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Abstract This article discusses the synchronization problem of singular neutral complex

dynamical networks (SNCDN) with distributed delay and Markovian jump parameters via

pinning control. Pinning control strategies are designed to make the singular neutral com-

plex networks synchronized. Some delay-dependent synchronization criteria are derived in

the form of linear matrix inequalities based on a modified Lyapunov-Krasovskii functional

approach. By applying the Lyapunov stability theory, Jensen’s inequality, Schur complement,

and linear matrix inequality technique, some new delay-dependent conditions are derived to

guarantee the stability of the system. Finally, numerical examples are presented to illustrate

the effectiveness of the obtained results.
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1 Introduction

Over the past decade, complex networks have been studied intensively in various disciplines,

such as sociology, biology, mathematics, and engineering [1–6]. A complex network is a large
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set of interconnected nodes, where the nodes and connections can be anything, and a node

is a fundamental unit having specific contents and exhibiting dynamical behavior. There are

two ways of connection between nodes: directed connection and undirected connection, and

the connection relationship can be unweighted and weighted. According to different ways of

connection and whether there are weights or not between nodes, we get some different kinds

of complex networks, such as undirected unweighted network, directed weighted network, etc.

A complex network can exhibit complicated dynamics which may be absolutely different from

that of a single node.

The most well-known examples are electrical power grids, communication networks, inter-

net, World Wide Web, metabolic systems, food webs, and so on. Hence, the investigation of

complex dynamical networks is of great importance, and many systems in science and technol-

ogy can be modeled as complex networks [8–10]. Time delay is encountered in many dynamical

systems and often results in poor performance and even instability of control systems [11–13].

Because delay is usually time-varying in many practical system, many approaches were devel-

oped to investigate the stability of systems with time-varying delay such as descriptor model

transformation method; the improved bounding technique; free weighting matrices; and the

properly chosen Lyapunov-Krasovskii functional (LKFs) (see [14–16] and references therein).

Synchronization is a kind of typical collective behaviors and basic motions in nature [17–19].

Recently, one of the interesting and significant phenomena in complex dynamical networks is

the synchronization of all dynamical nodes in a network. It is well known that there are many

useful network synchronization phenomena in our real life, such as the synchronous transfer of

digital or analog signals in communication networks [20]. More recently, adaptive synchroniza-

tion in networks or coupled oscillators has received an increasing attention [21]. In particular,

one of the interesting phenomena in complex networks is the synchronization, which is an im-

portant research subject with the rapidly increasing research, and there are amounts of results

[22]. There are many different kinds of synchronization, such as generalized synchronization,

phase synchronization, projective synchronization, cluster synchronization, and so on [23–27].

Moreover, synchronization has some potential applications in real-world systems, such as syn-

chronization phenomena on the Internet, synchronization related to biological neural networks.

As we know the real-world complex networks normally have a large number of nodes. There-

fore, it is usually difficult to control a complex network by adding the controllers to all nodes.

To reduce the number of the controllers, a natural approach is to control a complex network

by pinning part of nodes. In [28–32], the authors explored the controllability of complex net-

works via pinning. In [33], authors analyzed the synchronization of general complex dynamical

network via pinning control.

Singular systems describe the physical systems better than the regular (nonsingular) ones.

They have variety of physical processes such as power systems and circuit systems. These sys-

tems are sometimes called generalized systems, descriptor systems, differential-algebraic sys-

tems, or implicit systems. It has been noted that a considerable number of results of regular

(nonsingular) systems were extended to singular systems (see references [34–37]). As pointed

out in [38], singular systems can be introduced to improve the traditional complex networks to

describe the singular dynamic behaviours of nodes.

Singular systems can be introduced to improve the traditional complex networks to describe
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the singular dynamic behaviors of nodes. Recently, there has been a growing interest in sin-

gular systems for their extensive application in control theory, circuits, economics, mechanical

systems, and other areas, inspired by [39–42]. The neutral-type complex dynamic network of

coupled identical nodes is described by a group of neutral functional differential equations, in

which the derivatives of the past state variables are involved as well in the present state of

the system [43]. Synchronization of neutral complex dynamical networks (NCDNs) with cou-

pling time-varying delays is investigated in [44]. Synchronization of neutral complex dynamical

networks with Markovian switching based on sampled-data controller is discussed in [45].

Motivated by the above, we investigate synchronization of Markovian jumping singular

neutral complex dynamical network with time- delays via pinning control by utilizing a novel

Lyapunov - Krasovskii functional. The novel delay dependent synchronization conditions are

derived in terms of linear matrix inequalities, then synchronization problem is studied for the

complex networks. By constructing a new Lyapunov-Krasovskii functional containing triple-

integral terms, employing Newton-Leibnitz formulation and linear matrix inequality techniques,

and introducing free-weighting matrices, some robust global asymptotic stability criteria are de-

rived in terms of linear matrix inequalities (LMIs). To the best of our knowledge, synchroniza-

tion of singular neutral complex dynamical network with Markovian jumping and time delays

via pinning control have received very little research attention, therefore, the main purpose of

this article is to shorten such a gap. By employing some analysis techniques, less conservative

sufficient conditions are derived in terms of LMIs. Finally, numerical example are provided to

demonstrate the advantage and applicability of the proposed result.

Notation The following notations are used throughout this article. Rn denotes the n

dimensional Euclidean space and Rm×n is the set of all m × n real matrices. The superscript
′T ′ denotes matrix transposition, and the notation X ≥ Y (respectively, X < Y ), where X

and Y are symmetric matrices, means that X-Y is positive semidefinite (respectively, positive

definite), and ∥·∥ denotes the Euclidean norm inRn. If A is a square matrix, denote by λmax(A)

(respectively, λmin(A)) means the largest(respectively, smallest) eigenvalue of A. Moreover, let

(Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions (that is, the filtration contains all P -null sets and is right continuous). The asterisb

∗ in a symmetric matrix is used to denote term that is induced by symmetry. Given a complete

probability space {Ω,F , {Ft}t≥0,P}, let a natural filtration {Ft}t≥0 satisfy the usual conditions,

where Ω is the sample space, F is the algebra of events, and P is the probability measure

defined on F . Let {r(t)(t ≥ 0)} be a right-continuous Markovian chain on the probability

space (Ω,F , {Ft}t≥0,P) taking values in the finite space S = {1, 2, · · · ,m} with generator

Π = {πij}m×m(i, j ∈ S) given by

Pr{r(t+∆) = j | r(t) = i} =

πij∆+ 0(∆) if i ̸= j;

1 + πij∆+ 0(∆) if i = j.

Here, ∆ > 0 and πij ≥ 0 is the transition rate from i to j if j ̸= i, while πii = −
∑
j ̸=i

πij .
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2 Problem Formulation and Preliminaries

2.1 Problem description

Consider the following Markovian jumping singular neutral complex dynamical network

with time varying distributed delay consisting of N identical nodes, in which each node is an

n-dimensional dynamical subsystem:

Eẋk(t)− C(r(t))ẋk(t− τ(t, r(t)))

= A(r(t))xk(t) +B(r(t))xk(t− d(t, r(t)))

+D(r(t))

∫ t

t−h(t,r(t))

xk(s)ds+ b1

N∑
w=1

g
(1)
kw(r(t))Γ1(r(t))xw(t)

+ b2

N∑
w=1

g
(2)
kw(r(t))Γ2(r(t))xw(t− d(t, r(t)))

+ b3

N∑
w=1

g
(3)
kw(r(t))Γ3(r(t))ẋw(t− τ(t, r(t)))

+ L(r(t))f1(xk(t)) +H(r(t))f2(xk(t− d(t, r(t))))

+ J(r(t))f3(ẋk(t− τ(t, r(t)))), k = 1, 2, · · · , N, (2.1)

where E ∈ Rn×n is a singular matrix and rank(E) = r(0 < r < n);xk(t) ∈ Rn is the state

variable of the node k ∈ 1, 2, · · · , N ; {r(t)(t ≥ 0)} is the continuous-time Markov process which

describes the evolution of the mode at time t; A(r(t)), B(r(t)), C(r(t)), D(r(t)), L(r(t)),H(r(t)),

and J(r(t)) ∈ Rn×n are parametric matrices with real values in mode r(t); and f1, f2, f3 : Rn →
Rn are continuously nonlinear vector functions which are, with respect to the current state xk(t),

the delayed state xk(t− d(t, r(t))) and the neutral delay state ẋk(t− τ(t, r(t))).

