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Abstract Let B = {B(t)}+>0 be a d-dimensional fractional Brownian motion with Hurst
parameter H € (0,1). Consider the functionals of k£ independent d-dimensional fractional

Brownian motions
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where the Hurst index H = k/d. Using the method of moments, we prove the limit law
and extending a result by Xu [19] of the case k = 1. It can also be regarded as a fractional
generalization of Biane [3] in the case of Brownian motion.
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1 Introduction

Let B = {BH(t)};>0 be a fractional Brownian motion (fBm) with Hurst parameter H €
(0,1). A stochastic calculus with respect to it has been intensively developed (see, for example,
Biagini et al. [2], Nualart [9]). It is a central Gaussian process with BH(0) = 0 and the

covariance function

E [B¥(t)B" (s)] = % (2 4 52— |t — s[2H]

for all ¢, s > 0. This process was first introduced by Kolmogorov and studied by Mandelbrot
and Van Ness [8], where a stochastic integral representation in terms of a standard Brownian

motion was established:
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No.3 Q. Yu: LIMIT LAW FOR FRACTIONAL BROWNIAN MOTIONS 735

where u; = max{u,0}, and B(s) is standard Brownian motion. For H = 3, BH coincides with
the standard Brownian motion B, but B is neither a semimartingale nor a Markov process
unless H = %

On the basis of sufficient study of fBm, the research technology of the fBm is gradually
mature, and many results about Brownian motion can be extended to the fBm, especially
some classical limit theories. In this article, we will consider the limit law for functionals
of d-dimensional fBm. Let {Bf(t) = (B#:(t),---,BM(t)),t > 0} be a d-dimensional fBm
with Hurst index H in (0,1). Let Bf:1, BH:2 ... BHF he k independent copies of B with
H = k/d. If k = 1, the local time of fBm B¥ does not exist. This is called the critical case.
In this condition, Xu [19] considered the limit law. That is, for any bounded and integrable

function f: R? — R and [, f(z)dz =0,

i%ﬂf (B ())ds = ca /I (D)1

as n tends to infinity, where ¢y q is a constant depend on f and d, I(t) is the local time at 0

of a Brownian motion B(t), M(t) = Jnax B(s), and 7 ia a standard normal random variable
<s<t

independent on I(M~*(¢)). In Biane [3], the limit law with condition [5, f(2)dz = 0 was called
the second order limit law, and when fRd f(x)dx # 0, which corresponded to the first order
limit law. This extended the result of Kallianpur and Robbins [5], Kasahara and Kotani [6] in
Brownian motion.

Ifk = 2 the intersection local time of B! and B2 does not exist. For Brownian motion,
when H = 1 and d = 4, LeGall [7] proved the limit law for functionals of the difference between
two mdependent Brown motions. Bi and Xu [1] generalized the limit theorem to fBms with
d > 4. Recently, Song, Xu, and Yu [16] considered the limit theorems for functionals of two
independent Gaussian processes. When the Gaussian process take into fBm, the corresponding

convergence in law is as follows:

\F/ / F(BTY(u) — BF2(v))dudv =5 \/Dyq (t Ats) N27

as n tends to infinity, where Dy 4 is a constant depend on f and d, and N and 7n are two
independent real-valued standard normal random variable. This result can be understood as a
supplement to the result of Bi and Xu [1] with d = 3 and H = —, and extended the result to
second-order limit law with H = %.

For the condition k > 3, Biane [3] has given the second-order convergence in law of Brownian
motion. On this basis and drawing on the methods of Xu [19] and Song, Xu and Yu [16] at the
same time, we deduce that the second-order limit theory of fBm can also be established under
k> 3.

To obtain more precise result, we will prove second-order limit law for fBm in this article,

and next theorem is the main result.

Theorem 1.1 Suppose that Hd = k and f is a bounded measurable function on R?* with
Jga f(@)dz =0 and [g. |f(2)]|z|’ dz < oo for some 8 > 0. Then, for any t1, ta,-- ,t; >0,

ntl

wl /‘ FBH 1) oot B (s)dsy sy
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Lo JCralti A M) Ga (276D, 2D (1.1)

as n tends to infinity, where G, is a random variable of Gamma distribution, 7 ia a standard

normal random variable independent on G,, and

dk—lrk(%)B(d(k—n d)B(d(k—Z) d)

Cra= 4 4
AP 2k 2k

2k 2k
d d 1 ~
X oo X B(ﬂ’ﬁ) (W /Rd |f(:1c)|2|x|dd:v> ,

with B(-,-) being the Beta function and I'(-) being the Gamma function.
The finiteness of [, |f(2)[2]z|~?da given in Theorem 1.1 is explained in the following

Remark, which can be find in [16].

