

Acta Mathematica Scientia, 2019, **39B**(2): 413–419 https://doi.org/10.1007/s10473-019-0207-5 ©Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences, 2019

A FOUR-WEIGHT WEAK TYPE MAXIMAL INEQUALITY FOR MARTINGALES*

Yanbo REN (任颜波)

School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471003, China E-mail: ryb7945@sina.com

Abstract In this article, some necessary and sufficient conditions are shown in order that weighted inequality of the form

$$\int_{\{f^* > \lambda\}} \Phi_1(\lambda w_1) w_2 d\mathbb{P} \le C \int_{\Omega} \Phi_2(C \mid f_{\infty} \mid w_3) w_4 d\mathbb{P}$$

holds a.e. for uniformly integrable martingales $f = (f_n)_{n\geq 0}$ with some constant C > 0, where Φ_1, Φ_2 are Young functions, w_i (i = 1, 2, 3, 4) are weights, $f^* = \sup_{n\geq 0} |f_n|$ and $f_{\infty} = \lim_{n \geq 0} f_n$ a.e. As an application, two-weight weak type maximal inequalities of martingales are

 $\lim_{n\to\infty} f_n$ a.e. As an application, two-weight weak type maximal inequalities of martingales are considered, and particularly a new equivalence condition is presented.

Key words weight; weak type inequality; martingale maximal operator; Young function2010 MR Subject Classification 60G42; 60G46

1 Introduction

Muckenhoupt [1] proved that two-weight weak type of (p, p) inequality holds for Hardy-Littlewood maximal function if and only if the couple of weights satisfies the A_p condition (1 . From then on, much attention was attracted to weight theory for Hardy-Littlewoodmaximal function, and a series of important results were obtained successively, see for examplein [2–8]. In martingale setting, the countpart to Hardy-Littlewood maximal function is Doobmaximal operator, and it is well-known that there are a lot of similarities between them. Alongwith that of Hardy-Littlewood maximal function, the research on the weighted theory of martingale maximal operator was carried out. The earlier work on this aspect can be found in [16],the more recent work one can see in [9–15].

The purpose of this article is to consider weighted inequality of the form

$$\int_{\{f^* > \lambda\}} \Phi_1(\lambda w_1) w_2 \mathrm{d}\mathbb{P} \le C \int_{\Omega} \Phi_2(C \mid f_\infty \mid w_3) w_4 \mathrm{d}\mathbb{P},$$

where Φ_1, Φ_2 are Young functions, w_i (i = 1, 2, 3, 4) are weights, $f^* = \sup_{n \ge 0} |f_n|$ is martingale maximal operator. The weighted inequality mentioned above for Hardy-Littlewood maximal

🖄 Springer

^{*}Received March 16, 2018; revised June 11, 2018. Supported by the National Natural Science Foundation of China (11871195).

function was studied in [7], where $\Phi_1 = \Phi_2$ are quasi-convex functions. In this article, we make the best of properties of conditional expectation to consider the weighted inequality, which is different from [7]. Some necessary and sufficient conditions for the inequality to hold are obtained, and our main theorem generalizes some known results. As an application, two-weight weak type maximal inequalities of martingales are considered, and particularly a new equivalence condition is presented.

The organization of this article is divided into two further sections. Some basic knowledge, which we will use, is collected in the next section. A four-weight weak type maximal inequality for martingales and its application to the case of two-weight are considered in Section 3.

2 Preliminaries

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, and $\{\mathcal{F}_n\}_{n\geq 0}$ a nondecreasing sequence of sub- σ -algebras of \mathcal{F} such that $\mathcal{F} = \sigma(\bigcup_n \mathcal{F}_n)$. The expectation operator is denoted by \mathbb{E} . A weight is a measurable function that is positive and finite almost everywhere. Let u be a weight, we denote by \mathbb{P}_u the weighted measure $ud\mathbb{P}$, and by \mathbb{E}_u the expectation relative to \mathbb{P}_u .