The nonlinear functions are globally Lipschitz,

∥f1(xk(t))− f1(yk(t))∥ ≤ lk1∥xk(t)− yk(t)∥,

∥f2(xk(t− d(t, r(t))))− f2(yk(t− d(t, r(t))))∥ ≤ lk2∥xk(t− d(t, r(t)))− yk(t− d(t, r(t)))∥,

∥f3(ẋk(t− τ(t, r(t))))− f3(ẏk(t− τ(t, r(t))))∥ ≤ lk3∥ẋk(t− τ(t, r(t)))− ẏk(t− τ(t, r(t)))∥,
(2.2)

where lk1, lk2, and lk3 are non-negative constants.

Γ1(r(t)) ∈ Rn×n, Γ2(r(t)) ∈ Rn×n, and Γ3(r(t)) ∈ Rn×n represent the inner-coupling

matrices linking between the subsystems in mode r(t). G(1)(r(t)) = [g
(1)
kw ]N×N , G(2)(r(t)) =

[g
(2)
kw ]N×N , and G(3)(r(t)) = [g

(3)
kw ]N×N are the coupling configuration matrices of the networks

representing the coupling strength and the topological structure of the SNCDN in mode r(t),

in which g
(m)
kw is defined as follows: if there exists a connection between kth and wth (k ̸= w)

nodes, then g
(m)
kw (r(t)) = g

(m)
wk (r(t)) > 0, otherwise, g

(m)
kw (r(t)) = g

(m)
wk (r(t)) = 0 and

g
(m)
kk (r(t)) = −

N∑
w=1,w ̸=k

g
(m)
kw (r(t)) = −

N∑
w=1,w ̸=k

g
(m)
wk (r(t)),m = 1, 2, 3; k = 1, 2, · · · , N.

For simplicity of notations, we denoteA(r(t)), B(r(t)), C(r(t)), D(r(t)), L(r(t)),H(r(t)), J(r(t)),

G(m)(r(t)),Γm(r(t)), (m = 1, 2, 3), by Ai, Bi, Ci, Di, Li,Hi, Ji, G
(m)
i ,Γmi for r(t) = i ∈ s.
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Remark 2.1 The synchronization of Markovian jumping SNCDN (2.1) is investigated

in this work, which is devoted to revealing the effect of pinning controller over the Markovian

switching network topologies. The network topology switching is governed by a time homoge-

nous Markov process, whose state space corresponds to all the possible topologies. However, a

general complex network always has a fixed network topology, which can not describe the situ-

ation changing, so the research on the complex networks under randomly switching topologies,

such as SNCDN (2.1), is very significant and important.

Assumption 1 τ(t, r(t)), h(t, r(t)), and d(t, r(t)) denote the mode-dependent time-varying

neutral delay, distributed delay, and retarded delay, respectively. They are assumed to satisfy

the followings:

0 ≤ τi(t) ≤ τ̄i, τ̇i ≤ νi;

0 ≤ hi(t) ≤ h̄i, ḣi ≤ δi < 1;

0 ≤ d1i ≤ di(t) ≤ d2i,max
i∈s

{d1i} ≤ min
j∈s

{d2j};

ḋi(t) ≤ µi, r(t) = i, (2.3)

where τ̄i, h̄i, δi, d1i, d2i, µi, and νi are real constant scalars. The initial conditions associated

with Markovian jumping SNCDN (2.1) are given as follows:

xk(t0) = φk(t0) ∈ L2
F0

C([−ζ, 0], Rn), t0 ∈ [−ζ, 0],

ζ = max{max
i∈s

{h̄i},max
i∈s

{τ̄i},max
i∈s

{d2i}}.

Correspondingly the response complex network with the control inputs uk(t) ∈ RN (k =

1, 2, · · · , N) can be written as

Eẏk(t)− Ciẏk(t− τi(t))

= Aiyk(t) +Biyk(t− di(t)) +Di

∫ t

t−hi(t)

yk(s)ds+ b1

N∑
w=1

g
(1)
kwiΓ1iyw(t)

+ b2

N∑
w=1

g
(2)
kwiΓ2iyw(t− di(t)) + b3

N∑
w=1

g
(3)
kwiΓ3iẏw(t− τi(t) + Lif1(yk(t))

+Hif2(yk(t− di(t)) + Jif3(ẏk(t− τi(t)) + uk(t), k = 1, 2, · · · , N, (2.4)

where uk(t) is defined by

uk(t) =

−b4σkΓ4(yk(t)− xk(t)), k = 1, 2, · · · , l;

0, k = l + 1, l + 2, · · · , N.
(2.5)

2.2 Basic ideas and Lemmas

In this section, we provide some definitions and lemmas which are absolutely necessary to

derive the proposed synchronization criterion.

Definition 2.2 ([50]) Complex dynamical network (2.1) is said to be global (asymptoti-

cally) synchronized by pinning control, if

lim
t→∞

∥xk(t)− yk(t)∥ = 0, k = 1, 2, · · · , N. (2.6)
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Definition 2.3 ([51]) The pair (E,Ai + b1Γ1iλk − b4σkΓ4) is said to be regular, if the

det(aE − (Ai + b1Γ1iλk − b4σkΓ4)), for some finite complex number a, is not identically zero.

Definition 2.4 ([51]) The pair (E,Ai + b1Γ1iλk − b4σkΓ4) is said to be impulse free, if

deg(det(aE − (Ai + b1Γ1iλk − b4σkΓ4))) = rank(E) for some finite complex number ‘a’.

Lemma 2.5 ([50]) The eigenvalues of an irreducible matrix G = (gkw) ∈ RN×N with
N∑

w ̸=k

gkw = −gkk, k = 1, 2, · · · , N satisfy the following properties:

(i) Real parts of all eigenvalues of G are less than or equal to 0 with multiplicity 1;

(ii) G has an eigenvalue 0 with multiplicity 1 and the right eigenvector (1, 1, · · · , 1)T .

Lemma 2.6 ([52]) The pair (E,Ai+ b1Γ1iλk − b4σkΓ4) is regular and impulse free if and

only if there exist matrices Pki such that the following inequalities hold for k = 2, 3, · · · , N :

(i) ETPki = PkiE ≥ 0 and

(ii) (Ai + b1Γ1iλk − b4σkΓ4)
TPki + PT

ki(Ai + b1Γ1iλk − b4σkΓ4) < 0.

Lemma 2.7 ([53]) If for any constant matrix R ∈ Rm×m, R = RT > 0, scalar γ > 0, and

a vector function ϕ : [0, γ] → Rm such that the integrations concerned are well defined, the

following inequality holds:

(a) − γ

∫ γ

0

ϕT (s)Rϕ(s)ds ≤ −
[∫ γ

0

ϕ(s)ds

]T
R

[∫ γ

0

ϕ(s)ds

]
.

(b) − γ

∫ t

t−γ

ϕ̇T (s)Rϕ̇(s)ds ≤

 ϕ(t)

ϕ(t− γ)

T −R R

∗ −R

 ϕ(t)

ϕ(t− γ)

 .

Let the error be ek(t) = yk(t) − xk(t). So, the error dynamics of Markovian jumping SNCDN

(2.1) can be derived as follows:

Eėk(t)− Ciėk(t− τi(t))

= Aiek(t) +Biek(t− di(t)) +Di

∫ t

t−hi(t)

ek(s)ds+ b1

N∑
w=1

g
(1)
kwiΓ1iew(t)

+ b2

N∑
w=1

g
(2)
kwiΓ2iew(t− di(t)) + b3

N∑
w=1

g
(3)
kwiΓ3iėw(t− τi(t)) + LiFk1(ek(t))

+HiFk2(ek(t− di(t)) + JiFk3(ėk(t− τi(t)))− b4σkΓ4ek(t), k = 1, 2, · · · , N, (2.7)

where Fk1(ek(t)) = f1(yk(t))−f1(xk(t)), Fk2(ek(t−di(t))) = f2(yk(t−di(t)))−f2(xk(t−di(t))),

and Fk3(ėk(t− τi(t))) = f3(ẏk(t− τi(t)))− f3(ẋk(t− τi(t))).

Remark 2.8 The pinning controllers are applied to achieve synchronization of the Marko-

vian jumping SNCDN (2.1). It can be seen that the synchronization problem of (2.1) is equiv-

alent to the stabilization problem of the error dynamical systems (2.7) at the origin. The

controller (2.5) accelerate each node to synchronizing with the target node according to the

instantaneous state information, and the similar one also can be found in [28]. We only exert

control actions on the pinned nodes to achieve the synchronization and reduce the number of

controllers.

