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Abstract In this article, the non-self dual extended Harper’s model with a Liouville fre-
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1 Introduction and Main Results

Let us consider the extended Harper’s model (EHM)

(Hλ,α,xu)n = c(x + nα)un+1 + c(x + (n − 1)α)un−1 + 2 cos 2π(x + nα)un, (1.1)

where u = {un} ∈ ℓ2(Z) and

c(x) = cλ(x) = λ1e
−2πi(x+α

2 ) + λ2 + λ3e
2πi(x+α

2 ),

c(x) = cλ(x) = λ1e
2πi(x+α

2 ) + λ2 + λ3e
−2πi(x+ α

2 ).

We call λ = (λ1, λ2, λ3) ∈ R3
+ the coupling, α ∈ R \ Q the frequency, and x ∈ R the phase. If

λ1 = λ3 = 0, the EHM reduces to the famous almost Mathieu operator (AMO). Physically, the

EHM describes the influence of a transversal magnetic field of flux α on a single tight-binding

electron in a 2-dimensional crystal layer (see [27]).

For irrational frequency α, the spectrum of Hλ,α,x does not depend on x, and is denoted

by Σλ,α.
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In general, we can split the coupling region into three parts (see Figure 1):

I = {(λ1, λ2, λ3) ∈ R3
+ : 0 < max{λ1 + λ3, λ2} < 1},

II = {(λ1, λ2, λ3) ∈ R3
+ : 0 < max{λ1 + λ3, 1} < λ2},

III = {(λ1, λ2, λ3) ∈ R3
+ : 0 < max{λ2, 1} < λ1 + λ3}.

Figure 1

Considering α ∈ R \ Q, we call α a Liouville frequency if β(α) > 0, where

β(α) = lim sup
k→∞

− ln ‖kα‖R/Z

|k| , ‖x‖R/Z = min
k∈Z

|x − k|. (1.2)

On the contrary, α is called a weak Diophantine frequency for β(α) = 0.

In the present article, we mainly focus on the regularity of the integrated density of states

(IDS) Nλ,α(·) (see subsection 2.2 for details) for EHM.

It is well-known that the IDS for a general analytic quasi-periodic Schrödinger operator is

continuous, which does not imply the Hölder continuity. In fact, many research efforts have

focused on the regularity of the IDS for both quasi-periodic Schrödinger operators and quasi-

periodic Jacobi operators.

On the one hand, we consider in the regime of positive Lyapunov exponent. In this case,

Bourgain-Goldstein-Schlag developed a series of powerful techniques, such as the large deviation

theorem, avalanche principle and semi-algebtraic sets theory to study the Hölder continuity of

the IDS. Along this line, the breakthrough was made by Goldstein-Schlag [11]. They proved

Hölder continuity of the IDS for a quasi-periodic Schrödinger operator with large analytic

potential and a Diophantine frequency (we call α ∈ R\Q a Diophantine frequency if there exist

γ > 1 and µ > 0 such that ‖kα‖R/Z ≥ µ
|k|γ for ∀ k ∈ Z \ {0}). Later, Bourgain [5] showed

that the IDS for AMO is (1
2 − ǫ)-Hölder continuous (for any small ǫ > 0) if the coupling λ2

is small and the frequency is Diophantine. Recently, Tao-Voda [26] dealt with quasi-periodic

Jacobi operators and obtained especially the (1
2 − ǫ)-Hölder continuous of the IDS for EHM if

the Lyapunov exponent is positive and the frequency is strong Diophantine (we call α ∈ R \ Q

a strong Diophantine frequency if there exist µ > 0 and γ > 1 such that ∀ k ∈ Z \ {0},
‖kα‖R/Z ≥ µ

|k|(ln |k|)γ ).



1242 ACTA MATHEMATICA SCIENTIA Vol.39 Ser.B

On the other hand, in the subcritical regime1, by using KAM techniques, Amor [13] proved

that the IDS for Schrödinger operator with a small (in perturbative sense) analytic potential and

a Diophantine frequency is 1
2 -Hölder continuous. After that, Avila-Jitomirskaya developed the

quantitative almost reducibility methods [2], which makes them show the 1
2 -Hölder continuity

of the IDS for AMO with λ2 6= ±1 and a Diophantine frequency. They also obtained 1
2 -Hölder

continuity of the IDS for Schrödinger operators with small (in non-perturbative sense) ana-

lytic potentials and Diophantine frequencies. Subsequently, Avila-Jitomirskaya [3] established
1
2 -Hölder continuity of the spectral measures for Schrödinger operator with a small analytic

potential and a Diophantine frequency. Leguil-You-Zhao-Zhou [21] proved the 1
2 -Hölder con-

tinuity of IDS for Schrödinger operators in the sub-critical regime with a weak Diophantine

frequency. In a recent work of Cai-Chavaudret-You-Zhou [6], they proved 1
2 -Hölder continuity

of the IDS for Schrödinger operators with small finitely differentiable potentials and Diophantine

frequencies.

