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Abstract This article discusses the synchronization problem of singular neutral complex
dynamical networks (SNCDN) with distributed delay and Markovian jump parameters via
pinning control. Pinning control strategies are designed to make the singular neutral com-
plex networks synchronized. Some delay-dependent synchronization criteria are derived in
the form of linear matrix inequalities based on a modified Lyapunov-Krasovskii functional
approach. By applying the Lyapunov stability theory, Jensen’s inequality, Schur complement,
and linear matrix inequality technique, some new delay-dependent conditions are derived to
guarantee the stability of the system. Finally, numerical examples are presented to illustrate

the effectiveness of the obtained results.
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1 Introduction

Over the past decade, complex networks have been studied intensively in various disciplines,

such as sociology, biology, mathematics, and engineering [1-6]. A complex network is a large
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set of interconnected nodes, where the nodes and connections can be anything, and a node
is a fundamental unit having specific contents and exhibiting dynamical behavior. There are
two ways of connection between nodes: directed connection and undirected connection, and
the connection relationship can be unweighted and weighted. According to different ways of
connection and whether there are weights or not between nodes, we get some different kinds
of complex networks, such as undirected unweighted network, directed weighted network, etc.
A complex network can exhibit complicated dynamics which may be absolutely different from
that of a single node.

The most well-known examples are electrical power grids, communication networks, inter-
net, World Wide Web, metabolic systems, food webs, and so on. Hence, the investigation of
complex dynamical networks is of great importance, and many systems in science and technol-
ogy can be modeled as complex networks [8-10]. Time delay is encountered in many dynamical
systems and often results in poor performance and even instability of control systems [11-13].
Because delay is usually time-varying in many practical system, many approaches were devel-
oped to investigate the stability of systems with time-varying delay such as descriptor model
transformation method; the improved bounding technique; free weighting matrices; and the
properly chosen Lyapunov-Krasovskii functional (LKFs) (see [14-16] and references therein).

Synchronization is a kind of typical collective behaviors and basic motions in nature [17-19].
Recently, one of the interesting and significant phenomena in complex dynamical networks is
the synchronization of all dynamical nodes in a network. It is well known that there are many
useful network synchronization phenomena in our real life, such as the synchronous transfer of
digital or analog signals in communication networks [20]. More recently, adaptive synchroniza-
tion in networks or coupled oscillators has received an increasing attention [21]. In particular,
one of the interesting phenomena in complex networks is the synchronization, which is an im-
portant research subject with the rapidly increasing research, and there are amounts of results
[22]. There are many different kinds of synchronization, such as generalized synchronization,
phase synchronization, projective synchronization, cluster synchronization, and so on [23-27].
Moreover, synchronization has some potential applications in real-world systems, such as syn-
chronization phenomena on the Internet, synchronization related to biological neural networks.
As we know the real-world complex networks normally have a large number of nodes. There-
fore, it is usually difficult to control a complex network by adding the controllers to all nodes.
To reduce the number of the controllers, a natural approach is to control a complex network
by pinning part of nodes. In [28-32], the authors explored the controllability of complex net-
works via pinning. In [33], authors analyzed the synchronization of general complex dynamical
network via pinning control.

Singular systems describe the physical systems better than the regular (nonsingular) ones.
They have variety of physical processes such as power systems and circuit systems. These sys-
tems are sometimes called generalized systems, descriptor systems, differential-algebraic sys-
tems, or implicit systems. It has been noted that a considerable number of results of regular
(nonsingular) systems were extended to singular systems (see references [34-37]). As pointed
out in [38], singular systems can be introduced to improve the traditional complex networks to

describe the singular dynamic behaviours of nodes.

Singular systems can be introduced to improve the traditional complex networks to describe

@ Springer



No.3 K.S. Anand et al: SYNCHRONIZATION OF SNCDN 865

the singular dynamic behaviors of nodes. Recently, there has been a growing interest in sin-
gular systems for their extensive application in control theory, circuits, economics, mechanical
systems, and other areas, inspired by [39-42]. The neutral-type complex dynamic network of
coupled identical nodes is described by a group of neutral functional differential equations, in
which the derivatives of the past state variables are involved as well in the present state of
the system [43]. Synchronization of neutral complex dynamical networks (NCDNs) with cou-
pling time-varying delays is investigated in [44]. Synchronization of neutral complex dynamical

networks with Markovian switching based on sampled-data controller is discussed in [45].

Motivated by the above, we investigate synchronization of Markovian jumping singular
neutral complex dynamical network with time- delays via pinning control by utilizing a novel
Lyapunov - Krasovskii functional. The novel delay dependent synchronization conditions are
derived in terms of linear matrix inequalities, then synchronization problem is studied for the
complex networks. By constructing a new Lyapunov-Krasovskii functional containing triple-
integral terms, employing Newton-Leibnitz formulation and linear matrix inequality techniques,
and introducing free-weighting matrices, some robust global asymptotic stability criteria are de-
rived in terms of linear matrix inequalities (LMIs). To the best of our knowledge, synchroniza-
tion of singular neutral complex dynamical network with Markovian jumping and time delays
via pinning control have received very little research attention, therefore, the main purpose of
this article is to shorten such a gap. By employing some analysis techniques, less conservative
sufficient conditions are derived in terms of LMIs. Finally, numerical example are provided to

demonstrate the advantage and applicability of the proposed result.

Notation The following notations are used throughout this article. R™ denotes the n
dimensional Euclidean space and R™*" is the set of all m x n real matrices. The superscript
'T" denotes matrix transposition, and the notation X > Y (respectively, X < Y'), where X
and Y are symmetric matrices, means that X-Y is positive semidefinite (respectively, positive
definite), and ||-|| denotes the Euclidean norm in R™. If A is a square matrix, denote by Amax(A)
(respectively, Amin(A4)) means the largest(respectively, smallest) eigenvalue of A. Moreover, let
(Q, F,{Ft}t>0, P) be a complete probability space with a filtration {F;};>¢ satisfying the usual
conditions (that is, the filtration contains all P-null sets and is right continuous). The asterisb
% in a symmetric matrix is used to denote term that is induced by symmetry. Given a complete
probability space {Q, F, {F;}+>0, P}, let a natural filtration {F; },>¢ satisfy the usual conditions,
where 2 is the sample space, F is the algebra of events, and P is the probability measure
defined on F. Let {r(¢t)(t > 0)} be a right-continuous Markovian chain on the probability
space (Q, F,{Fi}i>0,P) taking values in the finite space S = {1,2,--- ,m} with generator
II = {7ij }mxm(i,7 € S) given by

mi; A+ 0(A) if © # 7;

Prir(t+A)=j|r(t)=1i} = 147, A+0(A) ifi=j

Here, A > 0 and m;; > 0 is the transition rate from ¢ to j if j # ¢, while m;; = — > ;5.
i#i
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2 Problem Formulation and Preliminaries

