_n \in K$, then F is single-valued.

Proof (i) Letting $x_i = 0$ for $i = 1, 2, \dots, n$ in (1.2), we get

$$
\left(\underbrace{F(0) + \dots + F(0)}_{2^{n-1} \text{ times}}\right) + 2^{n-1} \sum_{i=1}^{n} \alpha_i^2 \left(\sum_{j=1, j \neq i}^{n} \alpha_j^2\right) F(0)
$$
\n
$$
\subseteq 2^{n-2} \sum_{1 \leq i < j \leq n} \alpha_i^2 \alpha_j^2 \left(F(0) + F(0)\right) + 2^{n-1} \sum_{i=1}^{n} \alpha_i^4 F(0).
$$

Now it follows from the convexity of $F(0)$ and Lemma 2.1 that

$$
F(0) + \sum_{1 \le i < j \le n} \alpha_j^2 \alpha_i^2 F(0) \subseteq \sum_{i=1}^n \alpha_i^4 F(0).
$$

Using $\sum_{n=1}^{\infty}$ $i=1$ $\alpha_i^2(\alpha_i^2 - \sum_{i=1}^n$ $j=i+1$ α_j^2 > 1 and Lemma 2.1 (ii), one obtains

$$
\{0\} \subseteq F(0). \tag{2.4}
$$

Letting $x_1 = x$ and $x_i = 0$ for $(i = 2, 3, \dots, n)$ in (1.2), we have

$$
\left(\underbrace{F(\alpha_1 x) + \dots + F(\alpha_1 x)}_{2^{n-1} \text{ times}}\right) + 2^{n-1} \alpha_1^2 \sum_{j=2}^n \alpha_j^2 F(x) + 2^{n-1} \sum_{i=2}^n \alpha_i^2 \left(\sum_{j=1, j \neq i}^n \alpha_j^2\right) F(0)
$$
\n
$$
\subseteq 2^{n-2} \alpha_1^2 \sum_{j=2}^n \alpha_j^2 \left(F(x) + F(x)\right) + 2^{n-2} \sum_{2 \leq i < j \leq n} \alpha_i^2 \alpha_j^2 \left(F(0) + F(0)\right)
$$
\n
$$
\text{g} \text{ Springer}
$$

$$
+ 2^{n-1} \alpha_1^4 F(x) + 2^{n-1} \sum_{i=2}^n \alpha_i^4 F(0)
$$

for all $x \in K$. Hence, from the convexity of $F(x)$ and Lemma 2.1, we see that

$$
F(\alpha_1 x) + \sum_{1 \le i < j \le n} \alpha_j^2 \alpha_i^2 F(0) \subseteq \alpha_1^4 F(x) + \sum_{i=2}^n \alpha_i^4 F(0) \tag{2.5}
$$

for all $x \in K$. It follows from (2.4) , (2.5) and Lemma 2.1 (i) that

$$
F(\alpha_1 x) \subseteq F(\alpha_1 x) + \Big(\sum_{1 \le i < j \le n} \alpha_j^2 \alpha_i^2 - \sum_{i=2}^n \alpha_i^4\Big) F(0)
$$
\n
$$
\subseteq F(\alpha_1 x) + \sum_{1 \le i < j \le n} \alpha_j^2 \alpha_i^2 F(0) - \sum_{i=2}^n \alpha_i^4 F(0)
$$
\n
$$
\subseteq \alpha_1^4 F(x)
$$

for all $x \in K$. Next, by Theorem 2.2, with

$$
\Gamma(x) = \alpha_1^{-4}x, \quad \tau(x) = \alpha_1 x, \quad x \in K,
$$

for every $x \in K$ there exists the limit

$$
\lim_{m \to +\infty} \Gamma^m \left(F \left(\tau^m(x) \right) \right) = \lim_{m \to +\infty} \alpha_1^{-4m} F(\alpha_1^m x) = f(x),
$$

and moreover,

$$
f(x) \in F(x), \quad x \in K.
$$

From (1.2) we see that, for every $x_1, \dots, x_n \in K$, $m \in \mathbb{N}$,

$$
\alpha_1^{-4m} \bigoplus_{\alpha_2 \alpha_1^m x_2, \cdots, \alpha_n \alpha_1^m x_n}^{n-1} F(\alpha_1^{m+1} x_1) + 2^{n-1} \alpha_1^{-4m} \sum_{i=1}^n \alpha_i^2 \left(\sum_{j=1, j \neq i}^n \alpha_j^2 \right) F(\alpha_1^m x_i)
$$

