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Abstract This article establishes the precise asymptotics
Eu™(t,z) (t —o00 or m — c0)

for the stochastic heat equation

Ou 1 ow
—(t,l’) = §Au(t7x) +U‘(t7 x)ﬁ(tv l’)

with the time-derivative Gaussian noise %—Vtv(t, x) that is fractional in time and homogeneous

in space.
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1 Introduction

Moment asymptotics for solutions to stochastic partial differential equations are known as
the problem of intermittency that has been studied extensively in the past two decades [1, 8].

In this work, we investigate the asymptotics problem
Eu™(t,x) (t—o00 or m— o0)

for the stochastic heat equation
ou

_1 ow xR
E(t,x) = 2Au(t,x)+u(t,x) 5 (t,z) (t,xz) eRT xR

u(0,2) = up(x)

(1.1)
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with the Gaussian noise %W(t, x) that is formally given as the time derivative of the mean-zero
Gaussian field {W (t,z); (t,x) € RT x R?} with the covariance function

1
Cov (W (t,2), W (s,9)) = 5 (B0 + 50 — [t = s[M)T(z,y)  (t,2), (5,9) € RY x RY,

where the time Hurst parameter Hy € (0,1) and we assume that the space covariance function

I'(z,y) is locally bounded and has the homogeneity in the sense that
I'(Czx,Cz) = |C|*"T(x, x)
L(z,2) + Ty, y) —20(z,y) =T(z —y,z —y)

for any z,y € R? and C € R, where the constant H € (0,1). Assumption (1.2) can be restated

(1.2)

as
{W(cot,cx); (t,x) € RT xR} 4 {céq“cHW(t,:v); (t,z) € RT x R}
W(t2) = W(s,y) SW(t—sz—y) (co,c>0, (t,2),(s,) € R x RY).
For simplicity, we assume that bounded initial condition is as follows:

0 < inf wug(x) < sup up(z) < oo. (1.4)
z€R4 zERd

Mathematically, %W(t, x) is defined as a generalized centered Gaussian field with

0 0

Cov (EW@’ x), 8_W(S’ y)) =yt —8)(x,y) (t,z),(s,y) € RT x RY. (1.5)
s

Here, the time-covariance vo(t — s) is morally considered as the derivative

2 (1
gigs 3+ e = 5P )

In particular,

Ho(2Hy — 1)|t — 5|~ @720 [y > 1/2
Yot —s) = (1.6)
6o(t—8) H0=1/2
The function vo(-) defined in (1.6) is qualified as covariance function as it is non-negative
definite. Indeed, it can be shown that
I'(2Ho + 1) sin(mH ;
(2o +2)Sln(” ) / MA20AN  w e R, (L1.7)
™ R

Yo(u) =

When Hy < 1/2, the function | - |~(3=2H0) is no longer non-negative definite and is not
qualified for being a covariance function. As consequence, the covariance function ~o(-) can not
be legally defined by (1.6) when Hy < 1/2. As Hy < 1/2, the function ~o(-) is defined as a
generalized function given in (1.7). It should be emphasized that o(-) is not defined point-wise
when Hy < 1/2.

Under suitable conditions (such as the one assumed in our main theorem), the solution to

(1.1) yields the following Feynman-Kac formula:

u(t,z) = E, [uo(Bt) exp { /Ot W (ds, Bts)H (t,z) € RT x RY, (1.8)

where {By; t > 0} is a d-dimensional Brownian motion independent of {W (¢, z); (¢t,z) € RT x
R?} with By = z, and “E,” stands for the Brownian expectation. We point to [5] and [6] for

existing literature.
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Recently, Chen, Hu, Kalbasi, and Nualart ((1.3), [1]) establish the bounds

2—H 2Hp+H
1-H

C1 exp {C’lm I-H{ } <Eu™(t,z) < Cyexp {C’gmﬁgtﬂl{oy{ } (1.9)

for the case Hy < 1/2, where the constant Cy,Cs > 0 are independent of t > 0and m = 1,2, --.
In connection to (1.9), our goal is to obtain the precise asymptotics as ¢ — 0o or as m — 0.
Let Co{[0,1],R?} be the space of continuous functions z(s): [0,1] — R with z(0) = 0
and Hq be the Cameron-Martin space given as

