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Abstract In this article, some necessary and sufficient conditions are shown in order that

weighted inequality of the form
/ <I>1()\w1)w2dIF’ S C/ (IJQ(C | foo | wg)w4dIF’
{F*>x} Q

holds a.e. for uniformly integrable martingales f = (fn)n>0 with some constant C' > 0,

where ®1, P2 are Young functions, w; (i = 1,2,3,4) are weights, f* = sup | fn | and foo =
n>0

lim f, a.e. As an application, two-weight weak type maximal inequalities of martingales are

n—oo

considered, and particularly a new equivalence condition is presented.
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1 Introduction

Muckenhoupt [1] proved that two-weight weak type of (p,p) inequality holds for Hardy-
Littlewood maximal function if and only if the couple of weights satisfies the A, condition(1 <
p < 00). From then on, much attention was attracted to weightd theory for Hardy-Littlewood
maximal function, and a series of important results were obtained successively, see for example
in [2-8]. In martingale setting, the countpart to Hardy-Littlewood maximal function is Doob
maximal operator, and it is well-known that there are a lot of similarities between them. Along
with that of Hardy-Littlewood maximal function, the research on the weighted theory of mar-
tingale maximal operator was carried out. The earlier work on this aspect can be found in [16],
the more recent work one can see in [9-15].

The purpose of this article is to consider weighted inequality of the form
/ <I>1(/\w1)w2dP S C/ ‘I)Q(C | foo | wg)w4dP,
{f*>x} Q

where @1, @ are Young functions, w; (i = 1,2,3,4) are weights, f* = sup | f, | is martingale
n>0
maximal operator. The weighted inequality mentioned above for Hardy-Littlewood maximal
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function was studied in [7], where ®; = ®5 are quasi-convex functions. In this article, we
make the best of properties of conditional expectation to consider the weighted inequality,
which is different from [7]. Some necessary and sufficient conditions for the inequality to hold
are obtained, and our main theorem generalizes some known results. As an application, two-
weight weak type maximal inequalities of martingales are considered, and particularly a new
equivalence condition is presented.

The organization of this article is divided into two further sections. Some basic knowledge,
which we will use, is collected in the next section. A four-weight weak type maximal inequality

for martingales and its application to the case of two-weight are considered in Section 3.

2 Preliminaries

Let (2, F,P) be a complete probability space, and {F,},>0 a nondecreasing sequence of
sub-o-algebras of F such that F = o(|J,, Fn). The expectation operator is denoted by E. A
weight is a measurable function that is positive and finite almost everywhere. Let u be a weight,
we denote by P, the weighted measure udP, and by E, the expectation relative to P,,.

A Young function is a convex function given by ®(t) = fot ©(s)ds, where @ is a nonnegative,
nondecreasing and right-continuous function on (0, 00). We call ® an N-function if ¢ satisfies
the following three conditions:

©) »(0) = lim o(s) =0;

(i) 0<s<ooe0<p(s) <o

(i) lim ¢(s) = 0.

Every N-function is strictly increasing and thus it has the inverse function. Notice that for an
N-function ®: ®(at) < a®(t) when 0 < a <1, and a®(t) < ®(at) when a > 1, t € (0,00). The

right-continuous inverse function of ¢ is given by
Y(t) =inf{s € (0,00) : p(s) >t}, te€(0,00).

The Young function given by

U(t) :/0 P(s)ds, te(0,00)

is called the complementary function of ®. Note that ¥ is an N-function if and only if so is ®.
Let us recall the Young inequality st < ®(s) 4+ ¥(t).

Let (@, ¥) be a pair of complementary N-functions, denote

@, Se(t) = ?,t >0, Re(0) = Sa(0) = 0.

If @ is a Young function, then Rg and Sg are continuous and increasing functions which map

Rs (t) =

[0, 00) into itself and satisfy
(S (1)) < U(t), U(Ra(t)) < ©(1) (2.1)

for every ¢t > 0 (see [8]).
Let f = (fn)n>0 be a martingale relative to (2, F,P; (Fy)n>0), denote its maximal function

by f* = sup | fn | . We denote by M the collection of all uniformly integrable martingales
n>0
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with respect to (Q, F,P; (Fn)n>0), and by T the collection of all stopping times with respect
to (Fn)n>o0. For more information about martingale theory see [16, 17].

Throughout this article, we denote the set of non-negative integers and the set of integers
by N and Z, respectively. We use C' and C; to denote constants and may denote different

constants at different occurrences.