Remark 1.2 As the function f is bounded, we can always assume that 3 < 1. Moreover,
the assumption on f also implies that f € LP(RY) for any p > 1. Note that fRd f(z)dz = 0.
This implies that |f(z)| < cq|z|® for any a € [0, 3], where f(x) is the Fourier transform of f.
With the help of Plancherel theorem, we can easily obtain the finiteness of [, 1F ()2 ||~ dz.
Example 1.3 Let f(z) = —(27)~%22ze~*"/2 and denoting p.(z) = (2me)~%/2e~12*/(22),

Theorem 1.1 provides that the exploding rate of derivative of local time for k& independent fBms

/ p’a(BH’l(sl)—|—---—I—BH’k(sk))dsldsQ---dsk,
[0, 17"

1
ise 2 (log %) 2 as e — 0, in the critical case Hd = k. Indeed,

1 1
aé(log—) ’ / p/E(BHJ(Sl)+"'+BH7k(Sk))d81d82"'dSk
9 [0,T]*

= (27r)*d/25¥ (1og é)_% /[0 - exp [— % (BH’1(51) +-F BH’k(sk))2]

X [— é(BH’l(sl) +-+ BH’k(sk))}dsldSQ - dsg

aw k- 1\~3
= £k2gd(log—) 2/ . f(BH’l(sl)—i—---—i—BH’k(sk))dsldsQ---dsk
€ [0,Te™ 2m |k

= ;/ f(BH=1(51) 4ot BH’k(sk))dsldSQ o dsy.
V0800 Sy

Limit theorems for functionals of multiple independent Brownian motions and their exten-
sions were obtained in Biane [3] and references therein. However, the corresponding results
for fBms were not much. As we all know, the general fBm with Hurst index not equal to %
is neither a Markov process nor a semimartingale. This means that the methods working for
Brownian motions would probably not be used to prove Theorem 1.1 here.

To obtain Theorem 1.1, we would use the methods of moments and some kind of chaining
argument, because these methods are becoming more and more mature for fBm. For example,
Nualart and Xu [10] first use the chaining argument plus the methods of moments to prove
the central limit theorem for an additive functional of the d-dimensional fBm with Hurst index
H e (d_}ﬂ’ 1). After that, Nualart and Xu [11] shown the central limit theorem for functionals
of two independent fBm with H € (%, %) Later, Bi, and Xu in [1] proved the first-order limit
@ Springer
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law in the critical case Hd = 2 with H < 1/2. Recently, Xu [19] considered the second-order
limit laws for additive functionals of d-dimensional fBm with H = é.

From all above, we can see that the methods of moments and chaining argument are very
powerful to prove the limit theorem for functionals of fBm, but for the convergence in law
about k independent d-dimensional fBm still has the certain difficulty. The main difficulty
is the computational complexity of multiple stochastic integral and the convergence of the
corresponding even moments. Multiple stochastic integral with respect to fBm was studied
in [4, 18]. Moreover, in this article, the related results can be extended to the cases of other
Gaussian processes, for example, the case of sub-fBm, as the stochastic analysis about sub-
fBm are very rich (see [14, 15, 17, 20]). At the same time, the corresponding conclusion of
non-Gaussian processes (see [12, 13]) will be the direction of future research.

This article is outlined in the following way. After some preliminaries in Section 2, Section
3 is to prove the main result Theorem 1.1, on the basis of the method of moments and the
Fourier transform. Throughout this article, if not mentioned otherwise, the letter ¢, with or
without a subscript, denotes a generic positive finite constant whose exact value is independent
of n and may change from line to line. Moreover, we use ¢ to denote v/—1 and x - y the usual

inner product in R%.

2 Preliminaries

Let {BH(t) = (B™(t),--- ,B™4(t)),t > 0} be a d-dimensional fractional Brownian mo-
tion with Hurst index H in (0, 1), defined on some probability space (2, F, P). That is, the
components of BH are independent centered Gaussian processes with covariance function

. . 1
E(B™i(t)B™(s)) = 5(t2H + 82— |t — ).

We shall use the following two properties of fBm B to give our proof in next section. The
first one is available in [11]. The second one gives estimates to the covariance of increments of
fBm on intervals with uncomparable lengths and the key ingredient in the proof of Theorem
1.1, which are available in Lemma 2.4 of [16].

Lemma 2.1 Given n > 1, there exist two constants ky and By depending only on n, H,
and d, such that for any 0 = sgp < s1 < --- < s, and z; E]Rd, 1 <1i < n, we have

KH Z |lzi|2(si — si-1)?H < Var(zxi ~(BY(s;) — BH(Szel))) < B Z |23 % (s; — si—1)?H.
=1 =1 =1

The first inequality above is called the local nondeterminism property. Moreover, the

inequalities in Lemma 2.1 can be rewritten as

RHi ‘ zn:xj 2(31' —s1)°H < Var(iwi : BH(Si)) < ﬁHi ‘ zn:%‘
=1

i=1 j=i i=1 j=i

2(81' — Si_1)2H. (21)

Lemma 2.2 For any 0 < t; < to < t3 < t4 < oo and v > 1, we have the following
estimates:

. At 1 At
lim B;1(y) = 0, such that
y—00

or > ~, there exists a nonnegative decreasing function (1(y) with

[E(BM () — B (ta)) (B™ 1 (t2) — BT ()] < B1(7) (Ato)" (Atg),
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where Atz = ti - ti,1 for i = 2, 3, 4.

(i) If 2—2 < % and 2—’;‘: < %, there exists a nonnegative decreasing function f(vy) with
lim B2(y) = 0, such that
Y00

[E(BM1(tg) — B (t3)) (B™ 1 (t2) — BT (11))] < Ba() (Ato) (At).

