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Abstract In this article, some necessary and sufficient conditions are shown in order that

weighted inequality of the form
∫
{f∗>λ}

Φ1(λw1)w2dP ≤ C

∫
Ω

Φ2(C | f∞ | w3)w4dP

holds a.e. for uniformly integrable martingales f = (fn)n≥0 with some constant C > 0,

where Φ1, Φ2 are Young functions, wi (i = 1, 2, 3, 4) are weights, f
∗ = sup

n≥0

| fn | and f∞ =

lim
n→∞

fn a.e. As an application, two-weight weak type maximal inequalities of martingales are

considered, and particularly a new equivalence condition is presented.
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1 Introduction

Muckenhoupt [1] proved that two-weight weak type of (p, p) inequality holds for Hardy-

Littlewood maximal function if and only if the couple of weights satisfies the Ap condition(1 <

p <∞). From then on, much attention was attracted to weightd theory for Hardy-Littlewood

maximal function, and a series of important results were obtained successively, see for example

in [2–8]. In martingale setting, the countpart to Hardy-Littlewood maximal function is Doob

maximal operator, and it is well-known that there are a lot of similarities between them. Along

with that of Hardy-Littlewood maximal function, the research on the weighted theory of mar-

tingale maximal operator was carried out. The earlier work on this aspect can be found in [16],

the more recent work one can see in [9–15].

The purpose of this article is to consider weighted inequality of the form∫
{f∗>λ}

Φ1(λw1)w2dP ≤ C

∫
Ω

Φ2(C | f∞ | w3)w4dP,

where Φ1,Φ2 are Young functions, wi (i = 1, 2, 3, 4) are weights, f∗ = sup
n≥0

| fn | is martingale

maximal operator. The weighted inequality mentioned above for Hardy-Littlewood maximal
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function was studied in [7], where Φ1 = Φ2 are quasi-convex functions. In this article, we

make the best of properties of conditional expectation to consider the weighted inequality,

which is different from [7]. Some necessary and sufficient conditions for the inequality to hold

are obtained, and our main theorem generalizes some known results. As an application, two-

weight weak type maximal inequalities of martingales are considered, and particularly a new

equivalence condition is presented.

The organization of this article is divided into two further sections. Some basic knowledge,

which we will use, is collected in the next section. A four-weight weak type maximal inequality

for martingales and its application to the case of two-weight are considered in Section 3.

2 Preliminaries

Let (Ω,F ,P) be a complete probability space, and {Fn}n≥0 a nondecreasing sequence of

sub-σ-algebras of F such that F = σ(
⋃

n Fn). The expectation operator is denoted by E. A

weight is a measurable function that is positive and finite almost everywhere. Let u be a weight,

we denote by Pu the weighted measure udP, and by Eu the expectation relative to Pu.

A Young function is a convex function given by Φ(t) =
∫ t

0 ϕ(s)ds, where ϕ is a nonnegative,

nondecreasing and right-continuous function on (0,∞). We call Φ an N-function if ϕ satisfies

the following three conditions:

(i) ϕ(0) = lim
s→0+

ϕ(s) = 0;

(ii) 0 < s <∞ ⇔ 0 < ϕ(s) <∞;

(iii) lim
s→∞

ϕ(s) = ∞.

Every N-function is strictly increasing and thus it has the inverse function. Notice that for an

N-function Φ: Φ(at) ≤ aΦ(t) when 0 ≤ a ≤ 1, and aΦ(t) ≤ Φ(at) when a ≥ 1, t ∈ (0,∞). The

right-continuous inverse function of ϕ is given by

ψ(t) = inf{s ∈ (0,∞) : ϕ(s) ≥ t}, t ∈ (0,∞).

The Young function given by

Ψ(t) =

∫ t

0

ψ(s)ds, t ∈ (0,∞)

is called the complementary function of Φ. Note that Ψ is an N-function if and only if so is Φ.

Let us recall the Young inequality st ≤ Φ(s) + Ψ(t).

Let (Φ,Ψ) be a pair of complementary N-functions, denote

RΦ(t) =
Φ(t)

t
, SΦ(t) =

Ψ(t)

t
, t > 0, RΦ(0) = SΦ(0) = 0.

If Φ is a Young function, then RΦ and SΦ are continuous and increasing functions which map

[0,∞) into itself and satisfy

Φ(SΦ(t)) ≤ Ψ(t),Ψ(RΦ(t)) ≤ Φ(t) (2.1)

for every t ≥ 0 (see [8]).

