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Abstract We study the following nonlinear fractional Schrödinger-Poisson system with

critical growth:






(−∆)s
u + u + φu = f(u) + |u|2

∗

s−2
u, x ∈ R

3,

(−∆)tφ = u2, x ∈ R
3,

(0.1)

where 0 < s, t < 1, 2s + 2t > 3 and 2∗
s = 6

3−2s
is the critical Sobolev exponent in R

3. Under

some more general assumptions on f , we prove that (0.1) admits a nontrivial ground state

solution by using a constrained minimization on a Nehari-Pohozaev manifold.

Key words fractional Schrödinger-Poisson system; Nehari-Pohozaev manifold; ground state

solutions; critical growth
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1 Introduction and Main Result

In this paper, we consider the following nonlinear fractional Schrödinger-Poisson system:






(−∆)su+ u+ φu = f(u) + |u|2
∗

s−2u, x ∈ R
3,

(−∆)tφ = u2, x ∈ R
3,

(1.1)

where 0 < s, t < 1, 2s+2t > 3, 2∗s = 6
3−2s is the critical Sobolev exponent in R

3 and f ∈ C(R,R)

is a subcritical perturbation. The fractional Laplacian (−∆)α, α = s, t ∈ (0, 1) is a nonlocal

operator defined in the Schwartz class S (R3) as

(−∆)αu(x) = C(α)P.V.

∫

R3

u(x) − u(y)

|x− y|3+2α dy,

where C(α) is a suitable normalized constant and P.V. means the Canchy principle value on

the integral.
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When φ(x) = 0, system (1.1) can be reduced to the usual fractional Schrödinger equation

(−∆)su+ u = f(u) + |u|2
∗

s−2u, x ∈ R
3. (1.2)

The fractional Schrödinger equation was introduced by Laskin [22, 23] in the context of frac-

tional quantum mechanics, as a result of expanding the Feynman path integral from the Brown-

ian like to the Lévy like quantum mechanical paths. In particular, the fractional Laplacian can

be understood as the infinitesimal generator of a stable Lévy diffusion process [2]. It also has

various applications in different subjects, such as the thin obstacle problem [26, 32], optimiza-

tion [17], finance [10], conservation laws [5], minimal surfaces [6, 8] and so on. The non-locality

of the fractional Laplacian makes it difficult to study. To overcome this difficulty, Caffarelli and

Silvestre [7] introduced the extension method that reduced this nonlocal problem into a local

one in higher dimensions. This extension method has been applied successfully and a series

of fruitful results have been obtained; we refer the readers to [9, 14–16, 18, 31, 39] and the

references therein.

When s = t = 1, (1.1) is related to the classical Schrödinger-Poisson system of the form






−∆u+ u+ φu = h(u), x ∈ R
3,

−∆φ = u2, x ∈ R
3.

(1.3)

System (1.3) has great importance for describing the interaction of a charged particle with an

electromagnetic field; we refer the readers to [4] for more details on the physical background. In

the last decades, system (1.3) has been studied extensively. In the case h(u) = |u|p−2u, D’Aprile

and Mugnai [12] used the Mountain Pass Theorem to show a radially symmetric solution of

(1.3) for 4 ≤ p < 6. In the same case, they established in [13] a Pohozaev identity to prove

that there do not exist nontrivial solutions of (1.3) for p ≤ 2 and p ≥ 6. For the case when

h(u) = |u|p−2u and 2 < p ≤ 4, the variant Ambrosetti-Rabinowitz type condition ((AR) in

short) is not satisfied; i.e., for some θ > 4,

H(u) =

∫ u

0

h(τ)dτ ≤
1

θ
h(u)u for all u ∈ R. (1.4)

By constructing a constrained minimization on a new manifold based on the Nehari manifold

and the Pohozaev identity, Ruiz in [28], proved that (1.3) admits a positive radial solution

if h(u) = |u|p−2u with 3 < p < 6. Moreover, by using an inequality derived from [24], he

showed that problem (1.3) does not admit any nontrivial solution if 2 < p ≤ 3. After that,

combining a monotone method and a version of the global compactness lemma, the authors of

[42] generalized the existence result of [28] to a more general case of replacing u by V (x)u. For

more existence results for (1.3) under a huge variety of hypotheses on the potential function

and the nonlinearity, we refer the readers to [1, 3, 19–21, 33, 40, 43] and the references therein.

As we have mentioned above, there are many papers dealing with problems (1.2) and (1.3)

which have only one nonlocal term. However, the case of the variational problem involving

double or more nonlocal terms is much more complicated. To the best of our knowledge,

systems like (1.1) have been less studied. Recently, Zhang et al. in [41] were concerned with

the fractional nonlinear Schrödinger-Poisson system






(−∆)su+ λφu = g(u), x ∈ R
3,

(−∆)tφ = u2, x ∈ R
3,

(1.5)
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where g satisfies the Berestycki-Lions type conditions in the subcritical and critical case. By

using a perturbation approach, they proved the existence of positive solutions and studied the

asymptotic of solutions for a vanishing parameter. In [35], Teng considered the system






(−∆)su+ V (x)u + φu = |u|p−1u, x ∈ R
3,

(−∆)sφ = u2, x ∈ R
3,

(1.6)

where s ∈ (3
4 , 1) and 2 < p < 2∗s − 1. Motivated by the work of Ruiz [28], he first established a

new Nehari-Pohozaev manifold which is C1, and proved that the corresponding limiting problem

of (1.6) has a nonnegative ground state solution. Next, under certain assumptions on V (x), the

existence of nonnegative ground state solutions for (1.6) was established through the use of a

monotone method and a global compactness lemma. Later on, by adapting the same arguments

used in [35], Teng in [36] obtained the existence of ground state solutions for system (1.1) by

adding a suitable potential function in front of the term u and replacing f(u) + |u|2
∗

s−2u by

µ|u|q−1u+ |u|2
∗

s−2u, where 3s+t
s+t < q < 2∗s−1. We refer also to [25, 27] for more results involving

the fractional Schrödinger-Poisson system.