3 Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. For simplicity of notation, we use
F,(t1,--- ,tx) to denote the random variables on the left hand side of (1.1), and

1 entl entk
Bttt === [ [ FBI ) e B s d
v Jo 0

In order to obtain the limiting distribution of F,(t1,-- - ,tx), we start show that Fy,(t1,- - ,tx)
have the same limiting distribution as F,,(t) defined in (3.1) with ¢ = ¢; A- -+ Aty in Lemmas 3.4
and 3.5. Then, we prove that the m-th moment of F,, (¢) is asymptotical equal to I’ defined in

(3.2) by Lemma 3.7. Finally, we obtain the convergence of corresponding moments

m

lim Ip, =E [\/Cf,d (tr A Atg) Ga(27(-1, 27 (=) ) g

n—oo
in Proposition 3.8, which gives the desired result of Theorem 1.1.
At first, to simplify the proofs of our main results, we give some lemmas as follows.

Lemma 3.1 For fixed ¢ > 0, we have
/ (S%H+"'+SiH)7gd51"'dSk<CTL.
[l,e"t]k

Proof By the ball coordinate transformation of multiple integral

st =rcosen,

sf = 7 sin 1 cos Y3,

H . .
Sp—1 = TSy - SN YE_2 COS Pi_1,

skH =rsin; - - sin pg_o Sin Yg_1,

and for any a, b > 0,

71’/2 1 1
in#)*~"(cos f Hdo:/ V1 -2 ———d
/0 (sin 6)** (cos ) @ (V1= 2?) o

Then,
/ (S%H“F""i‘siH)_gdSl"'dSk
[17ent]k
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\/EenHt 1 71,/2 k71
< / 7dr_71Hk / (singy) ® ~*(cos cpl) Ly,
VE 0

/2 . k=2_4 1 _q /2 . 2 _1q 1 _q
X (sine) & ~*(cospa)® “dpg - - - (sing—2) 7~ (cos pr_2) H  dpg_2
0 0

/2 . 1 _q 1 _q
X (sing—1)E " (cospp—1)H  "dpg_1
0

11
— )<
B(2H’2H) =€

where in the equality, we use the fact that % =d. O

_ nt (k 1 L) (k 2 i)
- (2H)k! 2H '2H 2H '2H

Lemma 3.2 For a > 0, we have

2 2H 2H
|a:|o‘e_|:”| (17445 ) dgy - - dspda < en™He,
Rd [n7m7ent]k

Proof Integrating with respect to = gives
/ / |:C|°‘ei|x|2(5§H+"'+siH)dsl -+ -dspda
Rd J[n—m ent]k
d+ao
:c/ (S%H—l—---—l—siH)_%dsl---dskScano‘,
[n m ent]k

where the proof of the last inequality is similar to that of Lemma 3.1. 0

Lemma 3.3 Let f be the Fourier transform of f, we have

/ / |2e_m (577 -si )dsy - - dspdz < oo.
R4 n —m ent
Proof Using the change of variables s; = ||/ Hs; for i = 1,2,--- , k,
/ / () 2e 1P i g L dsyda
Rd J[p—m ent]k

9 —2 > _g2H o0 _g2H
< |f(3:)| || it da e 1 du--- e %k dsyg
R? 0 0

<c [ |f@)Pla|da.
R4

where the last integral is finite by Remark 1.2. 0
The following result shows that the limiting distribution of F,,(¢1,- - ,tx) depends on ¢1 A
AN
Lemma 3.4 For fixed t; — 0,i=1,---,k, we have

lim E|:|Fn(t1;"'7tk)_Fn(t1/\"'/\tk7"' ,t1/\"'/\tk)|] =0.

Proof Without loss of generality, we assume that t; = min{¢y,--- , ¢}, then, we have

]E[|Fn(t1,--- k) — Fu(ti A At - ,tl/\---Atk)@

7 U // / F(B™ (s +--~+BH7’€(sk))|dsl-..dSk]
/ /nl/ //Rd o+ )75 dadsy - - dsy,

IN

| /\
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1 1 0o o) o) "
S N f T dx / / / .. / S2H + . + 82H 7§e(k7Hd)nt1d81 .. dsk
(L @rde) [ s )

1
- [ @iz =0 n—e

where we use the fact that the probability density function of BH:1(s1) 4 --- + BH:*(s;) is less
than (27)"2(s2H 4+ ... + siH)*% in the second inequality and make the change of variables

sj=e ™is; j=1,2,---,k in the third inequality. 0
Lemma 3.5 Let

nt) = —

NG . ]kf(BH’l(sl)—f—---—i—BH’k(sk))dsl---dsk.
[0,em?] 1,ent

Then, we have
lim E[|J,(¢)|] = 0.
Proof It is easy to find that
[0,e™]F —[1,e"]% = [0,1]* + [0, 1]* 7 x [1,e™] 4+ --- +[0,1] x [1, e+,

then, by the boundedness and integrability of function f, we can obtain

1
E[l (1)) < ﬁufnm/[w ds, - dsy

1 / 2H 2H\— 4
+—= |f(x)] dx / (27 4 4 2H) "5 4y - dsy
\/ﬁ ( R4 ) [0,1]F=1 x[1,em] 51 k

1 .
e d 2H 4 .4 &2HY"3(g---d
+ +\/ﬁ(/Rd|f(:c)| v) /[o,l]xu,em]m( 2H | 2H) Hdsy - dsy,

<= (1t [ 1@l a).