A Young function is a convex function given by $\Phi(t) = \int_0^t \varphi(s) ds$, where φ is a nonnegative, nondecreasing and right-continuous function on $(0, \infty)$. We call Φ an N-function if φ satisfies the following three conditions:

- (i) $\varphi(0) = \lim_{s \to 0+} \varphi(s) = 0;$
- (ii) $0 < s < \infty \Leftrightarrow 0 < \varphi(s) < \infty;$
- (iii) $\lim \varphi(s) = \infty$.

Every N-function is strictly increasing and thus it has the inverse function. Notice that for an N-function Φ : $\Phi(at) \leq a\Phi(t)$ when $0 \leq a \leq 1$, and $a\Phi(t) \leq \Phi(at)$ when $a \geq 1$, $t \in (0, \infty)$. The right-continuous inverse function of φ is given by

$$\psi(t) = \inf\{s \in (0,\infty) : \varphi(s) \ge t\}, \quad t \in (0,\infty).$$

The Young function given by

$$\Psi(t) = \int_0^t \psi(s) \mathrm{d}s, \quad t \in (0, \infty)$$

is called the complementary function of Φ . Note that Ψ is an N-function if and only if so is Φ . Let us recall the Young inequality $st \leq \Phi(s) + \Psi(t)$.

Let (Φ, Ψ) be a pair of complementary N-functions, denote

$$R_{\Phi}(t) = \frac{\Phi(t)}{t}, S_{\Phi}(t) = \frac{\Psi(t)}{t}, t > 0, R_{\Phi}(0) = S_{\Phi}(0) = 0.$$

If Φ is a Young function, then R_{Φ} and S_{Φ} are continuous and increasing functions which map $[0, \infty)$ into itself and satisfy

$$\Phi(S_{\Phi}(t)) \le \Psi(t), \Psi(R_{\Phi}(t)) \le \Phi(t)$$
(2.1)

for every $t \ge 0$ (see [8]).

Let $f = (f_n)_{n \ge 0}$ be a martingale relative to $(\Omega, \mathcal{F}, \mathbb{P}; (\mathcal{F}_n)_{n \ge 0})$, denote its maximal function by $f^* = \sup_{n \ge 0} |f_n|$. We denote by \mathcal{M} the collection of all uniformly integrable martingales

with respect to $(\Omega, \mathcal{F}, \mathbb{P}; (\mathcal{F}_n)_{n\geq 0})$, and by \mathcal{T} the collection of all stopping times with respect to $(\mathcal{F}_n)_{n\geq 0}$. For more information about martingale theory see [16, 17].

Throughout this article, we denote the set of non-negative integers and the set of integers by \mathbb{N} and \mathbb{Z} , respectively. We use C and C_1 to denote constants and may denote different constants at different occurrences.

3 Main Results and Proofs

In this section, we devote to study a four-weight weak type maximal inequality for martingales. Some necessary and sufficient conditions for it are shown. First, we give a useful lemma.

Lemma 3.1 Let \mathcal{A} be a sub- σ -algebra of \mathcal{F} , (Φ_1, Ψ_1) and (Φ_2, Ψ_2) are two pairs of complementary N-functions, w_i (i = 1, 2, 3, 4) are weights. Then the following statements are equivalent.

(i) There is a constant C > 0 such that

$$\mathbb{E}(\Phi_1(\mathbb{E}(x \mid \mathcal{A})w_1)w_2 \mid \mathcal{A}) \le C\mathbb{E}(\Phi_2(Cxw_3)w_4 \mid \mathcal{A})$$
(3.1)

holds a.e. for any positive random variable x.