Motivated by the works mentioned above, the main purpose of this paper is to establish

the existence of ground state solutions of Nehari-Pohozaev type for problem (1.1) with critical

growth and general subcritical perturbation. Compared with [36], we focus on the study of

(1.1) with a more general subcritical perturbation f . Moreover, we only assume that f is a

continuous function rather than of C1-class. In some sense, our results generalize and improve

the works of [36].

Throughout this paper, we assume that f satisfies the following conditions:

(f1) f ∈ C(R,R) and f(τ) ≡ 0 for all τ ∈ (−∞, 0);

(f2) lim
τ→0+

f(τ)
τ = 0 and lim

τ→+∞

f(τ)

τ2∗s−1 = 0;

(f3)
(s+t)f(τ)τ−3F (τ)

τ
4s+2t

s+t

is increasing on (0,+∞), where F (τ) =
∫ τ

0 f(θ)dθ;

(f4) there exist µ > 0 and 4s+2t
s+t < p < 2∗s such that f(τ) ≥ µτp−1 for all τ ≥ 0.

As we can see in Section 2, by the Lax-Milgram theorem, for any u ∈ Hs(R3) there exists a

unique φt
u ∈ Dt,2(R3) such that (−∆)tφt

u = u2. Substituting φt
u in (1.1) leads to the following

single fractional Schrödinger equation:

(−∆)su+ u+ φt
uu = f(u) + |u|2

∗

s−2u, x ∈ R
3. (1.7)

The variational functional associated with equation (1.7) is defined by

I(u) =
1

2

∫

R3

(

|(−∆)
s
2u|2 + u2

)

dx+
1

4

∫

R3

φt
uu

2dx−

∫

R3

F (u)dx−
1

2∗s

∫

R3

|u|2
∗

s dx (1.8)

for u ∈ Hs(R3). We can prove that I ∈ C1(Hs(R3),R) and the pair (u, φt
u) ∈ Hs(R3)×Dt,2(R3)

is a weak solution of (1.1) if u ∈ Hs(R3) is a critical point of I. In the sequel, we say that u is

a weak solution to (1.1) for the sake of simplicity.

To establish our main results, we need to introduce the following Nehari-Pohozaev manifold:

M :=
{

u ∈ Hs(R3)\{0}
∣

∣ G(u) = 0
}

,

where

G(u) : =
4s+ 2t− 3

2

∫

R3

|(−∆)
s
2u|2dx+

2s+ 2t− 3

2

∫

R3

u2dx+
4s+ 2t− 3

4

∫

R3

φt
uu

2dx
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−

∫

R3

(

(s+ t)f(u)u− 3F (u)
)

dx−
(s+ t)2∗s − 3

2∗s

∫

R3

|u|2
∗

s dx. (1.9)

For any u ∈ M, we say that

m := inf
u∈M

I(u). (1.10)

Now, our main result can be stated as follows:

Theorem 1.1 Assume that (f1)–(f4) hold and 2s+ 2t > 3. Then by system (1.1) there

exists a nontrivial solution ũ such that I(ũ) = m > 0 if one of the following conditions is

satisfied:

(C1) s > 3
4 ,

4s
3−2s < p < 2∗s and any µ > 0;

(C2) s > 3
4 ,

4s+2t
s+t < p ≤ 4s

3−2s and µ > 0 sufficiently large;

(C3)
1
2 < s ≤ 3

4 ,
4s+2t
s+t < p < 2∗s and any µ > 0.

To prove Theorem 1.1, the main difficulties are threefold. Firstly, in (1.1), the first frac-

tional Schrödinger equation has two nonlocal terms due to the presence of fractional Laplacian

operator (−∆)s and the term φu, leading to some additional difficulties and making the study

interesting. Secondly, if f is not of C1-class, then M is not a C1-manifold. We point out here

that the proofs in [28, 35, 36] are based on minimizing the associated functional restricted to a

suitable manifold which is C1. Hence, the arguments used in [28, 35, 36] cannot be applied in

this paper and some new tricks will be developed. Thirdly, the unboundedness of the domain

R
3 and the critical Sobolev exponent lead to a lack of compactness. Thus more careful analysis

is needed.

The outline of this paper is as follows: in Section 2, we provide some preliminary lemmas

which will be used later. In Section 3, we prove our main result Theorem 1.1.

2 Preliminaries

In this section, we provide some preliminary lemmas. First, we give the standard notations

for the fractional Sobolev spaces. For α ∈ (0, 1), the Hilbert space Hα(R3) is defined as

Hα(R3) :=
{

u ∈ L2(R3)
∣

∣ (−∆)
α
2 u ∈ L2(R3)

}

.

We endow the space Hα(R3) with the inner product, and norm with

(u, v) :=

∫

R3

(−∆)
α
2 u(−∆)

α
2 vdx+

∫

R3

uvdx

and

‖u‖Hα :=
(

∫

R3

(

|(−∆)
α
2 u|2 + u2

)

dx
)

1
2

,

respectively, where
∫

R3

|(−∆)
α
2 u|2dx =

C(α)

2

∫

R3

∫

R3

|u(x) − u(y)|2

|x− y|3+2α dxdy.