Note that all results mentioned above are in Diophantine frequencies case. You-Zhang [28]

extended Goldstein-Schlag’s results to weak Liouville frequencies case (that is 0 < β(α) ≪ 1).

In [23], Liu-Yuan improved Avila-Jitomirskaya’s results to quasi-periodic Schrödinger operators

with Liouville frequencies. Hölder continuity of the IDS for quasi-periodic Schrödinger operators

with any Liouville frequencies was recently studied by Han-Zhang [18], with generalization to

the Jacobi case by Tao [25].

We also refer to [14, 16, 17, 19] for the study of the EHM.

The present article is the first one to investigate the sharp Hölder continuity of the IDS

for the quasi-periodic Jacobi operators with any Liouville frequencies. The main result of this

article is the following theorem.

Theorem 1.1 Suppose that 0 < β(α) < ∞ and λ ∈ I ∪ II. Then there is an absolute

constant C > 0 such that if max{Lλ,Lλ} > Cβ(α), we have for E1, E2 ∈ R,

|Nλ,α(E1) −Nλ,α(E2)| ≤ C⋆|E1 − E2|
1
2 ,

where

Lλ = ln
λ2 +

√

λ2
2 − 4λ1λ3

max{λ1 + λ3, 1} +
√

max{λ1 + λ3, 1}2 − 4λ1λ3

,

Lλ = ln
1 +

√
1 − 4λ1λ3

max{λ1 + λ3, λ2} +
√

max{λ1 + λ3, λ2}2 − 4λ1λ3

, (1.3)

and C⋆ > 0 is a constant depending on α, λ.

Remark 1.2 In EHM case, the involved Aλ,E(x) /∈ SL(2, R) (see (2.2)), which makes the

proof more technical (see section 3 for details).

Remark 1.3 Almost reducibility results were first obtained by Han [15] for EHM for

weak Diophantine frequencies, later generalized to the Liouville frequencies case by Shi-Yuan

in [24]. The proof of Theorem 1.1 relies on some almost reducibility results of [24] for EHM

with Liouville frequencies, but more quantitative.

1Subcritical regime means the corresponding transfer matrices An(z) (see section 2) are uniformly subexpo-

nentially bounded through some strip {z ∈ C : |ℑz| ≤ h, h > 0}.
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Combining Theorem 1.1 and the estimates on specrtal gaps in [24], we can obtain the

homogeneity of the spectrum.

Theorem 1.4 Assume that the conditions of Theorem 1.1 are satisfied. Then for any

ǫ > 0, there exists σ⋆ = σ⋆(λ, α, ǫ) > 0 such that for all E ∈ Σλ,α and σ ∈ (0, σ⋆), we have

Leb ((E − σ, E + σ) ∩ Σλ,α) ≥ (1 − ǫ)σ,

where Leb(·) is the Lebesgue measure.

Actually, there are also many results on the homogeneity of the spectrum for quasi-periodic

operators. In continuous Schrödinger operators case, Damanik-Goldstein-Lukic [7] set up Car-

leson homogeneity of the spectrum for small analytic potentials and Diophantine frequencies.

Later, in the regime of positive Lyapunov exponent, Goldsein-Damanik-Schlag-Voda [10] proved

Carleson homogeneity of the spectrum for (discrete) Schrödinger operators with Diophantine

frequencies. In [12], Goldstein-Schlag-Voda got the Carleson homogeneity of the spectrum

for Diophantine multi-frequency Schrödinger operators. Recently, Leguil-You-Zhao-Zhou [21]

considered the non-critical AMO with a weak Diophantine frequency and showed that the spec-

trum is homogenous. They also proved the homogeneity of the spectrum for Schrödinger op-

erators with (measure-theoretically) typical quasi-periodic analytic potentials and fixed strong

Diophantine frequency. Actually, we remark that all these results are restricted to (weak)

Diophantine frequencies. Liu-Shi [22] extended some results of [21] to Liouville frequencies

case. In [9], Fillman-Lukic established Carleson homogeneity of the spectrum for limit-periodic

Schrödinger operators.

The present article is organized as follows. In Section 2, we give some basic concepts and

notations. In Section 3, we prove a “remormalization” lemma. In Section 4, we prove 1
2 -Hölder

continuity of the IDS by establishing some quantitative almost reducibility results. The proof

of Theorem 1.4 is included in the Appendix.

2 Some Basic Concepts and Notations

2.1 Cocycle, Transfer Matrix and Lyapunov Exponent

By a cocycle, we mean a pair (α, A) ∈ (R \ Q) × C0(R/Z, M2(C)) satisfying
∫

R/Z

ln+ ||A(x)||dx < +∞.