3 Main Results and Proofs

In this section, we devote to study a four-weight weak type maximal inequality for mar-
tingales. Some necessary and sufficient conditions for it are shown. First, we give a useful
lemma.

Lemma 3.1 Let A be a sub-c-algebra of F, (®1,¥;) and (P2, V3) are two pairs of
complementary N-functions, w; (i = 1,2,3,4) are weights. Then the following statements are
equivalent.

(i) There is a constant C' > 0 such that

E(‘I)l(E(:E | A)wl)wg | A) S CE(@Q(CZE’LUg)’LU;; | A) (31)

holds a.e. for any positive random variable x.
(ii) There are constants &1 > 0 and C7 > 0 such that

E(‘I)l (/\11)1)11)2 | A)

E(\Ifg(al /\11)3’(04

)w4 | .A) S ClE((I)l ()\wl)wg | .A) (32)

holds a.e. for any positive A-measurable random variable A.
(i) There are constants e; > 0 and Cy > 0 such that

B (1 (o (Vo /\wl Jwa | A) (3.3)

)i | A | A) < @E(%(Awim
holds a.e. for any positive A-measurable random variable A.

Proof We complete the proof by showing that (i)<(ii) and (i)« (iii).

(i)=>(ii) Assume that (3.1) holds a.e.. Choose k sufficient large such that P(B) > 0, where
B={z: 1+ <ws(z)ws(z),w;(z) < k,wa(z) < k,wa(z) <k}, and let

E(@l()\wl)wg | A) E((I)l ()\wl)wg | A)

- —ly B
9= Aws wa ) 2(e1 AWatvg )x(B)
with €1 will be specified later. Then by (3.1), we have
E(®;(Awy)ws | A
E(Wy(e; (1w | ))w4x(B) | A)

Awzwy

= B3 | AE@: Qs | A)

= B(5 = | AB(® (Qaon)wz | AXE( - | 4) <A
+E()%U3 | AJE(®1 (Awn)ws | A)x({E(

< E(@1(Awr)ws | A) +E(<I>1(]E(w% | Awi)ws | A)

< E(@) (w1 )wz | A) + CE(®y(Cg)us | A).

| A) > A}

9
w3
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Now let €1 small enough such that £;C < 1 and £;C? < 1, then by (2.1), we obtain

< E(® (Awy)ws | A) + CE(‘I)Q(CQ)’U};; | A)

< E(®1(Awy)ws | A) + 5102E(\112(51E((1)1()‘w1)w2 | A)

E(\I/Q(El

Jwax(B) | A).

AW3 Wy
Note that E(¥s(e; W)w@((fﬁ | A) < 00, so we have
E((I)l ()\wl)wg | A) 1
E(¥ B < ——=FE(P1 (A .
(Wa(e s Jwix(B) | A) < 5 mp—ves (@1 (Awr)wz | A)

Now let & — 400, we obtian (3.2).
(ii)=-(i) We can directly assume that E(®1(E(z | A) | wi)ws | A) < oo a.e.. Otherwise,
we can similarly take a set B as above. Then by Young inequality and (2.1) we have

E(®1(E(z | A) [ wi)ws [ A)

L E@EG A el A
o ElcE(al E(JJ | A)w3w4 C 3T | A)

1 E(®1(E(z | Awy)ws | A)
< 61C(IE(\I/Q( E(z | Awsw; Ywy | A) + E(®o(Crws)wy | A)
< BB | A) [ wnus | A) + B (Crus)us | A)

Choose C large enough such that C < 1, we then obtain (3.1).

(1)=(iii) Set & = e3¥a(5=——)A w4, choose 2 such that e2C' < 1, then by (2.1) and (3.1)
we obtain (3.3).

(iii)=-(i) By Young inequality, we have

)\71)31[)4 )

1 1
E = —E(C . Y
(x].A) 8 (Crws v wy | A)
A 1 1
<Z — - .
< CE(@Q(CIwg)U)AL | A) + CE(\IJQ()\wgw4))\w4 | A)
CE(z|A
Set A = —2]E(<I>2(C§cu|)3))w4|.A)’ then
2
E < =E(¥ A .
(@A) < FE( 2()\w3w4) wy | A)

Since 21 i5 increasing, choose C' large enough such that L < 1, we have

1Bz | Auy) _ D (e2E(W (MW )JAwy | A)wr)
E@@[A) 7 eE(Va(gpp) s |A)

that is
(33 | A)
)/\11)4 | A)