It is well known that Hα(R3) is continuously embedded into Lq(R3) for 2 ≤ q ≤ 2∗α and is

compactly embedded into Lq
loc(R

3) for 1 ≤ q < 2∗α. Lq(R3) is the usual Lebesgue space with

the standard norms

‖u‖Lq :=
(

∫

R3

|u|qdx
)

1
q

, 1 ≤ q <∞.
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From [11, 14] we know that Dα,2(R3) is continuously embedded into L2∗

α(R3) and there exists

a best constant Sα > 0 such that

Sα = inf
u∈Dα,2(R3)

∫

R3 |(−∆)
α
2 u|2dx

( ∫

R3 |u|2
∗

αdx
)

2
2∗α

, (2.1)

where Dα,2(R3) is defined by

Dα,2(R3) :=
{

u ∈ L2∗

α(R3)
∣

∣ (−∆)
α
2 u ∈ L2(R3)

}

endowed with the norm

‖u‖Dα,2 :=
(

∫

R3

|(−∆)
α
2 u|2dx

)
1
2

.

In what follows, we recall that by the Lax-Milgram theorem, for any u ∈ Hs(R3), there

exists a unique φt
u ∈ Dt,2(R3) such that

(−∆)tφt
u = u2, x ∈ R

3. (2.2)

Moreover, φt
u can be expressed as

φt
u(x) = Ct

∫

R3

u2(y)

|x− y|3−2t
dy, x ∈ R

3, (2.3)

which is called the t-Riesz potential (see [7]), where

Ct = π− 3
2 2−2t Γ(3

2 − t)

Γ(t)
.

Let us now define the operator Φ : Hs(R3) → Dt,2(R3) as

Φ(u) = φt
u.

The operator Φ has the following properties (see [36]):

Lemma 2.1 Assume that 4s+ 2t ≥ 3 for any u ∈ Hs(R3). We have that

(i) Φ is continuous and maps bounded sets into bounded sets;

(ii)
∫

R3 φ
t
uu

2dx ≤ S−2
t ‖u‖4

L
12

3+2t

;

(iii) if y ∈ R
3 and ũ(x) = u(x+ y), then (Φ(ũ))(x) = (Φ(u))(x+ y) and

∫

R3

φt
ũũ

2dx =

∫

R3

φt
uu

2dx;

(iv) if un ⇀ u in Hs(R3), then Φ(un) ⇀ Φ(u) in Dt,2(R3) and
∫

R3

φt
uu

2dx ≤ lim inf
n→∞

∫

R3

φt
un
u2

ndx;

(v) if un → u in Hs(R3), then Φ(un) → Φ(u) in Dt,2(R3) and
∫

R3

φt
un
u2

ndx→

∫

R3

φt
uu

2dx.

Define Ψ : Hs(R3) → R by

Ψ(u) =

∫

R3

φt
uu

2dx.

In a fashion similar to the well known Brezis-Lieb lemma, we can establish the Brezis-Lieb

splitting property for Ψ and Ψ′; see [36].
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Lemma 2.2 Assume that 2s + 2t > 3. Letting un ⇀ u in Hs(R3) and un → u a.e. in

R
3, it holds that

(i) Ψ(un − u) = Ψ(un) − Ψ(u) + on(1);

(ii) Ψ′(un − u) = Ψ′(un) − Ψ′(u) + on(1) in (Hs(R3))−1,

where on(1) → 0 as n→ ∞.

The vanishing lemma for the fractional Sobolev space is stated as follows:

Lemma 2.3 ([29, Lemma 2.4]) Assume that {un} is bounded in Hα(RN ) and that it

satisfies

lim
n→∞

sup
y∈RN

∫

BR(y)

u2
ndx = 0

for some R > 0. Then un → 0 in Lq(RN ) for every 2 < q < 2∗α = 2N
N−2α .

3 Proof of Theorem 1.1

In this section, we will use a constrained minimization on M to get a nontrivial ground

state solution of Nehari-Pohozaev type for system (1.1). Throughout this section, the norm on

the Hs(R3) is taken as

‖u‖ :=
(

∫

R3

(

|(−∆)
s
2u|2 + u2

)

dx
)

1
2

.

Lemma 3.1 Under the assumption (f3), we have that

(s+ t)(1 − θ4s+2t−3)

4s+ 2t− 3
f(τ)τ −

4s+ 2t− 3θ4s+2t−3

4s+ 2t− 3
F (τ) + θ−3F (θs+tτ) ≥ 0, ∀θ ≥ 0, τ ∈ R.

Proof Without loss of generality, we may assume that τ 6= 0, and set

h(θ) :=
(s+ t)(1 − θ4s+2t−3)

4s+ 2t− 3
f(τ)τ −

4s+ 2t− 3θ4s+2t−3

4s+ 2t− 3
F (τ) + θ−3F (θs+tτ).

By a direct computation, we have

h′(θ) = −(s+ t)θ4s+2t−4f(τ)τ + 3θ4s+2t−4F (τ) − 3θ−4F (θs+tτ) + (s+ t)θs+t−4f(θs+tτ)τ

= θ4s+2t−4τ
4s+2t

s+t

{(s+ t)f(θs+tτ)θs+tτ − 3F (θs+tτ)

(θs+tτ)
4s+2t

s+t

−
(s+ t)f(τ)τ − 3F (τ)

τ
4s+2t

s+t

}

.

It follows from (f3) that h(θ) ≥ h(1) = 0, ∀θ ≥ 0. �

Lemma 3.2 Assume that (f1) − (f3) hold and that 4s+ 2t > 3. Then

I(u) ≥ I(uθ) +
1 − θ4s+2t−3

4s+ 2t− 3
G(u) + Ĉ(θ)

∫

R3

u2dx, ∀u ∈ Hs(R3), θ ≥ 0,

where uθ(x) := θs+tu(θx) and Ĉ(θ) ≥ 0.