2.1 Problem description

Consider the following Markovian jumping singular neutral complex dynamical network
with time varying distributed delay consisting of N identical nodes, in which each node is an
n-dimensional dynamical subsystem:

Eiy(t) = C(r(t))ir(t — 7(t,r(1)))
= A(r(t)xx(t) + B(r(t))zx(t - d(t, 7“(t)))

+D(r(1) / ey PO S o O () 1)

w=1

+ by Z 9(2) ( ))xw(t - d(tvr(t)))

+bs > G (P(E)Ts(r(8)) (t — 7(t,7(1)))

+ L)) fi (2 (1)) + H(r(t)) folaw(t — d(t, 7(1))))
+ J(r(0) fal@n(t — 7(t,7(1)), k = 1,2,--- , N, (2.1)

where E € R™ " is a singular matrix and rank(F) = r(0 < r < n);z,(t) € R™ is the state
variable of the node k € 1,2,--- , N;{r(¢)(t > 0)} is the continuous-time Markov process which
describes the evolution of the mode at time ¢; A(r(t)), B(r(t)), C(r(¢)), D(r(t)), L(r(t)), H(r(t)),
and J(r(t)) € R™*™ are parametric matrices with real values in mode r(t); and f1, fo, f3 : R
R™ are continuously nonlinear vector functions which are, with respect to the current state x(t),
the delayed state x(t — d(t,r(t))) and the neutral delay state & (t — 7(¢,r(t))).

The nonlinear functions are globally Lipschitz,

11 (@ (®) = Fr(ye @) < el () — g (@],
[fo(@r(t = d(t,7(2)))) = falyr(t — d(t, 7)) < luallen(t = d(E,r(2))) = yr(t = dt, ()],
[fs(@x(t —7(t, (1)) = f3(n(t — 7, r(@)))I < lslldw(t — 7,7 (t))) — gt — 7(E, ()],

where l;1,lx2, and [x3 are non-negative constants.

[y(r(t)) € R™™ Dy(r(t)) € R™™ and T'3(r(t)) € R™ "™ represent the inner-coupling
matrices linking between the subsystems in mode r(t). GV (r(t)) = [g](il),]NxN7 GO (r(t)) =
[gl(mz] Nxn, and GO (r(t)) = [gkw] Nx N are the coupling configuration matrices of the networks

representing the coupling strength and the topological structure of the SNCDN in mode r(t),
(m) .

in which g, is defined as follows: if there exists a connection between k" and w'™ (k # w)
nodes, then g(m)( 1) = 91(;2)( (t)) > 0, otherwise, g( )( t) = ggz)( (t)) =0 and
N N
g r) =~ 3 g =- > ap®)m=123k=12 N
w=1,w#k w=1,w#k

For simplicity of notations, we denote A(r(t)), B(r(t)), C(r(t)),

D(r(t)), L(r(t)), H(r(t)), J(r(£)),
G (r()), Ton(r (1)), (m = 1,2,3), by Ay, Bi, Ci, Di, Li, Hy, J;, G

™) T for r(t) =i € s.
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Remark 2.1 The synchronization of Markovian jumping SNCDN (2.1) is investigated
in this work, which is devoted to revealing the effect of pinning controller over the Markovian
switching network topologies. The network topology switching is governed by a time homoge-
nous Markov process, whose state space corresponds to all the possible topologies. However, a
general complex network always has a fixed network topology, which can not describe the situ-
ation changing, so the research on the complex networks under randomly switching topologies,
such as SNCDN (2.1), is very significant and important.

Assumption 1 7(t,r(t)), h(t,r(t)), and d(t, r(t)) denote the mode-dependent time-varying
neutral delay, distributed delay, and retarded delay, respectively. They are assumed to satisfy

the followings:

dilt) < iy () = i, (2.3)

where 7;, h;, 0;, d1i, da;, jti, and v; are real constant scalars. The initial conditions associated
with Markovian jumping SNCDN (2.1) are given as follows:

zi(to) = pi(to) € L%, C([=¢, 01, R"), to € [—¢, 0],
¢ = max{max{h;}, max{7}, max{da; }}.

Correspondingly the response complex network with the control inputs ui(t) € RY (k =

1,2,---,N) can be written as

Ejp(t) — Cige(t — 7i(2))

N
= Ajyr(t) + Biyx(t — di(t)) + D; ye(s)ds + 1> gt Triyu(t)

tihi(t) w=1

N N
b2 D g Doy (t — di(t) + b3 Y gi) Dot (t — 7i(t) + L f1 (i (1))

w=1 w=1

+ Hif2(yk(t - d7(t)) + J?fS(yk(t - Ti(t)) + uk(t)v k= 1’25 e 7N7 (24)

where ug(t) is defined by

—bgoi I’ ykt—xkt 5 k:1,27~-~,l;
w(t) = 10k T4 (Y () (t) (2.5)
0, k=I1+1,1+2,---,N.

2.2 Basic ideas and Lemmas

In this section, we provide some definitions and lemmas which are absolutely necessary to

derive the proposed synchronization criterion.

Definition 2.2 ([50]) Complex dynamical network (2.1) is said to be global (asymptoti-

cally) synchronized by pinning control, if
tlim |z (t) —ye(t)|| =0, k=1,2,---,N. (2.6)
—00
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Definition 2.3 ([51]) The pair (E, A; + b1, \, — byorT'y) is said to be regular, if the
det(aE — (A; + b1I'1; A\, — byoT'y)), for some finite complex number a, is not identically zero.

Definition 2.4 ([51]) The pair (E, A; + bi'1; A\ — byoiTy) is said to be impulse free, if
deg(det(aE — (A; + b1T1; A — byorl'4))) = rank(E) for some finite complex number ‘a’.

Lemma 2.5 ([50]) The eigenvalues of an irreducible matrix G = (gx,,) € RV*Y with
%’C Jkw = —9gkk, k= 1,2,--- , N satisfy the following properties:

(i) Real parts of all eigenvalues of G are less than or equal to 0 with multiplicity 1;

(ii) G has an eigenvalue 0 with multiplicity 1 and the right eigenvector (1,1,---,1)T.

Lemma 2.6 ([52]) The pair (E, A; +b1T'1;\; — byoiT'y) is regular and impulse free if and
only if there exist matrices Py; such that the following inequalities hold for k =2,3,--- /N :

(i) ETPy = Py E >0 and

(i) (A; + b0 , — baokTa)T Py + PE(Ai + 017130 — baoTy) < 0.