(ii) There are constants $\varepsilon_1 > 0$ and $C_1 > 0$ such that

$$\mathbb{E}(\Psi_2(\varepsilon_1 \frac{\mathbb{E}(\Phi_1(\lambda w_1)w_2 \mid \mathcal{A})}{\lambda w_3 w_4}) w_4 \mid \mathcal{A}) \le C_1 \mathbb{E}(\Phi_1(\lambda w_1)w_2 \mid \mathcal{A})$$
(3.2)

holds a.e. for any positive \mathcal{A} -measurable random variable λ .

(iii) There are constants $\varepsilon_2 > 0$ and $C_2 > 0$ such that

$$\mathbb{E}(\Phi_1(\varepsilon_2 \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})\lambda w_4 \mid \mathcal{A})w_1)w_2 \mid \mathcal{A}) \le C_2 \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})w_4 \mid \mathcal{A})$$
(3.3)

holds a.e. for any positive \mathcal{A} -measurable random variable λ .

Proof We complete the proof by showing that (i) \Leftrightarrow (ii) and (i) \Leftrightarrow (iii).

(i) \Rightarrow (ii) Assume that (3.1) holds a.e.. Choose k sufficient large such that $\mathbb{P}(B) > 0$, where $B = \{x : \frac{1}{k} \leq w_3(x)w_4(x), w_1(x) \leq k, w_2(x) \leq k, w_4(x) \leq k\}$, and let

$$g = \left(\frac{\mathbb{E}(\Phi_1(\lambda w_1)w_2 \mid \mathcal{A})}{\lambda w_3 w_4}\right)^{-1} \Psi_2(\varepsilon_1 \frac{\mathbb{E}(\Phi_1(\lambda w_1)w_2 \mid \mathcal{A})}{\lambda w_3 w_4}) \chi(B)$$

with ε_1 will be specified later. Then by (3.1), we have

$$\mathbb{E}(\Psi_{2}(\varepsilon_{1} \frac{\mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A})}{\lambda w_{3}w_{4}})w_{4}\chi(B) \mid \mathcal{A})$$

$$= \mathbb{E}(\frac{g}{\lambda w_{3}} \mid \mathcal{A})\mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A})$$

$$= \mathbb{E}(\frac{g}{\lambda w_{3}} \mid \mathcal{A})\mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A})\chi(\{\mathbb{E}(\frac{g}{w_{3}} \mid \mathcal{A}) \leq \lambda\})$$

$$+\mathbb{E}(\frac{g}{\lambda w_{3}} \mid \mathcal{A})\mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A})\chi(\{\mathbb{E}(\frac{g}{w_{3}} \mid \mathcal{A}) > \lambda\})$$

$$\leq \mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A}) + \mathbb{E}(\Phi_{1}(\mathbb{E}(\frac{g}{w_{3}} \mid \mathcal{A})w_{1})w_{2} \mid \mathcal{A})$$

$$\leq \mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A}) + C\mathbb{E}(\Phi_{2}(Cg)w_{4} \mid \mathcal{A}).$$

🖄 Springer

Now let ε_1 small enough such that $\varepsilon_1 C < 1$ and $\varepsilon_1 C^2 < 1$, then by (2.1), we obtain

$$\mathbb{E}(\Psi_{2}(\varepsilon_{1}\frac{\mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A})}{\lambda w_{3}w_{4}})w_{4}\chi(B) \mid \mathcal{A})$$

$$\leq \mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A}) + C\mathbb{E}(\Phi_{2}(Cg)w_{4} \mid \mathcal{A})$$

$$\leq \mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A}) + \varepsilon_{1}C^{2}\mathbb{E}(\Psi_{2}(\varepsilon_{1}\frac{\mathbb{E}(\Phi_{1}(\lambda w_{1})w_{2} \mid \mathcal{A})}{\lambda w_{3}w_{4}})w_{4}\chi(B) \mid \mathcal{A})$$