Proof If ∀u ∈ Hs(R3), θ ≥ 0, and we set uθ(x) := θs+tu(θx), it follows that

I(uθ) =
θ4s+2t−3

2

∫

R3

|(−∆)
s
2u|2dx+

θ2s+2t−3

2

∫

R3

u2dx+
θ4s+2t−3

4

∫

R3

φt
uu

2dx

− θ−3

∫

R3

F (θs+tu)dx−
θ(s+t)2∗

s−3

2∗s

∫

R3

|u|2
∗

sdx. (3.1)

In view of Lemma 3.1, we have

I(u) − I(uθ)
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=
1 − θ4s+2t−3

2

∫

R3

|(−∆)
s
2u|2dx+

1 − θ2s+2t−3

2

∫

R3

u2dx+
1 − θ4s+2t−3

4

∫

R3

φt
uu

2dx

−

∫

R3

(

F (u) − θ−3F (θs+tu)
)

dx−
1 − θ(s+t)2∗

s−3

2∗s

∫

R3

|u|2
∗

sdx

=
1 − θ4s+2t−3

4s+ 2t− 3

{

4s+ 2t− 3

2

∫

R3

|(−∆)
s
2 u|2dx+

2s+ 2t− 3

2

∫

R3

u2dx

+
4s+ 2t− 3

4

∫

R3

φt
uu

2dx−

∫

R3

(

(s+ t)f(u)u− 3F (u)
)

dx

−
(s+ t)2∗s − 3

2∗s

∫

R3

|u|2
∗

sdx

}

+ Ĉ(θ)

∫

R3

u2dx

+

∫

R3

[ (s+ t)(1 − θ4s+2t−3)

4s+ 2t− 3
f(u)u−

4s+ 2t− 3θ4s+2t−3

4s+ 2t− 3
F (u) + θ−3F (θs+tu)

]

dx

+

∫

R3

[1 − θ4s+2t−3

2
−

1 − θ(s+t)2∗

s−3

2∗s

]

|u|2
∗

s dx

≥
1 − θ4s+2t−3

4s+ 2t− 3
G(u) + Ĉ(θ)

∫

R3

u2dx,

where

Ĉ(θ) :=
2s− (4s+ 2t− 3)θ2s+2t−3 + (2s+ 2t− 3)θ4s+2t−3

2(4s+ 2t− 3)
≥ Ĉ(1) = 0, ∀θ ≥ 0, (3.2)

so this lemma is proved. �

Lemma 3.3 Assume that (f1)–(f3) hold and that (s + t)2∗s > 4s + 2t. Then for any

u ∈ Hs(R3)\{0}, there is a unique constant θ0 > 0 such that uθ0 ∈ M. Moreover, I(uθ0) =

max
θ≥0

I(uθ).

Proof For any u ∈ Hs(R3)\{0} and θ ≥ 0, we consider y(θ) := I(uθ). It is easy to check

that y(θ) > 0 for θ > 0 small and y(θ) → −∞ as θ → +∞, which gives that y(θ) has a critical

point θ0 > 0 corresponding to its maximum, i.e., y(θ0) = max
θ≥0

y(θ) and y′(θ0) = 0. Thus

4s+ 2t− 3

2
θ4s+2t−4
0

∫

R3

|(−∆)
s
2u|2dx+

2s+ 2t− 3

2
θ2s+2t−4
0

∫

R3

u2dx

+
4s+ 2t− 3

4
θ4s+2t−4
0

∫

R3

φt
uu

2dx− θ−4
0

∫

R3

(

(s+ t)f(θs+t
0 u)θs+t

0 u− 3F (θs+t
0 u)

)

dx

−
(s+ t)2∗s − 3

2∗s
θ
(s+t)2∗

s−4
0

∫

R3

|u|2
∗

s dx = 0,

and hence G(uθ0) = 0, uθ0 ∈ M and I(uθ0) = max
θ≥0

I(uθ).

Moreover, we claim that the critical point of y(θ) is unique. Indeed, we just suppose that

there are two points θ1, θ2 > 0 such that G(uθi
) = 0 for i = 1, 2. In a manner similar to the

proof of Lemma 3.2, we can deduce that

I(uθ1) ≥ I(uθ2) +
1 − ( θ2

θ1
)4s+2t−3

4s+ 2t− 3
G(uθ1) + Ĉ

(θ2

θ1

)

θ2s+2t−3
1

∫

R3

u2dx

= I(uθ2) + Ĉ
(θ2

θ1

)

θ2s+2t−3
1

∫

R3

u2dx

and

I(uθ2) ≥ I(uθ1) +
1 − ( θ1

θ2
)4s+2t−3

4s+ 2t− 3
G(uθ2) + Ĉ

(θ1

θ2

)

θ2s+2t−3
2

∫

R3

u2dx
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= I(uθ1) + Ĉ
(θ1

θ2

)

θ2s+2t−3
2

∫

R3

u2dx,

where Ĉ(θ) is defined in (3.2). This implies that θ1 = θ2, so θ0 > 0 is the unique critical point

of y(θ). �

Lemma 3.4 Assume that (f1)–(f3) hold and that (s+ t)2∗s > 4s+ 2t > 3. It holds that

m = inf
u∈Hs(R3)\{0}

max
θ≥0

I(uθ) > 0.

Proof It follows from Lemma 3.3 that

m = inf
u∈Hs(R3)\{0}

max
θ≥0

I(uθ).