1
Hq = {x() € Co([0,1],R%); x(s) is absolutely continuous and / |l (s)|?ds < oo}.
0
Set

o Ca [ T L
E(Ho)—sp{ /0/0 S ydsd 2/0 | ()|d}(1/2<H0<1), (1.10)

r€EHq 2

1 1
5(%) = sup {%/0 T(x(s),z(s))ds — %/0 |:b(s)|2ds} (Ho=1/2), (1.11)

x€EHg

£t = sup {19l [* [ IO 20000 220,

|s — r|—2Ho)

z€EHg
N %/0 {57(172HO) . S)*(1*2H0>}I‘(a:(s),x(s))ds
- %/01 |¢(s)|2ds} (0< Hy < 1/2), (1.12)

where Cpy, = Ho(2Ho —1). In connection to the Feynman-Kac representation (1.8) and in view
of the variance identities given in (2.26), (2.27), and (2.28) below, all variations can be unified

into the following form:

E(Hy) = sup {%Var (/01 W(ds,x(s))) - %/01 |i:(s)|2ds} (0 < Hy < 1). (1.13)

rEH

Clearly, £(Hp) > 0 for every 0 < Hy < 1. We now show that £(Hy) < oo whenever
1—-2Hy < H < 1. For similarity, we only consider the case Hy < 1/2. By the local boundedness
and homogeneity of I'(-, -), there exists a constant Cy > 0 such that

[(z,2) < Colz|*" xR (1.14)
In particular,
D(x(s) — z(r), a(s) — z(r)) < Cola(s) — x(r)[* and T(x(s),z(s)) < Cola(s)*

for any x € Hq4. Notice that

(o) = alr)) = | ["atoyae] < s =2 ( [ 1 (o)

By the fact that 2(0) = 0, we have

olo)) = | [ atoar] <1572 ( [ 1 |a'c<s>|2ds)l/2.

1/2
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/ / Tffg‘z)o)_ ) 4sar
A e
< / |:b<s>|2ds) |

where the last step follows from the fact that 2 — H — 2Hy < 1. Similarly,
1 1 H
/0 {3_(1_2H°) +(1- s)_(l_QHO)}I‘(:U(s),x(s))ds < C(/O |9'c(s)|2ds> .

et < sup o (Gl + - ) < oo

Hence,

Hence,

by the assumption that H < 1.
Our concern is the asymptotic behavior of Eu" (¢, x) when at least one of ¢ and m goes to

infinity. This limit pattern is described as t V. m — oo.

Theorem 1.1 Assume that 0 < Hy, H < 1 and 1 — 2Hy < H < 1. For every z € R?, we
have

2Hg+H 2—H
lim ¢~ =7 m~ =8 logBu™ (¢, 2) = E(Hy). (1.15)

tVm—oo
The interesting models covered by Theorem 1.1 are the case when W (t, z) is a fractional
Brownian sheet with the Hurst parameter (Hy, H1,--- , Hq) and the case when W(t,z) is a
spatial radial fractional Brownian sheet with Hurst parameter (Hy, H).

When W(t,x) is a fractional Brownian sheet,

IvaJ x:(xlv"'v'rd)a y:(yla"'vyd)eRda (116)

H'[:]m

where .
Ry, (z5,y;) = §{|$j|2Hj +y; P — |y — P} G=1, L d

One can verify assumption (1.2) with H = H; +--- + Hg.

As for spatial radial fractional Brownian sheet,
[(z,y) —{IHEIZ’H Yy — e —y*T} zyeRY (1.17)

The variations appearing in Theorem 1.1 can be evaluated in some cases. Here, we report
an interesting link to the historic article [7] by Strassen who prove that ((5), [7])

1 1
sup {/ |z(s)|*ds; z € Hy and / |&(s)|%ds = 1}
0 0

:2(@4—2)&22@_‘1/2(/01\/%_8(1)a:2(a+2) (1 i) (1.18)

for every a > 1, where B(,-) is the beta function. We point out that the computation (by

Lagrange multiplier) in [7] allows (1.18) for every a > 0.
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The identity leads to the evaluation of the variation £(Hy) in the case whend = 1, Hy = 1/2,
and the the space covariance T'(-,-) is given by (1.16) or (1.17). More precisely,

£(1/2) :sup{ /|x (s)*ds — = /|:v |2ds}
x€H1

1+H

— ot (1 - H)HT HB( (1.19)

2’ 2H)