Note that $\mathbb{E}(\Psi_2(\varepsilon_1 \frac{\mathbb{E}(\Phi_1(\lambda w_1)w_2|\mathcal{A})}{\lambda w_3 w_4})w_4\chi(B) \mid \mathcal{A}) < \infty$, so we have

$$\mathbb{E}(\Psi_2(\varepsilon_1 \frac{\mathbb{E}(\Phi_1(\lambda w_1)w_2 \mid \mathcal{A})}{\lambda w_3 w_4})w_4 \chi(B) \mid \mathcal{A}) \leq \frac{1}{1 - \varepsilon_1 C^2} \mathbb{E}(\Phi_1(\lambda w_1)w_2 \mid \mathcal{A}).$$

Now let $k \to +\infty$, we obtain (3.2).

(ii) \Rightarrow (i) We can directly assume that $\mathbb{E}(\Phi_1(\mathbb{E}(x \mid \mathcal{A}) \mid w_1)w_2 \mid \mathcal{A}) < \infty$ a.e.. Otherwise, we can similarly take a set *B* as above. Then by Young inequality and (2.1) we have

$$\begin{split} & \mathbb{E}(\Phi_{1}(\mathbb{E}(x \mid \mathcal{A}) \mid w_{1})w_{2} \mid \mathcal{A}) \\ &= \frac{1}{\varepsilon_{1}C} \mathbb{E}(\varepsilon_{1} \frac{\mathbb{E}(\Phi_{1}(\mathbb{E}(x \mid \mathcal{A}) \mid w_{1})w_{2} \mid \mathcal{A})}{\mathbb{E}(x \mid \mathcal{A})w_{3}w_{4}} \cdot Cxw_{3}w_{4} \mid \mathcal{A}) \\ &\leq \frac{1}{\varepsilon_{1}C} (\mathbb{E}(\Psi_{2}(\varepsilon_{1} \frac{\mathbb{E}(\Phi_{1}(\mathbb{E}(x \mid \mathcal{A}w_{1})w_{2} \mid \mathcal{A})}{\mathbb{E}(x \mid \mathcal{A}w_{3}w_{4}})w_{4} \mid \mathcal{A}) + \mathbb{E}(\Phi_{2}(Cxw_{3})w_{4} \mid \mathcal{A})) \\ &\leq \frac{1}{\varepsilon_{1}C} (\mathbb{E}(\Phi_{1}(\mathbb{E}(x \mid \mathcal{A}) \mid w_{1})w_{2} \mid \mathcal{A}) + \mathbb{E}(\Phi_{2}(Cxw_{3})w_{4} \mid \mathcal{A}). \end{split}$$

Choose C large enough such that $\frac{1}{\varepsilon_1 C} < 1$, we then obtain (3.1).

(i) \Rightarrow (iii) Set $x = \varepsilon_2 \Psi_2(\frac{1}{\lambda w_3 w_4}) \lambda w_4$, choose ε_2 such that $\varepsilon_2 C < 1$, then by (2.1) and (3.1) we obtain (3.3).

 $(iii) \Rightarrow (i)$ By Young inequality, we have

$$\mathbb{E}(x \mid \mathcal{A}) = \frac{1}{C} \mathbb{E}(Cxw_3 \cdot \frac{1}{\lambda w_3 w_4} \cdot \lambda w_4 \mid \mathcal{A})$$

$$\leq \frac{\lambda}{C} \mathbb{E}(\Phi_2(Cxw_3)w_4 \mid \mathcal{A}) + \frac{1}{C} \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})\lambda w_4 \mid \mathcal{A}).$$

Set $\lambda = \frac{C\mathbb{E}(x|\mathcal{A})}{2\mathbb{E}(\Phi_2(Cxw_3)w_4|\mathcal{A})}$, then

$$\mathbb{E}(x \mid \mathcal{A}) \leq \frac{2}{C} \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4}) \lambda w_4 \mid \mathcal{A})$$