Next, we claim that m > 0. Indeed, it follows from (f1)− (f2) that there exists a constant

C̄ > 0 such that

|F (u)| ≤
1

2
u2 + C̄|u|2

∗

s , ∀u ∈ Hs(R3). (3.3)

Thus for any u ∈ M, by (3.3), Lemma 3.2 and Sobolev inequality, we have

I(u) ≥ I(uθ)

≥
θ4s+2t−3

2

∫

R3

|(−∆)
s
2u|2dx+

θ2s+2t−3

2

∫

R3

u2dx− θ−3

∫

R3

F (θs+tu)dx

−
θ(s+t)2∗

s−3

2∗s

∫

R3

|u|2
∗

sdx

≥
θ4s+2t−3

2

∫

R3

|(−∆)
s
2u|2dx−

(

C̄ +
1

2∗s

)

θ(s+t)2∗

s−3

∫

R3

|u|2
∗

sdx

≥
θ4s+2t−3

2

∫

R3

|(−∆)
s
2u|2dx−

(

C̄ +
1

2∗s

)

S
−

2∗s
2

s θ(s+t)2∗

s−3
(

∫

R3

|(−∆)
s
2u|2dx

)

2∗s
2

=
2s

3 − 2s
C̃

3−2s

2s

( 1

2∗s

)
3
2s

> 0,

if we take

θ =
[ (
∫

R3 |(−∆)
s
2u|2dx)1−

2∗s
2

2∗sC̃

]
1

(s+t)2∗s−(4s+2t)

and C̃ =
(

C̄ +
1

2∗s

)

S
−

2∗s
2

s .

As a result, we complete the proof. �

Now, we establish a splitting lemma as follows:

Lemma 3.5 Assume that (f1)–(f2) hold and that 2s+ 2t > 3. If un ⇀ u in Hs(R3) and

un → u a.e. in R
3, then

I(un) = I(u) + I(un − u) + on(1), (3.4)
〈

I ′(un), un

〉

=
〈

I ′(u), u
〉

+
〈

I ′(un − u), un − u
〉

+ on(1) (3.5)

and

G(un) = G(u) +G(un − u) + on(1). (3.6)

Proof Setting vn = un −u, we have vn ⇀ 0 in Hs(R3). It follows from (f1)–(f2) and the

Brezis-Lieb lemma that

‖un‖
2 = ‖u‖2 + ‖vn‖

2 + on(1), (3.7)
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∫

R3

F (un)dx =

∫

R3

F (u)dx+

∫

R3

F (vn)dx + on(1) (3.8)

and

‖un‖
2∗

s

L2∗s
= ‖u‖

2∗

s

L2∗s
+ ‖vn‖

2∗

s

L2∗s
+ on(1). (3.9)

Combining Lemma 2.2 (i) and (3.7)–(3.9), we know that (3.4) holds.

Using a similar argument as to that of Lemma 2.7 in [34], we can show that there exists a

subsequence of {un}, still denoted by {un}, such that

sup
ϕ∈Hs(R3),‖ϕ‖≤1

∣

∣

∣

∫

R3

(

f(un) − f(u) − f(vn)
)

ϕdx
∣

∣

∣ = on(1). (3.10)

Thus, one has
∣

∣

∣

∫

R3

(

f(un) − f(u) − f(vn)
)

undx
∣

∣

∣

≤ ‖un‖ sup
ϕ∈Hs(R3),‖ϕ‖≤1

∣

∣

∣

∫

R3

(

f(un) − f(u) − f(vn)
)

ϕdx
∣

∣

∣
= on(1).

From this, we have
∫

R3

f(un)undx =

∫

R3

f(u)udx+

∫

R3

f(vn)vndx+

∫

R3

f(vn)udx

+

∫

R3

f(u)vndx+

∫

R3

(

f(un) − f(u) − f(vn)
)

undx

=

∫

R3

f(u)udx+

∫

R3

f(vn)vndx+ on(1). (3.11)

The equality (3.5) follows from Lemma 2.2 (ii), (3.7), (3.9) and (3.11).

Finally, we note that

G(u) =
4s+ 2t− 3

2

〈

I ′(u), u
〉

− s

∫

R3

u2dx−
4s+ 2t− 3

4

∫

R3

φt
uu

2dx

−

∫

R3

(3 − 2s

2
f(u)u− 3F (u)

)

dx.

From this, by Lemma 2.2 (i), (3.5), (3.8) and (3.11), we can obtain (3.6). �

In the following, we give an important energy estimate for m:

Lemma 3.6 Assume that (f1)–(f4) hold. It holds that m < s
3S

3
2s
s if one of (C1), (C2) or

(C3) is satisfied.

Proof Let ψ ∈ C∞
0 (R3) be a cut-off function such that ψ(x) = 1 if |x| ≤ r, and ψ(x) = 0

if |x| ≥ 2r. For ε > 0, we define

uε(x) = ψ(x)Uε(x), x ∈ R
3,

where Uε(x) = ε−
3−2s

2 u∗(x
ε ), u∗(x) =

U
(

x/S
1
2s

s

)

‖U‖2∗s

and

U(x) = κ(τ2 + |x− x0|
2)−

3−2s

2 ,

with κ ∈ R\{0}, τ > 0 and x0 ∈ R
3. From [30, 37], we know that

∫

R3

|(−∆)
s
2uε|

2dx ≤ S
3
2s
s +O(ε3−2s),
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∫

R3

|uε|
2∗

s dx = S
3
2s
s +O(ε3)

and

∫

R3

|uε|
qdx =































O(ε3−
3−2s

2 q), for q >
3

3 − 2s
,

O(ε
3
2 | log ε|), for q =

3

3 − 2s
,

O(ε
3−2s

2 q), for q <
3

3 − 2s
.