We can regard the cocycle (α, A) as a dynamical system on (R/Z) × C2 with

(α, A) : (x, v) 7−→ (x + α, A(x)v), (x, v) ∈ (R/Z) × C2.

For k > 0, we define

Ak(x) =

1
∏

l=k

A(x + (l − 1)α).

The Lyapunov exponent for (α, A) is defined by

L(α, A) = lim
k→+∞

1

k

∫

R/Z

ln ‖Ak(x)‖dx = inf
k>0

1

k

∫

R/Z

ln ‖Ak(x)‖dx.
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2.2 Spectral Measure and the IDS

Let H be a bounded self-adjoint operator on ℓ2(Z). Then (H−z)−1 is analytic in C\Σ(H),

where Σ(H) is the spectrum of H , and we have for f ∈ ℓ2(Z),

ℑ〈(H − z)−1f, f〉 = ℑz · ‖(H − z)−1f‖2
ℓ2(Z),

where 〈·, ·〉 is the usual inner product in ℓ2(Z). Thus φf (z) = 〈(H − z)−1f, f〉 is an analytic

function in the upper half plane with ℑφf ≥ 0 (φf is the so-called Herglotz function). Therefore,

one has a representation

φf (z) =

∫

R

1

x − z
dµf (x),

where µf is the spectral measure associated to the vector f . Alternatively, for any Borel set

Ω ⊆ R,

µf (Ω) = 〈E(Ω)f, f〉,

where E is the corresponding spectral projection of H .

Denote by µf
λ,α,x the spectral measure of the operator Hλ,α,x and the vector f as above

with ||f ||ℓ2(Z) = 1. The IDS Nλ,α : R → [0, 1] is obtained by averaging the spectral measure

µf
λ,α,x with respect to x, that is,

Nλ,α(E) =

∫

R/Z

µf
λ,α,x(−∞, E]dx.

It is a continuous, non-decreasing surjective function and the definition is independent of the

choices of f .

2.3 Gap Labelling and the IDS

Each connected component of [Emin, Emax] \ Σλ,α is called a spectral gap, where Emin =

min{E : E ∈ Σλ,α} and Emax = max{E : E ∈ Σλ,α}. By the well-known gap labelling theorem

[8, 20], for every spectral gap G there is a unique nonzero integer m such that Nλ,α|G = mα

mod Z and

[E−
m, E+

m] = {Emin ≤ E ≤ Emax : Nλ,α(E) = mα mod Z}. (2.1)

2.4 Dynamical Relation

Recalling (1.1), for c(x) 6= 0 the equation

Hλ,α,xu = Eu

is equivalent to




uk+1

uk



 = Aλ,E(x + kα)





uk

uk−1



 ,

where

Aλ,E(x) =
1

c(x)





E − 2 cos 2πx −c(x − α)

c(x) 0



 . (2.2)
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2.5 Aubry Duality

The map σ : λ = (λ1, λ2, λ3) → λ = (λ3

λ2
, 1

λ2
, λ1

λ2
) induces the duality between region I and

region II. We call Hλ,α,x the Aubry duality of Hλ,α,x. We have Σλ,α = λ2Σλ,α for α ∈ R \ Q.

Aubry duality expresses an algebraic relation between the families of operators {Hλ,α,x}x∈R

and {Hλ,α,x}x∈R by Bloch waves, that is, if u : R/Z → C is an L2 function whose Fourier

coefficients û satisfy Hλ,α,θû = E
λ2

û, then there exist θ ∈ R, such that U(x) =

(

e2πiθu(x)

u(x − α)

)

satisfies

Aλ,E(x) · U(x) = e2πiθU(x + α). (2.3)

2.6 Some Notations

We briefly comment on the constants and norms in the following proofs. Let C(α) be a

large constant depending on α, and let C⋆ (or c⋆) be a large (or small) constant depending on

λ and α. Define the strip ∆s = {z ∈ C/Z : |ℑz| < s} and let ‖v‖s = sup
z∈∆s

‖v(z)‖, where v is a

mapping from ∆s to some Banach space (B, ‖ · ‖). In this article, B may be C, C2 or SL(2, C).

Remark 2.1 Recall that

Nλ,α(E) = Nλ,α(λ−1
2 E), Σλ,α = λ2Σλ,α.

It suffices to prove our main results in case λ ∈ II.

3 Renormalization of the Jacobi Cocycle with Liouville Frequencies

In EHM case, Aλ,E(x) /∈ SL(2, R) (see (2.2)), which is difficult to deal with directly. Thus

it needs make some “renormalization”. The “renormalization” from EHM cocycle to SL(2, R)

cocycle was first introduced by Avila-Jitomirskaya-Marx [4], and then improved by Han [15].

The following lemma extends Han’s results to Liouville frequencies case and is one of the key

ingredients of this article.