Since $\frac{\Phi(t)}{t}$ is increasing, choose C large enough such that $\frac{2}{C\varepsilon_2} < 1$, we have

$$\frac{\Phi_1(\mathbb{E}(x \mid \mathcal{A})w_1)}{\mathbb{E}(x \mid \mathcal{A})} \le \frac{\Phi_1(\varepsilon_2 \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})\lambda w_4 \mid \mathcal{A})w_1)}{\varepsilon_2 \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})\lambda w_4 \mid \mathcal{A})},$$

that is

$$\Phi_1(\mathbb{E}(x \mid \mathcal{A})w_1) \le \Phi_1(\varepsilon_2 \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})\lambda w_4 \mid \mathcal{A})w_1) \cdot \frac{\mathbb{E}(x \mid \mathcal{A})}{\varepsilon_2 \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})\lambda w_4 \mid \mathcal{A})}.$$

It follows from (3.3) and the definition of λ that

$$\mathbb{E}(\Phi_1(\mathbb{E}(x \mid \mathcal{A})w_1)w_2 \mid \mathcal{A}) \le \frac{2C_2}{C\varepsilon_2}\mathbb{E}(\Phi_2(Cxw_3)w_4 \mid \mathcal{A}).$$

The proof is completed.

Deringer

Remark 3.2 If x is a random variable that is not equal to zero a.e., then each of the inequality (3.2) and (3.3) is equivalent with the following inequality

$$\mathbb{E}(\Phi_1(|\mathbb{E}(x \mid \mathcal{A}) \mid w_1)w_2 \mid \mathcal{A}) \le C\mathbb{E}(\Phi_2(C \mid x \mid w_3)w_4 \mid \mathcal{A})$$

In fact, we only use the inequality $|\mathbb{E}(x \mid A)| \leq \mathbb{E}(|x \mid A)$ in the proof of Lemma 3.1.

Now let us state our main result below.

Theorem 3.3 Let (Φ_1, Ψ_1) , (Φ_2, Ψ_2) be two pairs of complementary N-functions and $w_i (i = 1, 2, 3, 4)$ be weights. Then the following statements are equivalent:

(i) There is a constant $C_1 > 0$, independent of $f = (f_n)_{n \ge 0} \in \mathcal{M}$, such that

$$\int_{\{f^* > \lambda\}} \Phi_1(\lambda w_1) w_2 \mathrm{d}\mathbb{P} \le C_1 \int_{\Omega} \Phi_2(C_1 \mid f_{\infty} \mid w_3) w_4 \mathrm{d}\mathbb{P} \quad \text{a.e.}$$

(ii) There is a constant $C_2 > 0$, independent of $f = (f_n)_{n \ge 0} \in \mathcal{M}$ and $n \in \mathbb{N}$, such that

$$\mathbb{E}(\Phi_1(|f_n|w_1)w_2 | \mathcal{F}_n) \le C_2 \mathbb{E}(\Phi_2(C_2 | f_\infty | w_3)w_4 | \mathcal{F}_n) \quad \text{a.e.}.$$

(iii) There is a constant $C_3 > 0$, independent of $f = (f_n)_{n \ge 0} \in \mathcal{M}$ and $\tau \in \mathcal{T}$, such that

$$\mathbb{E}(\Phi_1(\mid f_{\tau} \mid w_1)w_2 \mid \mathcal{F}_{\tau}) \le C_3 \mathbb{E}(\Phi_2(C_3 \mid f_{\infty} \mid w_3)w_4 \mid \mathcal{F}_{\tau}) \quad \text{a.e..}$$

(iv) There are constants $\varepsilon > 0$ and $C_4 > 0$, such that

$$\mathbb{E}(\Psi_2(\varepsilon \frac{\mathbb{E}(\Phi_1(\lambda w_1)w_2 \mid \mathcal{F}_n)}{\lambda w_3 w_4})w_4 \mid \mathcal{F}_n) \le C_4 \mathbb{E}(\Phi_1(\lambda w_1)w_2 \mid \mathcal{F}_n), \quad \forall n \in \mathbb{N}$$

holds a.e. for any positive \mathcal{F}_n -measurable random variable λ .