1 1
A =sup {/ lz(s)[*"ds; = € Hy and / |©(s)|*ds = 1}.
0 0

One can easily see that
1 ! 2H 1 ! . 2
sup < - |x(s)| ds — = |z(s)|*ds
r€H1 0

:‘555’1{ (/ it 20‘8) - [t

1 o 1 0
_52215{/&9 9} S - MH™7 AT,

Taking a = 2H in (1.18), then

Indeed, let

1 \—2H
A= 22H(H + 1)t~ 1HHB(5 ﬁ)
So, we have (1.19).
Theorem 1.1 is proved in Section 2. Large deviation theory (Schilder theorem, more pre-

cisely) is essential to our approach. Unlike the setting of the time-space derivative noise

o*w

m(t, x)
where (]2, 3]) the Brownian motion B, appearing in the Feynman-Kac formula (1.8) plays a

role as Markov process, the Brownian motion in this work plays role as Gaussian process.

2 Proof of Theorem 1.1

By (1.8), the solution (¢, z) is monotonic in the initial state ug(z). By the bounded initial
condition (1.4), therefore, we may assume ug(z) = 1.
Our proof relies on the Feynman-Kac representation (1.8), where time integral is defined

by the approximation

t
/ W(ds, B_y) % lim / aWf(
e—0t Jo 0s

where W, (s, x) is a properly smoothed version of W (s, z). As a side remark, we point that the

_o)ds in £2(Q, A, P),

existence of the limit and the existence of the solution are secured by the finite expectation of
the Feynman-Kac representation (1.8). First notice that whenever the expectation exists, the
time integral defined by the limit is Gaussian conditioning on the Brownian motion B;. Taking
expectation with respect to W in (1.8) and by Fubini theorem, we obtain

5)}.

t
Eu(t,r) = E, exp {%Var (/ W (ds, Bi—s)
0
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where Var (:|B) is the variance conditioning on the Brownian motion B;. It is not hard to
see that the Feynman-Kac representation (1.8) is well established and in £(,.4,P) if the

conditional variance

t
Var (/ W (ds, B;—s)
0

is exponentially integrable. Such exponential integrability holds under the condition of Theorem

B) (2.1)

(1.1). As a matter of fact, the proof given below largely depends on our investigation of the

asymptotics for the exponential moment of the conditioning variance given in (2.1).

2.1 Asymptotics for Eu™(¢,0)

In this sub-section, we prove (1.15) in the case when x = 0, that is,

lim ¢~ i i logEu(t,0) = E(Hp). (2.2)

tVm—oo

First, we point out that the conditioning variance in (2.1) can be explicitly written. When

Hy > 1/2, by the direct computation, we have

t t t 8 8
Var</0 W (ds, By_s) B> :/0 /0 Cov (EW(S,BH),§W(T,Bt,r)|3)dsdr

t et
= Ch, / / |s —r|"C72HOD(B,_,, B,_,)dsdr
0o Jo

t ot
= ChH, / / |s — r|_(2_2H°)I‘(BS, B,)dsdr, (2.3)
o Jo

where the second step follows from (1.5) with 4o(-) = Cg,|-|~?~2H) in (1.6) and the last step
follows from time-reversal substitution.

When Hy = 1/2, a similar treatment leads to

Var (/Ot W (ds, B;—s) B> = /Otl"(BS,BS)ds. (2.4)

The case Hy < 1/2 gets a little tricky as «o() is not pointwise defined. By approximation,
Chen, Hu, Kalbasi, and Nualart (Theorem 2.2 and Remark 2.3, [1]) prove that

Var </Ot W (ds, Bi_) B)

_ HO/ s~U=2H0) (D(B, B,) + T(B,_s, Bi_.) }ds
0

t t
+ @ / / |s — |~ @72HO(T(By, By) + (B, B,;) — I'(Bs, B,) — T'(B,, B,) }dsdr
0 0

t
s / s~0=200 (D(B, B,) + T(By s, By_,) hds
0

|CH | K tF(BS_B’HBS_BT)
+ TO ) =T dsdr, (2.5)

where the second equality follows from the second equation in (1.2).
Set

1 2Ho+H
tm — m?20-H) t2001—-H)

@ Springer



No.3 H.Y. Li & X. Chen: PRECISE ASYMPTOTICS FOR A STOCHASTIC HEAT EQUATION 635

By the first equation in (1.2) and the Brownian scaling, all conditional variances in (2.3), (2.4),
and (2.5) satisfy the identity in law:

t 1
ar (/ W (ds, B;—s) B) L 2 Var (/ W(ds,t,'B1_s)