Lemma 3.1 Let 0 < β(α) < ∞ and λ ∈ II. If Lλ ≥ 5β(α), then there are some analytic

mapping Qλ from ∆L
λ

4π

to M2(C) and its inverse Q−1
λ which is analytic in the same region, such

that for all x ∈ ∆L
λ

4π

,

Q−1
λ (x + α)Aλ,E(x)Qλ(x) = Aλ,E(x),

where

Aλ,E(x) =
1

√

|c|(x)|c|(x − α)





E − 2 cos 2πx −|c|(x − α)

|c|(x) 0





with |c|(x) =
√

c(x)c(x). 2

Proof Let

ǫ⋆ = min

{

λ2 +
√

λ2
2 − 4λ1λ3

2λ1
,

λ2 +
√

λ2
2 − 4λ1λ3

2λ3

}

.

2c(x) is the complex conjugate of c(x) for x ∈ R and its analytic extension for x /∈ R.
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As λ2 > λ1 + λ3, we have for any ǫ ∈ R, |ǫ| < ǫ⋆,

λ2 − (λ1e
2πǫ + λ3e

−2πǫ) > 0, (3.1)

λ2 − (λ1e
−2πǫ + λ3e

2πǫ) > 0. (3.2)

Thus ℜc(x + iǫ) > 0,ℜc(x + iǫ) > 0 for any x ∈ R/Z. We have showed that c(x), c(x)

have no zeros on ∆L
λ

2π

. Recalling (3.1) and (3.2) again, the rotation numbers of c(x), c(x)

on ∆L
λ

2π

are identically vanishing. Consequently, there are single-valued analytic functions

g1(x) = log |c(x)|+ i arg c(x) and g2(x) = log |c(x)|+ i arg c(x) on ∆L
λ

2π

such that c(x) = eg1(x),

c(x) = eg2(x).

In view of x ∈ R/Z,

ℜc(1 − α − x) = ℜc(x),ℑc(1 − α − x) = −ℑc(x),

then we have

∫

R/Z

arg c(x)dx =

∫ 1
2−

α
2

−α
2

arg c(x)dx +

∫ 1−α
2

1
2−

α
2

arg c(x)dx

= −
∫ 1

2−
α
2

−α
2

arg c(1 − α − x)dx +

∫ 1−α
2

1
2−

α
2

arg c(x)dx

= 0.

Similarly,
∫

R/Z
arg c(x)dx = 0. Hence ĝ1 − g2(0) =

∫

R/Z
(g1(x) − g2(x)) dx = 0 and the function

f(x) =
∑

k∈Z

f̂ke2πkix will solve the equation

2f(x + α) − 2f(x) = g1(x) − g2(x),

where f̂0 = 0 and f̂k = ĝ1−g2(k)
2(e2πkiα−1) , k 6= 0. From the definition of β(α) in (1.2), we have the

small divisor estimate

‖kα‖R/Z ≥ C(α)e−
3
2 β(α)|k| for k 6= 0. (3.3)

Because Lλ ≥ 5β(α), f(x) is analytic on ∆L
λ

4π

. Thus c(x) = |c|(x)ef(x+α)−f(x), c(x) =

|c|(x)e−f(x+α)+f(x) for all x ∈ ∆L
λ

4π

.

Let

Qλ(x) = ef(x)
√

|c|(x − α)











1 0

0

√

c(x − α)

c(x − α)











.

Then the proof is complete (the detailed calculation is similar to that of [15]). �

We denote by Lλ(E) = L(α, Aλ,E) the Lyapunov exponent of (α, Aλ,E).

The Thouless formula relates the Lyapunov exponent to the IDS,

Lλ(E) = −
∫

R/Z

ln |cλ(x)|dx +

∫

R

ln |E′ − E|dNλ,α(E′). (3.4)
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4 1
2
-Hölder Continuity of the IDS

In this section, we will prove the 1
2 -Hölder continuity of the IDS for EHM. To this end, one

needs to establish quantitative almost reducibility results for the extended Harper’s cocycle.

Let us begin with some useful definitions and lemmas.

Definition 4.1 Fix θ ∈ R, ǫ0 > 0. We call n ∈ Z an ǫ0-resonance of θ if

min
|k|≤|n|

‖2θ − kα‖R/Z = ‖2θ − nα‖R/Z ≤ e−ǫ0|n|.

Given θ ∈ R, we order all the ǫ0-resonances of θ as 0 < |n1| ≤ |n2| < · · · . We say θ

is ǫ0-resonant if the set of all ǫ0-resonances of θ is infinite and ǫ0-non-resonant for otherwise.

Supposing {0, n1, · · · , nj} is the set of all ǫ0-resonances of θ, we let nj+1 = ∞.