$$
\subseteq 2^{n-2} \alpha_1^{-4m} \sum_{1 \leq i < j \leq n} \alpha_i^2 \alpha_j^2 \bigoplus_{\alpha_1^m x_j}^n F(\alpha_1^m x_i) + 2^{n-1} \alpha_1^{-4m} \sum_{i=1}^n \alpha_i^4 F(\alpha_1^m x_i),
$$

and letting $m \to \infty$, we observe that

$$
\biguplus_{\alpha_2 x_2, \cdots, \alpha_n x_n}^{n-1} f(\alpha_1 x_1) + 2^{n-1} \sum_{i=1}^n \alpha_i^2 \left(\sum_{j=1, j \neq i}^n \alpha_j^2 \right) f(x_i)
$$

=
$$
2^{n-2} \sum_{1 \leq i < j \leq n} \alpha_i^2 \alpha_j^2 \biguplus_{x_j}^{n} f(x_i) + 2^{n-1} \sum_{i=1}^n \alpha_i^4 f(x_i)
$$
 (2.6)

for all $x_1, \dots, x_n \in K$. Putting $x_i = 0$ for $(i = 1, 2, \dots, n)$ in (2.6), we obtain

$$
2^{n-1}\bigg(\sum_{i=1}^{n} \alpha_i^2 \bigg(\alpha_i^2 - \sum_{j=i+1}^{n} \alpha_j^2\bigg) - 1\bigg) f(0) = 0,
$$

so, $f(0) = 0$. Setting $x_i = 0$ for $(i = 2, \dots, n$ and $i \neq j$ in (2.2) and using $f(0) = 0$, we have

$$
2^{n-2}\biguplus_{\alpha_jx_j}f(\alpha_1x_1)=2^{n-2}\alpha_1^2\alpha_j^2\biguplus_{x_j}f(x_1)+2^{n-1}\alpha_1^2(\alpha_1^2-\alpha_j^2)f(x_1)+2^{n-1}\alpha_j^2(\alpha_j^2-\alpha_1^2)f(x_j)
$$

for all $x_1, x_j \in K$. Since $\alpha_j = 1$, we can conclude that

$$
\biguplus_{x_j} f(\alpha_1 x_1) = \alpha_1^2 \biguplus_{x_j} f(x_1) + 2\alpha_1^2(\alpha_1^2 - 1) f(x_1) + 2(1 - \alpha_1^2) f(x_j)
$$

 \mathcal{D} Springer

for all $x_1, x_j \in K$. Then it follows from Theorem 2.1 of [11] that, for all $x_1, x_j \in K$, $\biguplus_{x_j} f(2x_1) +$ $6f(x_j) = 4 \biguplus_{x_j} f(x_1) + 24f(x_1)$ (i.e., f is quartic).

Also the uniqueness of f can be easily deduced from Theorem 2.3.

(ii) Letting $x_1 = x$ and $x_i = 0$ for $(i = 2, 3, \dots, n)$ in (2.3) and using the convexity of $F(x)$ and Lemma 2.1, we obtain

$$
\alpha_1^4 F(x) + \sum_{i=2}^n \alpha_i^4 F(0) \subseteq F(\alpha_1 x) + \sum_{1 \le i < j \le n} \alpha_j^2 \alpha_i^2 F(0) \tag{2.7}
$$

for all $x \in K$, which, by replacing x by 0, yields

$$
\sum_{i=1}^{n} \alpha_i^4 F(0) \subseteq F(0) + \sum_{1 \le i < j \le n} \alpha_i^2 \alpha_j^2 F(0),
$$

and thus we get the inclusion

$$
F(0) \subseteq \{0\}.\tag{2.8}
$$

It follows from (2.7) and (2.8) that

$$
\alpha_1^4 F(x) \subseteq F(\alpha_1 x) + \left(\sum_{1 \le i < j \le n} \alpha_i^2 \alpha_j^2 - \sum_{i=2}^n \alpha_i^4\right) F(0) \subseteq F(\alpha_1 x)
$$

for all $x \in K$. Hence

$$
F(x) \subseteq \alpha_1^{-4} F(\alpha_1 x)
$$

for all $x \in K$. Thus, using Theorem 2.2 with Γ and τ defined as in the previous case, we deduce that F must be single-valued and quartic. \square