By (1.8) (with ug(-) =1 and « = 0) and (conditional) Gaussian property,

B>. (2.6)

u(t,0) = Eog exp{ 2, / W( ds,tmlBls)}. (2.7)

Let B},---,B™ be independent d-dimensional Brownian motions with Bl =0 (j =1,
m). From (2.7), we have

mo 1
um(t,O)_EoeXp{ml/thZ/ W(ds, ;' B! S)}
j=1"0

Here, we extend our notation “Eq” naturally for the expectation with respect to the Brownian
By the conditional Gaussian property,

Eu™(t,0) = Eoexp{ —142 Var(Z/ W(ds,t;;'Bl_,) B>} (2.8)

where Var (-| B) is the variance conditioning on B}, --- , B/*. By Jensen’s inequality,

m 1 m 1
m1Var(Z/ W(ds,t;'B)_,) )SZVM(/ W(ds,t,,'B]_,) B)'
j=1"0 j=1 0

By independence, therefore,
B) }) . (2.9)

1 1
Eu™(t,0) < (Eoexp{itfn\/ar </ W(ds,t,'B1_s)
0

Taking ¢ = 1 and replacing B by ¢! B in (2.3), (2.4), and (2.5), respectively, we have

o)}

1 1
= Egexp { Oty tfn/ / |s — 7|~ C2H)D (¢ 1Byt 1B, )dsdr} (2.10)
0 0

2
B)} Eoexp{; m/lr(t—lBs,t;fB )ds } (2.11)

o)}

H
_Eoexp{ 20t2/ s~ U2 D By 1, By) + T4, Bi—s, t; Bi—s) }ds

motions B}, - , B".

1 1
Eo exp {itfn\/ar </ W(ds,t,,' B1_s)
0

for Hy > 1/2,
1 1
Ey exp {5153”\/&1“ (/ W(ds,t,,' B1_s)
0
for Hy = 1/2, and

Eoexp{ —¢2 Var(/ W(ds,t,'Bi_,)

Ch, (tn' (Bs — By),t;, (Bs — By)
i °|t2 / / e ) dsar (2.12)

for Hy < 1/2.
@ Springer
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Recall the Schilder’s large deviation (Theorem 5.2.3, p.153, [4]) for the Brownian mo-
tion B = {Bs; s € [0,1]} which is viewed as a Gaussian random variable taking values in
Co{[O, 1], Rd}. Let the rate function I(z) on CO{[O, 1], Rd} be defined as

1 1
5/ |2(s)|?ds, x € Ha;
0

0, elsewhere.

I(x) =

Schilder’s large deviation states that

limsup €? logPy{eB € F} < — mf I( ) for any close set F' in C’O{[O, 1],Rd}

e—0t

and

liminf €2 logPo{eB € G} > — 1nf I( ) for any open set G in C’O{[O, 1],Rd}.

e—0t
Consequently, by Varadhan’s integral lemma (Theorem 4.3.1, p.137, [4]), we obtain

lim e logEoeXp{ \IJ(EB)} — sup { ——/ i (s) 2ds} (2.13)

e—0Tt z€EH4

for every continuous function ¥(x) on C’O{[O, 1], Rd} satisfying
lim sup €2 log Eq exp {96_2\11(63)} < oo (2.14)
e—0t

for some 6 > 1.

In connection to (2.8), the function
U(x) / / |s — r|~C72HOT (2(s), 2(r)) dsdr ero{[O,l],Rd}

is clearly continuous on CO{[O, 1], Rd} under the uniform topology. By (1.14), we have
/ / |s —r|~ (= QHO)F(t 'Bs, t,,' By)dsdr < Ct,, 2H jnax | B, >
therefore, Gaussian tail
1 1 1
tvhm t 2logEexp{§9tfn/ / |s —r|_(2_2H°)I‘(t_1BS,tm1B )dsdr} < 00

for every 6 > 1.
Applying (2.13) to (2.10), then by (2.9), we have

limsup m ™'t 2 log Bu™(t,0) < £(Hy), (2.15)

tVm—oo

which is the desired upper bound for (2.2) in the case Hy > 1/2.
Similarly, playing (2.13) with

1

U(z) = B /Olf(x(s),x(s))ds and =€ C'o{[(), 1],Rd}

proves the upper bound (2.15) in the setting of Hy = 1/2.
@ Springer
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Some additional care is needed when it comes to the case Hy < 1/2 as the second part of

the function
U(z) = HO/ —(1-2Ho) {F(a: ca(s)) +T(z(1 - s),2(1 — s)) }ds
|CH0|/ / (s) —a(r),z(s) —a(r)) | .

|S _ ’I”|2 2Hy

is not continuous on Co{[O, 1],]Rd} as Hy < 1/2.

