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Abstract We discuss the set-valued dynamics related to the theory of functional equations.

We look for selections of convex set-valued functions satisfying set-valued Euler-Lagrange

inclusions. We improve and extend upon some of the results in [13, 20], but under weaker

assumptions. Some applications of our results are also provided.
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1 Introduction

Functional inclusions play a significant role in various branches of mathematics and they

are a tool for defining many notions of set-valued analysis, e.g., linear, affine, convex, concave,

subadditive, superadditive, subquadratic and superquadratic set-valued functions. Finding a

selection of such set-valued functions, with some special properties, is one of the main problems

of set-valued analysis (see [1, 3, 4, 8, 10, 16, 18, 19, 23, 24, 26, 27]).

Park et al. [15, 20] investigated the stability of some set-valued functional equations. Brzdȩk

and Piszczek [4–6, 21, 22] obtained many results on selections of some set-valued functional

equations satisfying some inclusions and on the approximation of those inclusions. Let us recall

that the notion of stability for functional equations was motivated by a problem of Ulam [28]

and a paper of Hyers [12] in which was published a solution to it (for further information, see

the recent monograph [7]).

In the rest of this paper, N0 := N ∪ {0}, K stands for a commutative group, Y is a real

Banach space and ℓ, α1, · · · , αn are fixed positive integers, unless explicitly stated otherwise.

The main goal of this paper is to obtain some results on selections of a convex set-valued

∗Received March 19, 2019; revised August 30, 2019.
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function F : K → 2Y satisfying one of the following Euler-Lagrange functional inclusions:

n−1⊎

α2x2,··· ,αnxn

F (α1x1) + 2n−1αℓ−2
1

n∑

i=2

α2
i F (x1)

⊆ 2n−2αℓ−2
1

n∑

i=2

α2
i

⊎

xi

F (x1) + 2n−1αℓ
1F (x1) (1.1)

and
n−1⊎

α2x2,··· ,αnxn

F (α1x1) + 2n−1
n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

F (xi)

⊆ 2n−2
∑

1≤i<j≤n

α2
i α

2
j

⊎

xj

F (xi) + 2n−1
n∑

i=1

α4
i F (xi) (1.2)

for all x1, · · · , xn ∈ K. Here, the operator
⊎

x2
F (x1) is defined by the formula

⊎

x2
F (x1) =

F (x1+x2)+F (x1−x2). The composite operator
⊎n

x2,··· ,xn+1
F (x1) is defined by

⊎n

x2,··· ,xn+1
F (x1)

=
⊎

xn+1

(
⊎n−1

x2,··· ,xn
F (x1)

)

for all n ∈ N \ {1}. Note that

n−1⊎

x2,x3,0,··· ,0

F (x1) = 2n−3
2⊎

x2,x3

F (x1) = 2n−3
2⊎

x3,x2

F (x1)

and
n⊎

x2,··· ,xn+1

F (x1) =
n−1⊎

x2,··· ,xn

F (x1 + xn+1) +
n−1⊎

x2,··· ,xn

F (x1 − xn+1).

In particular, the inclusion (1.1) includes the n-dimensional Euler-Lagrange cubic inclusion for

ℓ = 3 (see [13]), the cubic inclusion for n = 2, ℓ = 3, α1 = 2 and α2 = 1 (see [20]), the

quadratic inclusion for n = 2, ℓ = 2, α1 = 2 and α2 = 1 (the equation related to this inclusion

has been studied in [9]) and the Cauchy inclusion for n = 2, ℓ = 1, α1 = 2 and α2 = 1 (the

equation related to this inclusion has been studied in [2]). Also, the inclusion (1.2) includes the

n-dimensional quartic inclusion for α1 = · · · = αn = 1 (the equation related to this inclusion

has been studied in [14]) and the quartic inclusion for n = 2, α1 = 2 and α2 = 1 (see [20]).