Lemma 4.2 (Theorem 3.3 of [2]) Let E ∈ Σλ,α. Then there exist θ = θ(E) ∈ R and

solution u of Hλ,α,θu = E
λ2

u with u0 = 1, |uk| ≤ 1.

Throughout this section we fix E, θ = θ(E) and u which are given by Lemma 4.2.

In the following, we let C2, C1 (C2 ≫ C1) be large absolute constants which are bigger than

any positive absolute constant C. Moreover, we assume that

h =
Lλ

200π
, Lλ > C2β(α).

From Theorem 3.3 in [24], we have

|uk| ≤ C⋆e
−2πh|k| for 3|nj | < |k| <

|nj+1|
3

, (4.1)

where {nj} is the set of all C2
1β(α)-resonances of θ = θ(E).

Lemma 4.3 (Lemma 6.6 of [24]) We have

sup
0≤k≤e

hn
20

‖Ak‖ h
20

≤ C⋆e
Cβ(α)n, (4.2)

where C > 0 is some absolute constant.

Lemma 4.4 (Theorem 2.6 of [1]) Given η > 0, we let U : C/Z → C2 be analytic in ∆η

and satisfy δ1 ≤ ‖U(x)‖ ≤ δ−1
2 for ∀ x ∈ ∆η. Then there exists B(x) : C/Z → SL(2, C) being

analytic in ∆η with the first column being U(x) and ‖B‖η ≤ Cδ−2
1 δ−1

2 (1 − ln(δ1δ2)), where

C > 0 is some absolute constant.

For simplicity, we write n = |nj | < ∞ and N = |nj+1|.
Define I2 =

[

−⌊N
9 ⌋, ⌊N

9 ⌋
]

and

U I2(x) =











e2πiθ
∑

k∈I2

uke2πikx

∑

k∈I2

uke2πik(x−α)











,

where ⌊x⌋ denotes the integer part of some x ∈ R. Suppose that U I2
⋆ (x) = Qλ(x) · U I2(x).

Recalling (2.3) and (4.1), we have

Aλ,E(x)U I2
⋆ (x) = e2πiθU I2

⋆ (x + α) + G⋆(x), (4.3)

where

‖G⋆‖ h
3
≤ C⋆e

− h
10 N . (4.4)



1248 ACTA MATHEMATICA SCIENTIA Vol.39 Ser.B

We have the following useful estimate.

Lemma 4.5 (Lemma 6.6 in [24]) For n > n(λ, α),

inf
x∈∆ h

3

‖U I2
⋆ (x)‖ ≥ e−Cβ(α)n, (4.5)

where C > 0 is some absolute constant.

We now turn to the upper bound. From (4.1) and the definition of u in Lemma 4.2, one

has

‖U I2
⋆ (x)‖C1β(α) ≤ C⋆

∑

|k|≤3n

|uk|e2πC1β(α)|k| + C⋆

∑

3n<|k|≤N
9

|uk|e2πC1β(α)|k|

≤ C⋆e
CC1β(α)n. (4.6)

The purpose of the following is to construct quantitative almost reducibility (in SL(2, C))

results. Suppose that B(x) is as in Lemma 4.4 with U(x) = U I2
⋆ (x) and η = C1β(α). Then

from (4.5), (4.6) and Lemma 4.4, we obtain

‖B‖C1β(α), ‖B−1‖C1β(α) ≤ C⋆e
CC1β(α)n. (4.7)

More precisely, by letting B(x) = (U I2
⋆ (x), V (x)) and recalling (4.3), we have

Aλ,E(x)B(x) =
[

e2πiθU I2
⋆ (x + α) + G⋆(x), Aλ,E(x)V (x)

]

= B(x + α)





e2πiθ 0

0 e−2πiθ



+
[

G⋆(x), Aλ,E(x)V (x) − e−2πiθV (x + α)
]

.

In other words,

B−1(x + α)Aλ,E(x)B(x) =





e2πiθ 0

0 e−2πiθ



+





β1(x) b(x)

β2(x) β3(x)



 . (4.8)

From (4.4) and (4.7), we obtain

‖β1‖C1β(α), ‖β2‖C1β(α) ≤ C⋆e
− h

20N (4.9)

and

‖b‖C1β(α) ≤ C⋆e
CC1β(α)n. (4.10)

By taking determinant on (4.8) and in view of Aλ,E , B ∈ SL(2, C), one has

‖β3‖C1β(α) ≤ ‖b‖C1β(α)‖β2‖C1β(α) + ‖β1‖C1β(α) ≤ C⋆e
− h

30N . (4.11)

Actually, one can obtain the following refinement.