(v) There are constants $\varepsilon_1 > 0$ and $C_5 > 0$ such that

$$\mathbb{E}(\Phi_1(\varepsilon_1 \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})\lambda w_4 \mid \mathcal{F}_n)w_1)w_2 \mid \mathcal{F}_n) \le C_5 \mathbb{E}(\Psi_2(\frac{1}{\lambda w_3 w_4})w_4 \mid \mathcal{F}_n), \quad \forall n \in \mathbb{N}$$

holds a.e. for any positive \mathcal{F}_n -measurable random variable λ .

Proof By the corollary of Lemma 3.1, we obtain (ii) \Leftrightarrow (iv) and (ii) \Leftrightarrow (v). Now we complete the proof by showing that (i) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (i).

(i) \Rightarrow (ii) Suppose that (i) holds, and let $(f_n)_{n\geq 0} \in \mathcal{M}$. For any $A \in \mathcal{F}_n$ and $\lambda \in (0, \infty)$, we have

$$\mathbb{E}[\Phi_1(\lambda w_1)w_2\chi(\{|f_n| > \lambda\} \bigcap A)] \le \mathbb{E}[\Phi_1(\lambda w_1)w_2\chi(\sup_n \mathbb{E}(|f_\infty| \chi(A) | \mathcal{F}_n) > \lambda)]$$

$$\le C_1\mathbb{E}[\Phi_2(C_1 | f_\infty | \chi(A)w_3)w_4],$$

where $\chi(A)$ denotes the characteristic function of set A. Hence

$$\mathbb{E}(\Phi_1(\lambda w_1)w_2\chi(\{\mid f_n \mid > \lambda\}) \mid \mathcal{F}_n) \le C_1\mathbb{E}(\Phi_2(C_1 \mid f_\infty \mid w_3)w_4 \mid \mathcal{F}_n) \quad \text{a.e.}.$$

For all $k \in \mathbf{Z}$, set $B_k = \{2^k < |f_n| \le 2^{k+1}\} \subseteq \{2^k < |f_n|\}$, then for any $B \in \mathcal{F}_n$,

$$\begin{split} \int_{B} \mathbb{E}(\Phi_{1}(\mid f_{n} \mid w_{1})w_{2} \mid \mathcal{F}_{n}) \mathrm{d}\mathbb{P} &= \sum_{k \in \mathbf{Z}} \int_{B \cap B_{k}} \mathbb{E}(\Phi_{1}(\mid f_{n} \mid w_{1})w_{2} \mid \mathcal{F}_{n}) \mathrm{d}\mathbb{P} \\ &\leq \sum_{k \in \mathbf{Z}} \int_{B \cap B_{k}} \mathbb{E}(\Phi_{1}(2^{k+1}w_{1})w_{2}\chi(\{2 \mid f_{n} \mid > 2^{k+1}\}) \mid \mathcal{F}_{n}) \mathrm{d}\mathbb{P} \\ &\leq C_{1} \sum_{k \in \mathbf{Z}} \int_{B \cap B_{k}} \mathbb{E}(\Phi_{2}(2C_{1} \mid f_{\infty} \mid w_{3})w_{4} \mid \mathcal{F}_{n}) \mathrm{d}\mathbb{P} \end{split}$$

🖄 Springer

$$= C_1 \int_B \mathbb{E}(\Phi_2(2C_1 \mid f_\infty \mid w_3)w_4 \mid \mathcal{F}_n) d\mathbb{P}$$

from which we obtain

$$\mathbb{E}(\Phi_1(\mid f_n \mid w_1)w_2 \mid \mathcal{F}_n) \le C_2 \mathbb{E}(\Phi_2(C_2 \mid f_\infty \mid w_3)w_4 \mid \mathcal{F}_n) \quad \text{a.e.}.$$