Lemma 2.7 ([53]) If for any constant matrix R € R™*™ R = RT > 0, scalar v > 0, and
a vector function ¢ : [0,7] — R™ such that the integrations concerned are well defined, the

following inequality holds:

@ o[ ereresas<-| [ 7¢><s>ds]TR [ o]

T

B(t) -R R o(t)
Bt —7) * —R ot —7)

Let the error be e (t) = yx(t) — xx(t). So, the error dynamics of Markovian jumping SNCDN

b - / &7 (5)R(s)ds <

(2.1) can be derived as follows:

Eeén(t) — Cién(t — 15(t))

t

N
= Azer(t) + Biey(t — d;(t)) + D; er(s)ds + b1 Y ghiTriew(t)

t—h;(t) w=1

N N
+ by Z gl(jjirziew(t —d;(t)) + b3 Z g,(i),l-l“s,iéw(t —7i(t)) + LiF1(ex(t))

w=1 w=1

+ HiFkQ(ek(t — dl(t)) + JiFkg(ék(t - Tz(t))) - b40kr46k(t), k= ].7 2, ce ,N, (27)

where Fi1(ex(t)) = f1(yr(t)) — fi(zx (1)), Fra(en(t—di(t))) = fa(ye(t—di(t))) — fo(zr(t—di(t))),
and Fis(éx(t — (1)) = fa(Ue(t — 7:(1))) — f3(@x(t — 7:(1))).

Remark 2.8 The pinning controllers are applied to achieve synchronization of the Marko-
vian jumping SNCDN (2.1). It can be seen that the synchronization problem of (2.1) is equiv-
alent to the stabilization problem of the error dynamical systems (2.7) at the origin. The
controller (2.5) accelerate each node to synchronizing with the target node according to the
instantaneous state information, and the similar one also can be found in [28]. We only exert
control actions on the pinned nodes to achieve the synchronization and reduce the number of
controllers.

Remark 2.9 The novelty of this article can be summarized as follows: (1) Synchroniza-

tion of Markovian jumping singular neutral complex dynamical networks via pinning control
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is considered in this article; (2) A new Lyapunov-Krasovskii functional is constructed with

triple-integral term.

3 Main Results

3.1 Asymptotic stability of complex dynamical systems

In this section, we derive delay-dependent stability criteria for the error dynamical network
system (2.7). We also discuss the impact of additive time-varying delays on the stability of the
system.

Denoting o, =0 (k =1+1,142,--- , N), then we may write the error system in its compact

form as
Eé(t) — Cié(t — (1)) = Aze(t) + Bie(t — d;(t)) + D; t . e(s)ds + b TG Me(t)
t—h;(t
=+ bQFQiGZ(-z)e(t — dl(t)) + b3F3iG£3)é(t — Ti(t)) + LiFl(e(t))
+ H;Fy(e(t — di(t))) + JiFs(é(t — 7:(t))) — byoTae(t). (3.1)

where e(t) = (e1(t),e2(t), -+ en(t)), Fi(e(t)) = (Fule(t)), Far(ex(t)), -, Fni(en(t))),
Fy(e(t — di(t)) = (Fia(ex(t — di(t)), Faz(ea(t — di(t)), -+, Fna(en(t — di(t))), Fs(é(t — 7(t))) =
(Flg(e'l(t — Ti(t))), F23(€-2(t — Ti(t)))7 s ,FN3(6}V(t — Ti(t)))), and o = diag{al,ag, cee 70’]\[}.
By the properties of the outer-coupling matrix Gga)(a =1,2,3), there exists a unitary ma-
trix U = [Uy, Us, -+ - ,Un] € RV*N such that UTG = A,UT with A; = diag{ 1, Aais -+ Ani}
(a = 1,2,3) and UUT = I. Using the nonsingular transform e(t)U = z(t) = [21(t), 22(t),
<, z2n(t)] € RV*N | from equation (3.1), it follows the matrix equation

t—h;(t)

+ bQFQiAZ‘Z(t — dl(t)) + b3F3iAi2(t — Ti(t)) + L; (e(t))U
b HiBy(e(t — di(0)U + JiFy(é(t — ()T — baoTaz(t).  (3.2)

In a similar way, model (3.2) can be written as

EzZi(t) = (Ai + 011 kibaoila) 2 (t) + (B + bal'2i Aki) 2 (t — di(2))
t

+ D; 2 (8)ds + (C + b3T'33 Api) 21 (t — 73(t))
t—hy (t)

+ Lihga () + Hihga(t) + Jihps(t), k=1,2,-+- N, (3.3)

where hy1(t) = F1(e(t))Ug, hia(t) = Fa(e(t — d;(t))Ug, and hgs(t) = Fs(é(t — 7:(t)))Uk.

So far, we transformed the synchronization problem of the singular complex dynamical
networks (3.1) into the synchronization problem of the N pieces of the corresponding error
dynamical network (3.3). From Lemma 2.5, A\;; = 0 and z;(t) = e(t)U; = 0. Therefore, if the
following (N — 1) pieces of the corresponding error dynamical network,

EzZi(t) = (A; + 0101 ki — baokla) 2z (t) + (B + baloi i) 2k (t — di(t))
t
+D; 21 (s)ds + (C + bsT'ai i) 25 (t — 73 (t))
t—h;(t)
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+ Lihgi (t) + Hihga(t) + Jihgs(t), k=2,3,--- | N, (3.4)

are asymptotically stable, which implies that the synchronized states (3.1) are asymptotically
stable.
Let us define

5;?(?5):{2;5@) G (t—7) Z(t—7) z(t—7(t) Z(t— 7))

t—Ti (t) _

t t
/ 2L (s)ds / 2L (s)ds / 2l (s)ds 2L (t — hy)
t—7(t) t—T7; t—T7;

z,{(t — hy) zg(t — h;(1)) z,{(t — h;(t)) /t - sz(s)ds /t_ ) sz(s)ds

h;

t—hi(t)
/ T(s)ds 2Tt —di(t) =Tt —du) 2Tt — d) 2T (E— doy)
t

t t—dq;
ST —dyg) 20— dmi) ZT(E— o) / 2T (5)ds / 2T (s)ds
t—dq; t

—dmi

t—dm;
| s b ko h£3<t>], (3.5)

—da;

nk:{(Ai+b1F1i)\ki_b4UkF4) 0 0 0 (C;+bsTsiAii)
0000000 D, 00 (Bi+bsToidi)
000000000 L H J (3.6)

EZp(t) = mi€e(t)- (3.7)
The inequality (2.2) and the Lipschitz continuity of kg (t) can be used to make hy(t) to satisfy

N
D i@u(®) = filyu(O)une

w=1
N

< QM @e®) = fi(yw @) vk |
1

[ra (B =

N
Ualllzw () — yu @]l = Z lkallew(t)