Remark 2.9 The novelty of this article can be summarized as follows: (1) Synchroniza-

tion of Markovian jumping singular neutral complex dynamical networks via pinning control
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is considered in this article; (2) A new Lyapunov-Krasovskii functional is constructed with

triple-integral term.

3 Main Results

3.1 Asymptotic stability of complex dynamical systems

In this section, we derive delay-dependent stability criteria for the error dynamical network

system (2.7). We also discuss the impact of additive time-varying delays on the stability of the

system.

Denoting σk = 0 (k = l+1, l+2, · · · , N), then we may write the error system in its compact

form as

Eė(t)− Ciė(t− τi(t)) = Aie(t) +Bie(t− di(t)) +Di

∫ t

t−hi(t)

e(s)ds+ b1Γ1iG
(1)
i e(t)

+ b2Γ2iG
(2)
i e(t− di(t)) + b3Γ3iG

(3)
i ė(t− τi(t)) + LiF1(e(t))

+HiF2(e(t− di(t))) + JiF3(ė(t− τi(t)))− b4σΓ4e(t). (3.1)

where e(t) = (e1(t), e2(t), · · · , eN (t)), F1(e(t)) = (F11(e1(t)), F21(e2(t)), · · · , FN1(eN (t))),

F2(e(t− di(t)) = (F12(e1(t− di(t)), F22(e2(t− di(t)), · · · , FN2(eN (t− di(t))), F3(ė(t− τi(t))) =

(F13(ė1(t− τi(t))), F23(ė2(t− τi(t))), · · · , FN3( ˙eN (t− τi(t)))), and σ = diag{σ1, σ2, · · · , σN}.
By the properties of the outer-coupling matrix G

(a)
i (a = 1, 2, 3), there exists a unitary ma-

trix U = [U1, U2, · · · , UN ] ∈ RN×N such that UTG
(a)
i = ΛiU

T with Λi = diag{λ1i, λ2i, · · · , λNi}
(a = 1, 2, 3) and UUT = I. Using the nonsingular transform e(t)U = z(t) = [z1(t), z2(t),

· · · , zN (t)] ∈ RN×N , from equation (3.1), it follows the matrix equation

Eż(t)− Ciż(t− τi(t)) = Aiz(t) +Biz(t− di(t)) +Di

∫ t

t−hi(t)

z(s)ds+ b1Γ1iΛiz(t)

+ b2Γ2iΛiz(t− di(t)) + b3Γ3iΛiż(t− τi(t)) + LiF1(e(t))U

+HiF2(e(t− di(t))U + JiF3(ė(t− τi(t)))U − b4σΓ4z(t). (3.2)

In a similar way, model (3.2) can be written as

Eżk(t) = (Ai + b1Γ1iλkib4σkΓ4)zk(t) + (Bi + b2Γ2iλki)zk(t− di(t))

+Di

∫ t

t−hi(t)

zk(s)ds+ (Ci + b3Γ3iλki)żk(t− τi(t))

+ Lihk1(t) +Hihk2(t) + Jihk3(t), k = 1, 2, · · · , N, (3.3)

where hk1(t) = F1(e(t))Uk, hk2(t) = F2(e(t− di(t))Uk, and hk3(t) = F3(ė(t− τi(t)))Uk.

So far, we transformed the synchronization problem of the singular complex dynamical

networks (3.1) into the synchronization problem of the N pieces of the corresponding error

dynamical network (3.3). From Lemma 2.5, λi1 = 0 and z1(t) = e(t)U1 = 0. Therefore, if the

following (N − 1) pieces of the corresponding error dynamical network,

Eżk(t) = (Ai + b1Γ1iλki − b4σkΓ4)zk(t) + (Bi + b2Γ2iλki)zk(t− di(t))

+Di

∫ t

t−hi(t)

zk(s)ds+ (Ci + b3Γ3iλki)żk(t− τi(t))



870 ACTA MATHEMATICA SCIENTIA Vol.40 Ser.B

+ Lihk1(t) +Hihk2(t) + Jihk3(t), k = 2, 3, · · · , N, (3.4)

are asymptotically stable, which implies that the synchronized states (3.1) are asymptotically

stable.

Let us define

ξTk (t) =

[
zTk (t) zTk (t− τ̄i) żTk (t− τ̄i) zTk (t− τi(t)) żTk (t− τi(t))∫ t

t−τi(t)

zTk (s)ds

∫ t

t−τ̄i

zTk (s)ds

∫ t−τi(t)

t−τ̄i

zTk (s)ds zTk (t− h̄i)

żTk (t− h̄i) zTk (t− hi(t)) żTk (t− hi(t))

∫ t

t−hi(t)

zTk (s)ds

∫ t

t−h̄i

zTk (s)ds∫ t−hi(t)

t−h̄i

zTk (s)ds zTk (t− di(t)) zTk (t− d1i) zTk (t− dmi) zTk (t− d2i)

żTk (t− d1i) żTk (t− dmi) żTk (t− d2i)

∫ t

t−d1i

zTk (s)ds

∫ t−d1i

t−dmi

zTk (s)ds∫ t−dmi

t−d2i

zTk (s)ds hT
k1(t) hT

k2(t) hT
k3(t)

]
, (3.5)

ηk =
[
(Ai + b1Γ1iλki − b4σkΓ4) 0 0 0 (Ci + b3Γ3iλki)

0 0 0 0 0 0 0 Di 0 0 (Bi + b2Γ2iλki)

0 0 0 0 0 0 0 0 0 Li Hi Ji

]
, (3.6)

Eżk(t) = ηkξk(t). (3.7)

The inequality (2.2) and the Lipschitz continuity of hk1(t) can be used to make hk1(t) to satisfy

∥hk1(t)∥ =

∥∥∥∥ N∑
w=1

[f1(xw(t))− f1(yw(t))]ukw

∥∥∥∥
≤

N∑
w=1

∥[f1(xw(t))− f1(yw(t))]∥ | ukw |

≤
N∑

w=1

lk1∥[xw(t)− yw(t)]∥ =

N∑
w=1

lk1∥ew(t)∥

≤
N∑

w=1

l̄1∥zw(t)∥ =

N∑
w=2

l̄1∥zw(t)∥, (3.8)

where ukw is the ω-th element of Uk and l̄1 = max lk1. Therefore, the following inequality

N∑
k=2

(
∥hk1(t)∥ − l̄1

N∑
w=2

∥zw(t)∥
)
=

N∑
k=2

∥hk1(t)∥ − l̄1

N∑
k=2

N∑
w=2

∥zw(t)∥

=
N∑

k=2

(
∥hk1(t)∥ − (N − 1)l̄1∥zk(t)∥

)
≤ 0

holds, if the inequality

∥hk1(t)∥ − (N − 1)l̄1∥zk(t)∥ ≤ 0, k = 2, 3, · · · , N (3.9)
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is satisfied. Similarly, the following inequalities holds:

N∑
k=2

(
∥hk2(t)∥ − (N − 1)l̄2∥zk(t− di(t))∥

)
≤ 0,

N∑
k=2

(
∥hk3(t)∥ − (N − 1)l̄3∥żk(t− τi(t))∥

)
≤ 0, (3.10)

if the following inequalities are satisfied that

∥hk2(t)∥ − (N − 1)l̄2∥zk(t− di(t))∥ ≤ 0, k = 2, 3, · · · , N ;

∥hk3(t)∥ − (N − 1)l̄3∥żk(t− τi(t))∥ ≤ 0, k = 2, 3, · · · , N, (3.11)

where l̄2 = max lk2, l̄3 = max lk3. From the inequality (3.8)–(3.11), there exist positive diagonal

matrices Sk1, Sk2, and Sk3 such that

ξTk (t)diag
{

− (N − 1)l̄1Sk1, 0, 0, 0, −(N − 1)l̄3Sk3, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, −(N − 1)l̄2Sk2, 0, 0, 0, 0, 0, 0, 0,

0, 0, Sk1, Sk2, Sk3

}
ξk(t) = ξTk (t)Φkξk(t) ≤ 0, (3.12)

where

Φk = diag
{

− (N − 1)l̄1Sk1, 0, 0, 0, −(N − 1)l̄3Sk3, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, −(N − 1)l̄2Sk2, 0, 0, 0, 0, 0,

0, 0, 0, 0, Sk1, Sk2, Sk3

}
.