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i) Let $\lambda \in (0, \infty)$, and define

 $\tau = \inf\{n \in \mathbb{N} : |f_n| > \lambda\} \in \mathcal{T}, \quad \inf \emptyset = \infty.$

Then $\{\tau < \infty\} = \{f^* > \lambda\}$ and $|f_{\tau}| > \lambda$ on $\{\tau < \infty\}$. Using (iii) we obtain

$$\int_{\{f^* > \lambda\}} \Phi_1(\lambda w_1) w_2 d\mathbb{P} \leq \mathbb{E}(\Phi_1(\mid f_\tau \mid w_1) w_2 \chi(\tau < \infty))$$

$$= \mathbb{E}(\mathbb{E}(\Phi_1(\mid f_\tau \mid w_1) w_2 \mid \mathcal{F}_\tau) \chi(\tau < \infty))$$

$$\leq C_3 \mathbb{E}(\Phi_2(C_3 \mid f_\infty \mid w_3) w_4 \chi(\tau < \infty))$$

$$\leq C_3 \int_{\Omega} \Phi_2(C_3 \mid f_\infty \mid w_3) w_4 d\mathbb{P}.$$

The proof is completed.

According to Theorem 3.3, we can easily show the following two corollaries.

Corollary 3.4 Let (Φ_1, Ψ_1) , (Φ_2, Ψ_2) be two pairs of complementary N-functions and (u, v) a pair of weights. Then the following statements are equivalent:

(i) There is a constant $C_1 > 0$, independent of $f = (f_n)_{n \ge 0} \in \mathcal{M}$, such that

$$\int_{\{f^* > \lambda\}} \Phi_1(\frac{\lambda}{u}) u d\mathbb{P} \le C_1 \int_{\Omega} \Phi_2(C_1 \frac{|f_{\infty}|}{v}) v d\mathbb{P} \quad \text{a.e.}.$$

(ii) There are positive constants ε and K, such that

$$\lambda S_{\Phi_2}(\mathbb{E}(\varepsilon R_{\Phi_1}(\frac{1}{\lambda u}) \mid \mathcal{F}_n))\mathbb{E}(v \mid \mathcal{F}_n) \le K$$

holds a.e. for any positive \mathcal{F}_n -measurable random variable λ .

Corollary 3.5 Let (Φ_1, Ψ_1) , (Φ_2, Ψ_2) be two pairs of complementary N-functions and (u, v) a pair of weights. Then the following statements are equivalent:

(i) There is a constant C > 0, independent of $f = (f_n)_{n \ge 0} \in \mathcal{M}$, such that

$$\int_{\{f^* > \lambda\}} \Psi_2(\frac{\lambda}{v}) v d\mathbb{P} \le C \int_{\Omega} \Psi_1(C\frac{|f_{\infty}|}{u}) u d\mathbb{P} \quad \text{a.e.}.$$

There is a constant C > 0, independent of $f = (f_n)_{n>0} \in \mathcal{M}$, such that (ii)

 $\Phi_1(\lambda)\mathbb{P}_u(f^* > \lambda) \le C\mathbb{E}_\nu(\Phi_2(C \mid f_\infty \mid))$ a.e..

There is a constant C > 0, independent of $f = (f_n)_{n \ge 0} \in \mathcal{M}$ and $n \in \mathbb{N}$, such that (iii)

$$\Phi_1(|f_n|)\mathbb{E}(u \mid \mathcal{F}_n) \le C\mathbb{E}(\Phi_2(C \mid f_\infty \mid)v \mid \mathcal{F}_n) \quad \text{a.e.}.$$