Theorem 2.4 with $n = 2$ implies the following:

Corollary 2.5 Suppose $F : K \to \text{cclz}(Y)$ is a set-valued function such that $\sup_{x \in K} \delta(F(x)) <$ $+\infty$. Then,

(i) If F satisfies the inclusion (1.2) with $n = 2$ and $\alpha_1 \neq \alpha_2 = 1$, there exists a unique selection $f: K \to Y$ of F such that f is quartic;

(ii) If

$$
\alpha_1^2 \biguplus_{x_2} F(x_1) + 2 \left(\alpha_1^4 F(x_1) + F(x_2) \right) \subseteq \biguplus_{x_2} F(\alpha_1 x_1) + 2 \alpha_1^2 \left(F(x_1) + F(x_2) \right)
$$

for all $x_1, x_2 \in K$, F is single-valued.

From Theorems 2.3 and 2.4, we can deduce the same conclusions as in [13, 20], but under weaker assumptions. Corollary 2.5 with $\alpha_1 = 2$ implies.

Corollary 2.6 (see [20, Theorem 5.1]) Let $F: K \to \text{cclz}(Y)$ be a set-valued function such that $\sup_{x \in K} \delta(F(x)) < +\infty$. If F satisfies the inclusion (1.2) with $n = 2$, $\alpha_1 = 2$ and $\alpha_2 = 1$, then there exists a unique selection $f : K \to Y$ of F such that f is quartic.

As a consequence of Theorem 2.4, we obtain the following result:

Corollary 2.7 (see [13, Theorem 2.5]) Let $F: K \to \text{cclz}(Y)$ be a set-valued function such that sup $\delta(F(x)) < +\infty$. If F satisfies the inclusion (1.2) with $\alpha_1 \neq \alpha_n = 1$ and x∈K $\sum_{i=1}^{n-1}$ $i=1$ $\alpha_i^2(\alpha_i^2 - \sum^{n-1}$ $j=i+1$ α_j^2) > $\sum_{n=1}^{n-1}$ $i=1$ α_i^2 , then there exists a unique selection $f: K \to Y$ of F such that

f is quartic.

2 Springer

From Theorem 2.3, we easily obtain the following results:

Corollary 2.8 (see [13, Theorem 2.3]) Let $F: K \to \text{cc} \text{lc}(Y)$ be a set-valued function such that sup $\delta(F(x)) < +\infty$. If F satisfies the inclusion (1.1) with $\ell = 3$ and $\alpha_1 \neq \alpha_n = 1$, x∈K then there exists a unique selection $f : K \to Y$ of F such that f is cubic.

Corollary 2.9 (see [20, Theorem 4.1]) Let $F: K \to \text{cclz}(Y)$ be a set-valued function such that sup $\delta(F(x)) < +\infty$. If F satisfies the inclusion (1.1) with $n = 2$, $\alpha_1 = 2$ and $\alpha_2 = 1$, x∈K then there exists a unique selection $f : K \to Y$ of F such that f is cubic.

3 Applications

Some significant applications follow on from these results. We assume throughout this section that $W \in ccz(Y)$ and that there exists a $j \in \{2, \dots, n\}$ such that $\alpha_1 \neq \alpha_2 = 1$.

Theorem 3.1 If $f: K \to Y$ satisfies

$$
\biguplus_{x_2,\cdots,\alpha_n x_n}^{n-1} f(\alpha_1 x_1) - 2^{n-2} \alpha_1^{\ell-2} \sum_{i=2}^n \alpha_i^2 \biguplus_{x_i} f(x_1) + 2^{n-1} \alpha_1^{\ell} \left(\alpha_1^{-2} \sum_{i=2}^n \alpha_i^2 - 1 \right) f(x_1) \in W \quad (3.1)
$$

for all $x_1, \dots, x_n \in K$, then there exists a unique function $\omega : K \to Y$ such that ω satisfies (2.2) and for all $x \in K$,