IN
=]

g
l‘

0|20 ()] = Z 1|2 (t) (3.8)

where uj,, is the w-th element of Uy, and [; = max{y;. Therefore, the following inequality

an

N N N
> (It |—z12||zw ) = Znhm =033 ()
k=2 k=2 w=2
N —
(I () = (¥ = Dz (0)]) <0
k=2
holds, if the inequality
Iaea (@)l = (N = Dilze(®)] 0, k=23, N (3.9)
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is satisfied. Similarly, the following inequalities holds:

N

> (Ire®)ll = (¥ = Diallzi(t — di(®))]]) <0,

k=2

N

>~ (sl = (V = Disllzu(e = m@)ll) <0, (3.10)
k=2

if the following inequalities are satisfied that

[hr2 (O] = (N = D)la|lzx(t — di()]| <0, k=2,3,---,N;

[Ihes ()]l = (N = Disllzu(t = () <0, k=2,3,--- N, (3.11)

where Iy = max [y, [3 = max 3. From the inequality (3.8)—(3.11), there exist positive diagonal
matrices Si1, Sk2, and Si3 such that
g,{(t)diag{ —(N=1iSkm, 0, 0, 0, —(N—1)8s, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, —(N-— 1)l;Sk2, 0o, 0, 0, 0, 0, 0, O,
0, 0, S, Sk Skaf&r(t) = & (r(t) <O, (3.12)

where

Oy, = dlag{ - (N - 1)[13161, Oa 07 0, 7(N - 1)1_3Sk37 0, Oa Oa 07
0, 0, 0, 0, 0, 0, —(N—1)2S, 0, 0, 0, 0, 0,
07 07 07 07 Skla Sk2a Sk&}

Theorem 3.1 For given scalars 7;, v;, hi, 0;, d1i, da;, 1; and constant scalar d,,; satisfying
dy; < dm; < dg;, the Markovian jumping singular error dynamical network (3.4) is asymptoti-
cally stable if there exist positive constants ay, matrices Py; > 0, Qg1; > 0, Qg2; > 0, Ri1; > 0,
Rioi > 0, Tr1i > 0, Qrj > 0,Ri; > 0 (j = 3,4),Tk; >0 (j =2,3,4),Ux; >0 (j =1,2,3),
Wi >0, My; > 0,Ni; >0 (j =1,2,3,4,5), and positive diagonal matrices Si; (j = 1,2,3)
such that the following LMIs hold for all 7 € S:

ETP,;, = P,E >0, (3.13)
U )
== | " Tl <o, k=23, N, (3.14)
* Yk22
Zﬂ-zg le] - lez < 0 Zﬂ-zg Qk:2] Yv?z E < O Zﬂ-zg Tklj YS%) = 07 (315)
j=1
Zﬁ” Ryp1j — Ya) < 0; Z”w (Riaj — Yai)E < 0; (3.16)
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where
(Ui e Vs W Vs |
* Woo 0 0 0
Uy = * * W33 0 0 ;
* * * Wiaq 0
| * * * 0 Wiss |

Ek12:77]{|:Qk2i Qra Ri2i Ria Uit VTiMgr VhiMys  /dyiMys

732 I’ 3,
VP1iMia  \/p2iMys ENkl TNIQ %NkB P3iNka P41Nk5}

Ygoo = diag{ —Qr2i —Qra —Ripoi —Rpa — U — M — Mo
— Mz —Mpy —Mygs —Npi — Nz —Nig — Nig _Nk5}7
Upa1 = Pri(A; + 0101 ki — baogTs) + (A; + 0101 i — baopTa)? Pry

m
+ Z T Pei E 4 Qr1i + Qrs + Riri + Ria + Tho + Ti Wit + b + Wi
j=1
1 1
+ d};Wis + p1;Wia + p3;Wis — hTETMsz - d—ETngE — ET7? N E
1 1z

— 2
— ETh;"NjoFE — ETd};Ny3E — ET p3,NpuE — ET p3,Nys E

_ 1
+ap(N = 1)1 Sk — —ET My, E,
Ti

[1
Upo = [—E"MuE 0 0 Pu(Ci+bslside) 0 HETNumE 0

L Ti

ETM»E 0] ,

>I

%

\I/k13:_0 0 PuD; hiETNpE 0 Pri(Bi+balaidgi)|,

(1
Vs = |—ETMysE 0 0}
| d1

\I’k15:-0 0 0 duE"Ni3E piiE'NwuE pyE'NisE  PuE; PuH; PkiJ},

‘I’k22=diag{¢k22 Drzz Pras Prss Pres Prrr Prss Prog @k1010}7

‘I’k33:diag{‘1’k1111 ®pio12 Pr1313 Prig1a  Prisis q)k1616}a

1
Ppirir —ET M E 0
P1i
_ 1
Yiaa = * Pris1s —E"MysE |
P2i
* P1919

‘I’k55_diag{q’k2o2o Droi21 Proooe  Prosos

Drogos  Prosas  Prosos  Prorer (I)k2828}a
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1
Do = _;ETMME — Qr3; Praz = —ETQuE; ®pas = —(1 — 1) Qi

- 7
Brss = —(1 — 1) BT Qo B + ap(N — 1)I3Sk3; P = _T@)WM;
' 1
Dprr = —ET'Nj By Bpss = —————Whi1;  Prog = —Ris — — BT Mo E;
T — Ti(t) hz
Br1010 = —ET Ry E;  ®piinn = —(1— 8)Rpai; Prizie = —(1 — 6;) BT Ryt B
h; . h;
Ppi313 = —kaz; Dpig14 = —E" N FE;  Ppis15 = —kam

Pri616 = —(1 — p13)Thri + ax(N — 1)12Sko;

1 1
Prir17 = Ty — Tho + T3 — d—rETngE — —ET M, E;
3

14

1 1 1
Prisis = Tpa — Ths — — ET MysE — — ET My E;  ®pi919 = —Tha — — ET M5 E;

P2i P1i P2i
®Ppo020 = ETUpoE — ETUi E;  ®poro1 = ETUpsE — ETUpoE;  ®panos = —ET Ups E;
Drozos = —Wis — ETNia B ®pogos = Wiy — ETNWE;  ®posos = —Wis — ET Nis E;

Drogas = —akSk1;  Praror = —apSk2;  Prases = —0Sks.