There is a constant C > 0, independent of $f = (f_n)_{n \ge 0} \in \mathcal{M}$ and $\tau \in \mathcal{T}$, such that (iv)

$$\Phi_1(\mid f_{\tau} \mid) \mathbb{E}(u \mid \mathcal{F}_{\tau}) \le C \mathbb{E}(\Phi_2(C \mid f_{\infty} \mid) v \mid \mathcal{F}_{\tau}) \quad \text{a.e.}$$

There are positive constants ε and K, such that (\mathbf{v})

$$\lambda R_{\Phi_1}(\mathbb{E}(\varepsilon S_{\Phi_2}(\frac{1}{\lambda v}) \mid \mathcal{F}_n))\mathbb{E}(u \mid \mathcal{F}_n) \le K$$

🖄 Springer

holds a.e. for any positive \mathcal{F}_n -measurable random variable λ .

(vi) There are constants $\varepsilon > 0$ and C > 0 such that

$$\mathbb{E}(\Psi_2(\varepsilon \frac{\Phi_1(\lambda)\mathbb{E}(u \mid \mathcal{F}_n)}{\lambda v})v \mid \mathcal{F}_n) \le C\Phi_1(\lambda)\mathbb{E}(u \mid \mathcal{F}_n), \quad \forall n \in \mathbb{N}$$

holds a.e. for any positive \mathcal{F}_n -measurable random variable λ .

Remark 3.6 Corollary 3.5 gives some necessary and sufficient conditions for two-weight weak type maximal inequality. It was studied in [10] and [11], respectively. Here we use Theorem 3.3 to recondisider it, and a new equivalent condition ((i) in Corollary 3.5) is presented.

References

- Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Amer Math Soc, 1972, 165: 207–226
- [2] Kerman R, Torchinsky A. Integral inequalities with weights for the Hardy maximal function. Studia Math, 1981, 71: 277–284
- [3] Sawyer E T. A characterization of a two weight norm inequality for maximal operators. Studia Math, 1982, 75: 1–11
- [4] Bagby R. Weak bounds for the maximal function in weighted Orlicz spaces. Studia Math, 1990, 95: 195–204
- Bloom S, Kerman R. Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator. Studia Math, 1994, 110(2): 149–167
- [6] Lai Q S. Two weight Φ-inequalities for the Hardy operator, Hardy-Littlewood maximal operator, and fractional integrals. Proc Amer Math Soc, 1993, 118(1): 129–142
- [7] Gogatishvili A, Kokilashvili V. Necessary and sufficient conditions for weighted Orlicz class inequalities for maximal functions and singular integrals. I. Georgian Math, 1995, 2(4): 361–384
- [8] Pick L. Two-weight weak type maximal inequalities in Orlicz classes. Studia Math, 1991, 100(3): 207–218
- [9] Kikuchi M. On weighted weak type maximal inequalities for martingales. Math Inequalities Appl, 2003, 6(1): 163–175
- [10] Ren Y B, Hou Y L. Two-weight weak-type maximal inequalities for martingales. Acta Math Sci, 2009, 29B(2): 402–408
- [11] Chen W, Liu P D. Several weak-type weighted inequalities in Orlicz martingale classes. Acta Math Sci, 2011, 31B(3): 1041–1050
- [12] Chen W, Liu P D. Weighted norm inequalities for multisublinear maximal operator in martingale spaces. Tohoku Math J, 2014, 66(4): 539–553
- [13] Chen W, Liu P D. Weighted integral inequalities in Orlicz martingale classes. Sci China Math, 2011, 54(6): 1215–1224
- [14] Osekowski A. Weighted maximal inequalities for martingales. Tohoku Math J, 2013, 65(1): 75–91
- [15] Osekowski A. Sharp L^p -bounds for the martingale maximal function. Tohoku Math J, 2018, **70**(1): 121–138
- [16] Long R L. Martingale Spaces and Inequalities. Beijing: Peking Univ Press, 1993
- [17] Weisz F. Martingale Hardy Spaces and their Applications in Fourier Analysis. New York: Springer-Verlag, 1994