By Lemma 3.3 and Lemma 3.4, there exists a θε > 0 such that

0 < m ≤ max
θ≥0

I((uε)θ) = I((uε)θε
). (3.12)

Next, we claim that there exist two constants θ∗, θ
∗ > 0 such that θ∗ ≤ θε ≤ θ∗. Indeed, we

first prove that θε is bounded from below by a positive constant. Otherwise, we could find a

sequence εn → 0 such that θεn
→ 0. By the above estimations, up to a subsequence, we have

(uεn
)θεn

→ 0 in Hs(R3). Therefore,

0 < m ≤ I((uεn
)θεn

) → I(0) = 0,

which is a contradiction. On the other hand, it follows from (f4) that

0 ≤ I((uε)θε
) ≤

θ4s+2t−3
ε

2

∫

R3

|(−∆)
s
2 uε|

2dx+
θ2s+2t−3

ε

2

∫

R3

u2
εdx

+
θ4s+2t−3

ε

4

∫

R3

φt
uε
u2

εdx−
µθ

(s+t)p−3
ε

p

∫

R3

|uε|
pdx

≤ Cθ4s+2t−3
ε + Cθ2s+2t−3

ε − Cθ(s+t)p−3
ε ,

which implies that there exists θ∗ > 0 such that θε ≤ θ∗. Thus, the claim is proved.

Therefore, by using the inequality

(a+ b)q ≤ aq + q(a+ b)q−1b, for any a, b > 0, q ≥ 1,

we conclude that

I((uε)θε
) ≤

θ4s+2t−3
ε

2

∫

R3

|(−∆)
s
2uε|

2dx+
θ2s+2t−3

ε

2

∫

R3

u2
εdx+

θ4s+2t−3
ε

4

∫

R3

φt
uε
u2

εdx

−
µθ

(s+t)p−3
ε

p

∫

R3

|uε|
pdx−

θ
(s+t)2∗

s−3
ε

2∗s

∫

R3

|uε|
2∗

s dx

≤

(

θ4s+2t−3
ε

2
−
θ
(s+t)2∗

s−3
ε

2∗s

)

S
3
2s
s +O(ε3−2s) + C

∫

R3

u2
εdx

+ C

(
∫

R3

|uε|
12

3+2t dx

)
3+2t

3

− Cµ

∫

R3

|uε|
pdx

≤
s

3
S

3
2s
s +O(ε3−2s) + C

∫

R3

u2
εdx+ C

(
∫

R3

|uε|
12

3+2t dx

)

3+2t

3

− Cµ

∫

R3

|uε|
pdx.

Finally, arguing as in the proof of Lemma 3.3 in [37], we arrive at

m ≤ I((uε)θε
) <

s

3
S

3
2s
s ,

providing that one of (C1), (C2) or (C3) holds. Thus, we complete the proof. �
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Lemma 3.7 Assume that (f1)–(f4) hold and that 2s+ 2t > 3. Then m > 0 is achieved

at some ũ ∈ M.

Proof Taking θ = 0 in Lemma 3.1, we have that

f(τ)τ −
4s+ 2t

s+ t
F (τ) ≥ 0, ∀τ ∈ R. (3.13)

We set

Φ(u) : = I(u) −
1

4s+ 2t− 3
G(u)

=
s

4s+ 2t− 3

∫

R3

u2dx+
s+ t

4s+ 2t− 3

∫

R3

(

f(u)u−
4s+ 2t

s+ t
F (u)

)

dx+
s

3

∫

R3

|u|2
∗

sdx.

(3.14)

Let {un} ⊂ M be a minimizing sequence for m such that

I(un) → m.

We divide the proof into three steps as follows:

Step 1 The sequence {un} is bounded in Hs(R3).

From (3.13)–(3.14), we know that

m+ on(1) = I(un) = Φ(un) ≥
s

4s+ 2t− 3

∫

R3

u2
ndx+

s

3

∫

R3

|un|
2∗

s dx. (3.15)

On the other hand, by (f1) − (f2), (3.15) and G(un) = 0, one has that

2s+ 2t− 3

2
‖un‖

2 ≤

∫

R3

(

(s+ t)f(un)un − 3F (un)
)

dx+
(s+ t)2∗s − 3

2∗s

∫

R3

|un|
2∗

s dx

≤ C

∫

R3

u2
ndx+ C

∫

R3

|un|
2∗

s dx ≤ C.

Thus, {un} is bounded in Hs(R3).

Step 2 There exist a sequence {yn} ⊂ R
3 and constants R, β > 0 such that

lim inf
n→∞

∫

BR(yn)

u2
ndx ≥ β > 0. (3.16)

Suppose, by contradiction, that for all R > 0,

lim
n→∞

sup
y∈R3

∫

BR(y)

u2
ndx = 0.

By Lemma 2.3, we have that

un → 0 in Lq(R3), 2 < q < 2∗s. (3.17)

It follows from Lemma 2.1 (ii) and (3.17) that
∫

R3

φt
un
u2

ndx→ 0. (3.18)

Since G(un) = 0, by (3.17)–(3.18), we get

4s+ 2t− 3

2

∫

R3

|(−∆)
s
2 un|

2dx+
2s+ 2t− 3

2

∫

R3

u2
ndx−

(s+ t)2∗s − 3

2∗s

∫

R3

|un|
2∗

s dx = on(1).

(3.19)
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From the definition of the constant Ss, we have

4s+ 2t− 3

2
Ss

(

∫

R3

|un|
2∗

s dx
)

2
2∗s ≤

(s+ t)2∗s − 3

2∗s

∫

R3

|un|
2∗

s dx+ on(1). (3.20)

Without loss of generality, we may assume that
∫

R3

|un|
2∗

s dx→ l ≥ 0.