Given a small number 0 < § < 1, set

Ds ={(s,r) €0,1]% |s —r| <6} and Ds=1[0,1]>\ Dy,

Uy (z) = Ho / —-(1- 2HO){I"( ,x(s)) + T(z(1 —s),z(1 —5)) }ds

ICHOI a(r),(s) — a(r))
//1)5 |s _T|2 e dsdr,

s (z) ICHOI// a(r), w(S)—w(T))deT.
Ds

|s — r[2—2Ho

Let p, g > 1 be two conjugate numbers with p being close to 1. By Holder’s inequality,
1/q

1/p
Eq exp {tfn\y(t;;B)} < (EO exp {t?npxlfl(t;;B)}) (IEO exp{tfnqwg(t;lB)}> . (2.16)
Applying (2.13) to the continuous function p¥,(-) gives
lim ¢, %logEqexp {tfnpllll(tr_nlB)}

tVm—oo
1
= sup {p\Ifl(:C) - —/ |x(s)|2ds} < sup {p\I! - —/ |z (s 2ds}
z€EHg z€Hq
= pTF sup {\If ——/ |Z(s |2ds} pI- Hé'(Ho) (2.17)
z€EH

where the third step follows from the space homogeneity assumed in (1.2).
By the assumption 1 — 2H < H, one can fix 8 with 1520 < 3 < 1/2. By (1.14),

2H
Uy (t,1B) <Ct2H// 1B, = Br| — T dsdr
Ds

|s — r[2—2Ho
2H
< Cot;fH( sup | ) // —(2-2Ho—2Hp) 45y
u,v€E0,1] lu — U|ﬁ Ds
. 2 52H0+2Hﬁ1t2H< sup |By — Bv|>2H
2Hy+2HP -1 m wpo  u—0?
u,v€[0,1]

B, — B\
—C5°‘tm2H< sup g)

uFv |u - ’U|ﬁ
u,v€[0,1]

We remark that « = 2Hy+2H3 — 1 > 0 and the constant C' is independent of § > 0, and recall

the well-known fact that the Brownian motion is 8-Holder continuous and the random variable

|Bu — Bvl
sup -
u#v |u - 1)|
u,v€[0,1]
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has a Gaussian tail. With the bound we derive and with the fact that H < 1, therefore,

limsup t.? log g exp {t?nqu2(t;lB)} <Oy 25w

tVm—oo

(2.18)

for a constant C; > 0 independent of 4.
Together, (2.16), (2.17) and (2.18) imply that
limsup ¢,.? log g exp {tfnlll(t:nlB)} <pTHE E(Hy) + q710q52f2c2¥H .
tvVm—oo

On the right hand side, let § — 07 and then p — 1. By (2.12),

1 1
limsup t,? log Eg exp {§tanar (/ W(ds,t,;'Bi_,) B)} < &E(Hyp).
tVm—oo 0

Therefore, the desired upper bound (2.15) follows from (2.9) in the setting of Hy < 1/2.

To complete the proof of (2.2), it remains to prove its lower bound

liminf m~'t, 2 log Eu™(t,0) > £(Hy). (2.19)

tVm—oo

For any x € Co{[O, 1J; Rd}, define the W-measurable random variable

n(x) = /0 W (ds,z(1 - s))

whenever the stochastic integral makes sense. Let y € Hy be fixed but arbitrary. In connection

0 (2.8), we have

Var (l

— n(t;fBﬂ')’B) > —Var (1(y)) + 2Cov (n(y), % i n(t;lBj)}B)

11

= —Var (n Zcov n(t,'B7)|B).