(1)1 (E(LL' | A)wl) S (1)1 (EQE(‘I’Q(/\wl

w4))\w4 | Aw) - 2E(Ta(

)\wgw4

It follows from (3.3) and the definition of A that
20,
E(®1(E(z | A)w)ws | A) < C—E(‘I)Q(O.Iwg)w4 | A).
The proof is completed. O
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Remark 3.2 If x is a random variable that is not equal to zero a.e., then each of the

inequality (3.2) and (3.3) is equivalent with the following inequality
E(®1(| E(z | A) [ wi)ws [ A) < CE(®2(C | x| ws)ws | A)
In fact, we only use the inequality | E(z | A) |< E(| z || A) in the proof of Lemma 3.1.

Now let us state our main result below.

Theorem 3.3 Let (®1,U;), (P2, U3) be two pairs of complementary N-functions and
w;(i =1,2,3,4) be weights. Then the following statements are equivalent:
(i) There is a constant Cy > 0, independent of f = (fn)n>0 € M, such that

/ (1)1 (Awl)wgd]P’ S Cl/ ‘1)2(01 | foo | wg)w4d]P’ a.e..
{f=>x} Q

(ii) There is a constant Cy > 0, independent of f = (f,)n>0 € M and n € N, such that
E(®1(] fr | wr)we | Frn) < CoE(P2(Cy | foo | wa)wa | Fr) ae.

(i) There is a constant C5 > 0, independent of f = (f,)n>0 € M and 7 € T, such that
E(®1(] fr | wi)ws | Fr) < C3E(P2(Cs | foo | wa)wa | Fr)  ace..

(iv) There are constants ¢ > 0 and C4 > 0, such that

E((I)l ()\101)’(02 | .7:")

E(w
( 2 (E Aw3w4

Jwa | Fr) < C4E(®r(Awy)ws | Fr), YVneN

holds a.e. for any positive F,-measurable random variable A.
(v) There are constants &1 > 0 and C5 > 0 such that

1 1
E((I)l (E]_]E(\IIQ( ))\w4 | ]—'n)wl)wg | _7:”) < C5E(‘I’2( )w4 | fn), Vn eN
A A

W3 W4 W3 W4
holds a.e. for any positive F,-measurable random variable A.

Proof By the corollary of Lemma 3.1, we obtain (i)« (iv) and (ii)<(v). Now we complete
the proof by showing that (i)=-(ii)=(iii)=-(i).

(i)=-(ii) Suppose that (i) holds, and let (f,)n>0 € M. For any A € F,, and X € (0, c0),
we have

E[®1 (AwyJwax({] fu [> A} () A)] < E[@1(Mwr )wax (sup E(| foo | x(A) | Fa) > M)
< CLE[@2(Ch | foo | X(A)ws)wa],

where x(A) denotes the characteristic function of set A. Hence

E(®1 (Aw)wax (] fu [> A}) | Fn) < CLE(P2(C1 | foo | wa)wa [ Fn)  ace..

For all k € Z, set By = {2F <| f, |< 2¥1} C {2% <| f. |}, then for any B € F,,,

JRCAATAIEAT B Z/B E(®1(] fi | w1)uws | Fo)dP

keZ

k+1 .
< I;Z/Bﬂ B, E((I)l(2 wl)w2X({2 | fn |> 2 }) | ]_.n)d]P)

<ClZ/ (1)2201|f00|w3)w4|.7:)
kez BN B
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= 01/ E(‘I)Q(ZC& | foo | ’LU3)U)4 | fn)d]P),
B
from which we obtain
E(®1(| fr | wi)wa | Frn) < CoE(P2(Ch | foo | wa)wa | Fp) ace..
(ii)=-(iii) is obvious.
(ili)==(1) Let A € (0,0), and define
T=inf{neN:|f,|[>A}eT, infl=oc.
Then {7 < oo} = {f* > A} and | f; |> A on {7 < co}. Using (iii) we obtain
/ D1 (Awr)wodP < E(P1(] fr | wr)wax (T < 00))
{f*>x}
=EE(®(| fr | wi)ws [ Fr)x(r < 00))
< G3E(P2(Cs | foo | ws)wax(T < 00))
S 03/ ‘1)2(03 | foo |w3)w4d]P’.
Q
The proof is completed. O

According to Theorem 3.3, we can easily show the following two corollaries.