By some results in [17, 21, 25], we extend the conclusions of [13, 20], but under weaker

assumptions. Furthermore, a few applications of our results to the stability of some functional

equations are given. Our results can be regarded as an important extension of stability results

corresponding to single-valued functional equations.

2 Euler-Lagrange Functional Inclusions in Several Variables

We start this section by recalling some basic concepts. In a real normed space Y , we denote

by n(Y ) the family of all nonempty subsets of Y and we define the following families of sets:

ccl(Y ) := {A ∈ n(Y ) : A is a closed and convex set} ,

cclz(Y ) := {A ∈ n(Y ) : A is a closed and convex set containing zero} ,

ccz(Y ) := {A ∈ n(Y ) : A is a compact and convex set containing zero} .

For A, B ∈ n(Y ) and λ ∈ R, the Minkowski addition is defined as A+ B =
{
x + y : x ∈ A,

y ∈ B
}

and the scalar multiplication as λA = {λx : x ∈ A} . We say that a set C is the
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Hukuhara difference of A and B, i.e., C = A−B, whenever A = B +C. If this difference exists,

then it is unique (by Lemma 2.1 below). The number δ(A) := sup {‖a − b‖ : a, b ∈ A} is said

to be the diameter of A ∈ n(Y ). Let D be a nonempty set. Any function f : D → Y such that

f(x) ∈ F (x) for all x ∈ K is said to be a selection of the set-valued function F : D → n(Y ).

Lemma 2.1 (see [17, 25]) Let Y be a real normed space, β, γ ∈ R and A, B, C ∈ n(Y ).

Then,

(i) β(A + B) = βA + βB and (β + γ)A ⊆ βA + γA. If, additionally, A is convex and

β ≥ γ ≥ 0, then we have (β + γ)A = βA + γA;

(ii) If B ∈ ccl(Y ), C is bounded and A + C ⊆ B + C, then A ⊆ B. If, additionally,

A ∈ ccl(Y ) and A + C = B + C, then A = B.

Now we deal with some results corresponding to inclusions in a single variable and appli-

cations to the inclusions in several variables.

Theorem 2.2 (see [21]) Let µ ∈ (0, +∞), S be a nonempty set, (X, d) be a metric space,

τ : S → S be a function defined by τ0(x) = x for x ∈ S and τn+1 = τn ◦ τ for n ∈ N0, F : S →

n(X), Γ : X → X , d(Γ(x), Γ(y)) ≤ µd(x, y) for all x, y ∈ X , and lim
n→∞

µnδ(F (τn(x))) = 0 for

all x ∈ S. Then,

(i) If X is complete and Γ(F (τ(x))) ⊆ F (x) for all x ∈ S, then the limit lim
n→∞

clΓn ◦ F ◦

τn(x ) =: f (x ) exists for each x ∈ S, and f is a unique selection of the multifunction clF such

that Γ ◦ f ◦ τ = f , where clF is defined by (clF )(x ) = clF (x ), x ∈ S;

(ii) If F (x) ⊆ Γ(F (τ(x))) for all x ∈ S, then F is single-valued and Γ ◦ F ◦ τ = F .

We are now going to deal with the inclusion (1.1).

Theorem 2.3 Suppose F : K → cclz(Y ) is a set-valued function such that sup
x∈K

δ (F (x)) <

+∞ and there exists a  ∈ {2, · · · , n} such that α1 6= α = 1. Then,

(i) If F satisfies the inclusion (1.1), there exists a unique selection f : K → Y of F such

that, for all x1, x ∈ K,

(1) f(x1 + x) = f(x1) + f(x) when ℓ = 1,

(2)
⊎

x
f(x1) = 2f(x1) + 2f(x) when ℓ = 2,

(3)
⊎

x
f(2x1) = 2

⊎

x
f(x1) + 12f(x1) when ℓ = 3;

(ii) If

2n−2αℓ−2
1

n∑

i=2

α2
i

⊎

xi

F (x1) + 2n−1αℓ
1F (x1)

⊆

n−1⊎

α2x2,··· ,αnxn

F (α1x1) + 2n−1αℓ−2
1

n∑

i=2

α2
i F (x1) (2.1)

for all x1, · · · , xn ∈ K, F is single-valued.