Theorem 3.1 For given scalars τ̄i, νi, h̄i, σi, d1i, d2i, µi and constant scalar dmi satisfying

d1i < dmi < d2i, the Markovian jumping singular error dynamical network (3.4) is asymptoti-

cally stable if there exist positive constants αk, matrices Pki > 0, Qk1i > 0, Qk2i > 0, Rk1i > 0,

Rk2i > 0, Tk1i > 0, Qkj > 0, Rkj > 0 (j = 3, 4), Tkj > 0 (j = 2, 3, 4), Ukj > 0 (j = 1, 2, 3),

Wkj > 0, Mkj > 0, Nkj > 0 (j = 1, 2, 3, 4, 5), and positive diagonal matrices Skj (j = 1, 2, 3)

such that the following LMIs hold for all i ∈ S:

ETPki = PkiE ≥ 0, (3.13)

Ξ =

Ψk1 Σk12

∗ Σk22

 ≤ 0, k = 2, 3, · · · , N, (3.14)

m∑
j=1

πij(Qk1j − Y1i) ≤ 0;
m∑
j=1

πijE
T (Qk2j − Y2i)E ≤ 0;

m∑
j=1

πij(Tk1j − Y5i) ≤ 0; (3.15)

m∑
j=1

πij(Rk1j − Y3i) ≤ 0;

m∑
j=1

πijE
T (Rk2j − Y4i)E ≤ 0; (3.16)
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where

Ψk1 =



Ψk11 Ψk12 Ψk13 Ψk14 Ψk15

∗ Ψk22 0 0 0

∗ ∗ Ψk33 0 0

∗ ∗ ∗ Ψk44 0

∗ ∗ ∗ 0 Ψk55


,

Σk12 = ηTk

[
Qk2i Qk4 Rk2i Rk4 Uk1

√
τ̄iMk1

√
h̄iMk2

√
d1iMk3

√
ρ1iMk4

√
ρ2iMk5

τ̄i
2

2
Nk1

h̄i
2

2
Nk2

d21i
2
Nk3 ρ3iNk4 ρ4iNk5

]
,

Σk22 = diag

{
−Qk2i −Qk4 −Rk2i −Rk4 − Uk1 −Mk1 −Mk2

−Mk3 −Mk4 −Mk5 −Nk1 −Nk2 −Nk3 −Nk4 −Nk5

}
,

Ψk11 = Pki(Ai + b1Γ1iλki − b4σkΓ4) + (Ai + b1Γ1iλki − b4σkΓ4)
TPki

+
m∑
j=1

πijPkjE +Qk1i +Qk3 +Rk1i +Rk3 + Tk2 + τ̄2i Wk1 + h̄2
i +Wk2

+ d21iWk3 + ρ21iWk4 + ρ22iWk5 −
1

h̄i
ETMk2E − 1

d1i
ETMk3E − ET τ̄i

2Nk1E

− ET h̄i
2
Nk2E − ET d21iNk3E − ET ρ21iNk4E − ET ρ22iNk5E

+ αk(N − 1)l̄1Sk1 −
1

τ̄i
ETMk1E,

Ψk12 =

[
1

τ̄i
ETMk1E 0 0 Pki(Ci + b3Γ3iλki) 0 τ̄iE

TNk1E 0
1

h̄i
ETMk2E 0

]
,

Ψk13 =
[
0 0 PkiDi h̄iE

TNk2E 0 Pki(Bi + b2Γ2iλki)
]
,

Ψk14 =

[
1

d1i
ETMk3E 0 0

]
,

Ψk15 =
[
0 0 0 d1iE

TNk3E ρ1iE
TNk4E ρ2iE

TNk5E PkiEi PkiHi PkiJi

]
,

Ψk22 = diag
{
Φk22 Φk33 Φk44 Φk55 Φk66 Φk77 Φk88 Φk99 Φk1010

}
,

Ψk33 = diag
{
Φk1111 Φk1212 Φk1313 Φk1414 Φk1515 Φk1616

}
,

Ψk44 =


Φk1717

1

ρ1i
ETMk4E 0

∗ Φk1818
1

ρ2i
ETMk5E

∗ ∗ Φk1919

 ,

Ψk55 = diag

{
Φk2020 Φk2121 Φk2222 Φk2323

Φk2424 Φk2525 Φk2626 Φk2727 Φk2828

}
,



No.3 K.S. Anand et al: SYNCHRONIZATION OF SNCDN 873

Φk22 = − 1

τ̄i
ETMk1E −Qk3; Φk33 = −ETQk4E; Φk44 = −(1− νi)Qk1i;

Φk55 = −(1− νi)E
TQk2iE + αk(N − 1)l̄3Sk3; Φk66 = − τ̄i

τi(t)
Wk1;

Φk77 = −ETNk1E; Φk88 = − τ̄i
τ̄i − τi(t)

Wk1; Φk99 = −Rk3 −
1

h̄i
ETMk2E;

Φk1010 = −ETRk4E; Φk1111 = −(1− δi)Rk1i; Φk1212 = −(1− δi)E
TRk1iE;

Φk1313 = − h̄i

hi(t)
Wk2; Φk1414 = −ETNk2E; Φk1515 = − h̄i

h̄i − hi(t)
Wk2;

Φk1616 = −(1− µi)Tk1i + αk(N − 1)l̄2Sk2;

Φk1717 = Tk1i − Tk2 + Tk3 −
1

d1i
ETMk3E − 1

ρ1i
ETMk4E;

Φk1818 = Tk4 − Tk3 −
1

ρ2i
ETMk5E − 1

ρ1i
ETMk4E; Φk1919 = −Tk4 −

1

ρ2i
ETMk5E;

Φk2020 = ETUk2E − ETUk1E; Φk2121 = ETUk3E − ETUk2E; Φk2222 = −ETUk3E;

Φk2323 = −Wk3 − ETNk3E; Φk2424 = −Wk4 − ETNk4E; Φk2525 = −Wk5 − ETNk5E;

Φk2626 = −αkSk1; Φk2727 = −αkSk2; Φk2828 = −αkSk3.

Proof Construct the Lyapunov-Krasovskii functional:

Vk(zk(t), i, t) =

8∑
r=1

Vkr(zk(t), i, t), (3.17)

where

Vk1(zk(t), i, t) = zTk (t)PkiEzk(t),

Vk2(zk(t), i, t) =

∫ t

t−τi(t)

zTk (s)Qk1izk(s)ds+

∫ t

t−τi(t)

żTk (s)E
TQk2iEżk(s)ds

+

∫ t

t−τ̄i

zTk (s)Qk3zk(s)ds+

∫ t

t−τ̄i

żTk (s)E
TQk4Eżk(s)ds,

Vk3(zk(t), i, t) =

∫ t

t−hi(t)

zTk (s)Rk1izk(s)ds+

∫ t

t−hi(t)

żTk (s)E
TRk2iEżk(s)ds

+

∫ t

t−h̄i

zTk (s)Rk3zk(s)ds+

∫ t

t−h̄i

żTk (s)E
TRk4Eżk(s)ds,

Vk4(zk(t), i, t) =

∫ t−d1i

t−di(t)