By (2.8) and by independence,
Eu™(t,0) > exp { - %mtfn\/ar (n(y)) } <IE0 exp {tfnCOV (n(y),n(t,,' B)|B) }> m. (2.20)
By a computation similar to the one in (2.3), we have
Cov (n(y), n(t;,'B)|B) = OHO/ / |s — | @72HOD (y(s), ;.1 B, )dsdr (Ho > 1/2)  (2.21)
and
Cov (n(y),n(t,_nlB)|B) = /01 I‘(y(s),t;lBs)ds (Ho =1/2). (2.22)
When Hy < 1/2, (by Theorem 2.2 and Remark 2.3 in [1])
Cov (n(y),n(t,,'B)|B) = HO/1 (= 2H0>{r )itm Bs) + T(y(1 —s),t,,' Bi_s) }ds

|CH°|// y(r), _1(B BT))dsdr. (2.23)

|S _ T|2 2H,

We now claim that in all three cases, we have

liminf ¢,,? log Eg exp {tfnCov (n(y), n(t;lB)‘B)}

tVm—oo
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zxs;%{cov( ——/ 13(s)| ds} (2.24)

Given the covariance representations (2.21) and (2.22), the verification of (2.24), with the

liminf and the inequality being strengthened into limit and equality, respectively, appears to be a
straightforward application of the Schilder’s large deviation and (2.13) in the setting Hy > 1/2.
We now prove (2.24) in the case Hy < 1/2. Consider the function

vie) = Ho [ —1-2H°>{P( ),2(s)) +T(y(1 - ), 2(s)) }ds
PGl [ [ st 220 g,

|S — r[2—2Ho

Under our set-up, ¥ (x) is not continuous on C’O{[O, 1]; Rd}. In the following, we approximate
1 (z) by continuous function. For any 0 < ¢ < 1, recall that

Ds = {(s,7) €[0,1)% |s —r| <} and Ds = {(s,7) € [0,1]% |s —r| > §}.

Define

(o) = Hy | —1-2H°>{P( ),2(s)) +T(y(1 - ), 2(s)) }ds

(el //D i ) ) gsar,
|0H0| /[ Tl r>|;$§20— =) g

Letting € > 0 be small but fixed, we have

Eoexp {2000 B)} 2 e Ba | exp {2 B) s la(t ) < ¢

= e tm {IEO exp {tfnwl (t,—nlB)} - Eo {exp {tfnwl (t;nlB)}; [a(t 1 B)| > e} }
By Cauchy-Schwarz inequality,

Eo [exp {tfnd)l(t:nlB)}; [ (L, B)| > e]

< (moe {22} )  (PollvatiniB) > )

So, we have

Boexp {2601, B) ) + e (Bola(t B > o)) (E exp { 262,91 <tmlB>})1/2
> e~ “mEy exp {tfnd)l (t;llB)}.

Applying the Schilder’s large deviation and (2.13) to the continuous function 1 (x) and 2 (),

respectively, we obtain

1
lim ¢ logEoexp{tfnwl(t;fB)} = sup {wl(iﬂ) —%/ |¢(3)|2d3}
0

tVm—oo rEHy
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and

1
lim ¢, %logEgexp {Qtfnwl (t,_nlB)} = sup {2’(/11($) - %/ |:b(s)|2ds}.
0

tVm—oo rEHg

Therefore,

max { tl\l/m inf ¢,,2log Eg exp {tfnd)(t;lB)}

—{ sup {21/)1 - —/ |Z(s |2ds} + hmsupt ~Zlog Po{ |2 (t,,' B)| > e}}}

z€EH

2—6+$m{www—%élﬂﬁﬁh} (2.25)

rz€EH

By (1.14), on the other hand, we have
T (y(s) = y(r), £, (Bs = By))|
1/2 . . 1/2
< {r(u(s) = ur)ys) —ym) | {T (1 B. — B4 (B, - B) |
< Coty"y(s) =y |Bs = Bo| " < Ot |s — o7 B = B, s,r€[0,1],

where the constant C' > 0 is independent of s,r, and the last step follows from the fact that
“y € Hy" implies the (1/2)-Holder continuity of y(s). Hence,

(i B)| < o1l H”'t_ // ~(2-2H0-27U ) g B, [Hdsdr
Ds
C'—|OHO|tH< sup ) // —(2-2Ho— (27" +a)H) 4oy
2 " uF#v |u - U|a Ds
u,v€e[0,1]

H

_ O|OH°| 2 g2+ e Hy = (g |Bu — By
2 2Hy+ (2 '+a)H -1 m uto U=l '

u,v€[0,1]

Here, the constant « satisfies

1—-2Hy—27'H 1
(}{ <a<g, therefore 0 = 2H,+ (27! +a)H —1 > 0.