Proof (i) Setting x1 = x and xi = 0 for (i = 2, 3, · · · , n) in (1.1), we have
(

F (α1x) + · · · + F (α1x)
︸ ︷︷ ︸

2n−1 times

)

+ 2n−1αℓ−2
1

n∑

i=2

α2
i F (x)

⊆ 2n−2αℓ−2
1

n∑

i=2

α2
i (F (x) + F (x)) + 2n−1αℓ

1F (x)



1108 ACTA MATHEMATICA SCIENTIA Vol.40 Ser.B

for all x ∈ K. Since the set F (x) is convex, we can conclude from Lemma 2.1 (i) that

2n−1F (α1x) + 2n−1αℓ−2
1

n∑

i=2

α2
i F (x) ⊆ 2n−1αℓ−2

1

n∑

i=2

α2
i F (x) + 2n−1αℓ

1F (x)

for all x ∈ K. Using Lemma 2.1 (ii), one obtains

α−ℓ
1 F (α1x) ⊆ F (x)

for all x ∈ K. Next, by Theorem 2.2, with

Γ(x) = α−ℓ
1 x, τ(x) = α1x, x ∈ K,

for every x ∈ K there exists the limit

lim
m→+∞

Γm (F (τm(x))) = lim
m→+∞

α−ℓm
1 F (αm

1 x) = f(x),

and moreover

f(x) ∈ F (x), x ∈ K.

Thus, in view of (1.1), for every x1, · · · , xn ∈ K, m ∈ N one has

α−ℓm
1

n−1⊎

α2αm
1

x2,··· ,αnαm
1

xn

F (αm+1
1 x1) + 2n−1α

ℓ(1−m)−2
1

n∑

i=2

α2
i F (αm

1 x1)

⊆ 2n−2α
ℓ(1−m)−2
1

n∑

i=2

α2
i

⊎

αm
1

xi

F (αm
1 x1) + 2n−1α

ℓ(1−m)
1 F (αm

1 x1),

and letting m → ∞, we observe that

n−1⊎

α2x2,··· ,αnxn

f(α1x1) + 2n−1αℓ−2
1

n∑

i=2

α2
i f(x1)

=2n−2αℓ−2
1

n∑

i=2

α2
i

⊎

xi

f(x1) + 2n−1αℓ
1f(x1) (2.2)

for all x1, · · · , xn ∈ K. Putting xi = 0 for (i = 1, 2, · · · , n) in (2.2), we get f(0) = 0, since

α1 6= 1. Setting xi = 0 for (i = 2, · · · , n and i 6= ) in (2.2) and using f(0) = 0, we have

2n−2
⊎

αx

f(α1x1) = 2n−2αℓ−2
1 α2



⊎

x

f(x1) + 2n−1αℓ−2
1 (α2

1 − α2
 )f(x1)

for all x1, x ∈ K. Since α = 1, we can conclude that
⊎

x

f(α1x1) = αℓ−2
1

⊎

x

f(x1) + 2αℓ−2
1 (α2

1 − 1)f(x1)

for all x1, x ∈ K. Then it follows from Theorem 2.1 of [11] that, for all x1, x ∈ K, if ℓ = 1,

then f(x1 +x) = f(x1)+f(x), if ℓ = 2, then
⊎

x
f(x1) = 2f(x1)+2f(x) (i.e., f is quadratic)

and if ℓ = 3, then
⊎

x
f(2x1) = 2

⊎

x
f(x1) + 12f(x) (i.e., f is cubic).