zTk (s)Tk1izk(s)ds+

∫ t

t−d1i

zTk (s)Tk2zk(s)ds

+

∫ t−d1i

t−dmi

zTk (s)Tk3zk(s)ds+

∫ t−dmi

t−d2i

zTk (s)Tk4zk(s)ds,

Vk5(zk(t), i, t) =

∫ t

t−d1i

żTk (s)E
TUk1Eżk(s)ds+

∫ t−d1i

t−dmi

żTk (s)E
TUk2Eżk(s)ds

+

∫ t−dmi

t−d2i

żTk (s)E
TUk3Eżk(s)ds,

Vk6(zk(t), i, t) =

∫ 0

−τ̄i

∫ t

t+θ

τ̄iz
T
k (s)Wk1zk(s)dsdθ +

∫ 0

−h̄i

∫ t

t+θ

h̄iz
T
k (s)Wk2zk(s)dsdθ
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+

∫ 0

−d1i

∫ t

t+θ

d1iz
T
k (s)Wk3zk(s)dsdθ +

∫ −d1i

−dmi

∫ t

t+θ

ρ1iz
T
k (s)Wk4zk(s)dsdθ

+

∫ −dmi

−d2i

∫ t

t+θ

ρ2iz
T
k (s)Wk5zk(s)dsdθ,

Vk7(zk(t), i, t) =

∫ 0

−τ̄i

∫ t

t+θ

żTk (s)E
TMk1Eżk(s)dsdθ +

∫ 0

−h̄i

∫ t

t+θ

żTk (s)E
TMk2Eżk(s)dsdθ

+

∫ 0

−d1i

∫ t

t+θ

żTk (s)E
TMk3Eżk(s)dsdθ

+

∫ −d1i

−dmi

∫ t

t+θ

żTk (s)E
TMk4Eżk(s)dsdθ

+

∫ −dmi

−d2i

∫ t

t+θ

żTk (s)E
TMk5Eżk(s)dsdθ,

Vk8(zk(t), i, t) =

∫ 0

−τ̄i

∫ 0

θ

∫ t

t+λ

τ̄i
2

2
żTk (s)E

TNk1Eżk(s)dsdλdθ

+

∫ 0

−h̄i

∫ 0

θ

∫ t

t+λ

h̄i
2

2
żTk (s)E

TNk2Eżk(s)dsdλdθ

+

∫ 0

−d1i

∫ 0

θ

∫ t

t+λ

d21i
2
żTk (s)E

TNk3Eżk(s)dsdλdθ

+

∫ −d1i

−dmi

∫ 0

θ

∫ t

t+λ

ρ3iż
T
k (s)E

TNk4Eżk(s)dsdλdθ

+

∫ −dmi

−d2i

∫ 0

θ

∫ t

t+λ

ρ4iż
T
k (s)E

TNk5Eżk(s)dsdλdθ.

The derivative of Vkr(zk(t), i, t) along the trajectory of (3.4) with respect to t is given by

V̇k1(zk(t), i, t) = 2zTk (t)Pki

[
(Ai + b1Γ1iλki − b4σkΓ4)zk(t) + (Bi + b2Γ2iλki)zk(t− di(t))

+Di

∫ t

t−hi(t)

zk(s)ds+ (Ci + b3Γ3iλki)żk(t− τi(t)) + Eihk1(t) +Hihk2(t)

+ Jihk3(t) +

m∑
j=1

πij [z
T
k (t)PkjEzk(t)]

]
, (3.18)

V̇k2(zk(t), i, t) ≤ zTk (t)[Qk1i +Qk3]zk(t) + żTk (t)[E
TQk2iE + ETQk4E]żk(t)

− zTk (t− τ̄i)Qk3zk(t− τ̄i)− (1− νi)z
T
k (t− τi(t))Qk1izk(t− τi(t))

− (1− νi)ż
T
k (t− τi(t))E

TQk2iżk(t− τi(t))− żTk (t− τ̄i)E
TQk4Eżk(t− τ̄i)

+
m∑
j=1

πij

∫ t

t−τ̄j

[zTk (s)Qk1jzk(s) + żTk (s)E
TQk2jEżk(s)]ds, (3.19)

V̇k3(zk(t), i, t) ≤ zTk (t)[Rk1i +Rk3]zk(t) + żTk (t)[E
TRk2iE + ETRk4E]żk(t)

− zTk (t− h̄i)Rk3zk(t− h̄i)− (1− δi)ż
T
k (t− hi(t))E

TRk2iEżk(t− hi(t))

− (1− δi)z
T
k (t− hi(t))Rk1izk(t− hi(t))− żTk (t− h̄i)E

TRk4Eżk(t− h̄i)

+

m∑
j=1

πij

∫ t

t−h̄j

[zTk (s)Rk1jzk(s) + żTk (s)E
TRk2jEżk(s)]ds, (3.20)

V̇k4(zk(t), i, t) ≤ zTk (t− d1i)[Tk1i − Tk2 + Tk3]zk(t− d1i) + zTk (t− dmi)[Tk4 − Tk3]zk(t− dmi)
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− (1− µi)z
T
k (t− di(t))Tk1izk(t− di(t))− zTk (t− d2i)Tk4zk(t− d2i)

+ zTk (t)Tk2zk(t) +
m∑
j=1

πij

∫ t−d1j

t−d2j

zTk (s)Tk1jzk(s)ds, (3.21)

V̇k5(zk(t), i, t) = żTk (t)E
TUk1Eżk(t) + żTk (t− d1i)[E

TUk2E − ETUk1E]żk(t− d1i)

+ żTk (t− dmi)[E
TUk3E − ETUk2E]żk(t− dmi)

+ żTk (t− d2i)E
TUk3Eżk(t− d2i), (3.22)

V̇k6(zk(t), i, t) = zTk (t)[τ̄
2
i Wk1 + h̄2

iWk2 + d21iWk3 + ρ21iWk4 + ρ22iWk5]zk(t)

−
∫ t

t−τ̄i

τ̄iz
T
k (s)Wk1zk(s)ds−

∫ t

t−h̄i

h̄iz
T
k (s)Wk2zk(s)ds

−
∫ t

t−d1i

d1iz
T
k (s)Wk3zk(s)ds−

∫ t−d1i

t−dmi

ρ1iz
T
k (s)Wk4zk(s)ds

−
∫ t−dmi

t−d2i

ρ2iz
T
k (s)Wk5zk(s)ds, (3.23)

V̇k7(zk(t), i, t) = żTk (t)E
T [τ̄iMk1 + h̄iMk2 + d1iMk3 + ρ1iMk4 + ρ2iMk5]Eżk(t)

−
∫ t

t−τ̄i

żTk (s)E
TMk1Eżk(s)ds−

∫ t

t−h̄i

żTk (s)E
TMk2Eżk(s)ds

−
∫ t

t−d1i

żTk (s)E
TMk3Eżk(s)ds−

∫ t−d1i

t−dmi

żTk (s)E
TMk4Eżk(s)ds

−
∫ t−dmi

t−d2i

żTk (s)E
TMk5Eżk(s)ds, (3.24)

V̇k8(zk(t), i, t) = żTk (t)E
T
[ τ̄i4
4
Nk1 +

h̄i
4

4
Nk2 +

d41i
4
Nk3 + ρ23iNk4 + ρ24iNk5

]
Eżk(t)

+ zTk (t)
[
− ET τ̄i

2Nk1E − ET h̄i
2
Nk2E − ET d21iNk3E − ET ρ21iNk4E

− ET ρ22iNk5E
]
zk(t) + τ̄iz

T
k (t)E

TNk1E

∫ t

t−τ̄i

zk(s)ds

−
∫ t

t−τ̄i

zTk (s)dsE
TNk1E

∫ t

t−τ̄i

zk(s)ds+ τ̄i

∫ t

t−τ̄i

zTk (s)dsE
TNk1Ezk(t)

+ h̄iz
T
k (t)E

TNk2E

∫ t

t−h̄i

zk(s)ds+ h̄i

∫ t

t−h̄i

zTk (s)dsE
TNk2Ezk(t)

−
∫ t

t−h̄i

zTk (s)dsE
TNk2E

∫ t

t−h̄i

zk(s)ds+ d1i

∫ t

t−d1i

zTk (s)dsE
TNk3Ezk(t)

−
∫ t

t−d1i

zTk (s)dsE
TNk3E

∫ t

t−d1i

zk(s)ds+ d1iz
T
k (t)E

TNk3E

∫ t

t−d1i

zk(s)ds

+ ρ1iz
T
k (t)E

TNk4E

∫ t−d1i

t−dmi

zk(s)ds+ ρ1i

∫ t−d1i

t−dmi

zTk (s)dsE
TNk4Ezk(t)

−
∫ t−d1i

t−dmi

zTk (s)dsE
TNk4E

∫ t−d1i

t−dmi

zk(s)ds

+ ρ2iz
T
k (t)E

TNk5E

∫ t−dmi

t−d2i

zk(s)ds
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−
∫ t−dmi

t−d2i

zTk (s)dsE
TNk5E

∫ t−dmi

t−d2i

zk(s)ds

+ ρ2i

∫ t−dmi

t−d2i

zTk (s)dsE
TNk5Ezk(t). (3.25)

Because of
m∑
j=1

πij = 0, the following zero equations hold for arbitrary matrices Y1i = Y T
1i ,

Y2i = Y T
2i , Y3i = Y T

3i , Y4i = Y T
4i , Y5i = Y T

5i , (i ∈ S)

−
∫ t

t−τ̄j

zTk (s)
m∑
j=1

πijY1izk(s)ds = 0, (3.26)

−
∫ t

t−τ̄j

żTk (s)E
T

m∑
j=1

πijY2iEżk(s)ds = 0, (3.27)