By the fact that the random variable

B, ~ By
sup =
u#v |u - U|

u,v€[0,1]

has a Gaussian tail, we obtain

limsup t,2 log Po{ |12 (t; 1 B)| > €} < —\o—20/H2/H

tVm—oo

for a constant A > 0 independent of ¢,0. In view of (2.25),

tVm—oo

1
i % Lseugd {2%(33) - %/0 |5ﬂ(5)l2ds} _ )\529/H62/H] }

max { lim inf .2 log Eq exp {tfnd)(tfnlB)}
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1
> —e+zs€117£>d {wl(ac)—%/o |:E(s)|2d8}

We now let § — 07 in the above inequality. Noticing that

1 /1
lim sup {21/11 — —/ | (s |2ds} = sup {21/1(90) — —/ |j’;(3)|2d8}
6—0+ zeH, z€Hq 2 Jo

and
| |
lim sup ¢¥1(z) — 5 [ [@(s)[Pdsp = sup ¢¥(x) — 5 [ [2(s)[*ds ¢,
0—0F zeHy 2 Jo zE€EHq 2 Jo
we obtain
liminf t,.% logEg exp {tfnd)(t_lB)} —€+ sup { ——/ |Z(s |2ds}
tVm—oo z€Hy

Notice that 1(z) = Cov (n(y), n(x)). Letting ¢ — 0" leads to (2.24).
Picking 2 = y in the variation on the right hand side of (2.24),

liminf ¢,,?logEg exp {t?nz/}(t;fB)} > Var (n - —/ |9(s)|ds.

tVm—oo

Bringing this to (2.20), we have

liminf m ™'t 2 log Bu™(t,0) > Var ——/ l5(s)|?ds.

tVm—oo

Because y € Hy can be arbitrary, taking supremum over y leads to

liminf m~'¢,2 log Eu™(t,0) > sup { ~Var (n - —/ | (s 2ds}
tVm— oo r€EHg
Finally, the desired lower bound follows from the variance representation
Var (n CHO/ / |s — 7| ~C72HOD (2(s), x(r))dsdr  (Hy > 1/2), (2.26)
1
Var (77(:17)) = / F(x(s),:z:(s))ds (Ho=1/2), (2.27)
0
and (in [1])

Var (n(x)) HO/ —(1-2Hy) {F ,x2(8)) + D(xz(1 — s), (1 — s))}ds
|CH°|/ / 2(0), a(s) — (1) g, (Hy <1/2).  (2.28)

|2 2Hy

2.2 Asymptotics for Eu™ (¢, x)
In this section, we establish (1.15) for any z € R?. Let # € R? be fixed and keep in

mind that in the Feynman-Kac formula (1.18), the notation “E,” stands for the expectation

with respect to the Brownian motion B; starting at xz. Hence, (1.8) can be rewritten as (for

up(z) =1) .
u(t,z) = Eg exp { /0 W(ds, z + Bt_s)}.
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Let p, g > 1 be a conjugate pair. By the Holder’s inequality,

u(t,z) < <Eoexp{ /st B 5)}>1/p
) (Eoexp{q< [ Wianas - /OfW(ds,M)})”q.

By the Holder’s inequality again, we have

Fu(t,z)™ {E(Eoexp{ / W (ds, B, S)}>m}1/p
) {( e fa [ Wlans 8 - /OfW@S,BH))})”}”‘? 29)

Given 0 > 0, write ug(t, z) for the solution to (1.1) with the constant 1 as its initial value
and with W (¢, z) being replaced by 6W (¢, z). Clearly, the corespondent space covariance is
6°T(-,-). In view of (2.8), (2.29) can be rewritten as

Eu(t, z)™ < (Eug(t,()))l/ :

) {( oo [ Wlans 5 - /Otmds,gt_s))})’”}”q.

Similar to (2.8), we have

E(Eoexp / W(ds,z + Bi_s) / W (ds, B, S)>}>m
:Eoexp{%\/ar<2</o W(ds,x+B{_s)—/0 W(ds,Bf_S)MB)}.