Next, let us prove the uniqueness of f . Suppose that f and ρ are selections of F . We have

(α1m)ℓf(x) = f(α1mx) ∈ F (α1mx) and (α1m)ℓρ(x) = ρ(α1mx) ∈ F (α1mx) for all x ∈ K and

m ∈ N. Thus

(α1m)ℓ ‖f(x) − ρ(x)‖ =
∥
∥(α1m)ℓf(x) − (α1m)ℓρ(x)

∥
∥

= ‖f(α1mx) − ρ(α1mx)‖ ≤ 2δ (F (α1mx))
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for all x ∈ K and m ∈ N. It follows from sup
x∈K

δ (F (x)) < +∞ that f(x) = ρ(x) for all x ∈ K.

(ii) Letting x1 = x and xi = 0 for (i = 2, 3, · · · , n) in (2.1) and using the convexity of F (x)

and Lemma 2.1, we obtain

F (x) ⊆ α−ℓ
1 F (α1x)

for all x ∈ K. Therefore, using Theorem 2.2 with Γ and τ defined as in the previous case, we

deduce that if ℓ = 1, then F is single-valued and additive, if ℓ = 2, then F is single-valued and

quadratic and if ℓ = 3, then F is single-valued and cubic. �

We are now going to deal with the inclusion (1.2).

Theorem 2.4 Suppose that F : K → cclz(Y ) is a set-valued function such that

sup
x∈K

δ (F (x)) < +∞,
n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
> 1 and there exists a  ∈ {2, · · · , n} such that

α1 6= α = 1. Then,

(i) If F satisfies the inclusion (1.2), there exists a unique selection f : K → Y of F such

that
⊎

x
f(2x1) + 6f(x) = 4

⊎

x
f(x1) + 24f(x1) for all x1, x ∈ K;

(ii) If

2n−2
∑

1≤i<j≤n

α2
i α

2
j

⊎

xj

F (xi) + 2n−1
n∑

i=1

α4
i F (xi)

⊆

n−1⊎

α2x2,··· ,αnxn

F (α1x1) + 2n−1
n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

F (xi) (2.3)

for all x1, · · · , xn ∈ K, then F is single-valued.

Proof (i) Letting xi = 0 for i = 1, 2, · · · , n in (1.2), we get

(

F (0) + · · · + F (0)
︸ ︷︷ ︸

2n−1 times

)

+ 2n−1
n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

F (0)

⊆ 2n−2
∑

1≤i<j≤n

α2
i α

2
j (F (0) + F (0)) + 2n−1

n∑

i=1

α4
i F (0).

Now it follows from the convexity of F (0) and Lemma 2.1 that

F (0) +
∑

1≤i<j≤n

α2
jα

2
i F (0) ⊆

n∑

i=1

α4
i F (0).

Using
n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
> 1 and Lemma 2.1 (ii), one obtains

{0} ⊆ F (0). (2.4)

Letting x1 = x and xi = 0 for (i = 2, 3, · · · , n) in (1.2), we have

(

F (α1x) + · · · + F (α1x)
︸ ︷︷ ︸

2n−1 times

)

+ 2n−1α2
1

n∑

j=2

α2
jF (x) + 2n−1

n∑

i=2

α2
i

( n∑

j=1,j 6=i

α2
j

)

F (0)

⊆ 2n−2α2
1

n∑

j=2

α2
j (F (x) + F (x)) + 2n−2

∑

2≤i<j≤n

α2
i α

2
j (F (0) + F (0))
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+ 2n−1α4
1F (x) + 2n−1

n∑

i=2

α4
i F (0)

for all x ∈ K. Hence, from the convexity of F (x) and Lemma 2.1, we see that

F (α1x) +
∑

1≤i<j≤n

α2
jα

2
i F (0) ⊆ α4

1F (x) +

n∑

i=2

α4
i F (0) (2.5)

for all x ∈ K. It follows from (2.4), (2.5) and Lemma 2.1 (i) that

F (α1x) ⊆ F (α1x) +
( ∑

1≤i<j≤n

α2
jα

2
i −

n∑

i=2

α4
i

)