Corollary 3.4 Let (®1,Vq), (P2, ¥s) be two pairs of complementary N-functions and
(u,v) a pair of weights. Then the following statements are equivalent:
(i) There is a constant Cy > 0, independent of f = (fn)n>0 € M, such that

/ @1(A)UdP§01/ ‘%(C&M)vdﬂJJ a.e..
{f*>x} u Q v

(ii) There are positive constants ¢ and K, such that
1
ASa, (E(eRe, () [ Fu))E(v | Fn) < K

holds a.e. for any positive F,-measurable random variable A.

Corollary 3.5 Let (®1,Vq), (P2, ¥s) be two pairs of complementary N-functions and
(u,v) a pair of weights. Then the following statements are equivalent:
(i) There is a constant C' > 0, independent of f = (f,)n>0 € M, such that

/ ‘I’z(é)vdPSC/\IH(CM)udP a.e..
{f*>X} v Q u

(ii) There is a constant C' > 0, independent of f = (fn)n>0 € M, such that
D1 (NP, (f* > X)) < CEL(P2(C | fo |) ace..

(iii) There is a constant C' > 0, independent of f = (fn)n>0 € M and n € N, such that

Oy (| fr DE(u | Fn) < CE(R2(C| foo v | Fr)  ace..
(iv) There is a constant C' > 0, independent of f = (f,)n>0 € M and 7 € T, such that

Oy(] fr DE(u | Fr) < CE(®2(C | foo [Jv | Fr)  ace..
(v) There are positive constants ¢ and K, such that

1
ARa, (B(eSa, () | Fn))E(u | Fn) < K
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holds a.e. for any positive F,,-measurable random variable A.

(vi) There are constants ¢ > 0 and C' > 0 such that

. D1 (NE(u | Fn)

(W Av

Wl F) <CO1(MNE(u | Fn), YneN

holds a.e. for any positive F,,-measurable random variable A.

Remark 3.6 Corollary 3.5 gives some necessary and sufficient conditions for two-weight

weak type maximal inequality. It was studied in [10] and [11], respectively. Here we use Theorem

3.3 to recondisider it, and a new equivalent condition ((i) in Corollary 3.5) is presented.

[1]

References
Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Amer Math Soc, 1972,
165: 207-226
Kerman R, Torchinsky A. Integral inequalities with weights for the Hardy maximal function. Studia Math,
1981, 71: 277284
Sawyer E T. A characterization of a two weight norm inequality for maximal operators. Studia Math, 1982,
75: 1-11
Bagby R. Weak bounds for the maximal function in weighted Orlicz spaces. Studia Math, 1990, 95: 195-204
Bloom S, Kerman R. Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal opera-
tor. Studia Math, 1994, 110(2): 149-167
Lai Q S. Two weight ®-inequalities for the Hardy operator,Hardy-Littlewood maximal operator, and frac-
tional integrals. Proc Amer Math Soc, 1993, 118(1): 129-142
Gogatishvili A, Kokilashvili V. Necessary and sufficient conditions for weighted Orlicz class inequalities for
maximal functions and singular integrals. I. Georgian Math, 1995, 2(4): 361-384
Pick L. Two-weight weak type maximal inequalities in Orlicz classes. Studia Math, 1991, 100(3): 207-218
Kikuchi M. On weighted weak type maximal inequalities for martingales. Math Inequalities Appl, 2003,
6(1): 163-175
Ren Y B, Hou Y L. Two-weight weak-type maximal inequalities for martingales. Acta Math Sci, 2009,
29B(2): 402-408
Chen W, Liu P D. Several weak-type weighted inequalities in Orlicz martingale classes. Acta Math Sci,
2011, 31B(3): 1041-1050
Chen W, Liu P D. Weighted norm inequalities for multisublinear maximal operator in martingale spaces.
Tohoku Math J, 2014, 66(4): 539-553
Chen W, Liu P D. Weighted integral inequalities in Orlicz martingale classes. Sci China Math, 2011, 54(6):
1215-1224
Osekowski A. Weighted maximal inequalities for martingales. Tohoku Math J, 2013, 65(1): 75-91
Osekowski A. Sharp LP-bounds for the martingale maximal function. Tohoku Math J, 2018, 70(1): 121-138
Long R L. Martingale Spaces and Inequalities. Beijing: Peking Univ Press, 1993
Weisz F. Martingale Hardy Spaces and their Applications in Fourier Analysis. New York: Springer-Verlag,
1994

@ Springer