This completes the proof. O

Combining Lemma 3.4 with Lemma 3.5, we only need to consider the convergence of random

variables
1

\/_ [1,ent]k

Let & be the set of all permutations of {1, 2,-+- ,m} and define

F.(t) = F(BEY(s1) 4 -+ BTF(s1))dsy - - - dsy. (3.1)

1
In=— U L Bi(lz (51) + -+ Boot (sk))dsy---dsi |, (3.2)
ou Efu 1, ml® g
where Biz‘z)(su) denotes BH“((su)l) with the permutation for time variable (s,);, for u = 1,
7k7i:17"' , M,

—m

z{ue[l,e"t]m:u1<---<um, Uirl — U; >N ,i=1,2,---,m—1}.

In the following content, we will use the local nondeterminisim and the chaining argument
properly to obtain the main estimates in Lemma 3.6, which is helpful in proving Lemma 3.7

and play a very important role in computing lim I in Proposition 3.8.
n—oo

Let
I (x) = / exp ( — %Var(in ~BZH’1(51)))d51,
m i=1
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where BiH’l(sl) denotes B*1((s1);) with the time variable (s1);, for i = 1,--- ,m.
Applying the similar techniques as [16] and the local nondeterminism property in Lemma

2.1, we have

[ < ; /Rmd H ’f(:z:l)’(fnt(x))kdx

Cray Jems L
<en % / / Flyi — yis1)
Rmd J[Dp, ] 11;[1’ ! ’
k m
1 , .
e (= 5 S Var( Y wlB(s)) - BH(5,) - dsudy
j=1 i=1
<en % / H ’ A(yi - yi—i—l)’
Rmd J[Dnk i (3.3)
RH . .
X exp ( - TH Z lyil? ((s1(8) — s1(i — 1)*H

1=

S (30 + -+ 52(0) Yo - s

where y; = Z x; with the convention yn4+1 = 0.
Jj=t
Using the chaining argument introduced in [10], we have

[T 1@ =) <D0,
P =1

where

(H|f Lo it )|f (z1 —141) — ]/[\ $2L1+1J ‘ H |f — Tj+1 |

J=l+1

for{=1,2,---,m—1, |“5] denotes the integer part of L1, and

m—

(H IzLJ“J )|f om)|.

In this way, we obtain the decomposition

‘In md ZAlmv (3.4)

where

A =n"% / / I; exp ( A Z |z (s3 (@) + - + siH(i)))dsl -+ dspda.
Rmd [nfnl’ent]km 2 =1

The estimation of each term A, ,, is given as follows.
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Lemma 3.6 For any fixed positive constant A < 1/2, there exists a positive constant ¢
such that

(i) Apm <en*forl=1,2,--- ,m—1,
(i) Apm < cn~% if m is odd and Apom < cif m is even.

Proof To prove part (i), we first consider the case when k is odd. By the assumption on
f, we can obtain |f(x)| < co(|z|* A1) for any a € [0,5]. Then, A;p, is less than a constant
multiple of

s 141

Lz .
n_7/R d/[ 0] e T (lwas1* + lwoyaa]®) ] 1 (25)

2

X exp ( - %H 3 w35 () 4+ ng(i)))dsl - dspda.
1=1

Integrating with respect to the x;s and s;(¢) (for j =1,2,--- k) with ¢ <1 —1 gives

[7]
_m=(0-1)
Ay S ern™" 2 / / | TT (was|® + lw2j0|®)
R(m—1+1)d J[p—m ent]k(m—1+1) )

J="3
X exp ( - KTH Z |lzi]? (35 (3) + -+ - + SZH(Z))> dsy---dsg dz,
i=l

where d5j = ds;(l)---ds;(m), for j =1,2,--- ,k and dT = dzy - - - dzp,
By Lemmas 3.1 and 3.2,

Ay < en= SR D (mHa)+(m—1— | 25 )

— en® B -1 ) (mHA)
Choosing a small enough such that

m m

m—1I1+1
S 1) -1+ (P 1t a) = -
gives
Ay < e (3.5)
By the same way, we obtain the case when [ is even.

L)
A zen® [ ] ol foral® T (oasl® + foagial®)
Rmd [n7m7ent]km J

_if2
2
2 m
i R . . —_ — =
< (TT1F@2)) exp (= 55D il (5376) + - + s77(0)) ) g - dsi dz
j=1 i=1
< en— "2 HUTE A2 (mH) H(m—1—- [ 5 ])

— enZ 1B -1 ("5t [ +2) (mHa)
Choosing « small enough such that

m m m—k
@Springer
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gives
-2
m = .
Aim <cn

Combining (3.5) and (3.6) gives the desired estimates in part (i).
Finally, we study part (ii). If m is odd, then,

3

A= [ g P T R

=1

<.

X exp ( — HTH Z || (35 (i) + -+ + siH(z)))dsl - dspde

ot [ ] e
R J[n—m ent]k

xexp (= e[ (537 (m) + -+ + 52 (m)) ) dsi (m) - dsi (m)da

_l
/ | F @) lmn] A

N\)—l

IN

cn- 2,

where the last second inequality follows from Lemma 3.3 and the last inequality follows easily
from Remark 1.2.