$$
\omega(x) - f(x) \in \frac{1}{2^{n-1} \left(\alpha_1^{\ell} - 1\right)} W.
$$

Proof Let $F(x) := f(x) + (2^{n-1}\alpha_1^{\ell} - 2^{n-1})^{-1}W$ for $x \in K$. Then n−1
|+| $\alpha_2x_2,\cdots,\alpha_nx_n$ $F(\alpha_1 x_1) + 2^{n-1} \alpha_1^{\ell-2} \sum_{n=1}^n$ $i=2$ $\alpha_i^2 F(x_1)$ = n−1
|+| $\alpha_2x_2,\cdots,\alpha_nx_n$ $f(\alpha_1 x_1) + 2^{n-1} \alpha_1^{\ell-2} \sum_1^n$ $i=2$ $\alpha_i^2 f(x_1) +$ $1+\alpha_1^{\ell-2}\sum_1^n$ $i=2$ α_i^2 $\frac{i=2}{\alpha_1^{\ell}-1}W$ $\subseteq 2^{n-2} \alpha_1^{\ell-2} \sum_{n=1}^{\infty}$ $i=2$ α_i^2 \biguplus xi $f(x_1) + 2^{n-1} \alpha_1^{\ell} f(x_1) +$ $1 + \alpha_1^{\ell-2} \sum_{n=1}^{\infty}$ $i=2$ α_i^2 $\frac{1}{\alpha_1^{\ell}-1}W+W$ $=\alpha_1^{\ell-2}\alpha_2^2$ $\sqrt{ }$ 2^{n-2} + $\overline{x_2}$ $f(x_1) + \frac{1}{\alpha_1^{\ell} - 1}W$! $+\alpha_1^{\ell-2}\alpha_3^2$ $\sqrt{ }$ 2^{n-2} + x_3 $f(x_1) + \frac{1}{\alpha_1^{\ell} - 1}W$ \setminus $+\cdots+\alpha_1^{\ell-2}\alpha_n^2$ $\sqrt{ }$ 2^{n-2} + x_n $f(x_1) + \frac{1}{\alpha_1^{\ell} - 1}W$ \setminus $+\alpha_1^{\ell}$ $\left(2^{n-1}f(x_1) + \frac{1}{\alpha_1^{\ell} - 1}W\right)$ $= 2^{n-2} \alpha_1^{\ell-2} \sum_{n=1}^{\infty}$ $i=2$ α_i^2 \biguplus xi $F(x_1) + 2^{n-1} \alpha_1^{\ell} F(x_1)$

for all $x_1, \dots, x_n \in K$. Now, according to Theorem 2.3, there exists a unique function $\omega : K \to$ Y such that ω satisfies (2.2) and $\omega(x) \in F(x)$ for all $x \in K$.

Corollary 3.2 Suppose that $f : K \to Y$ satisfies (3.1). Then there exists a unique function $\omega : K \to Y$ such that (i) ω is additive when $\ell = 1$; (ii) ω is quadratic when $\ell = 2$; (iii) ω is cubic when $\ell = 3$, and for all $x \in K$, $\omega(x) - f(x) \in 2^{1-n} (\alpha_1^{\ell} - 1)^{-1} W$. $\underline{\mathrm{\mathfrak{\Phi}}}$ Springer

 α_2

Theorem 3.3 If $\sum_{n=1}^{\infty}$ $i=1$ $\alpha_i^2\left(\alpha_i^2 - \sum\limits_{i=1}^n\right)$ $j=i+1$ α_j^2 > 1 and $f: K \to Y$ satisfies n−1
|+| $\alpha_2x_2,\cdots,\alpha_nx_n$ $f(\alpha_1 x_1) - 2^{n-2}$ \sum $1 \leq i < j \leq n$ $\alpha_i^2 \alpha_j^2$ \biguplus x_j $f(x_i)$ $+ 2^{n-1}\sum_{n=1}^{n}$ $i=1$ $\left(\alpha_i^2\right)^n$ $j=1,j\neq i$ $\alpha_j^2-\alpha_i^4$ $f(x_i) \in W$ (3.2)

for all $x_1, \dots, x_n \in K$, then there exists a unique function $\omega : K \to Y$ such that ω satisfies (2.6) and for all $x \in K$,