−
∫ t

t−h̄j

zTk (s)

m∑
j=1

πijY3izk(s)ds = 0, (3.28)

−
∫ t

t−h̄j

żTk (s)E
T

m∑
j=1

πijY4iEżk(s)ds = 0, (3.29)

−
∫ t−d1j

t−d2j

zTk (s)

m∑
j=1

πijY5izk(s)ds = 0. (3.30)

Notice (a) of Lemma 2.7, then,

− τ̄i

∫ t

t−τ̄i

zTk (s)Wk1zk(s)ds ≤ −
(∫ t

t−τ̄i

zTk (s)ds
)
Wk1

(∫ t

t−τ̄i

zk(s)ds
)
,

− h̄i

∫ t

t−h̄i

zTk (s)Wk2zk(s)ds ≤ −
(∫ t

t−h̄i

zTk (s)ds
)
Wk2

(∫ t

t−h̄i

zk(s)ds
)
,

− d1i

∫ t

t−d1i

zTk (s)Wk3zk(s)ds ≤ −
(∫ t

t−d1i

zTk (s)ds
)
Wk3

(∫ t

t−d1i

zk(s)ds
)
,

− ρ1i

∫ t−d1i

t−dmi

zTk (s)Wk4zk(s)ds ≤ −
(∫ t−d1i

t−dmi

zTk (s)ds
)
Wk4

(∫ t−d1i

t−dmi

zk(s)ds
)
,

− ρ2i

∫ t−dmi

t−d2i

zTk (s)Wk5zk(s)ds ≤ −
(∫ t−dmi

t−d2i

zTk (s)ds
)
Wk5

(∫ t−dmi

t−d2i

zk(s)ds
)
. (3.31)

Notice (b) of Lemma 2.7, then,

−
∫ t

t−τ̄i

żTk (s)E
TMk1Eżk(s)ds

≤ 1

τ̄i

 zk(t)

zk(t− τ̄i)

T −ETMk1E ETMk1E

∗ −ETMk1E

 zk(t)

zk(t− τ̄i)

 ,

−
∫ t

t−h̄i

żTk (s)E
TMk2Eżk(s)ds

≤ 1

h̄i

 zk(t)

zk(t− h̄i)

T −ETMk2E ETMk2E

∗ −ETMk2E

 zk(t)

zk(t− h̄i)

 ,
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−
∫ t

t−d1i

żTk (s)E
TMk3Eżk(s)ds

≤ 1

d1i

 zk(t)

zk(t− d1i)

T −ETMk3E ETMk3E

∗ −ETMk3E

 zk(t)

zk(t− d1i)

 ,

−
∫ t−d1i

t−dmi

żTk (s)E
TMk4Eżk(s)ds

≤ 1

ρ1i

 zk(t− d1i)

zk(t− dmi)

T −ETMk4E ETMk4E

∗ −ETMk4E

 zk(t− d1i)

zk(t− dmi)

 ,

−
∫ t−dmi

t−d2i

żTk (s)E
TMk5Eżk(s)ds

≤ 1

ρ2i

 zk(t− dmi)

zk(t− d2i)

T −ETMk5E ETMk5E

∗ −ETMk5E

 zk(t− dmi)

zk(t− d2i)

 . (3.32)

For τi(t) ∈ [0, τ̄i], using Lemma 2.7(a), we obtain the following:

−
∫ t

t−τ̄i

τ̄iz
T
k (s)Wk1zk(s)ds ≤

−τ̄i
τ̄i − τi(t)

(∫ t−τi(t)

t−τ̄i

zTk (s)ds
)
Wk1

(∫ t−τi(t)

t−τ̄i

zk(s)ds
)

− τ̄i
τi(t)

(∫ t

t−τi(t)

zTk (s)ds
)
Wk1

(∫ t

t−τi(t)

zk(s)ds
)
. (3.33)

For hi(t) ∈ [0, h̄i], using Lemma 2.7(a), we obtain the following:

−
∫ t

t−h̄i

h̄iz
T
k (s)Wk2zk(s)ds ≤

−h̄i

h̄i − hi(t)

(∫ t−hi(t)

t−h̄i

zTk (s)ds
)
Wk2

(∫ t−hi(t)

t−h̄i

zk(s)ds
)

− h̄i

hi(t)

(∫ t

t−hi(t)

zTk (s)ds
)
Wk2

(∫ t

t−hi(t)

zk(s)ds
)
. (3.34)

From equations (3.12) and (3.17)–(3.34), we obtain

V̇k ≤
8∑

r=1

V̇kr − αkξ
T
k (t)Φkξk(t)

≤ ξTk (t)Ψk1ξk(t) + ξTk (t)η
T
k

[
Qk2i +Qk4 +Rk2i +Rk4 + Uk1 + τ̄iMk1 + h̄iMk2 + d1iMk3

+ ρ1iMk4 + ρ2iMk5 +
τ̄i

4

4
Nk1 +

h̄i
4

4
Nk2 +

d41i
4
Nk3 + ρ23iNk4 + ρ24iNk5

]
ηkξk(t)

+

∫ t

t−τ̄j

zTk (s)
m∑
j=1

πij(Qk1j − Y1i)zk(s)ds+

∫ t

t−τ̄j

żTk (s)E
T

m∑
j=1

πij(Qk2j − Y2i)Eżk(s)ds

+

∫ t

t−h̄j

zTk (s)
m∑
j=1

πij(Rk1j − Y3i)zk(s)ds+

∫ t

t−h̄j

żTk (s)E
T

m∑
j=1

πij(Rk2j − Y4i)Eżk(s)ds

+

∫ t−d1j

t−d2j

zTk (s)
m∑
j=1

πij(Tk1j − Y5i)zk(s)ds

≤ ξTk (t)Ξξk(t) +

∫ t

t−τ̄j

zTk (s)

m∑
j=1

πij(Qk1j − Y1i)zk(s)ds
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+

∫ t

t−τ̄j

żTk (s)E
T

m∑
j=1

πij(Qk2j − Y2i)Eżk(s)ds+

∫ t

t−h̄j

zTk (s)
m∑
j=1

πij(Rk1j − Y3i)zk(s)ds

+

∫ t

t−h̄j

żTk (s)E
T

m∑
j=1

πij(Rk2j − Y4i)Eżk(s)ds+

∫ t−d1j

t−d2j

zTk (s)

m∑
j=1

πij(Tk1j − Y5i)zk(s)ds

(3.35)

By Schur complement Lemma, we get (3.14), and

V̇k(zk(t), i, t) < 0. (3.36)

As ETPki = PkiE ≥ 0, the stable result cannot be obtained via the Lyapunov stability theory

because the rank of ETPki in the Lyapunov function Vk1(zk(t), i, t) is r < n.

By Lemma 2.6, it is clear that the pair (E,Ai+b1Γ1iλk−b4σkΓ4) is regular and impulse free

whenever inequalities (3.13)–(3.16) hold. Then, the nonsingular matrices are Xk =
[
XT

k1 XT
k2

]
and Yk =

[
Y T
k1 Y T

k2

]T
. The following decomposition holds:

XkEYk = diag{Ir, 0}; (3.37)

Xk(Ai + b1Γ1iλk − b4σkΓ4)Yk = diag{Āki, In−r}, (3.38)

where Xk1 ∈ Rr×n, Xk2 ∈ R(n−r)×n, Yk1 ∈ Rn×r, Yk2 ∈ Rn×(n−r), and Āki ∈ Rr×r, k =

2, 3, · · · , N.