Proof Construct the Lyapunov-Krasovskii functional:

Vil ZV,W zk(t),i,1), (3.17)

where

Vkl(zk(t)7i7t) = 2k ( )PklEZk( )

t t
Via(2x(t),4,t) 2/ 21 (8)Qprizn(s d8+/ $)ET Qpai Bz (s)ds
t Tl(t) t Tl(t)
t
+/ ( )ngzk d8+/ E Qk4EZk( )d
t—T; t—T7;
t
Via(20(t), i, 1) = / 2T (s) Rprize(s)ds + / §)ET Ryns B (5)ds
¢ h'() t—h; (t
t t
+/ 2 (8)Riaz(s ds+/ $)ET RyaEi(s)ds,
t—h;
t*dli t
Vk4(zk(t),i,t) :/ zg(s)Tkuzk d5+/ Tkzzk( )d
t—d;(t) t dh
t—dq4 t—dm;
+/ zg(s)Tkgzk(s)der/ Zg(s)Tk4zk(s)d5,
t—dom; t—da;
t t—dy;
Vs (2x (), 4, 1) :/ z{(s)ETUklEzk(s)ds+/ s (s)ET Upo Bz (s)ds
t—dy; t—dm;

t—dm;
+ / s(s)ETUps Ezy(s)ds,
t—da;

0 gt 0 st
Vies (25 (%), 4, t) :/ / ﬂz{(s)Wklzk(s)dsdG—i—/_ / ﬁisz(s)Wkgzk(s)dsdH
7 Jite ; Ji+o
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0 t L,
+/ duz;{(s)Wksz;g(s)dsdH—i-/ / P12 (8)Wiazi(s)dsdd
i JE+8 mi Jt+0
—dmi gt
/ / png(s)W%zk(s)dsde,
t+0

dai

t 0 t
Vier (2 (t),4,t) = / / 1 (s)ET My Bz, (s)dsdf + / / s (s)ET Mya B2, (s)dsdo
—7; Jt+0 —h; Jt+0

/ / $)ET My3Ezy,(s)dsdd
di; Jt+0

+
0
Vi (2 (t / .

2
dlz

/ hit $)ET Ny B4 (s)dsdAdf
/ ) ET Nygy B (5)dsdAd6

dh 0
/ / / p3i3t (8) BT Nypa B2y (s)dsdA\df

/ / / pai#t (8)ET Nys B2, (s)dsd \d6.
do; /] t+A

The derivative of Vi,.(zx(t),4,t) along the trajectory of (3.4) with respect to ¢ is given by

Vm(zk(t), 1, t) = QZg(t)P]m |:(A1 + b1 ki — b4O’kF4)2k(t) + (Bi + bgrgi/\ki)zk(t — dl(t))
t
+ D; zk(s)ds + (CZ + bgl—‘gi)\ki)z.k(t — Ti(t)) + Eihkl(t) + Hihkg(t)
t—hi(t)

+ Jihk3 + Zﬂ'w Zk Pk]EZk( )}] (318)

Vi (zi(t),4,) < 22 (8)[Qr1i + Qk3]zk( )+ 2L (O [ET Qo E + BT QraE) 2 (t)

— 2 (t = 73)Quazi(t — 73) — (L — vi) 2 (t — 73 (1) Qrrizi(t — 75(t))

— (L= w) 3 (t = () BT Quasza(t — mi(1)) — 25t (t = 7)) ET QuaBix(t — 73)

+ Z i / 2 (5)Qury2a(5) + 27 (5) BT Quay Fin(s)]ds, (3.19)
Via(zi(t),0,1) < 21 ( )[Re1i + Rislzi(t) + 2L ()[BT Ryoi E + ET Ry E) 21 (t)

— Z]{(t — Hi)szng(t — Hz) — (1 — 51)Zg(t — hi(t))ETRinEé’k(t — hl(t))

— (1 =62 (t — hi(t)) Rppizi(t — hi(t)) — 21 (t — hy) ET Rpa B2y, (t — hy)
+ ZTF”/ B )Rkhzk( )—l—é,{(s)ETszjEz’k(s)]d& (3.20)

Via(zi(t),3,1) < 2L (t — du)[Tku — Tho + Tl 2w (t — dii) + 2 (t — dini) [Tha — Tra)2n(t — dimi)
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— (1= pi)2je (t = di(0) Traszi(t = di(t)) = 2 (t = doi) Trazg (t — da;)
t—dyj
+ 2F () Tho 2 (t Z% / 2F (8)Thj 21 (s)ds, (3.21)
t—do;

Vis(zi(t),0,t) = 2E () ETUpy E21,(t) + 2E (t — d1y)[ET Upo E — ET U E)2(t — dy;)

+ 25 (t — dpi) [ET U3 E — ETUo E) 21 (t — dini)

+ 2 (t — doy) ETUps B2, (t — d), (3.22)
Vis(z(t), 0, 1) = 2 () [F2 Wit + h2Wia + d2 Wi + p2 Wi + p2;Wis) 2 (1)

¢ t
—/ ?iz,cT(s)Wklzk(s)ds—/ . hzzk( YWhozi(s)ds
t—7; t—h;

t t—dy;
—/ dlisz(s)Wkgzk(s)ds—/ p1izf (8)Wiazp(s)ds
di; t—dmi
t—dmi
—/ p2i 24 (8)Wiszi(s)ds, (3.23)
t d21,

Vir (2 (t),,t) = 2F () ET [7; M1 + hi Mg + dviMys + p1i Mg + pos Mys] B (t)

t t
t— Ti t— 7,
t t—
/ E ngEzk / E Mk4EZ}C( )d
t—di; t—dm,
t ml
/ $)ET Mys B4 (s)ds, (3.24)
d21
) [ d4.
Vis(z(1),3,1) = 2 (¢ )ET[ I N+ - Nig + THNi + Vs + 03 Nis | B (1)

+2T() [ — ETR2NWE — ETh NiwE — ETd2, Ny E — ETp2, Ny E
t
~ BT 3 NisB|2(t) + 72l (OETNWE | zi(s)ds

t—7

Ty

t t
_/ zi (s )dSETNklE/ d3+7-z/ 2L (s)dsET N1 Bz (t)
t—T; t—

t t
+ ﬁizg(t)ETngE/ ~ Zk(S)dS + }_Lz / ~ Zg(s)dSETNkQEZk(t)
t—h; t—

i

t t
_/ 2 (s )dSETNsz/ ds—i—dll/ 2L (5)dsET NysEz(t)
t—il, t dh
t t t
—/ 2 (s)dsET Ny E 2p(8)ds + dy;2f () ET Ny E zi(s)ds
t d17, t—dli t_dli
t—di; t—dy;
+ prizt () ET N E zi(8)ds + p1; / 2 (8)dsET Ny Bz, ()
t—dmi t—dm;
t—dy, t—di;
—/ 2 (8)dsET N FE zi(8)ds
t_dm,m t—(imi
t—dm;
+ poizt () ET Ny E 2p(s)ds
t—da;
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t—dmi t—dmi
—/ 2 (s)dsET Ny F zr(s)ds
t

—da; t—da;

t—dyms
+ pgi/ 2 (8)dsET Nys Bz, (t). (3.25)
t—da;

m

Because of ) m;; = 0, the following zero equations hold for arbitrary matrices Y7, = YL,
j=1