$$
\omega(x) - f(x) \in \frac{1}{2^{n-1} \left(\sum\limits_{i=1}^{n} \alpha_i^2 (\alpha_i^2 - \sum\limits_{j=i+1}^{n} \alpha_j^2) - 1 \right)} W.
$$
\nProof Let $F(x) := f(x) + \left(2^{n-1} \sum\limits_{i=1}^{n} \alpha_i^2 (\alpha_i^2 - \sum\limits_{j=i+1}^{n} \alpha_j^2) - 2^{n-1} \right)^{-1} W$ for $x \in K$. Then
\n
$$
\biguplus_{\alpha_2 \neq 2, \dots, \alpha_n x_n}^{n-1} F(\alpha_1 x_1) + 2^{n-1} \sum\limits_{i=1}^{n} \alpha_i^2 \left(\sum\limits_{j=1, j \neq i}^{n} \alpha_j^2 \right) F(x_i)
$$
\n
$$
= \biguplus_{\alpha_2 \neq 2, \dots, \alpha_n x_n}^{n-1} f(\alpha_1 x_1) + 2^{n-1} \sum\limits_{i=1}^{n} \alpha_i^2 \left(\sum\limits_{j=1, j \neq i}^{n} \alpha_j^2 \right) f(x_i) + \frac{1 + \sum\limits_{i=1}^{n} \alpha_i^2 (\sum\limits_{j=i+1}^{n} \alpha_j^2)}{2^n (2^n_i^2 - \sum\limits_{j=i+1}^{n} \alpha_j^2) - 1} W
$$
\n
$$
\subseteq 2^{n-2} \sum\limits_{1 \leq i < j \leq n} \alpha_i^2 \alpha_j^2 \biguplus f(x_i) + 2^{n-1} \sum\limits_{i=1}^{n} \alpha_i^4 f(x_i) + \frac{1 + \sum\limits_{i=1}^{n} \alpha_i^2 (\sum\limits_{j=i+1}^{n} \alpha_j^2)}{2^n (2^n_i^2 - \sum\limits_{j=i+1}^{n} \alpha_j^2) - 1} W + W
$$
\n
$$
= \alpha_1^2 \alpha_2^2 \left(2^{n-2} \biguplus f(x_1) + \frac{1}{\sum\limits_{i=1}^{n} \alpha_i^2 (\alpha_i^2 - \sum\limits_{j=i+1}^{n} \alpha_j^2) - 1} W \right) + \dots + \alpha_1^2 \alpha_n^2 \left(2^{n-2} \biguplus f(x_2) + \frac{1}{\sum\limits_{i
$$

$$
+ \alpha_1^4 \left(2^{n-1} f(x_1) + \frac{1}{\sum\limits_{i=1}^n \alpha_i^2 (\alpha_i^2 - \sum\limits_{j=i+1}^n \alpha_j^2) - 1} W \right)
$$

+
$$
\cdots + \alpha_n^4 \left(2^{n-1} f(x_n) + \frac{1}{\sum\limits_{i=1}^n \alpha_i^2 (\alpha_i^2 - \sum\limits_{j=i+1}^n \alpha_j^2) - 1} W \right)
$$

=
$$
2^{n-2} \sum_{1 \le i < j \le n} \alpha_i^2 \alpha_j^2 \biguplus_{x_j} F(x_i) + 2^{n-1} \sum\limits_{i=1}^n \alpha_i^4 F(x_i)
$$

for all $x_1, \dots, x_n \in K$. Now, according to Theorem 2.4, there exists a unique function $\omega : K \to$ Y such that ω satisfies (2.6) and $\omega(x) \in F(x)$ for all $x \in K$.

Corollary 3.4 Suppose that $\sum_{n=1}^{\infty}$ $i=1$ $\alpha_i^2\left(\alpha_i^2 - \sum\limits_{i=1}^n\right)$ $j=i+1$ α_j^2 > 1 and $f: K \to Y$ satisfies (3.2). Then there exists a unique quartic function $\omega : K \to Y$ such that, for all $x \in K$, $\omega(x) - f(x) \in$ 2^{1-n} $\Big(\sum_{n=1}^{\infty}$ $i=1$ $\alpha_i^2\big(\alpha_i^2-\sum\limits_{i=1}^n$ $j=i+1$ α_j^2) - 1)⁻¹W.