It is easy to check that l > 0, otherwise ‖un‖ → 0 as n → ∞, which contradicts m > 0. In

view of (3.20), taking the limit as n → ∞, we obtain that l ≥ S
3
2s
s . On the other hand, since

I(un) → m, it follows from (3.17)–(3.19) that

m =
1

2

∫

R3

|(−∆)
s
2 un|

2dx+
1

2

∫

R3

u2
ndx−

1

2∗s

∫

R3

|un|
2∗

s dx+ on(1)

≥
1

2(4s+ 2t− 3)

(

(4s+ 2t− 3)

∫

R3

|(−∆)
s
2un|

2dx+ (2s+ 2t− 3)

∫

R3

u2
ndx

)

−
1

2∗s

∫

R3

|un|
2∗

s dx+ on(1)

=
(s+ t)2∗s − 3

2∗s(4s+ 2t− 3)
l −

1

2∗s
l

=
s

3
l ≥

s

3
S

3
2s
s ,

which contradicts Lemma 3.6.

Step 3 m is achieved.

If we denote that ũn(x) = un(x + yn), then ũn ∈ M. It is easy to check that {ũn} is still

a bounded minimizing sequence for m. Up to a subsequence, we may assume that there is a

ũ ∈ Hs(R3) such that


















ũn ⇀ ũ in Hs(R3),

ũn → ũ in L
q
loc(R

3), 1 ≤ q < 2∗s,

ũn → ũ a.e. in R
3.

(3.21)

It follows from (3.16) that there exist R, β > 0 such that
∫

BR(0)

ũ2
ndx ≥ β > 0,

which implies that ũ 6= 0. Set ṽn = ũn − ũ. By using Lemma 3.5, (3.14) and (3.21), we deduce

that

Φ(ũn) = Φ(ũ) + Φ(ṽn) + on(1) (3.22)

and

G(ũn) = G(ũ) +G(ṽn) + on(1). (3.23)

From this, one has

m− Φ(ũ) = Φ(ṽn) + on(1) and G(ṽn) + on(1) = −G(ũ). (3.24)

Without loss of generality, we may assume that ṽn 6= 0. Otherwise, the lemma is trivial. By

Lemma 3.3, there exists θn > 0 such that (ṽn)θn
∈ M for any n.
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Now we claim that G(ũ) ≤ 0. Indeed, suppose by contradiction that G(ũ) > 0. From (3.24)

we know that G(ṽn) + on(1) < 0. It follows from Lemma 3.2, (3.14) and (3.24) that

m− Φ(ũ) = Φ(ṽn) + on(1)

= I(ṽn) −
1

4s+ 2t− 3
G(ṽn) + on(1)

≥ I((ṽn)θn
) −

θ4s+2t−3
n

4s+ 2t− 3
G(ṽn) + on(1)

≥ m+ on(1), (3.25)

which implies that the claim is true, since Φ(ũ) > 0.

Lemma 3.3 also implies that there exists θ̃ > 0 such that ũθ̃ ∈ M. Combining Lemma 3.2,

(3.13)–(3.14) and Fatou’s lemma, we have that

m = lim inf
n→∞

[

I(ũn) −
1

4s+ 2t− 3
G(ũn)

]

= lim inf
n→∞

[ s

4s+ 2t− 3

∫

R3

ũ2
ndx+

s+ t

4s+ 2t− 3

∫

R3

(

f(ũn)ũn −
4s+ 2t

s+ t
F (ũn)

)

dx

+
s

3

∫

R3

|ũn|
2∗

s dx
]

≥
s

4s+ 2t− 3

∫

R3

ũ2dx+
s+ t

4s+ 2t− 3

∫

R3

(

f(ũ)ũ−
4s+ 2t

s+ t
F (ũ)

)

dx+
s

3

∫

R3

|ũ|2
∗

s dx

= I(ũ) −
1

4s+ 2t− 3
G(ũ)

≥ I(ũθ̃) −
θ̃4s+2t−3

4s+ 2t− 3
G(ũ) ≥ m.

Therefore, we conclude that I(ũ) = m and G(ũ) = 0. �

Lemma 3.8 Assume that (f1)–(f3) hold and that 4s + 2t > 3. If I(u) = m for u ∈ M,

then u is a critical point of I.

Proof Suppose, by contradiction, that I ′(u) 6= 0, and there exist ρ, δ > 0 such that

‖I ′(v)‖H−s(R3) ≥ ρ if ‖u− v‖ ≤ 3δ, ∀v ∈ Hs(R3).

We first show that

lim
θ→1

‖uθ − u‖ = 0. (3.26)

Otherwise, suppose that there exist ε0 > 0 and a sequence {θn} such that

‖uθn
− u‖2 ≥ ε0 as θn → 1. (3.27)

Notice that there exist two functions U1 and U2 ∈ C0(R
3), such that

∫

R3

|(−∆)
s
2u− U1|

2dx <
ε0

20
and

∫

R3

|u− U2|
2dx <

ε0

20
.