Yoi =Y, Yo =Yg Vi =Y, Vs, =Y. (i €9)

t m
- / 2 (s) Z mi;Y1i25(s)ds = 0, (3.26)
t—7; =
t m
- / 4 (s)ET Zm‘jYziEék(S)dS =0, (3.27)
t—7; =
t m
- / 2 (s) ijYgizk(s)ds =0, (3.28)
t—h; =
t m
- / . #()ET Y mi;YaiBs(s)ds =0, (3.29)
t—h; =
t—di; m
- / 2 (s) Zﬂzj}%izk(s)ds = 0. (3.30)
t—da; =

t—dy; dy; i
t_dli t—dh; t_dli
- pli/ 2 (8)Wrazi(s)ds < —(/ sz(s)ds)WM(/ zk(s)ds)7
t—dm; t—dm; t—dmi
t—dmi t—dmi t—dms
- pgi/ 2L (8)Whs2i(s)ds < —(/ sz(s)ds)Wm(/ zk(s)ds). (3.31)
t—d2i t—in t_in
Notice (b) of Lemma 2.7, then,
¢
- / #L(s)ET My Ez,(s)ds
t—T;
T

< 1 Zk(t) —ETMklE ETMklE Zk(t)
ST Zk(t—ﬂ) * —ETMk,lE Zk(t—ﬂ') ’

t

- /  3(8)ET Mo B2, (s)ds
t—h;
T

< 1 Zk(t) —ETMk2E ETMsz Zk(f,)
N Bi Zk(t — i_lZ) * 7ETM]€2E Zk(t — }_Lz) ’
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t
— / :(s)ET My3Ez,(s)ds
t—diy;
T
< 1 Zk(t) —ETngE ETngE Zk(t)
T dii 2k (t — dyy) * —ETngE 2k (t — dyy) ’
t—dy;
- / :(s)ET MysEz,(s)ds
t—dmi
T
< 1 Zk(t - dh) —ETMk4E ETMk4E Zk(t — dh)
© P\ 2 (t — doni) * —ETM.E 2k (t — dmi) ’
t_dm,q,
— / #(8)ET MysEzy(s)ds
t—da;
T
i Zk(t — dml) 7ETM]C5E ETMk5E Zk(t — dm) (3 32)
T P2 Zk(t — dgl) * —ETMk5E Zk(t — dzl) .

For 7;(t) € [0, 7;], using Lemma 2.7(a), we obtain the following:

t T — T t—7;(t) T t—T7i(t)
- = < T
/t—n Tizg, (8)Whizp(s)ds < ey (/t 2 (s)ds) Wkl(/t Zk(s)ds>

—Ti —Ti
Ti

_ D (/:Ti(t) Z;{(S)ds) Wkl(/ttr(t) zk(s)ds). (3.33)

€ [0, h;], using Lemma 2.7(a), we obtain the following:

t - 7];/ t*hi(t) T t*hi(t)
- hi |44 ds < ———— ds | W, d
/thi 21 (8)Whazi(s)ds < B = (D) (/th 2 (8) 5) k2</t 2k (8) 5)
7. ¢ . ¢
- 2. (8)ds | Wha / zr(s)ds ). 3.34
hi(t)</t—m(t) () ) ( t—hi(t) ) ) 339
From equations (3.12) and (3.17)—(3.34), we obtain

—h;

8
Vi <3 Vir — ol ()08 (t)

r=1

<) Ur1&r(t) + EF ()t {Qin + Qra + Ri2i + Ria + Ugt + 7M1 + hi Mya + d1; My
— 4

4
+ p1iMy + p2; Mys + 1 Nkl + hjl N2 + ka?) + p3; Nia + PiiNks} MkEk (1)
t m t
+/ Z Tij Qk‘l] le)zk( )d5+/ Zk Zﬂm Qij Y21)Ezk( )d
=T j=1 t=7; j=1
t m t
+/ A Z 7ij(Ri1j — Yai)z(s )ds+/ EAC ETZM Riaj — Yai) Bz (s)ds
t—h; 1 t—h; j=1
t—dy; m
+/ ZE(S)ZWij(TkU — Ysi)2k(s)ds
t—da; =
t
< + . Zﬂ-zg le] le)zk( )d

j —
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t m
2 (s) Zﬂij(Rku — Y3)zi(s)ds

t m
t—7; j=1 t—h; =1
t m t—d1j m
+ / ~ Zg(S)ET Z Tij (Rk2j — KM)Ez'k(s)ds + / sz(s) Z T4 (Tklj — Y5l>2k(8)d8
t—h; =1 t—da; j=1
(3.35)
By Schur complement Lemma, we get (3.14), and
Vie(zi(t),4,t) < 0. (3.36)

As ETP,; = P;E > 0, the stable result cannot be obtained via the Lyapunov stability theory
because the rank of ET Py; in the Lyapunov function Vi (2 (t),i,t) is r < n.

By Lemma 2.6, it is clear that the pair (F, A;+b1T'1;A\x —bsox'y) is regular and impulse free
whenever inequalities (3.13)—(3.16) hold. Then, the nonsingular matrices are X = | X Xsz}

T
and Yy = {Y]g Ykg} . The following decomposition holds:

XkEYk = diag{Ir,O}; (337)

Xk(Al + b1 — b40’kr4)Yk = diag{ﬁki, In,T'}, (338)

where X € R™", Xpp € RODX0 Y € R™T Yiy € R and Ay, € R7¥T k=
2,3,---,N.

The network system (3.4) is equivalent to

20(t) = A2V (1) + Xi1 Evibir + Xi Hyihiga + Xt Jrihis
¢
+X11 DY / z,(cl) (s)ds + Xp1(Bri + b2r2ri)\k)ykr1«z](cl) (t—di(t))
t—h;(t)
+ X541 (Cri + b3Tai M) Vi 251 (¢ — 1 (t)),
0=zt + Xi2En—ryilir + XiaHn—ryihkz + Xg2J(n—r)ihis (3.39)

t

+Xp2Dn—r)iYio / Z;(f) (s)ds + Xr2(Bn—ryi
t—hi(t)

erzfz(n—r)i)\k)ykzz;(f)(t —d;(t)) + Xp2(Cn—ryi
+b3F3(n—r)i)\k)Yk22'k(2) (t—m7(t), k=2,3,---,N,

200
42(t)
CT+2(i)a T 7Cn(i)}a 3 = diag{dl (Z)v dZ(i)a T 7d7‘(i)}7 and P3(n—r)z’ = diag{dTJrl(i)a dT+2(i)7

1) p2)
Pki Pki

where Yk_lzk(t) = ; Torg = diag{ci(i), c2(i), -, cr(i)}, Topnryi = diag{cr11(7),

o dy (i)} Let X, T PrYy = . Then, according to equations (3.17), (3.37), and

(3.38), it is easy to see that P,iil) = P,El-l)T and P,i?) = 0. Hence,
Via (i (1), t) = 2T (0P B (0). (3.40)