If m is even, then, by Lemma 3.3,

X exp(— HTH z:|:171|2 (s2H(3) 4+ s2H (3 )))dsl -dspdz < c.

This completes the proof.

O
Next, we will show that E[F"(¢)] is asymptotical equal to I7.
Lemma 3.7
lim [E[F"(t)] — I},| = 0.
Proof Notice that
|E[F" ()] — 1]
. . H,1 i,
S m IE|:/" f(Bo' z( ) +B Z(k))dsl...dsk}
ne <Tu€3”,uz:1,m7k [Dn ]k —[Dr ) };11: 1(4) NO)
+ == E{/ F(BEL (s )+"'+Baz(/€))d81"'d8kj|
" Uueﬂ%;lmk (D}, ]* = [D7,]* 1;[1 1@ k(D)
1
™ (Il + 12) (3.7)
n 2

where D7 = {u € [1,e"]™ 1 uy < -+ < up,} and
EZ :ﬁzlm{'qu_i_l —uy e It =12 m— 1}.
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It is easy to find that L%Il — 0 as n — oo, because f is bounded. For I, using Fourier
n

transform, we could obtain

1 m
b= W /Rmd /D”]k [Dn 1k 1;[ ()] exp ( B —Var sz "Poy (Z)(Sl)))

aeﬂu 1,

X - Xexp(——Var sz- Uéc)( )))d51~-~dskd:17

NP SV [ B Ry

Uefu 1,

X - xexp(——Var le- Ué( )))dsl---dskdx

1 - i
+ (27T)md /Rmd/ Jk=1x[Dn ] 1;[ f QCZ

aeﬂu 1,

xexp(——Var sz o1 (1)(51)))

><-~><exp(—§Var(Z i Hé)( )))d51~-~dskd:17

; e 117
+i— f «Tz
(2m)md Rmd J[D" —Dn|x[Dn k1 H

Uqbefu 1, i=1
1
X exp ( - §Var(Z:Ci . Bi’(li) (sl)))
i=1

1 m
X+ -+ X exp ( — EVar(in . Bi’é) (sk)))dsl -~ dspdr
i=1

=i+ Do+ + 1.
Applying Hélder inequality to the above integral on the term I 5, we have

VO T

k—1

k

¢
Iy < 5
(27T)m Ou Gﬂu 1,

X -+ -+ X exp ( — —Var le B k(sk)))dsl . -dskdx}

{LJWmem«wmzaw«m

X - X exp ( - %Var(in . BH’k(sk)))dsl . ~dskdx}

=

Using the similar techniques, we obtain

UW/H f[ (:) exp(——Var sz B1(s1)))

¢
I3 < 5=
(27T)m Ou Gﬂu 1,
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k—2

k

1 m
X +++ X exp ( — §Var le . BH’k(sk)))dsl - -dspdx

{LJWmew«wmzaw«m

X -0 X exp ( - —Var sz BH k(sk)))dsl .. .dskdx}

o

e o g T (= ()

auefu 1, i=1

=

X -0 X exp ( — —Var sz B k(sk)))dsl . -dskdx}
=1

|:/Rmd/"]"H|fxl eXp(__Var sz B (s )))

k—1

k

X -0 X exp ( — %Var(in . BH’k(sk)))dsl . -dskdx}
i=1

Thus, we only need to consider the convergence of

/Rmd/D e (a:l)|exp(——Var sz BHl(sl)))

1=
m

X - X exp ( — gVar(Z:ri . BH’k(sk)))dsl -~ dspdx
and
/RM/[ . ﬁ |f(2:)] exp ( - %Var(éxi -BH’l(sl)))
X - X exp ( - %Var(g;xi -BH’k(sk)))dsl - dspda.
From (3.2), (3.4), and Lemma 3.6, we have
/Rmd/ n]kH|f x;) exp(— —Var sz BH1( 31)))
X -+ X exp ( - iVar(Z:ri . BH’k(sk)))dsl cedspdz < n™AIN| < en™/2, (3.8)
i=1
Using Fourier inverse transform,
[ Teten( S o
e —Var le- o, l) (sk ))dsl---dskdx

_(27T)md]EUD . HU, . Z) (s1) Bi’é)(sk))dsl...dsk
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m—1
gcnm’“E[/ Up(By oy (s1) + -+ Bty (si))dsa - -~ dsy
D —Dn]

i=1

m—1
1
< cn MR / / ex (——Var T; BHL (s

+ B (s ))))dsl N .dsk]

—(k—1 —1
< cp - kmhm=1

where Uy is the Fourier inverse of }ﬂ and we use Lemmas 2.1 and 3.1 in the last inequality.
From all above, we can find
[ELE ()] — I < en™# [nm(=Dm=t S Gm0m)
kE—1m

+...+n%(_(k_1)m_1) Xn k. 2} — 0, n— oo.