F (0)

⊆ F (α1x) +
∑

1≤i<j≤n

α2
jα

2
i F (0) −

n∑

i=2

α4
i F (0)

⊆ α4
1F (x)

for all x ∈ K. Next, by Theorem 2.2, with

Γ(x) = α−4
1 x, τ(x) = α1x, x ∈ K,

for every x ∈ K there exists the limit

lim
m→+∞

Γm (F (τm(x))) = lim
m→+∞

α−4m
1 F (αm

1 x) = f(x),

and moreover,

f(x) ∈ F (x), x ∈ K.

From (1.2) we see that, for every x1, · · · , xn ∈ K, m ∈ N,

α−4m
1

n−1⊎

α2αm
1

x2,··· ,αnαm
1

xn

F (αm+1
1 x1) + 2n−1α−4m

1

n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

F (αm
1 xi)

⊆ 2n−2α−4m
1

∑

1≤i<j≤n

α2
i α

2
j

⊎

αm
1

xj

F (αm
1 xi) + 2n−1α−4m

1

n∑

i=1

α4
i F (αm

1 xi),

and letting m → ∞, we observe that

n−1⊎

α2x2,··· ,αnxn

f(α1x1) + 2n−1
n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

f(xi)

= 2n−2
∑

1≤i<j≤n

α2
i α

2
j

⊎

xj

f(xi) + 2n−1
n∑

i=1

α4
i f(xi) (2.6)

for all x1, · · · , xn ∈ K. Putting xi = 0 for (i = 1, 2, · · · , n) in (2.6), we obtain

2n−1

( n∑

i=1

α2
i

(

α2
i −

n∑

j=i+1

α2
j

)

− 1

)

f(0) = 0,

so, f(0) = 0. Setting xi = 0 for (i = 2, · · · , n and i 6= ) in (2.2) and using f(0) = 0, we have

2n−2
⊎

αx

f(α1x1) = 2n−2α2
1α

2


⊎

x

f(x1) + 2n−1α2
1(α

2
1 − α2

 )f(x1) + 2n−1α2
 (α

2
 − α2

1)f(x)

for all x1, x ∈ K. Since α = 1, we can conclude that
⊎

x

f(α1x1) = α2
1

⊎

x

f(x1) + 2α2
1(α

2
1 − 1)f(x1) + 2(1 − α2

1)f(x)
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for all x1, x ∈ K. Then it follows from Theorem 2.1 of [11] that, for all x1, x ∈ K,
⊎

x
f(2x1)+

6f(x) = 4
⊎

x
f(x1) + 24f(x1) (i.e., f is quartic).

Also the uniqueness of f can be easily deduced from Theorem 2.3.

(ii) Letting x1 = x and xi = 0 for (i = 2, 3, · · · , n) in (2.3) and using the convexity of F (x)

and Lemma 2.1, we obtain

α4
1F (x) +

n∑

i=2

α4
i F (0) ⊆ F (α1x) +

∑

1≤i<j≤n

α2
jα

2
i F (0) (2.7)

for all x ∈ K, which, by replacing x by 0, yields
n∑

i=1

α4
i F (0) ⊆ F (0) +

∑

1≤i<j≤n

α2
i α

2
jF (0),

and thus we get the inclusion

F (0) ⊆ {0}. (2.8)

It follows from (2.7) and (2.8) that

α4
1F (x) ⊆ F (α1x) +

(
∑

1≤i<j≤n

α2
i α

2
j −

n∑

i=2

α4
i

)

F (0) ⊆ F (α1x)

for all x ∈ K. Hence

F (x) ⊆ α−4
1 F (α1x)

for all x ∈ K. Thus, using Theorem 2.2 with Γ and τ defined as in the previous case, we deduce

that F must be single-valued and quartic. �

Theorem 2.4 with n = 2 implies the following:

Corollary 2.5 Suppose F : K → cclz(Y ) is a set-valued function such that sup
x∈K

δ (F (x)) <

+∞. Then,

(i) If F satisfies the inclusion (1.2) with n = 2 and α1 6= α2 = 1, there exists a unique

selection f : K → Y of F such that f is quartic;

(ii) If

α2
1

⊎

x2

F (x1) + 2
(
α4

1F (x1) + F (x2)
)
⊆
⊎

x2

F (α1x1) + 2α2
1 (F (x1) + F (x2))

for all x1, x2 ∈ K, F is single-valued.