From Vi(z) < O,z,(cl)(t) of system (3.4) is asymptotically stable, that is, tli}m Hz,il)(t)H =0,

k=2,3,---,N. In the following, we show that z,(f)(t) are also asymptotically stable. From
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equation (3.38) and choosing X2 such that Xy X[, = I,,_, which implies that || X2| = 1 and

using Lemma 2.5, we have

122 ()] = | Xk2En—ryihikr + Xe2Hn—ryihiz + XgoJ(n—ryihis
t
+ Xk2D(n—r)iYk2/ ZI(CQ)(S)dS
t—hi(t)
+ X2 (Blnoryi + b2Dagn—ryide) Yazzy (¢ — di(t))
+ X2 (Clnoryi + b3 5(n— i) Yao 2k P (¢ — (1))

<N X2l E—ryillllhrill + (| Xe2 [ H il hr2ll + [| Xkl Jen—ryill[|Prs ]
t
2
+ HXkQHHD(n—r)i”||Yk2H/ [ESIOILE
t—hi(t)

2
11Xk |1 Bl + B | Doyl max () [ Viallll 47 (¢ = i (1))
+ 1 X2l (| Clnryill + B3T3 (n—ryill max(he) )| Yae |l 22 (¢ = 7a(8))
< hwall + WPene || + [P |

N
= {lllze®] + Lallz(t — d ()] + Il — 7)1}
k=2

hllze(®)]

E

>
U

2

N B N B
(1 -3 llnwkn) EICIES AN ATESIOI (3.41)
k=2

k=2

N _
If we choose Wy, such that (17 > ll||Wk||) > 0, which leads tlim ||z,(€2)(t)|| =0,k=2,3,---,N.
Py —00
This completes the proof. O
Remark 3.2 In the literature, the authors ([2, 5, 7, 13, 20, 21]) investigated the problem of

complex dynamical networks with time delay components. It is noted that unfortunately in the
existing literature the problem of synchronization criteria for a class of singular neutral complex
dynamical networks with distributed delay and Markovian jump parameters via pinning control
has not been considered yet. Motivated by this, in this article we provided a sufficient condition
to ensure that the SNCDN (3.1) is global (asymptotically) synchronized.

Remark 3.3 Synchronization of the Markovian jumping neutral complex dynamical net-
works is considered in [45]. In this article, Markovian jumping singular neutral complex dynam-
ical networks with pinning control is employed. Synchronization conditions are established in
the form of linear matrix inequalities (LMIs). The solvability of derived conditions depends not
only on the pinned nodes but also on the initial values of the Markovian jumping parameter.

It is pointed out that there is no useful term is ignored while maintaining our stability results.

4 Numerical Examples

In this section, numerical examples are presented to demonstrate the effectiveness of the
synchronization for pinning control.
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Example 4.1 Consider the following time-varying delayed Markovian jumping SNCDN

with 3-node and mode s = 2,

EzZi(t) = (A; + 0101 ki — baorTa)zi(t) + (B + baloi ki) 2 (t — di(t)) + Dy

¢
zi(s)ds
t—h;(t)

+ (Cs + b3l'3i M) 21 (t — 73(t)) + Eihia (t) + Hihio(t) + Jihas(t), k=1,2,3,

with
4 -1 —-1.2 0.1 —0.3 0.09 02 0
F = s A1 g s = 5 1= )
—4 1 —-0.1 -1 02 —-04 0 0.5
B 0.3 0.2 -0.2 0 0.2 0.1 02 O
2 = = = =
—-0.1 0 0.2 0.6 0.5 —-04 0 —0.15
0.3 0 0.1 0 02 0 10
Dy = E = = s 'y = ’
—0.10.15 0 —0.1 0 —0.2 01
20 20 40 10 20
Iy = , I'si = = , T2 = , Tog= )
02 04 01 2
- b -2 1 1
40 -2 2 (a) (a)
F32 = 5 II = 5 Gl - G2 - 1 -2 1
04 3 -3
- 1 1 -2
(a =1,2,3),J; = H; = 0,i = {1,2}. Let us consider by = 1,by = b3 = 0.5,b4 = 0.6, 01 = 0.4,
09 =005,03=03, 7 =7 =02, 11 =15 =05, h1 = hy = 0.3, 61 = 6 = 0.6, dy7 = 0.4,

do1 = 0.6, dp1 = 0.5, 41 = po = 0.4, and the eigenvalues of Gl(»a) are found to be A\;; = 0,
Aiz = —3 and A3 = —3. By using Matlab LMI Toolbox, we solve the LMIs (3.13)—(3.16) in
Theorem 3.1, we obtain the feasible solutions for N = 3,k = 1,¢ = 1,2 as follows:

Py =10""
Q11 =1077
Q112 =103
Qi3 =10""
Ry =103
Ryjp = 1073

@ Springer

0.6118 —0.0496 | | 02511 —0.0503
) 12 =

—0.0496  0.6304 ~0.0503 0.2180
0.3578 —0.1523 0 10—4 0.3082 —0.1399

121 — )
—0.1523 0.1809 —0.1399 0.0430
0.5723 —0.1205 0 10-3 0.1864 —0.0059

122 = )
—0.1205 —0.0205 —0.0059 0.0084
0.5267 —0.2653 0 10-5 0.7621 —0.3320

14 = )
—0.2653 0.6233 —0.3320 0.2602
0.3657 —0.1528 R 104 0.2724 0.0783

121 — )
—0.1528 0.1512 0.0783 —0.1579
0.6023 —0.1342 R 10-3 0.1770 0.0227

122 =
—0.1342 —0.0764 0.0227 0.0113
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R 10~ 0.6323 —0.2998
13 —
—0.2998 0.6319
o qges | 03254 —0.0022
111 —
—0.0922  0.0563
T 10-3 0.2189 —0.0719
12 =
—0.0719 0.2057
T 10-3 0.1654 —0.0336
14 =
—0.0336 0.0742
U qg-s | 01652 0.1541
12 =
0.1541 0.1607
W 10-3 0.3136 —0.0036
11 =
~0.0036  0.3049
e qg-s | 01178 0.0614
13 = )
0.0614 0.2124
W 10-3 0.1731 0.1231
15 = )
0.1231 0.2463
M 10-5 0.9501 0.0686
12 = ;
0.0686 0.1649
Ve 10 | 0:2250 0.0402
14 = )
0.0402 0.0834
N 10-3 0.1825 0.1378
11 = )
0.1378 0.1528
N 10-3 0.1088 0.0778
13 = )
0.0778 0.0994
N s | 01281 01035
15 = .
0.1035 0.1415

)

b

)

R 10-5 0.7892 —0.3260
14 =

—0.3260 0.2599

T 10-3 0.8450 —0.0851
5 112 =

—0.0851 0.3999

T 10-3 0.1007 —0.0143
13 =

—0.0143 0.1176

U L0—4 0.1074 —0.0559
1=

—0.0559 0.0399

0.1620 0.1564

Ups = 1073
0.1564 0.1598
_3 0.3099 —0.0077
, Wi =10
—0.0077 0.2905
. 01852 0.1338
W14 == 10 9
0.1338 0.2603
5 0.9401 0.3006
M =10 ,
0.3006 0.3576
.| 01090 —0.0121
Mys = 10
—0.0121 0.0100
_4 | 0.1875 0.0500
Mis =10
0.0500 0.0941
_3 0.1601 0.1158
Nip =10 ,
0.1158 0.1304
| 01378 0.1143
Ny =10 ;
0.1143 0.1545

Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (3.1)
achieve synchronization through the pinning controller uy(¢) with the above mentioned param-

eters.