By Jensen’s inequality, we obtain

Var <§ (/OtW(ds,x +Bl_)— /OtW(ds,B{_S)) ’B)

m t ] t )
ngVar</ W(ds,x+Bg,S)—/ W(ds, B]_)) B).
= 0 0

Considering independence among the Brownian motions,

Eq exp {Q;Var (i (/Ot W(ds,z + BJ_,) — /Ot W (ds, B{S)> ‘B) }
< <E0 exp {gm\/ar </Ot W(ds, o+ By_y) — /Ot W (ds, By_s) B) })m

Summarizing our computation, we conclude that

Eu(t, 7)™ < (Eu;”(t,o))l/ :

2 ¢ t
X (IEO exp {%m\/ar (/ W(ds,x + Bi_s) — / W (ds, B;—s)
0 0
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An obvious modification of the above procedure also leads to

1/
Eurp(t,0)" < (Bu(t,2))

)

2 t ¢
X <IE0 exp{g—pm\/ar</ W(ds,x—i—Bt,s)—/ W (ds, Bi—s)
0 0

or,

Eu(t, z)™ > (Eu’f}p(t,O))p

2 t ¢
x | Eg exp {q_mVar (/ W(ds,x + Bi_s) — / W (ds, B;—s)
2p 0 0
We claim that
t t
Var (/ W(ds,z + By—s) — / W(ds, Bi—s)
0 0

Because of similarity, we only consider the case Hy < 1/2. Write

’)
t

B) + Var </ W(ds, B;—s)
0

B)

B) :Ho/ s~ U=2H (B, By) + T(Bi—s, Bi—s) }ds
0

|Cr, | /t /t I'(B, — B,, Bs — B,)
ol dsd
T 0 Jo |s —r[2=2Ho e

’)
t

= Hy / s U720 P(x + By, x + By) + T'(x + Bi_s, v + By—,) }ds
0

t t
+ |CH, | / / I'(Bs — B, Bs BT)deT,
2 JoJo |s — 7|22

B> = I'(x, x)t* . (2.32)

¢ ¢
Var (/ W(ds,z + Bi—s) — / W(ds, Bi—s)
0 0

¢
= Var </ W(ds,x + B_s)
0

’)
t t

—2Cov (/ W(ds,x + B;_s), / W (ds, B;—_s)
0 0

By Theorem 2.2 in [1],

¢
Var (/ W(ds, B;—s)
0

t
Var (/ W(ds,x + Bi_s)
0

and

t t
Cov (/ W(ds,x + Bi_s), / W (ds, B;—s)
0 0

’)
t

- Ho/ s~ U200 Pz + By, By) + Iz + Bi—s, Bi—s) }ds
0

t et B B
+ |C§O| / / L(B; — Br, B, Br)dsdr.
o Jo

|S _ T|272H0
?)

Hence, (2.32) is established as

t t
Var (/ W(ds,x + Bi_s) — / W (ds, Bi—s)
0 0
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t
= Hy / S—(1—2H0>{(1“(BS, B;)+T'(z+ Bs,x + Bs) — 2T'(z + Bs, BS))
0
+ (0(By_Bi_o) + T(@+ Bi_s,x+ Bi_) — 2T(x + By, By_4)) }ds
t
= 2HyI(z, ;v)/ s~ (1=2Ho) g — D (x, z)t2Ho
0

where the second equality follows from assumption (1.2).
Together, (2.30), (2.31) and (2.32) imply that

exp { - 2%)1"(96, x)m?¢*Ho } (Eu’f;p(t, O))p < Eu™(t,z)

1/
< exp {%F(:z:, x)mQtQH“}{Eu;”(t, O)} g (2.33)
Replacing u(t,0) by u/,(t,0) and wuy(t,0) in (2.2), respectively, we have
. _2Ho+tH _2-H m
twligoot = m~ 11 log Buf},(t,0) = &/, (Ho)
and
2Ho+H 2-H
tvlim t~1=a m” T=A log Buy'(t,0) = &,(Ho),

where &,(Ho) and &;,,(Hy) are the variations given in (1.10) (Ho > 1/2), (1.11) (Ho = 1/2),
and (1.12) (Hy < 1/2). By the space homogeneity given in the first identity in (1.2), we have

&)(Ho) = pT=7 E(Hy) and &, (Ho) = p~ =7 E(Hp).

By (2.33), therefore,

p R E(Hy) < liminf ¢~ log Bu™ (1, 2)

Vm—oo

: _2Hg+H _2-m 1+ H
<limsupt™ 1-# m~ T-# logEu™(t,x) < pT=7 E(Hy).

tVm—oo

Letting p — 17 in the both ends, we complete the proof of Theorem 1.1. O
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