Let f = (fn)n≥0 be a martingale relative to (Ω,F ,P; (Fn)n≥0), denote its maximal function

by f∗ = sup
n≥0

| fn | . We denote by M the collection of all uniformly integrable martingales
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with respect to (Ω,F ,P; (Fn)n≥0), and by T the collection of all stopping times with respect

to (Fn)n≥0. For more information about martingale theory see [16, 17].

Throughout this article, we denote the set of non-negative integers and the set of integers

by N and Z, respectively. We use C and C1 to denote constants and may denote different

constants at different occurrences.

3 Main Results and Proofs

In this section, we devote to study a four-weight weak type maximal inequality for mar-

tingales. Some necessary and sufficient conditions for it are shown. First, we give a useful

lemma.

Lemma 3.1 Let A be a sub-σ-algebra of F , (Φ1,Ψ1) and (Φ2,Ψ2) are two pairs of

complementary N-functions, wi (i = 1, 2, 3, 4) are weights. Then the following statements are

equivalent.

(i) There is a constant C > 0 such that

E(Φ1(E(x | A)w1)w2 | A) ≤ CE(Φ2(Cxw3)w4 | A) (3.1)

holds a.e. for any positive random variable x.

(ii) There are constants ε1 > 0 and C1 > 0 such that

E(Ψ2(ε1
E(Φ1(λw1)w2 | A)

λw3w4
)w4 | A) ≤ C1E(Φ1(λw1)w2 | A) (3.2)

holds a.e. for any positive A-measurable random variable λ.

(iii) There are constants ε2 > 0 and C2 > 0 such that

E(Φ1(ε2E(Ψ2(
1

λw3w4
)λw4 | A)w1)w2 | A) ≤ C2E(Ψ2(

1

λw3w4
)w4 | A) (3.3)

holds a.e. for any positive A-measurable random variable λ.

Proof We complete the proof by showing that (i)⇔(ii) and (i)⇔(iii).

(i)⇒(ii) Assume that (3.1) holds a.e.. Choose k sufficient large such that P(B) > 0, where

B = {x : 1
k
≤ w3(x)w4(x), w1(x) ≤ k, w2(x) ≤ k, w4(x) ≤ k}, and let

g = (
E(Φ1(λw1)w2 | A)

λw3w4
)−1Ψ2(ε1

E(Φ1(λw1)w2 | A)

λw3w4
)χ(B)

with ε1 will be specified later. Then by (3.1), we have

E(Ψ2(ε1
E(Φ1(λw1)w2 | A)

λw3w4
)w4χ(B) | A)

= E(
g

λw3
| A)E(Φ1(λw1)w2 | A)

= E(
g

λw3
| A)E(Φ1(λw1)w2 | A)χ({E(

g

w3
| A) ≤ λ})

+E(
g

λw3
| A)E(Φ1(λw1)w2 | A)χ({E(

g

w3
| A) > λ})

≤ E(Φ1(λw1)w2 | A) + E(Φ1(E(
g

w3
| A)w1)w2 | A)

≤ E(Φ1(λw1)w2 | A) + CE(Φ2(Cg)w4 | A).
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Now let ε1 small enough such that ε1C < 1 and ε1C
2 < 1, then by (2.1), we obtain

E(Ψ2(ε1
E(Φ1(λw1)w2 | A)

λw3w4
)w4χ(B) | A)

≤ E(Φ1(λw1)w2 | A) + CE(Φ2(Cg)w4 | A)

≤ E(Φ1(λw1)w2 | A) + ε1C
2
E(Ψ2(ε1

E(Φ1(λw1)w2 | A)

λw3w4
)w4χ(B) | A).

Note that E(Ψ2(ε1
E(Φ1(λw1)w2|A)

λw3w4

)w4χ(B) | A) <∞, so we have

E(Ψ2(ε1
E(Φ1(λw1)w2 | A)

λw3w4
)w4χ(B) | A) ≤

1

1 − ε1C2
E(Φ1(λw1)w2 | A).

Now let k → +∞, we obtian (3.2).

(ii)⇒(i) We can directly assume that E(Φ1(E(x | A) | w1)w2 | A) < ∞ a.e.. Otherwise,

we can similarly take a set B as above. Then by Young inequality and (2.1) we have

E(Φ1(E(x | A) | w1)w2 | A)

=
1

ε1C
E(ε1

E(Φ1(E(x | A) | w1)w2 | A)

E(x | A)w3w4
· Cxw3w4 | A)

≤
1

ε1C
(E(Ψ2(ε1

E(Φ1(E(x | Aw1)w2 | A)

E(x | Aw3w4
)w4 | A) + E(Φ2(Cxw3)w4 | A)

≤
1

ε1C
(E(Φ1(E(x | A) | w1)w2 | A) + E(Φ2(Cxw3)w4 | A).