The network system (3.4) is equivalent to

ż
(1)
k (t) = Ākiz

(1)
k (t) +Xk1Erihk1 +Xk1Hrihk2 +Xk1Jrihk3

+Xk1DriYk1

∫ t

t−hi(t)

z
(1)
k (s)ds+Xk1(Bri + b2Γ2riλk)Yk1z

(1)
k (t− di(t))

+Xk1(Cri + b3Γ3riλk)Yk1żk
(1)(t− τi(t)),

0 = z
(2)
k (t) +Xk2E(n−r)ihk1 +Xk2H(n−r)ihk2 +Xk2J(n−r)ihk3

+Xk2D(n−r)iYk2

∫ t

t−hi(t)

z
(2)
k (s)ds+Xk2(B(n−r)i

+b2Γ2(n−r)iλk)Yk2z
(2)
k (t− di(t)) +Xk2(C(n−r)i

+b3Γ3(n−r)iλk)Yk2żk
(2)(t− τi(t)), k = 2, 3, · · · , N,

(3.39)

where Y −1
k zk(t) =

 z
(1)
k (t)

z
(2)
k (t)

 , Γ2ri = diag{c1(i), c2(i), · · · , cr(i)}, Γ2(n−r)i = diag{cr+1(i),

cr+2(i), · · · , cn(i)}, Γ3ri = diag{d1(i), d2(i), · · · , dr(i)}, and Γ3(n−r)i = diag{dr+1(i), dr+2(i),

· · · , dn(i)}. Let X−T
k PkiYk =

P
(1)
ki P

(2)
ki

P
(3)
ki P

(4)
ki

 . Then, according to equations (3.17), (3.37), and

(3.38), it is easy to see that P
(1)
ki = P

(1)T
ki and P

(2)
ki = 0. Hence,

Vk1(zk(t), i, t) = z
(1)T
k (t)P

(1)
ki Ez

(1)
k (t). (3.40)

From V̇k(zk) < 0, z
(1)
k (t) of system (3.4) is asymptotically stable, that is, lim

t→∞
∥z(1)k (t)∥ = 0,

k = 2, 3, · · · , N. In the following, we show that z
(2)
k (t) are also asymptotically stable. From
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equation (3.38) and choosing Xk2 such that Xk2X
T
k2 = In−r which implies that ∥Xk2∥ = 1 and

using Lemma 2.5, we have

∥z(2)k (t)∥ = ∥Xk2E(n−r)ihk1 +Xk2H(n−r)ihk2 +Xk2J(n−r)ihk3

+Xk2D(n−r)iYk2

∫ t

t−hi(t)

z
(2)
k (s)ds

+Xk2(B(n−r)i + b2Γ2(n−r)iλk)Yk2z
(2)
k (t− di(t))

+Xk2(C(n−r)i + b3Γ3(n−r)iλk)Yk2żk
(2)(t− τi(t))∥

≤ ∥Xk2∥∥E(n−r)i∥∥hk1∥+ ∥Xk2∥∥H(n−r)i∥∥hk2∥+ ∥Xk2∥∥J(n−r)i∥∥hk3∥

+ ∥Xk2∥∥D(n−r)i∥∥Yk2∥
∫ t

t−hi(t)

∥z(2)k (s)∥ds

+ ∥Xk2∥(∥B(n−r)i∥+ b2∥Γ2(n−r)i∥max(λk))∥Yk2∥∥z(2)k (t− di(t)))∥

+ ∥Xk2∥(∥C(n−r)i∥+ b3∥Γ3(n−r)i∥max(λk))∥Yk2∥∥żk(2)(t− τi(t))∥

≤ ∥hk1∥+ ∥hk2∥+ ∥hk3∥

=
N∑

k=2

{l̄1∥zk(t)∥+ l̄2∥zk(t− di(t))∥+ l̄3∥żk(t− τi(t))∥}

≤
N∑

k=2

l̄1∥zk(t)∥.

(
1−

N∑
k=2

l̄1∥Wk∥
)
∥z(2)k (t)∥ ≤

N∑
k=2

l̄1∥Wk∥∥z(1)k (t)∥. (3.41)

If we chooseWk, such that
(
1−

N∑
k=2

l̄1∥Wk∥
)
> 0, which leads lim

t→∞
∥z(2)k (t)∥ = 0, k = 2, 3, · · · , N.

This completes the proof. �

Remark 3.2 In the literature, the authors ([2, 5, 7, 13, 20, 21]) investigated the problem of

complex dynamical networks with time delay components. It is noted that unfortunately in the

existing literature the problem of synchronization criteria for a class of singular neutral complex

dynamical networks with distributed delay and Markovian jump parameters via pinning control

has not been considered yet. Motivated by this, in this article we provided a sufficient condition

to ensure that the SNCDN (3.1) is global (asymptotically) synchronized.

Remark 3.3 Synchronization of the Markovian jumping neutral complex dynamical net-

works is considered in [45]. In this article, Markovian jumping singular neutral complex dynam-

ical networks with pinning control is employed. Synchronization conditions are established in

the form of linear matrix inequalities (LMIs). The solvability of derived conditions depends not

only on the pinned nodes but also on the initial values of the Markovian jumping parameter.

It is pointed out that there is no useful term is ignored while maintaining our stability results.

4 Numerical Examples

In this section, numerical examples are presented to demonstrate the effectiveness of the

synchronization for pinning control.
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Example 4.1 Consider the following time-varying delayed Markovian jumping SNCDN

with 3-node and mode s = 2,

Eżk(t) = (Ai + b1Γ1iλki − b4σkΓ4)zk(t) + (Bi + b2Γ2iλki)zk(t− di(t)) +Di

∫ t

t−hi(t)

zk(s)ds

+ (Ci + b3Γ3iλki)żk(t− τi(t)) + Eihk1(t) +Hihk2(t) + Jihk3(t), k = 1, 2, 3,

with

E =

 4 −1

−4 1

 , A1 =

−1.2 0.1

−0.1 −1

 , A2 =

−0.3 0.09

0.2 −0.4

 , B1 =

 0.2 0

0 0.5

 ,

B2 =

 0.3 0.2

−0.1 0

 , C1 =

−0.2 0

0.2 0.6

 , C2 =

 0.2 0.1

0.5 −0.4

 , D1 =

0.2 0

0 −0.15

 ,

D2 =

 0.3 0

−0.1 0.15

 , E1 =

0.1 0

0 −0.1

 , E2 =

0.2 0

0 −0.2

 , Γ11 =

1 0

0 1

 ,

Γ21 =

2 0

0 2

 , Γ31 =

 2 0

0 2

 , Γ4 =

4 0

0 4

 , Γ12 =

 1 0

0 1

 , Γ22 =

2 0

0 2

 ,

Γ32 =

4 0

0 4

 , Π =

−2 2

3 −3

 , G
(a)
1 = G

(a)
2 =


−2 1 1

1 −2 1

1 1 −2


(a = 1, 2, 3), Ji = Hi = 0, i = {1, 2}. Let us consider b1 = 1, b2 = b3 = 0.5, b4 = 0.6, σ1 = 0.4,

σ2 = 0.5, σ3 = 0.3, τ̄1 = τ̄2 = 0.2, ν1 = ν2 = 0.5, h̄1 = h̄1 = 0.3, δ1 = δ2 = 0.6, d11 = 0.4,

d21 = 0.6, dm1 = 0.5, µ1 = µ2 = 0.4, and the eigenvalues of G
(a)
i are found to be λi1 = 0,

λi2 = −3 and λi3 = −3. By using Matlab LMI Toolbox, we solve the LMIs (3.13)–(3.16) in

Theorem 3.1, we obtain the feasible solutions for N = 3, k = 1, i = 1, 2 as follows:

P11 = 10−4

 0.6118 −0.0496

−0.0496 0.6304

 , P12 = 10−4

 0.2511 −0.0503

−0.0503 0.2180

 ,

Q111 = 10−3

 0.3578 −0.1523

−0.1523 0.1809

 , Q121 = 10−4

 0.3082 −0.1399

−0.1399 0.0430

 ,

Q112 = 10−3

 0.5723 −0.1205

−0.1205 −0.0205

 , Q122 = 10−3

 0.1864 −0.0059

−0.0059 0.0084

 ,

Q13 = 10−4

 0.5267 −0.2653

−0.2653 0.6233

 , Q14 = 10−5

 0.7621 −0.3320

−0.3320 0.2602

 ,

R111 = 10−3

 0.3657 −0.1528

−0.1528 0.1512

 , R121 = 10−4

0.2724 0.0783

0.0783 −0.1579

 ,

R112 = 10−3

 0.6023 −0.1342

−0.1342 −0.0764

 , R122 = 10−3

0.1770 0.0227

0.0227 0.0113

 ,
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R13 = 10−4

 0.6323 −0.2998

−0.2998 0.6319

 , R14 = 10−5

 0.7892 −0.3260

−0.3260 0.2599

 ,

T111 = 10−3

 0.3254 −0.0922

−0.0922 0.0563

 , T112 = 10−3

 0.8450 −0.0851

−0.0851 0.3999

 ,

T12 = 10−3

 0.2189 −0.0719

−0.0719 0.2057

 , T13 = 10−3

 0.1007 −0.0143

−0.0143 0.1176

 ,

T14 = 10−3

 0.1654 −0.0336

−0.0336 0.0742

 , U11 = 10−4

 0.1074 −0.0559

−0.0559 0.0399

 ,

U12 = 10−3

 0.1652 0.1541

0.1541 0.1607

 , U13 = 10−3

 0.1620 0.1564

0.1564 0.1598

 ,

W11 = 10−3

 0.3136 −0.0036

−0.0036 0.3049

 , W12 = 10−3

 0.3099 −0.0077

−0.0077 0.2905

 ,

W13 = 10−3

 0.1178 0.0614

0.0614 0.2124

 , W14 = 10−3

 0.1852 0.1338

0.1338 0.2603

 ,

W15 = 10−3

 0.1731 0.1231

0.1231 0.2463

 , M11 = 10−5

 0.9401 0.3006

0.3006 0.3576

 ,

M12 = 10−5

0.9501 0.0686

0.0686 0.1649

 , M13 = 10−4

 0.1090 −0.0121

−0.0121 0.0100

 ,

M14 = 10−4

0.2250 0.0402

0.0402 0.0834

 , M15 = 10−4

0.1875 0.0500

0.0500 0.0941

 ,

N11 = 10−3

0.1825 0.1378

0.1378 0.1528

 , N12 = 10−3

0.1601 0.1158

0.1158 0.1304

 ,

N13 = 10−3

0.1088 0.0778

0.0778 0.0994

 , N14 = 10−3

0.1378 0.1143

0.1143 0.1545

 ,

N15 = 10−3

0.1281 0.1035

0.1035 0.1415

 .

Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (3.1)

achieve synchronization through the pinning controller uk(t) with the above mentioned param-

eters.

Example 4.2 Consider the following time-varying delayed Markovian jumping SNCDN
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with 5-node and mode s = 2:

Eżk(t) = (Ai + b1Γ1iλki − b4σkΓ4)zk(t) + (Bi + b2Γ2iλki)zk(t− di(t)) +Di

∫ t

t−hi(t)

zk(s)ds

+ (Ci + b3Γ3iλki)żk(t− τi(t)) + Eihk1(t) +Hihk2(t) + Jihk3(t), k = 1, 2, 3, 4, 5,

with

E =

4 0

0 0

 , A1 =

−1.2 0.1

−0.1 −1

 , A2 =

−0.3 0.09

0.2 −0.4

 , B1 =

 0.2 0

0 0.3

 ,

B2 =

 0.31 0.25

−0.14 0.18

 , C1 =

 0.28 0.02

−0.06 0.11

 , C2 =

0.22 0.14

0.05 −0.45

 ,

D1 =

−0.2 0

0 −0.1

 , D2 =

 0.3 0

−0.1 0.15

 , E1 =

 0.01 0

0 −0.01

 ,

E2 =

 0.2 0

0 −0.2

 , Γ11 =

 1 0

0 1

 , Γ21 =

 2 0

0 2

 , Γ31 =

 1 0

0 1

 ,

Γ4 =

 2 0

0 2

 , Γ12 =

 1 0

0 1

 , Γ22 =

1 0

0 1

 , Γ32 =

 2 0

0 2

 ,

Π =

−2 2

3 −3

 ; G
(1)
1 = G

(2)
1 = G

(3)
1 =



−2 0.5 0.5 0.5 0.5

0.5 −0.5 0 0 0

0.5 0 −0.5 0 0

0.5 0 0 −0.5 0

0.5 0 0 0 0.5


,

G
(1)
2 = G

(2)
2 = G

(3)
2 =



−0.4 0.1 0.1 0.1 0.1

0.1 −0.4 0.1 0.1 0.1

0.1 0.1 −0.4 0.1 0.1

0.1 0.1 0.1 −0.4 0.1

0.1 0.1 0.1 0.1 −0.4


;

Ji = Hi = 0, i = {1, 2}. Let us consider b1 = 0.1, b2 = b3 = 0.3, b4 = 0.2, σ1 = 0.4, σ2 = 0.5,

σ3 = 0.3, τ̄1 = τ̄2 = 0.2, ν1 = ν2 = 0.5, h̄1 = h̄1 = 0.3, δ1 = δ2 = 0.6, d11 = 0.4, d21 = 0.6,

dm1 = 0.5, µ1 = µ2 = 0.4. The eigenvalues of G
(a)
1 and G

(a)
2 are found to be λ11 = 0,

λ12 = λ13 = λ14 = −0.5, λ15 = 2.5, and λ21 = 0, λ22 = λ23 = λ24 = λ25 = −0.5. Using Matlab

LMI Toolbox, we solve the LMIs (3.13)–(3.16) in Theorem 3.1, then we obtain the feasible

solutions for N = 5, k = 1, i = 1, 2 as follows:

P11 = 10−3

 0.2923 0.0757

0.0757 0.5387

 , P12 = 10−3

 0.1341 −0.1466

−0.1466 0.1501

 ,
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Q111 = 10−3

 0.6830 −0.1230

−0.1230 0.7729

 , Q121 = 10−3

 0.1466 −0.0027

−0.0027 0.1903

 ,

Q112 = 10−3

 0.2399 −0.0721

−0.0721 −0.0126

 , Q122 = 10−5

 0.8336 −0.4680

−0.4680 0.3318

 ,

Q13 = 10−3

 0.0859 −0.1268

−0.1268 0.1839

 , Q14 = 10−4

0.7850 0.0468

0.0468 0.1630

 ,

R111 = 10−3

 0.7125 −0.1471

−0.1471 0.8420

 , R121 = 10−3

 0.1572 −0.0043

−0.0043 0.1904

 ,

R112 = 10−3

 0.2403 −0.0735

−0.0735 −0.0290

 , R122 = 10−5

 0.3315 −0.1176

−0.1176 0.2007

 ,

R13 = 10−3

 0.0734 −0.1245

−0.1245 0.1835

 , R14 = 10−4

 0.7850 0.0468

0.0468 0.1630

 ,

T111 = 10−3

 0.8135 −0.0743

−0.0743 0.3789

 , T112 = 10−3

 0.3061 −0.0952

−0.0952 0.0592

 ,

T12 = 10−3

 0.4278 −0.4275

−0.4275 0.8809

 , T13 = 10−3

 0.0977 −0.1666

−0.1666 0.3324

 ,

T14 = 10−3

 0.2754 −0.0531

−0.0531 0.1747

 , U11 = 10−3

0.1970 0.0150

0.0150 0.0173

 ,

U12 = 10−3

0.1326 0.0100

0.0100 0.5486

 , U13 = 10−3

 0.0671 0.0050

0.0050 0.5485

 ,

W11 = 10−3

 0.5450 −0.0026

−0.0026 0.5344

 , W12 = 10−3

 0.5571 −0.0082

−0.0082 0.5188

 ,

W13 = 10−3

 0.0194 −0.0693

−0.0693 0.4535

 , W14 = 10−3

 0.0185 −0.0075

−0.0075 0.5417

 ,

W15 = 10−3

 0.0116 −0.0181

−0.0181 0.5220

 , M11 = 10−3

0.0118 0.0055

0.0055 0.1001

 ,

M12 = 10−4

0.1867 0.0817

0.0817 0.6509

 , M13 = 10−4

0.3203 0.1054

0.1054 0.4746

 ,

M14 = 10−3

0.0381 0.0105

0.0105 0.1784

 , M15 = 10−3

0.0340 0.0090

0.0090 0.1900

 ,
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N11 = 10−3

0.0879 0.0006

0.0006 0.5453

 , N12 = 10−3

0.0874 0.0013

0.0013 0.5328

 ,

N13 = 10−3

0.0847 0.0180

0.0180 0.5022

 , N14 = 10−3

0.0860 0.0020

0.0020 0.5313

 ,

N15 = 10−3

0.0868 0.0043

0.0043 0.5254

 .

Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (2.1)

achieve synchronization through the pinning controller uk(t) with the above mentioned param-

eters.
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Figure 1 State trajectories of the system in Example 2

5 Conclusion

In this article, some new synchronization stability criteria are proposed for a class of Marko-

vian jumping SNCDNs with distributed delay and pinning control. On the basis of appropriate

Lyapunov-Krasovskii functional which contains triple integral terms and bounding techniques,

the novel delay dependent synchronization condition is derived in terms of linear matrix in-

equalities. We established some sufficiency conditions for synchronization, and the numerical

results can demonstrate the effectiveness of the obtained result. In future, the preosed methods

can be further extended to deal with some other problems on pinning control and synchroniza-

tion for general stochastic dynamical networks, complex systems with impulsive perturbation,

etc.
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