Hence, this completes the proof. O

From (3.2), applying Fourier transform, we can rewrite

1 mo_
. ;)
e, / . /Rmdljf
xeXp<_§Var(;(3£(li)(51)+"'+Bié)( k))))dsl"'dsk-

Proposition 3.8 If m is odd, then, lim I’ =0. If m is even, then,

m/2 2
lim I = (Cyqt)™? [ [Ta+21G - 1))] .

n— oo .
i=1

Proof The convergence of odd moments follows easily from Lemma 3.6. So, we only need
to show that the convergence of even moments.
Define

6m =Dl N {n2 < Augi1 <e™/m,nt < Aug; <n,i=1,2,-- 'm/2},
where Aug = ug — ug_1 for k =1,2,--- ,m with the convention ug = 0.

Let
o 1 mo_
Im - ((27T)d\/ﬁ)m o e/’u . / o /Rdef CCz

X €xp ( - —Var sz f(ll)(sl) +- 4 Bi@)( k)))) dadsy - - - dsg.

Then, by (3.3) and Lemma 3.6, we have

limsup [I7, — I"| < ¢ limsupn™ % Z / d/ _ Hf(xz)
Rm™ 3 771 i1

n—00 n—00
ouEP u=1,-

1 m
X exp ( — §Var(;xi . (Bi(lz)(sl) +...4+ B%E (sk))))dsl - dspde
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m
< climsupn™ / / H — Yit1)]
n—oo Rmd n k [O i=1

X exp(— —Z|yl [(Asy(i Moy (Ask(i))zHDdsl---dskdy
m/2
< clim sup n~% / / f yau)|
n—oo (D7 ]+ — ]Rmd H |
KH , .
X exp ( 5 Z lyi 2 [(Asy(0)* + -+ (Ask(z))2HDdydsl - -dsy
i=1
< climsupn_%(/ +/
n— o0 [ 7751—67,1% [Dn, _(N)m]k71><[6m]
m/2
+eet / / 1F (y20)]
[ n,~ 1X[Om]F—1 Rmd H
X exp ( - — Z lyil?[(Asy(8)* + -+ (Ask(i))zHDdydsl -~ dsg
=1L+ 11+ -+ 1.
For the convergence of II;, (j =1,2,---,k), applying the same way as the convergence of I
in the proof Lemma 3.7 and using Holder inequality, we only need to consider the convergence
of
m/2
et [ [ i
n—00 D7, —On ]k JRmA ll_Il
K _ .
X exp ( - TH Z |y |? [(Asl(z))2H + -+ (Ask(z))ﬂ{} )dydsl - dsy, (3.9)
i=1
and
m/2
li _m N 2
imsuprn 2 /Nm]k /Rmd H | f(y21)]
X exp ( _ kA Z i 2[(Asy ()2 + - + (Ask(i))2HDdydsl - dsy. (3.10)

It easy to find that, for [ =1,2,--- ,m,

~ Dr N {n™™ < Au; < n?ore™/m < Au < €™} if | is odd;

If I is odd, (3.9) is less than

. c
limsup — ( )
n—oo N [nfmmz]z [ent/m,ent]?

xoxp (=l [(Bs ) 4+ <Ask< )] )dydAs; -+ dAsy

. c
< limsup — (/ / )
n—oo N [n—m,n2]2 [ent/m,ent]?

X [(Asy (1) + -+ (Asp(1))*] 2 dAsy -+ dAsy, = 0.

D N{n™ < Au <nlorn <Ay < e} otherwise.
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where in the last equality, we use similar arguments as in the proof of Lemma 3.1.
If I is even, (3.9) is less than

. -~ 2
chmsup(/ +/ )/ ’f(yl)’
n—00 [n=m ,n—1]2 [n,ent]2 Rd

X exp ( - %HW [(As () +-- + (Ask(l))w])dydAsl -~ dAsg

< climsup/ [y 2> [(As1 ()2 + -+ + (Asg ()] ~% dAsy - - dAsy
[ent /m,ent]2 JRd

< clim sup/ [(As1 (D) + -+ (Asp(1)*M] §-o dAsy - - dAsy
n—oo [ent /m,ent]2
< climsup(e~2omHt _ p=20H) —

n—oo
where we use Remark 1.2 in the first inequality and the proof of Lemma 3.2 in the second

inequality. From (3.8), we can see (3.10) is less than a constant ¢. Then,

limsup |17 — I | = 0. (3.11)
For any v > 1, we define
m! - A
T, = / [ fe
T entvr o efu 1o/ Om]E TR G2y

X exp ( — §Var(Z:Ci : (Bi’(li)(sl) “+ BH(Z (s )))) dadsy - - - dsg, (3.12)
i=1

where
0), =0 Q{Au%_l 7>”yf0rallzj€{1 2, m/2}withi7§j}
T LAug Aug;—1 7 '
Then, by (3.3) and Lemma 3.6, using similar arguments as the proof of lim sup |17 —I7| = 0,
we have
~ 1
T = T < 0o / / e
m,y (2m) T /n)™ Z PR Rde

€L u=1,---k

m

1
X exp ( - §Var(;xi - (Bi’(li)(sl) +et Bi’é)(sk)))) dzdsy - - - dsp,

1 mo
= “lamtyam / 5 G Amdlllf<yi—yi+l>l

X exp ( - Z lyil? [(Asy (0)* + -+ (Ask(z))ZH]) dzdsy - - - dsg
m/2
Scn_)‘—i—cn_%/ / (y25)
(O]~ (O JRma 1;[ ’
X exp ( - Z lyil? [(Asy (0)* + -+ (Ask(z))ZH]) dzdsy - - - dsg

Scn‘*+cn‘%(/ +/ +-~+/
[Om—0%]k  J[Om—0%1k=1x[O7] [Om—0O%]x [0, ]k1
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m/2
 Hten (- Sution
+ o 4 (Asp(d))? Ddydsl -+ dsg
=cen N+ IIL + 1L + -+ I,

Applying the same way as the convergence of I1;, (j =1,2,---, k), using Hélder inequality, we

only need to consider the convergence of

m/2

limsupn*%/ / f y
R R A 1} o)
X exp ( - Z lyil? P4t (Ask(i))QHDdydsl - dsy, (3.13)
and
m/2
liirisolipn‘? /Ow]k/ﬂw 1;[ 1F(y27)]
X exp ( mlry Z lyil*[(Asy(i)* + -+ (Ask(i))2HDdydsl -+ dsy. (3.14)

We can see (3.14) is less than (3.10), which is less than a constant ¢. By some calculation, we
can see (3.13) is less than
d

limsupcn_Q/[ S [(ASI )"+ + (Ask(ll))QH}_f

n—oo

_d
 [(As1(12))*7 -+ (Ask(12))*7] 2 Ly as )/ as (2)<)

X L st fas <) st (1) -+ dsi(l)dsu (1) -+ dsi(l)

< limsup ¢ logy =0.
n—oo n

Therefore,
lim sup I~ 17 | = 0. (3.15)

Making the change of variables y; = Z xj for i=1,2,--- ,m (with the convention y,,+1 = 0),

we can rewrite =

I" my = . / / i fA = Yit1)
SN(CAEVOI 6@ PR (028 L) Uity

X eXp ( - §Var(2ym<z-> (B (1) = Bﬁ(i_l)(sﬂ)))
=1

k 1 m m
x [ [ exp ( — §Var(z Y Woi) = Yoy 1)
1=2 '

i=1 j=i
x (B ;) (s1) - Bg(i_l)(sl))))dydsl - dsp.
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For any ¢ € (0,1), we define

e 1 m A
L= v 2o /w/T. Jo: = yi1)

ouEP u=1, =1

1 m
X exp ( = 5Var(Y_veii) - (Boyo(s1) = Bflufn(sl))))

i=1

k 1 m m
x [ [ exp ( —~ §Var(z > Wor(s) = Your(y41)
1=2 i=1j

=1 j=1

x (B2, (s1) — B (i_l)(sl))))dydsl - dsp, (3.16)

where

T;:Rmdm{w%ﬂ <a,‘ > (y,,l(j)—y,,l(j)ﬂ)‘ <e i=1,2,---,m/2,1=1,2,-- k}

j=2i—1
Let
Ta’,s :Rmdm {| Z (yaz(j) _yaz(j)-l-l)‘ <e, 1= 1527"' 7m/27 l= 1527"' 7k}
j=2i—1
and

T. =R™N{|y2i1]| <e, i=1,2,--- ,m/2}.
Then, T =T. NTy . This implies that
R™ —T7 = (R™ - T.) U (R™ - T,.)
and the value of |I~,’,LL I” 'S, in the interval R™4 — T, . is zero as € — 0. Thus,

e | <en ¥ / / )
O+ Jrmd— Tgl 1

auef u=1,-

x exp (5 Va( Zym (BE ) (s1) = Bl 1y (51)))

X Hexp ( — %Var(z Z (Yor(j) = You(j)+1)
1=2 j

=1 j=1

X (Bg(i)(Sz) - Bg(iq)(sl))))dydﬁ - dsy,

m
<en? [ [ TTIFw - i)
O;\;l]k Rmd T511

m

1
X Hexp ( - Evar(zyl ' (BZH(SZ) - Bﬁl(Sz))))dydsl . dSk
=1 1=1
m/2
kol
cn cn o Jema, Jl_Il |f yQ;
X exp ( - 5 Z |y1 2H —+ -+ (Ask(l))2H])dyd51 . dSk
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< en™ + cn71/ /
[n2,ent/m]2k J|z|>e

X exp ( — KTH|:C|2(3%H +---+siH)) dzdsy -+ -dsg

- _k 2 4H
<ecn )\+C€ TRHE™M

i )

where we use the same argument as in (3.3) in the second inequality, and use Lemmas 2.1 and

3.6 in the third inequality. This gives

lim sup |fﬁ17 - ff]}ﬁﬂ = 0. (3.17)
n—oo
m
Making the change of variables y; = > x; for i = 1,2,--- ,m again, we can rewrite

j=

Tne _ 1 - AI_
A (IS AMwA“Hj(J

ou,€Pu=1,-,k e i=1
k 1 m m
X Hexp ( - EVar( 22 Tl (Bg(i)(sl) - Bg(ifl)(sl)))) dzdsy - - - dsg,
=1 i=1 j=i
where
77 =Rmdm{‘ 3 xgi(j)‘ <e l=1,2,-,m/2,i=1,2, k} (3.18)
j=21—1
Forany 0, € & (i=1,2,--- k), define
Pr={0,€ P: #A(o1,--- ,08) =m/2,i=1,2,--- |k} (3.19)

and £y = & — A, where
Alor, o) = {{or(@20), 0120 = 1)}, 1= 1,2, ,m/2}
NN {{Uk(2l),ak(21 —)Li=1,2,- ,m/z}.

We can see that #%, = k% (m/2)!. Forany 0, € & (i =1,2,---,k), let

-1
1 m m
X Hexp ( - §Var(z Zwm(j) . (Bfl(i)(sl) - Bg(iq)(sl)))) dzdsy - - - dsg.

|
-
-

Il
=
<

I
=

When o € &, by Lemmas 3.1 and 3.3, using the same argument as in the proof of Proposition

4.5 in [16], as € — 0, we have

~

lim sup |ff777117iy,a| < c25 /2d |f(‘r)|2|f(y)|2|x|_d|y|_d 1{\zfy\§m5} dzdy — 0,
n—oo R

When o € 22, note that & is the set of all permutations of {1,2,---,m}. For any
(r,0) € P x P, define

¢ro(j) = sup{7(i) : i € AT},

where
A? ={o(1),0(2), - o))} A {c(1)+1,0(2)+1,---,0(j) + 1}.

J
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Let Q,, be the set of all (7,01,02, - ,0k_1) such that ¢ro,, Pr.oe, -+ »ro,_, 1S bijective.
Then, from Biane [3], the number of elements in Q,, is

m

[T +2 6 -1y

i=1
Define the set
7= AT N {ly2i| > vei=1,2,--- ,m/2}} — U Uwil/y < lyil <ly;l}-
i£je{2k—1:k=1,2,--- ,;m/2}

For « large enough, on T, we have the fact (details can be find in [16]),

£,

m m
‘Z(ya(j) - ya(j)Jrl)‘ (1 - _) SUP |y.7|
=i

Y jeA?
Thus, by Lemma 2.2, using the same argument as the proof Proposition 4.5 in [16], we have
lim sup :f,’;‘?y"
n—oo

m/2

< lirrisolip ((27r)d\/_ /o?n]k/“ H |f Y2;)|
e Z (A1 ()2

< TLewp (= 500= 257 = 2 213 ) = ) PAm(D) ) dys -y

=2 i=1 j=i

<o IFwPW
ly|<Ae

m/2
R+ 2 G- D)lim -1, 2
e (e [, TP a:)
c m m/2
: (/[o,oow o (- 501 )= T () ) ds 'ds’“>
4 m/2
x (limjup%/[ N nt]k(l_7%)_%)(51)2114‘"'4‘(Sk)2H)_2d81"'dSk)
m/2
RO+ 2 =) -1, e
- (e [, )Rl a)

m

+oo kTm 1 o
X (/ e dr) ( lim —/ (S%H—l—---—l—SiH)_gdSl---dSk) )
0 n—oo 1 [1,ent]k

as ¢ — 0 first, and then, v — oo, where 0 is (1 — 2H) A H if H < 1/2 and 2 — 2H otherwise.

On the other hand, using the same way, we have

m/2
EPLIT (42571 = 1)][(m = D] m/2
11nIr_1)1£f In 2z = (27)md/4 ( 2m)d / |f |$|7d dx)
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km

—+oo 2 1
X </ e dr) ( lim —/ (s%H—l—-u—l—siH)*g dsl-udsk)
0 n—oo n [Lent]k

m
2

Therefore,
m/2
R TT (142572 - 1)) w2
Jim I35 = —= (zwymﬂ4 < 2m)7 /ﬂ|f ||I|ddx)

—+oo
H
X </ L
0

o,
3
\_/
7 N
1
g5
S|
S—
ﬂ)
2
=
f3

..+SiH)7g dSl . "d5k>

(3.20)
It is easy to find that
o k
1,.2H d d
“ar) =i (24 1),
(i) =i+
where I'(+) is a Gamma function, and by Lemma 3.1, we find that
1
lim —/ (S%H+"'+SiH)_% dSl-'-dS}C
n—oo n [Lent]k
1/f8nHr » Lil
= lim — r-%rH
n—oo N \/E
1 /2 1 . /2 . .
X TR / (sinp1) ™ ~(cos cpl) dyr / (sinpe) & ~*(cos cpg) dps
0 0
/2 ) .
X - X / (sinp_o) 7 " H(cospr_2) T dpp_o
0
/2 . 1
X / (sin 1) 7 (cos 1) T dpp_1
0
t E—1 1 k=2 1 1 1
- el ) ) o )
(2H)k-1 2H '2H 2H '2H 2H’ 2H
Define
dF TR (2R (ke —1) d d(k—2) d
Cia= ( %d)B ( )7_)B(¥,_)
' Qk—1Lkk—3735 2k 2k 2k 2k
d d 1 ~
(Y (L Ftas).
oo B(g o) (o [ 1F@)Plel o
Combining (3.10), (3.15), (3.17) with(3.20), we have
m/2
lim I = (Cyqt)™? [ H(l + 281 — 1))} [(m — D).
i=1
O
Proof of Theorem 1.1 This follows from Lemmas 3.4-3.6 and Proposition 3.8. O
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