From Theorems 2.3 and 2.4, we can deduce the same conclusions as in [13, 20], but under

weaker assumptions. Corollary 2.5 with α1 = 2 implies.

Corollary 2.6 (see [20, Theorem 5.1]) Let F : K → cclz(Y ) be a set-valued function

such that sup
x∈K

δ (F (x)) < +∞. If F satisfies the inclusion (1.2) with n = 2, α1 = 2 and α2 = 1,

then there exists a unique selection f : K → Y of F such that f is quartic.

As a consequence of Theorem 2.4, we obtain the following result:

Corollary 2.7 (see [13, Theorem 2.5]) Let F : K → cclz(Y ) be a set-valued function

such that sup
x∈K

δ (F (x)) < +∞. If F satisfies the inclusion (1.2) with α1 6= αn = 1 and

n−1∑

i=1

α2
i (α

2
i −

n−1∑

j=i+1

α2
j ) >

n−1∑

i=1

α2
i , then there exists a unique selection f : K → Y of F such that

f is quartic.
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From Theorem 2.3, we easily obtain the following results:

Corollary 2.8 (see [13, Theorem 2.3]) Let F : K → cclz(Y ) be a set-valued function

such that sup
x∈K

δ (F (x)) < +∞. If F satisfies the inclusion (1.1) with ℓ = 3 and α1 6= αn = 1,

then there exists a unique selection f : K → Y of F such that f is cubic.

Corollary 2.9 (see [20, Theorem 4.1]) Let F : K → cclz(Y ) be a set-valued function

such that sup
x∈K

δ (F (x)) < +∞. If F satisfies the inclusion (1.1) with n = 2, α1 = 2 and α2 = 1,

then there exists a unique selection f : K → Y of F such that f is cubic.

3 Applications

Some significant applications follow on from these results. We assume throughout this

section that W ∈ ccz(Y ) and that there exists a  ∈ {2, · · · , n} such that α1 6= α = 1.

Theorem 3.1 If f : K → Y satisfies

n−1⊎

α2x2,··· ,αnxn

f(α1x1) − 2n−2αℓ−2
1

n∑

i=2

α2
i

⊎

xi

f(x1) + 2n−1αℓ
1

(

α−2
1

n∑

i=2

α2
i − 1

)

f(x1) ∈ W (3.1)

for all x1, · · · , xn ∈ K, then there exists a unique function ω : K → Y such that ω satisfies

(2.2) and for all x ∈ K,

ω(x) − f(x) ∈
1

2n−1
(
αℓ

1 − 1
)W.

Proof Let F (x) := f(x) +
(
2n−1αℓ

1 − 2n−1
)−1

W for x ∈ K. Then

n−1⊎

α2x2,··· ,αnxn

F (α1x1) + 2n−1αℓ−2
1

n∑

i=2

α2
i F (x1)

=

n−1⊎

α2x2,··· ,αnxn

f(α1x1) + 2n−1αℓ−2
1

n∑

i=2

α2
i f(x1) +

1 + αℓ−2
1

n∑

i=2

α2
i

αℓ
1 − 1

W

⊆ 2n−2αℓ−2
1

n∑

i=2

α2
i

⊎

xi

f(x1) + 2n−1αℓ
1f(x1) +

1 + αℓ−2
1

n∑

i=2

α2
i

αℓ
1 − 1

W + W

= αℓ−2
1 α2

2

(

2n−2
⊎

x2

f(x1) +
1

αℓ
1 − 1

W

)