References

- [1] Aubin J P, Frankowska H. Set-valued analysis//Modern Birkhäuser Classics. Boston: Birkhäuser, 2008
- [2] Bae J H, Park W G. A functional equation having monomials as solutions. Appl Math Comput, 2010, 216: 87–94
- [3] Brzdęk J, Pietrzyk A. A note on stability of the general linear equation. Aequationes Math, 2008, 75: 267-270.
- [4] Brzdęk J, Piszczek M. Selections of set-valued maps satisfying some inclusions and the Hyers-Ulam stability//Handbook of Functional Equations. Springer Optim Appl 96. New York: Springer, 2014: 83–100
- [5] Brzdęk J, Piszczek M. Fixed points of some nonlinear operators in spaces of multifunctions and the Ulam stability. J Fixed Point Theory Appl, 2017, 19: 2441–2448
- [6] Brzdęk J, Piszczek M. Ulam stability of some functional inclusions for multi-valued mappings. Filomat, 2017, 31: 5489–5495
- [7] Brzdek J, Popa D, Rasa I, Xu B. Ulam Stability of Operators. Oxford: Academic Press, Elsevier, 2018
- [8] Brzdęk J, Popa D, Xu B. Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlinear Anal, 2011, 74: 324–330
- [9] Chang I S, Kim H M. On the Hyers-Ulam stability of quadratic functional equations. J Ineq Pure Appl Math, 2002, 3: Art. 33
- [10] Czerwik S. Functional Equations and Inequalities in Several Variables. World Scientific London, 2002
- [11] Gordji M E, Alizadeh Z, Khodaei H, Park C. On approximate homomorphisms: A fixed point approach. Math Sci, 2012, 6: Art No 59
- [12] Hyers D H. On the stability of the linear functional equation. Proc Natl Acad Sci, 1941, 27: 222–224
- [13] Khodaei H, Rassias Th M. Set-valued dynamics related to generalized Euler-Lagrange functional equations. J Fixed Point Theory Appl, 2018, 20: Art No 32
- [14] Kim H M. On the stability problem for a mixed type of quartic and quadratic functional equation. J Math Anal Appl, 2006, 324: 358–372
- [15] Lu G. Park C. Hyers-Ulam stability of additive set-valued functional equations. Appl Math Lett, 2011, 24: 1312–1316
- [16] Nikodem K. On quadratic set-valued functions. Publ Math Debrecen, 1984, 30: 297–301
- [17] Nikodem K. K-Convex and K-Concave Set-Valued Functions. Zeszyty Naukowe, Politech, Krakow, Poland, 1989
- [18] Nikodem K, Popa D. On single-valuedness of set-valued maps satisfying linear inclusions. Banach J Math Anal, 2009, 3: 44–51
- \mathcal{Q} Springer
- [19] Nikodem K, Popa D. On selections of general linear inclusions. Publ Math Debrecen, 2009, 75: 239–249
- [20] Park C, O'Regan D, Saadati R. Stabiltiy of some set-valued functional equations. Appl Math Lett, 2011, 24: 1910–1914
- [21] Piszczek M. On selections of set-valued inclusions in a single variable with applications to several variables. Results Math, 2013, 64: 1–12
- [22] Piszczek M. The properties of functional inclusions and Hyers-Ulam stability. Aequations Math, 2013, 85: 111–118
- [23] Popa D. Additive selections of (α, β) -subadditive set valued maps. Glas Mat Ser III, 2001, **36**: 11–16
- [24] Popa D. A stability result for general linear inclusion. Nonlinear Funct Anal Appl, 2004, 3: 405–414
- [25] Rådström H. An embedding theorem for space of convex sets. Proc Amer Math Soc, 1952, 3: 165-169
- [26] Smajdor A. Additive selections of superadditive set-valued functions. Aequationes Math, 1990, 39: 121–128
- [27] Smajdor A, Szczawińska J. Selections of set-valued functions satisfying the general linear inclusion. J Fixed Point Theory Appl, 2016, 18: 133–145
- [28] Ulam S M. A Collection of Mathematical Problems. New York: Interscience Publishers, 1960; Reprinted as: Problems in Modern Mathematics. New York: John Wiley & Sons Inc, 1964