Theorem 4.6 Under the previous assumptions, there exists Φ(x) : C/Z → SL(2, C) being

analytic in ∆ 1
2C1β(α) with ‖Φ‖ 1

2C1β(α) ≤ C⋆e
CC1β(α)n such that

Φ−1(x + α)Aλ,E(x)Φ(x) =





e2πiθ 0

0 e−2πiθ



+





β′
1(x) b′(x)

β′
2(x) β′

3(x)



 , (4.12)

where

‖β′
1‖ 1

2C1β(α), ‖β′
2‖ 1

2 C1β(α), ‖β′
3‖ 1

2C1β(α) ≤ C⋆e
− h

50N , (4.13)

and

‖b′‖ 1
2C1β(α) ≤ C⋆e

− 1
20C2

1β(α)n. (4.14)
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Proof It suffices to assume that n > n(λ, α). Recalling (4.8), we can write b(x) =

br(x) + bl(x) + bh(x), where bl(x) =
∑

|k|≤C1n, k 6=nj

b̂ke2πikx, br(x) = b̂nj
e2πinjx and bh(x) =

∑

|k|>C1n

b̂ke2πikx. Then by (4.10),

‖bh‖ 1
2 C1β(α) ≤

∑

|k|>C1n

‖b‖C1β(α)e
−πC1β(α)|k| ≤ C⋆e

−2C2
1β(α)n. (4.15)

We then eliminate the term bl(x) by solving some homological equation. From (3.3) and

the definition of ǫ0-resonance, one has for |k| ≤ C1n and k 6= nj ,

‖2θ − kα‖R/Z ≥ ‖(nj − k)α‖R/Z − ‖2θ − njα‖R/Z ≥ c⋆e
−3C1β(α)n. (4.16)

Let ŵk = −b̂k
e−2πiθ

1−e−2πi(2θ−kα) for |k| ≤ C1n and k 6= nj , and ŵk = 0 for |k| > C1n or k = nj .

Consequently, the function w(x) =
∑

k∈Z

ŵke2πikx will satisfy ‖w‖ 1
2 C1β(α) ≤ C⋆e

CC1β(α)n from

(4.10) and (4.16). If define

W (x) =





1 w(x)

0 1



 ,

then

W−1(x + α)





e2πiθ bl(x)

0 e−2πiθ



W (x) =





e2πiθ 0

0 e−2πiθ



 ,

and

‖W‖ 1
2C1β(α) ≤ C⋆e

CC1β(α)n. (4.17)

We now set Φ(x) = B(x)W (x). Then ‖Φ‖ 1
2C1β(α) ≤ C⋆e

CC1β(α)n. By direct computation, we

have

Φ−1(x + α)Aλ,E(x)Φ(x) = Z(x) + Ψ(x),

where

Z(x) =





e2πiθ br(x)

0 e−2πiθ





and

Ψ(x) =





β′
1(x) bh(x)

β′
2(x) β′

3(x)



 = W−1(x + α)





β1(x) bh(x)

β2(x) β3(x)



W (x).

Hence, we can obtain (4.13) and

‖Ψ‖ 1
2 C1β(α) ≤ C⋆e

−C2
1β(α)n (4.18)

from (4.9), (4.11), (4.15) and (4.17).

Thus what remains is to estimate the term br(x). For s ∈ N, we set

Zs(x) =

0
∏

k=s−1

Z(x + kα) =





e2πisθ br
s(x)

0 e−2πisθ



 ,

where

br
s(x) = b̂nj

e2πi((s−1)θ+njx)
s−1
∑

k=0

e−2πik(2θ−njα).
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Therefore,

‖br
s‖0 =

∣

∣

∣

∣

b̂nj

sin πs(2θ − njα)

sinπ(2θ − njα)

∣

∣

∣

∣

if sinπ(2θ − njα) 6= 0, and ‖br
s‖0 = s|b̂nj

| otherwise. As

2‖x‖R/Z ≤ sin(π‖x‖R/Z) ≤ π‖x‖R/Z,

we have for 0 ≤ s ≤ 1
2‖2θ − njα‖−1

R/Z
,

2s

π
|b̂nj

| ≤ ‖br
s‖0 ≤ s|b̂nj

|.

Therefore, for 0 ≤ s ≤ 1
2‖2θ − njα‖−1

R/Z
,

2s

π
|b̂nj

| ≤ ‖Zs‖0 ≤ 1 + s|b̂nj
| ≤ C⋆(1 + s)eCC1β(α)n. (4.19)

Because of

Φ−1(x + sα)As(x)Φ(x) = Zs(x) +

s
∑

k=1

∑

s−1≥j1>j2>···>jk≥0

Ψ(x + j1α) · · ·Ψ(x + jkα)

× Zs−1−j1(x + (j1 + 1)α)Zj1−j2−1(x + (j2 + 1)α) · · ·Zjk
(x)

and combining with (4.18) and (4.19), we have for s ∼ e
1
10C2

1β(α)n < 1
2‖2θ − njα‖−1

R/Z
,

‖As‖0 ≥ ‖Φ‖−2
0

(

‖Zs‖0 −
s
∑

k=1

(

s

k

)

‖Ψ‖k
0( max

0≤j≤s−1
‖Zj‖0)

1+k

)

≥ ‖Φ‖−2
0

(

‖Zs‖0 − C⋆e
1
10C2

1β(α)n
s
∑

k=1

(

s

k

)

2ke−
1
2C2

1β(α)nk

)

≥ ‖Φ‖−2
0

(

‖Zs‖0 − C⋆e
1
10C2

1β(α)n((1 + 2e−
1
2C2

1β(α)n)s − 1)
)

≥ c⋆e
−CC1β(α)n(‖Zs‖0 − C⋆e

− 3
10C2

1β(α)n).