+ αℓ−2
1 α2

3

(

2n−2
⊎

x3

f(x1) +
1

αℓ
1 − 1

W

)

+ · · ·+ αℓ−2
1 α2

n

(

2n−2
⊎

xn

f(x1) +
1

αℓ
1 − 1

W

)

+ αℓ
1

(

2n−1f(x1) +
1

αℓ
1 − 1

W

)

= 2n−2αℓ−2
1

n∑

i=2

α2
i

⊎

xi

F (x1) + 2n−1αℓ
1F (x1)

for all x1, · · · , xn ∈ K. Now, according to Theorem 2.3, there exists a unique function ω : K →

Y such that ω satisfies (2.2) and ω(x) ∈ F (x) for all x ∈ K. �

Corollary 3.2 Suppose that f : K → Y satisfies (3.1). Then there exists a unique

function ω : K → Y such that (i) ω is additive when ℓ = 1; (ii) ω is quadratic when ℓ = 2; (iii)

ω is cubic when ℓ = 3, and for all x ∈ K, ω(x) − f(x) ∈ 21−n
(
αℓ

1 − 1
)−1

W .
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Theorem 3.3 If
n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
> 1 and f : K → Y satisfies

n−1⊎

α2x2,··· ,αnxn

f(α1x1) − 2n−2
∑

1≤i<j≤n

α2
i α

2
j

⊎

xj

f(xi)

+ 2n−1
n∑

i=1

(

α2
i

n∑

j=1,j 6=i

α2
j − α4

i

)

f(xi) ∈ W (3.2)

for all x1, · · · , xn ∈ K, then there exists a unique function ω : K → Y such that ω satisfies

(2.6) and for all x ∈ K,

ω(x) − f(x) ∈
1

2n−1
( n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1
)W.

Proof Let F (x) := f(x) +
(

2n−1
n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 2n−1

)−1

W for x ∈ K. Then

n−1⊎

α2x2,··· ,αnxn

F (α1x1) + 2n−1
n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

F (xi)

=

n−1⊎

α2x2,··· ,αnxn

f(α1x1) + 2n−1
n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

f(xi) +

1 +
n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W

⊆ 2n−2
∑

1≤i<j≤n

α2
i α

2
j

⊎

xj

f(xi) + 2n−1
n∑

i=1

α4
i f(xi) +

1 +
n∑

i=1

α2
i

( n∑

j=1,j 6=i

α2
j

)

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W + W

= α2
1α

2
2







2n−2
⊎

x2

f(x1) +
1

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W







+ · · · + α2
1α

2
n







2n−2
⊎

xn

f(x1) +
1

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W







+α2
2α

2
3







2n−2
⊎

x3

f(x2) +
1

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W







+ · · · + α2
2α

2
n







2n−2
⊎

xn

f(x2) +
1

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W







+ · · · + α2
n−1α

2
n







2n−2
⊎

xn

f(xn−1) +
1

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W
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+α4
1







2n−1f(x1) +
1

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W







+ · · · + α4
n







2n−1f(xn) +
1

n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1

W







= 2n−2
∑

1≤i<j≤n

α2
i α

2
j

⊎

xj

F (xi) + 2n−1
n∑

i=1

α4
i F (xi)

for all x1, · · · , xn ∈ K. Now, according to Theorem 2.4, there exists a unique function ω : K →

Y such that ω satisfies (2.6) and ω(x) ∈ F (x) for all x ∈ K. �

Corollary 3.4 Suppose that
n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
> 1 and f : K → Y satisfies (3.2).

Then there exists a unique quartic function ω : K → Y such that, for all x ∈ K, ω(x)− f(x) ∈

21−n
( n∑

i=1

α2
i

(
α2

i −
n∑

j=i+1

α2
j

)
− 1
)−1

W .
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