From this, we get that
∫

R3

|(−∆)
s
2 (uθn

− u)|2dx

≤ 2

∫

R3

|(−∆)
s
2uθn

− U1|
2dx+ 2

∫

R3

|(−∆)
s
2u− U1|

2dx
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≤ 6θ4s+2t−3
n

∫

R3

|(−∆)
s
2u− U1|

2dx+ 6θ4s+2t
n

∫

R3

|U1(θnx) − U1(x)|
2dx

+ 6(θ2s+t
n − 1)2

∫

R3

U2
1 dx+ 2

∫

R3

|(−∆)
s
2u− U1|

2dx

≤
2ε0
5

+ on(1)

and
∫

R3

|uθn
− u|2dx ≤ 2

∫

R3

|uθn
− U2|

2dx+ 2

∫

R3

|u− U2|
2dx

≤ 6θ2s+2t−3
n

∫

R3

|u− U2|
2dx+ 6θ2s+2t

n

∫

R3

|U2(θnx) − U2(x)|
2dx

+ 6(θs+t
n − 1)2

∫

R3

U2
2 dx+ 2

∫

R3

|u− U2|
2dx

≤
2ε0
5

+ on(1).

Thus,

‖uθn
− u‖2 =

∫

R3

|(−∆)
s
2 (uθn

− u)|2dx+

∫

R3

|uθn
− u|2dx

≤
4

5
ε0 + on(1),

which contradicts (3.27). It follows from (3.26) that for δ > 0 given above, there exists δ1 > 0

such that

‖uθ − u‖ ≤ δ if |θ − 1| < δ1. (3.28)

Lemma 3.2 implies that

I(uθ) ≤ I(u) − Ĉ(θ)

∫

R3

u2dx = m− Ĉ(θ)

∫

R3

u2dx, ∀θ ≥ 0. (3.29)

Let ε = min
{

1
3 min{Ĉ(1

2 ), Ĉ(3
2 )}
∫

R3 u
2dx, 1, ρδ

8

}

and S = {v ∈ Hs(R3)
∣

∣ ‖u− v‖ < δ}. It

follows from Lemma 2.3 in [38] that there exists a map η ∈ C([0, 1] × Hs(R3), Hs(R3)) such

that

(i) η(1, v) = v if v 6∈ I−1([m− 2ε,m+ 2ε]) ∩ S2δ;

(ii) η(1, Im+ε ∩ S) ⊂ Im−ε;

(iii) I(η(1, v)) ≤ I(v) for all v ∈ Hs(R3);

(iv) η(1, v) is a homeomorphism of Hs(R3).

Since Lemma 3.2 implies that I(uθ) ≤ I(u) = m for θ ≥ 0, then by (3.28) and (ii), we have

I(η(1, uθ)) ≤ m− ε if |θ − 1| < δ1.

On the other hand, from (3.29) and (iii), we have

I(η(1, uθ)) ≤ I(uθ) ≤ m− Ĉ(θ)

∫

R3

u2dx, if |θ − 1| ≥ δ1.

In view of (3.2), we can see that Ĉ(θ) > 0 if |θ − 1| ≥ δ1. Thus,

max
θ∈[ 12 , 32 ]

I(η(1, uθ)) < m. (3.30)
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Next, we claim that η(1, uθ) ∩M 6= ∅ for some θ ∈ [12 ,
3
2 ], which contradicts (3.30). Indeed, we

define

Φ1(θ) = G(uθ) and Φ2(θ) = G(η(1, uθ)), ∀θ ≥ 0.

From Lemma 3.3 and the definition of the Brouwer degree, we have

deg
(

Φ1, (
1

2
,
3

2
), 0
)

= 1.

In view of (3.29) and (i), it is clear that η(1, uθ) = uθ for θ = 1
2 and θ = 3

2 . The homotopy

invariance of the Brouwer degree gives that

deg
(

Φ1, (
1

2
,
3

2
), 0
)

= deg
(

Φ2, (
1

2
,
3

2
), 0
)

= 1.

Thus, there exists θ0 ∈ (1
2 ,

3
2 ) such that Φ2(θ0) = 0, which means that η(1, uθ0) ∈ M. Therefore,

the claim is true and we complete the proof. �

Now, we are ready to prove our main result.

Proof of Theorem 1.1 Combining Lemma 3.7 and Lemma 3.8, one can directly obtain

that I has a critical point ũ ∈ M such that I(ũ) = m > 0.

Next, we want to prove that ũ is nonnegative. Let us consider the functional

I+(u) =
1

2

∫

R3

(

|(−∆)
s
2 u|2 + u2

)

dx+
1

4

∫

R3

φt
uu

2dx−

∫

R3

F (u)dx−
1

2∗s

∫

R3

(u+)2
∗

s dx,

where u+ = max{u, 0} and u− = min{u, 0}. Similarly, we can obtain a nontrivial solution u of

the equation

(−∆)su+ u+ φt
uu = f(u) + (u+)2

∗

s−1. (3.31)

Multiplying the above equation (3.31) by u− and integrating over R
3, we find that

∫

R3

∫

R3

(u(x) − u(y))(u−(x) − u−(y))

|x− y|3+2s
dxdy ≤ 0,

but we know that
∫

R3

∫

R3

(u(x) − u(y))(u−(x) − u−(y))

|x− y|3+2s
dxdy

≥

∫

{y:u<0}

∫

{x:u>0}

(u(x) − u(y))(−u−(y))

|x− y|3+2s
dxdy

+

∫

{y:u<0}

∫

{x:u<0}

|u−(x) − u−(y)|2

|x− y|3+2s
dxdy

+

∫

{y:u>0}

∫

{x:u<0}

(u(x) − u(y))u−(x)

|x− y|3+2s
dxdy

≥ 0.

Thus, u− = 0 and u ≥ 0 is a solution of equation (3.31). Hence, we can assume that ũ ≥ 0. �
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[2] Applebaum D. Lévy processes-from probability to finance quantum groups. Notices Amer Math Soc, 2004,

51: 1336–1347

[3] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math

Anal Appl, 2008, 345: 90–108

[4] Benci V, Fortunato D. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods

Nonlinear Anal, 1998, 11: 283–293
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