Choose C large enough such that 1
ε1C

< 1, we then obtain (3.1).

(i)⇒(iii) Set x = ε2Ψ2(
1

λw3w4
)λw4, choose ε2 such that ε2C < 1, then by (2.1) and (3.1)

we obtain (3.3).

(iii)⇒(i) By Young inequality, we have

E(x | A) =
1

C
E(Cxw3 ·

1

λw3w4
· λw4 | A)

≤
λ

C
E(Φ2(Cxw3)w4 | A) +

1

C
E(Ψ2(

1

λw3w4
)λw4 | A).

Set λ = CE(x|A)
2E(Φ2(Cxw3)w4|A) , then

E(x | A) ≤
2

C
E(Ψ2(

1

λw3w4
)λw4 | A).

Since Φ(t)
t

is increasing, choose C large enough such that 2
Cε2

< 1, we have

Φ1(E(x | A)w1)

E(x | A)
≤

Φ1(ε2E(Ψ2(
1

λw3w4

)λw4 | A)w1)

ε2E(Ψ2(
1

λw3w4

)λw4 | A)
,

that is

Φ1(E(x | A)w1) ≤ Φ1(ε2E(Ψ2(
1

λw3w4
)λw4 | A)w1) ·

E(x | A)

ε2E(Ψ2(
1

λw3w4
)λw4 | A)

.

It follows from (3.3) and the definition of λ that

E(Φ1(E(x | A)w1)w2 | A) ≤
2C2

Cε2
E(Φ2(Cxw3)w4 | A).

The proof is completed. �
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Remark 3.2 If x is a random variable that is not equal to zero a.e., then each of the

inequality (3.2) and (3.3) is equivalent with the following inequality

E(Φ1(| E(x | A) | w1)w2 | A) ≤ CE(Φ2(C | x | w3)w4 | A)

In fact, we only use the inequality | E(x | A) |≤ E(| x || A) in the proof of Lemma 3.1.

Now let us state our main result below.

Theorem 3.3 Let (Φ1,Ψ1), (Φ2,Ψ2) be two pairs of complementary N-functions and

wi(i = 1, 2, 3, 4) be weights. Then the following statements are equivalent:

(i) There is a constant C1 > 0, independent of f = (fn)n≥0 ∈ M, such that∫
{f∗>λ}

Φ1(λw1)w2dP ≤ C1

∫
Ω

Φ2(C1 | f∞ | w3)w4dP a.e..

(ii) There is a constant C2 > 0, independent of f = (fn)n≥0 ∈ M and n ∈ N, such that

E(Φ1(| fn | w1)w2 | Fn) ≤ C2E(Φ2(C2 | f∞ | w3)w4 | Fn) a.e..

(iii) There is a constant C3 > 0, independent of f = (fn)n≥0 ∈ M and τ ∈ T , such that

E(Φ1(| fτ | w1)w2 | Fτ ) ≤ C3E(Φ2(C3 | f∞ | w3)w4 | Fτ ) a.e..

(iv) There are constants ε > 0 and C4 > 0, such that

E(Ψ2(ε
E(Φ1(λw1)w2 | Fn)

λw3w4
)w4 | Fn) ≤ C4E(Φ1(λw1)w2 | Fn), ∀n ∈ N

holds a.e. for any positive Fn-measurable random variable λ.

(v) There are constants ε1 > 0 and C5 > 0 such that

E(Φ1(ε1E(Ψ2(
1

λw3w4
)λw4 | Fn)w1)w2 | Fn) ≤ C5E(Ψ2(

1

λw3w4
)w4 | Fn), ∀n ∈ N

holds a.e. for any positive Fn-measurable random variable λ.

Proof By the corollary of Lemma 3.1, we obtain (ii)⇔(iv) and (ii)⇔(v). Now we complete

the proof by showing that (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii) Suppose that (i) holds, and let (fn)n≥0 ∈ M. For any A ∈ Fn and λ ∈ (0,∞),

we have

E[Φ1(λw1)w2χ({| fn |> λ}
⋂
A)] ≤ E[Φ1(λw1)w2χ(sup

n

E(| f∞ | χ(A) | Fn) > λ)]

≤ C1E[Φ2(C1 | f∞ | χ(A)w3)w4],

where χ(A) denotes the characteristic function of set A. Hence

E(Φ1(λw1)w2χ({| fn |> λ}) | Fn) ≤ C1E(Φ2(C1 | f∞ | w3)w4 | Fn) a.e..