Thus, from Lemma 4.3 and (4.19), we have for s ∼ e
1
10 C2

1β(α)n,

|b̂nj
| ≤ C⋆e

− 1
15C2

1β(α)n.

Hence,

‖b′‖ 1
2C1β(α) ≤ C⋆e

− 1
20C2

1β(α)n.

The proof is completed. �

Now we give the proof of Theorem 1.1.

Proof If the energy E is in the resolvent set, then Nλ,α(E) is clearly Lipschitz continuous.

Thus it suffices to consider the case E ∈ Σλ,α. Given ǫ > 0, we define D =





d−1 0

0 d



, where

d = ‖Φ‖ 1
2C1β(α)ǫ

1
4 and Φ is given by Theorem 4.6. Let Φ′(x) = Φ(x)D. If ǫ ≤ c⋆e

−C2
1β(α)n, we

have

‖Φ′‖ 1
2C1β(α) ≤ C⋆ǫ

− 1
4 . (4.20)

Setting B′(x) = Φ′−1(x + α)Aλ,E(x)Φ′(x), then

B′(x) =





e2πiθ 0

0 e−2πiθ



+





β′
1(x) d2b′(x)

d−2β′
2(x) β′

3(x)
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with

‖β′
1‖ 1

2C1β(α) , ‖β′
3‖ 1

2C1β(α) ≤ C⋆e
− 1

50hN ,

∥

∥d2b′
∥

∥

1
2C1β(α)

≤ C⋆e
− 1

50C2
1β(α)nǫ

1
2 ,

and
∥

∥d−2β′
2

∥

∥

1
2C1β(α)

≤ C⋆e
− 1

100hN ǫ−
1
2 .

If ǫ ≥ C⋆e
− 1

100hN , then
∥

∥d−2β′
2

∥

∥

1
2C1β(α)

≤ C⋆ǫ
1
2 ,

and

‖B′‖ 1
2C1β(α) ≤ 1 + C⋆ǫ

1
2 . (4.21)

As a result, for C⋆e
− 1

100hN ≤ ǫ ≤ c⋆e
−C2

1β(α)n,

Lλ(E) = L(α, B′) ≤ ln ‖B′‖ 1
2C1β(α) ≤ ln

(

1 + C⋆ǫ
1
2

)

≤ C⋆ǫ
1
2 .

Define

Ij := {ǫ ∈ R : C⋆e
− 1

100 h|nj+1| ≤ ǫ ≤ c⋆e
−C2

1β(α)|nj |}.

Then for any small ǫ0 > 0, there exists j0 ∈ Z+ such that [0, ǫ0] ⊂
⋃

j≥j0

Ij . Let ǫ = |E − E′| ∈

[0, ǫ0] with E′ ∈ C. Then by (4.20) and (4.21), one has

Lλ(E′) = L
(

α, Φ′−1(x + α)Aλ,E′(x)Φ′(x)
)

≤ ln
∥

∥B′ + Φ′−1(x + α)
(

Aλ,E′(x) − Aλ,E(x)
)

Φ′(x)
∥

∥

1
2C1β(α)

≤ ln
(

1 + C⋆ǫ
1
2

)

≤ C⋆ǫ
1
2 .

Hence,

|Lλ(E′) − Lλ(E)| ≤ C⋆|E′ − E| 12 . (4.22)

From the Thouless formula (3.4), we have

∣

∣L
(

α, Aλ,E+iǫ

)

− Lλ(E)
∣

∣ =
1

2

∫

ln

(

1 +
ǫ2

(E − E′)2

)

dNλ,α(E′)

≥ 1

2
ln 2 (Nλ,α(E + ǫ) −Nλ,α(E − ǫ)) .

Thus, recalling (4.22), we obtain

Nλ,α(E + ǫ) −Nλ,α(E − ǫ) ≤ C⋆ǫ
1
2 ,

which means precisely that Nλ,α(E) is 1
2 -Hölder continuous.