Example 4.2 Consider the following time-varying delayed Markovian jumping SNCDN
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with 5-node and mode s = 2:
t
EZi(t) = (Ai + 01T 13k — baoi )z (t) + (Bi + bal'2i M)z (t — di(t)) + Dy 2 (s)ds

t—h; (t)

+ (Ci + b33 Aki) 2k (t — 73(t)) + Eihir (t) + Hihio(t) + Jihas(t), k=1,2,3,4,5,

with
40 ~12 0.1
E = B Al = 5 p—
00 —0.1 —1
0.31 0.25 0.28 0.02
By = Cy =
~0.14 0.18 ~0.06 0.11
02 0 03 0
D, = , Do =
0 —0.1 —0.1 0.15
02 0
Ey = , ' = .
0 —0.2
I'y = , Ta= , Do =
0
m=| 27 oV =c¢P? =cP =
3 -3
[—04 01 0.1
01 —04 0.1
V=cP=6%=|01 01 -04
01 01 0.1
01 01 01

~0.3 0.09 02 0
9 1= )
02 —04 0 0.3
0.22 0.14
) C2:
0.05 —0.45
001 0
) El -
0 —0.01
2 10
= ) 1—‘31: )
0 01
, I'so= )
2 05 05 05 05]
05 —05 0 0 0
05 0 —05 0 0],
05 0 0 —05 0
05 0 0 0 05
01 01 |
01 0.1
01 01 |;
—04 0.1
0.1 —04

Ji = H; = 0,i = {1,2}. Let us consider by = 0.1,bs = b3 = 0.3,b4 = 0.2,07 = 0.4, 02 = 0.5,
03 =03, 7 =70 =02, 11 =v5 =05, h = h; =03, = = 0.6, dig = 04, do; = 0.6,
dm1 = 0.5, 1 = po = 0.4. The eigenvalues of Gﬁ“) and Gé“) are found to be A\;; = 0,
A2 = A1z = A1g = —0.5, A5 = 2.5, and Ao; = 0, Aoy = a3 = Aoy = 95 = —0.5. Using Matlab
LMI Toolbox, we solve the LMIs (3.13)-(3.16) in Theorem 3.1, then we obtain the feasible

solutions for N =5,k = 1,7 = 1, 2 as follows:

0.2923 0.0757

0.1341

—0.1466

P =103 , Pp,=10"3

0.0757 0.5387 —0.1466 0.1501
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Qi1 =107°
Q112 =103
Qi3 =107
Ry =103
Ripp = 1073
Ry3=107°
Ty =107

Ty, =103
Ty =103
U =103
Wi =103
Wiz =103
Wis =1073
M, =101
My, =103

0.6830 —0.1230
—0.1230 0.7729

0.2399 —0.0721

, Qi1 =103

, Qi =107

—0.0721 —0.0126

0.0859 —0.1268
—0.1268 0.1839

0.7125 —0.1471
—0.1471 0.8420

0.2403 —0.0735

—0.0735 —0.0290

0.0734 —0.1245
—0.1245 0.1835

0.8135 —0.0743
—0.0743 0.3789

0.4278 —0.4275
—0.4275 0.8809

0.2754 —0.0531

—0.0531 0.1747

0.1326 0.0100
0.0100 0.5486

0.5450 —0.0026
—0.0026 0.5344

0.0194 —0.0693
—0.0693 0.4535

0.0116 —0.0181
—0.0181 0.5220

0.1867 0.0817
0.0817 0.6509

)

0.0381 0.0105
0.0105 0.1784

)

Qs =107
, Rip =103
, Rigo=107°
Ryy =107*
Ty =1077
, Ti3=10""

0.1466 —0.0027
—0.0027 0.1903

0.8336 —0.4680
—0.4680 0.3318

0.7850 0.0468
0.0468 0.1630

0.1572  —0.0043
—0.0043 0.1904

0.3315 —0.1176

0.0977

—0.1176  0.2007

0.7850 0.0468
0.0468 0.1630

0.3061 —0.0952
—0.0952 0.0592

—0.1666

—0.1666 0.3324

0.1970 0.0150
0.0150 0.0173

, U =103

0.0671 0.0050
0.0050 0.5485

Uz =1073

, Wip=10""

, Wia=1073

, My =103

Mys =107

Mys = 1073

0.3203 0.1054
0.1054 0.4746

0.0340 0.0090
0.0090 0.1900

0.5571 —0.0082
—0.0082 0.5188

0.0185 —0.0075
—0.0075 0.5417

0.0118 0.0055
0.0055 0.1001
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_5 | 0-0879 0.0006 _5 | 0.0874 0.0013

Nll =10 5 N12 =10 )
0.0006 0.5453 0.0013 0.5328
_5 | 0.0847 0.0180 _5 | 0.0860 0.0020

N3 =10 5 Ny =10 s
0.0180 0.5022 0.0020 0.5313

0.0868 0.0043

Nis =103 .
0.0043 0.5254

Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (2.1)
achieve synchronization through the pinning controller u(¢) with the above mentioned param-
eters.

20

—— |z @)l
16 Il =
[z ()|
=G .
|lzs(D)]]

0 —t e~ — L | | |

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
t(s)

Figure 1 State trajectories of the system in Example 2

5 Conclusion

In this article, some new synchronization stability criteria are proposed for a class of Marko-
vian jumping SNCDNs with distributed delay and pinning control. On the basis of appropriate
Lyapunov-Krasovskii functional which contains triple integral terms and bounding techniques,
the novel delay dependent synchronization condition is derived in terms of linear matrix in-
equalities. We established some sufficiency conditions for synchronization, and the numerical
results can demonstrate the effectiveness of the obtained result. In future, the preosed methods
can be further extended to deal with some other problems on pinning control and synchroniza-
tion for general stochastic dynamical networks, complex systems with impulsive perturbation,
etc.
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