For all k ∈ Z, set Bk = {2k <| fn |≤ 2k+1} ⊆ {2k <| fn |}, then for any B ∈ Fn,∫
B

E(Φ1(| fn | w1)w2 | Fn)dP =
∑
k∈Z

∫
B

⋂
Bk

E(Φ1(| fn | w1)w2 | Fn)dP

≤
∑
k∈Z

∫
B

⋂
Bk

E(Φ1(2
k+1w1)w2χ({2 | fn |> 2k+1}) | Fn)dP

≤ C1

∑
k∈Z

∫
B

⋂
Bk

E(Φ2(2C1 | f∞ | w3)w4 | Fn)dP
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= C1

∫
B

E(Φ2(2C1 | f∞ | w3)w4 | Fn)dP,

from which we obtain

E(Φ1(| fn | w1)w2 | Fn) ≤ C2E(Φ2(C2 | f∞ | w3)w4 | Fn) a.e..

(ii)⇒(iii) is obvious.

(iii)⇒(i) Let λ ∈ (0,∞), and define

τ = inf{n ∈ N : | fn |> λ} ∈ T , inf ∅ = ∞.

Then {τ <∞} = {f∗ > λ} and | fτ |> λ on {τ <∞}. Using (iii) we obtain∫
{f∗>λ}

Φ1(λw1)w2dP ≤ E(Φ1(| fτ | w1)w2χ(τ <∞))

= E(E(Φ1(| fτ | w1)w2 | Fτ )χ(τ <∞))

≤ C3E(Φ2(C3 | f∞ | w3)w4χ(τ <∞))

≤ C3

∫
Ω

Φ2(C3 | f∞ | w3)w4dP.

The proof is completed. �

According to Theorem 3.3, we can easily show the following two corollaries.

Corollary 3.4 Let (Φ1,Ψ1), (Φ2,Ψ2) be two pairs of complementary N-functions and

(u, v) a pair of weights. Then the following statements are equivalent:

(i) There is a constant C1 > 0, independent of f = (fn)n≥0 ∈ M, such that∫
{f∗>λ}

Φ1(
λ

u
)udP ≤ C1

∫
Ω

Φ2(C1
| f∞ |

v
)vdP a.e..

(ii) There are positive constants ε and K, such that

λSΦ2
(E(εRΦ1

(
1

λu
) | Fn))E(v | Fn) ≤ K

holds a.e. for any positive Fn-measurable random variable λ.

Corollary 3.5 Let (Φ1,Ψ1), (Φ2,Ψ2) be two pairs of complementary N-functions and

(u, v) a pair of weights. Then the following statements are equivalent:

(i) There is a constant C > 0, independent of f = (fn)n≥0 ∈ M, such that∫
{f∗>λ}

Ψ2(
λ

v
)vdP ≤ C

∫
Ω

Ψ1(C
| f∞ |

u
)udP a.e..

(ii) There is a constant C > 0, independent of f = (fn)n≥0 ∈ M, such that

Φ1(λ)Pu(f∗ > λ) ≤ CEν(Φ2(C | f∞ |)) a.e..

(iii) There is a constant C > 0, independent of f = (fn)n≥0 ∈ M and n ∈ N, such that

Φ1(| fn |)E(u | Fn) ≤ CE(Φ2(C | f∞ |)v | Fn) a.e..

(iv) There is a constant C > 0, independent of f = (fn)n≥0 ∈ M and τ ∈ T , such that

Φ1(| fτ |)E(u | Fτ ) ≤ CE(Φ2(C | f∞ |)v | Fτ ) a.e..

(v) There are positive constants ε and K, such that

λRΦ1
(E(εSΦ2

(
1

λv
) | Fn))E(u | Fn) ≤ K
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holds a.e. for any positive Fn-measurable random variable λ.

(vi) There are constants ε > 0 and C > 0 such that

E(Ψ2(ε
Φ1(λ)E(u | Fn)

λv
)v | Fn) ≤ CΦ1(λ)E(u | Fn), ∀n ∈ N

holds a.e. for any positive Fn-measurable random variable λ.

Remark 3.6 Corollary 3.5 gives some necessary and sufficient conditions for two-weight

weak type maximal inequality. It was studied in [10] and [11], respectively. Here we use Theorem

3.3 to recondisider it, and a new equivalent condition ((i) in Corollary 3.5) is presented.
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