This completes the proof of Theorem 1.1. �

The proof Theorem 1.4 is included in Appendix.
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[26] Tao K, Voda M. Hölder continuity of the integrated density of states for quasi-periodic Jacobi operators. J

Spectr Theory, 2017, 7(2): 361–386

[27] Thouless D J. Bandwidths for a quasiperiodic tight-binding model. Phys Rev B, 1983, 28(8): 4272–4276
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Appendix

In this section, we will complete the proof of Theorem 1.4. The proof is similar to that of

[22]. For convenience, we include the details in the following.

Lemma 0.7 (Theorem 1.1 of [24]) Let α ∈ R \ Q with 0 ≤ β(α) < ∞ and E−
m, E+

m be

given by (2.1). Then there exists absolute constant C > 1 such that, if λ ∈ II and Lλ > Cβ(α),

one has for |m| ≥ m⋆,

E+
m − E−

m ≤ e−C−1Lλ|m|,

where m⋆ is a positive constant only depending on λ and α, and Lλ is given by (1.3).

Lemma 0.8 Let Gm = (E−
m, E+

m) for m ∈ Z \ {0} and G0 = (−∞, Emin)
⋃

(Emax, +∞).

Then, for m′ 6= m ∈ Z \ {0} with |m′| ≥ |m|, we have

dist(Gm, Gm′) = inf
x∈Gm,x′∈Gm′

|x − x′| ≥ c⋆e
−6β(α)|m′|, (A.1)

and for m ∈ Z \ {0},
dist(Gm, G0) ≥ c⋆e

−6β(α)|m|. (A.2)

Proof From the small divisor condition (3.3), one has

‖(m − m′)α‖R/Z ≥C(α)e−3β(α)|m′| (A.3)

for |m′| ≥ |m|.
Without loss of generality, we assume that E+

m ≤ E−
m′ . By Theorem 1.1, (2.1) and (A.3),

we have
dist(Gm, Gm′) = |E−

m′ − E+
m|

≥
(

1

C⋆

∣

∣Nλ,α(E−
m′) −Nλ,α(E+

m)
∣

∣

)2

≥ c⋆‖(m − m′)α‖2
R/Z

≥ c⋆e
−6β(α)|m′|,

which completes the proof of (A.1). The proof of (A.2) is similar. �

Now we can give the proof of Theorem 1.4.

Proof Assume that 0 < σ ≤ σ⋆(λ, α, ǫ). For E ∈ Σλ,α and σ, let

R(E, σ) = {m ∈ Z \ {0} : (E − σ, E + σ) ∩ Gm 6= ∅}.

Define m0 ∈ Z \ {0} with |m0| = min
m∈R(E,σ)

|m|. For any m ∈ R(E, σ), one has

dist(Gm, Gm0) ≤ 2σ.

We first assume that (E−σ, E+σ)∩G0 = ∅. Recalling (A.1), we have for any m ∈ R(E, σ)

and m 6= m0,

2σ ≥ c⋆e
−6β(α)|m|,

that is,

|m| ≥ − ln (C⋆σ)

6β(α)
. (A.4)
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Then, by Lemma 0.7, we obtain

∑

m∈R(E,σ),m 6=m0

Leb((E − σ, E + σ) ∩ Gm) ≤
∑

m∈R(E,σ),m 6=m0

(E+
m − E−

m)

≤
∑

|m|≥− ln (C⋆σ)
6β(α)

C⋆e
−C−1Lλ|m|

≤ ǫσ. (A.5)

Moreover, E ∈ Σλ,α implies E /∈ Gm0 . Thus, we have

Leb((E − σ, E + σ) ∩ Gm0) ≤ σ. (A.6)

In this case, (A.5) and (A.6) implies

Leb((E − σ, E + σ) ∩ Σλ,α)

≥ 2σ − Leb((E − σ, E + σ) ∩ Gm0) −
∑

m∈R(E,σ),m 6=m0

Leb((E − σ, E + σ) ∩ Gm)

≥ 2σ − σ − ǫσ ≥ (1 − ǫ)σ.

In the case (E − σ, E + σ) ∩ G0 6= ∅, we have

0 < E−
m − Emin ≤ 2σ

for any m ∈ R(E, σ). Thus, (A.4) also holds for any m ∈ R(E, σ) by (A.2). From the proof of

(A.5), we have
∑

m∈R(E,σ)

Leb((E − σ, E + σ) ∩ Gm) ≤ ǫσ. (A.7)

Due to E ∈ Σλ,α and E /∈ G0, one has

Leb((E − σ, E + σ) ∩ G0) ≤ σ. (A.8)

By (A.7) and (A.8), we obtain

Leb((E − σ, E + σ) ∩ Σλ,α)

≥ 2σ − Leb((E − σ, E + σ) ∩ G0) −
∑

m∈R(E,σ)

Leb((E − σ, E + σ) ∩ Gm)

≥ 2σ − σ − ǫσ ≥ (1 − ǫ)σ.

This completes the proof of Theorem 1.4. �


