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Abstract This paper is devoted to studying the existence of positive solutions for the

following integral system















u(x) =

∫

Rn

|x − y|λv
−q(y)dy,

v(x) =

∫

Rn

|x − y|λu
−p(y)dy,

p, q > 0, λ ∈ (0,∞), n ≥ 1.

It is shown that if (u, v) is a pair of positive Lebesgue measurable solutions of this integral

system, then
1

p − 1
+

1

q − 1
=

λ

n
,

which is different from the well-known case of the Lane-Emden system and its natural exten-

sion, the Hardy-Littlewood-Sobolev type integral equations.
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1 Introduction

In this article, we investigate the existence of positive solutions for a non-linear integral

equations of the form:














u(x) =

∫

Rn

|x − y|λ v−q(y)dy,

v(x) =

∫

Rn

|x − y|λ u−p(y)dy,

x ∈ R
n, (1.1)

where λ > 0, 0 < p 6= 1, 0 < q 6= 1 and n ≥ 1. Precisely, for system (1.1), we will determine the

necessary conditions for the existence of non-trivial positive solutions, that are non-infinity and

Lebesgue measurable. The motivation to study this equations comes from the classification of

renowned Lane-Emden system and its natural extension, the Hardy-Littlewood-Sobolev type

integral equations.

The well known Lane-Emden system, which arises from the chemical, biological and physical

studies and has attracted several researchers’ attention, can be written as follows






∆u(x) + vq(x) = 0,

∆v(x) + up(x) = 0,
x ∈ R

n, (1.2)

here u(x), v(x) ≥ 0, 0 < p, q < ∞. According to the value of exponents (p, q), system (1.2) is

usually divided into the following three cases. When the pair (p, q) lies on the Sobolev hyper-

bola, i.e.,
1

p + 1
+

1

q + 1
=

n − 2

n
(n ≥ 3) , (1.3)

(1.2) is called critical. We also say that system (1.2) is supercritical, or subcritical if (p, q)

satisfies that
1

p + 1
+

1

q + 1
<

n − 2

n
, or >

n − 2

n
(n ≥ 3). (1.4)

The famous Lane-Emden conjecture states that system (1.3) does not admit a positive solution

under the subcritical condition. That is to say that (1.3) is a corresponding dividing curve

with the property that (1.2) admits positive solutions if and only if (p, q) satisfies the critical

condition or supercritical condition.

Also, system (1.2) has the natural extension as follows:






(−∆)α/2u(x) = vq(x),

(−∆)α/2v(x) = up(x)
for x ∈ R

n, α ∈ (0, n). (1.5)

Under certain regularity conditions, system (1.5) is equivalent to the following integral system,

which is closely related to the problem of finding the sharp constant in the Hardy-Littlewood-

Sobolev inequality


















u(x) =

∫

Rn

vq(y)

|x − y|λ
dy,

v(x) =

∫

Rn

up(y)

|x − y|λ
dy,

x ∈ R
n, (1.6)

here λ ∈ (0, n), n ≥ 3 and p, q > 1. System (1.5) or (1.6) is not only a natural extension

of (1.2), but also has own interest which provides an important way to study the Lane-Emden
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conjecture. Similarly, the value of exponents (p, q) in (1.6) is also divided into three cases and

the corresponding Lane-Emden conjecture becomes the Hardy-Littlewood-Sobolev type integral

equations conjecture, namely, system (1.6) does not admit a positive solution if and only if these

parameters (p, q) satisfy the following inequality

1

p + 1
+

1

q + 1
>

λ

n
.

Now, we recall some results which are closely related to our topic. In 1998, by the shooting

method and the Pohozaev identity, Serrin and Zou [21] showed the existence of a positive

solution of (1.2), when (p, q) satisfies that

1

p + 1
+

1

q + 1
≤

n − 2

n
(n ≥ 3). (1.7)

Later on, Mitidieri [17] proved that the Lane-Emden conjecture holds with additional assump-

tion that (u, v) is a pair of radial solution of (1.2). Therefore, for radial case of system (1.2),

Sobolev hyperbola (1.3) is the dividing curve for the existence and nonexistence of positive so-

lutions. As for the non-radial solutions of (1.2), the Lane-Emden conjecture is still open except

for n ≤ 4. We refer the readers to [11, 17, 19, 20, 23, 24, 27], among numerous references, for

more information. When α (α < n) is an even integer, the higher order system (1.5) is defined

in pointwise sense. Under this case, Liu, Guo and Zhang [16] showed that if (p, q) satisfies

1

p + 1
+

1

q + 1
>

n − α

n
,

then system (1.5) has no radial non-negative solutions. With the same assumption to the

parameter α, Lei and Li [9] proved that system (1.5) admits a pair of positive radial solutions

(u, v), provided
1

p + 1
+

1

q + 1
≤

n − α

n
.

Moreover, with the help of degree theory, Li and Villavert in [12, 13] considered the more general

abstract model and established the existence result under suitable conditions. For higher order

system (1.5) or (1.6) with the general parameter λ = n − α ∈ (0, n), Lieb [15] proved that the

existence of positive solution for (1.6) in the critical case. Subsequently, Caristi, Dambrosio and

Mitidieri [1], under certain smooth condition assumptions, proved the conjecture for the Hardy-

Littlewood-Sobolev type integral equations. That is, if (u, v) ∈ C2(Rn) × C2(Rn) is a pair of

nonnegative radial solutions of (1.6) and λ < n−2, then system (1.6) has no positive solution in

subcritical case. Recently, Lei and Li [9] removed the key assumptions and established the same

results (see [9, Theorem 1.2] for the details). These results suggest that under some special

cases, the hyperbolic
1

p + 1
+

1

q + 1
=

λ

n
for λ ∈ (0, n)

is the dividing curve in the (p, q)-plane for the existence and non-existence of Hardy-Littlewood-

Sobolev type integral system.

Based on the above, it is natural and interesting to ask whether there exists a corresponding

dividing curve in the (p, q)-plane such that (1.1) for λ ∈ (0, ∞) and p, q > 0, admits positive

solutions if and only if (p, q) is on or above the curve? The main purpose of this paper is to

address this question. Our main result can be formulated as follows.
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Theorem 1.1 Suppose that (u, v) is a pair of positive solutions of system (1.1) with

λ ∈ (0, ∞) and 0 < q 6= 1, 0 < p 6= 1. Then the parameters p, q, λ satisfy the following

condition
1

p − 1
+

1

q − 1
=

λ

n
. (1.8)

Remark 1.2 Comparing Theorem 1.1 with the results of the well-known Lane-Emden

system (1.2) and its natural extension to Hardy-Littlewood-Sobolev type integral equations

(1.6), system (1.1) has the same radial symmetry solution, provided the exponents (p, q) lies

on the hyperbola curve. However, as the pair of parameters (p, q) is not on the hyperbola

curve, there is obvious difference between (1.1) and (1.6). Precisely, by Theorem 1.1, we can

see that system (1.1) has no positive solution, if (p, q) is not on the hyperbola. But as for

Lane-Emden system (1.2) and (1.6), the system has positive solutions when (p, q) is under the

supercritical conditions. The essential reasons for the difference between (1.1) and (1.6), comes

from the integrability and asymptotic behavior of each system.

Remark 1.3 From an analytical point of view, a natural and interesting question that

raised from the above result is whether there exist positive solutions on hyperbola (1.8) for

system (1.1) ? The conjecture is not true. An example is that it is easy to see that for p, q near

1, from the asymptotic estimates (2.1) and (2.2), there is no such solution on hyperbola (1.8).

On the other hand, as p = q > 1 and max{p, q} > (n + λ)/λ, by [7] and [10], system (1.1)

admits a pair of radial positive solution.

The rest of this paper is organized as follows. After recalling and establishing some technical

lemmas in Section 2, we will prove Theorem 1.1 in Section 3. Throughout this paper, we

always use the letter C to denote positive constants that may vary at each occurrence but are

independent of the essential variables.

2 Preliminary

In this section, we will recall and establish some standard ingredients needed in the proof

of our theorem. These results essentially follow from [7, 10, 14, 25]. Here, for completeness, we

will present the corresponding proofs.

Lemma 2.1 For n ≥ 1, let u(x), v(x) be a pair of positive Lebesgue measurable solutions

of (1.1) with λ > 0, q > 0 and p > 0. Then the following properties hold

• equivalents of pointwise

C−1(1 + |x|λ) ≤ u(x) ≤ C(1 + |x|λ), x ∈ R
n, (2.1)

C−1(1 + |x|λ) ≤ v(x) ≤ C(1 + |x|λ), x ∈ R
n; (2.2)

• integrability of u(x) and v(x)

C−1 ≤

∫

Rn

u1−p(y)dy ≤ C < ∞, as 1 − p 6= 0, (2.3)

C−1 ≤

∫

Rn

v1−q(y)dy ≤ C < ∞, as 1 − q 6= 0. (2.4)

Furthermore,

‖v‖1−q
1−q =

∫

Rn

v1−q(y)dy =

∫

Rn

u1−p(y)dy = ‖u‖1−p
1−p, (2.5)
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∫

Rn

(1 + |y|)λu−p(y)dy ≤ C < ∞, (2.6)

∫

Rn

(1 + |y|)λv−q(y)dy ≤ C < ∞; (2.7)

• asymptotic behavior of u and v

lim
|x|→∞

|x|−λv(x) = lim
|x|→∞

∫

Rn

(

|x − y|

|x|

)λ

u−p(y)dy =

∫

Rn

u−p(y)dy, (2.8)

lim
|x|→∞

|x|−λu(x) = lim
|x|→∞

∫

Rn

(

|x − y|

|x|

)λ

v−q(y)dy =

∫

Rn

v−q(y)dy. (2.9)

Proof Noting that p > 0, q > 0 and λ ∈ (0,∞), by (1.1) we conclude that

µ

(

{y ∈ R
n : 0 < u(y) < ∞ and 0 < v(y) < ∞}

)

> 0, (2.10)

here µ denotes the Lebesgue measure of the set. Conversely, if (2.10) does not hold, then

µ

(

{y ∈ R
n : 0 < u(y) < ∞ and 0 < v(y) < ∞}

)

= 0,

which implies that

u(y) = ∞, v(y) = ∞ a.e. y ∈ R
n.

This is obviously contradictory to (1.1). Therefore, there exist R > 1 and a non-empty mea-

surable set E ⊂ R
n such that

E ⊂

{

y| 0 < u(y) < R and 0 < v(y) < R

}

∩ BR(0), µ(E) ≥ R−1

and

u(x) =

∫

Rn

|x − y|λv−q(y)dy ≥

∫

E

|x − y|λv−q(y)dy ≥ R−q

∫

E

|x − y|λdy, ∀x ∈ R
n. (2.11)

On the other hand, since |y| ≤ R and |x| ≥ 2R, we have

u(x) ≥ R−q

∫

E

|x − y|λdx ≥ R−q−1

(

|x|

2

)λ

. (2.12)

Hence, the first inequality in (2.1) follows from (2.11) and (2.12). Similarly, we can get the first

inequality in (2.2).

Next, we will prove the second inequality in (2.1) and (2.2). By (2.10), there exist x̄ such

that |x| ∈ [1, 2] and v(x̄) < ∞, u(x̄) < ∞. Thus when |y| ≥ 4, we conclude that
∫

Rn\B4(0)

u−p(y)dy ≤

∫

Rn

|x − y|λu−p(y)dy = v(x̄) < +∞

and
∫

Rn\B4(0)

v−q(y)dy ≤

∫

Rn

|x − y|λu−p(y)dy = u(x̄) < +∞,

which, together with the first inequality in (2.1) and p > 0, q > 0, yields that

u−p(x), v−q(y) ∈ L1(Rn). (2.13)

Similarly,

|y|λu−p(y), |y|λv−q(y) ∈ L1(Rn). (2.14)
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Indeed, for some x and any y satisfying 1 ≤ |x| ≤ 2 and |y| ≥ 4, we deduce that

2−λ|y|λ ≤ |y − x̄|λ.

This together with (2.13), implies that
∫

Rn

|y|λu−p(y)dy =

∫

|y|>4

|y|λu−p(y)dy +

∫

|y|≤4

|y|λu−p(y)dy

≤ C(λ)

∫

Rn

|x − y|λu−p(y)dy + 4λ

∫

Rn

u−p(y)dy

≤ C(λ)v(x) + 4λ‖u(x)‖−p < ∞

and
∫

Rn

|y|λv−q(y)dy =

∫

|y|>4

|y|λv−q(y)dy +

∫

|y|≤4

|y|λv−q(y)dy

≤ C(λ)

∫

Rn

|x − y|−λv−q(y)dy + 4λ

∫

Rn

v−q(y)dy

≤ C(λ)u(x) + 4λ‖v(x)‖−q < ∞.

Then (2.6) and (2.7) directly follow from (2.13) and (2.14). Meanwhile, noticing that
∣

∣

∣

∣

|x − y|λ

|x|λ

∣

∣

∣

∣

≤ C(1 + |y|λ) for |x| ≥ 1,

and by (2.13), (2.14) and the dominated convergence theorem, we have

lim
|x|→∞

|x|−λ u(x) =

∫

Rn

v−q(y)dy

and

lim
|x|→∞

|x|−λ v(x) =

∫

Rn

u−p(y)dy.

This shows (2.8) and (2.9) which, furthermore ensures that (2.1) and (2.2) hold.

Now, we turn to (2.3) and (2.4). By (2.1) and (2.14), we get
∫

Rn\BR(0)

u1−p(y)dx =

∫

Rn\BR(0)

u−p(y)u(y)dx ≤ C

∫

Rn\BR(0)

u−p(y)|y|λdy < ∞,

which together with (2.1) leads to (2.3). Similarly, we can obtain (2.4).

Finally, we verify (2.5). Since λ ∈ (0,∞, ), we have

|x − y|λ ≤ (|x| + |y|)λ ≤ [(1 + |x|)(1 + |y|)]λ.

This together with (2.6) and (2.7), yields that
∫∫

R
n×R

n

|x − y|λu−p(y)v−q(x)dxdy ≤

∫

Rn

(1 + |x|)λv−q(x)dx

∫

Rn

(1 + |y|)λu−p(y)dy < ∞.

Therefore, by (1.1) and the Lebesgue dominated convergence theorem again, we get

‖u1−p‖1 =

∫

Rn

u−p(x)

∫

Rn

|x − y|λv−q(y)dydx

=

∫

Rn

∫

Rn

|x − y|λ v−q(y) u−p(x) dxdy

=

∫

Rn

v−q(y)

∫

Rn

|x − y|λu−p(x)dxdy = ‖v1−q‖1.

This is (2.5) and completes the proof of Lemma 2.1. �
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Lemma 2.2 For n ≥ 1, λ > 0, q > 0, p > 0, let (u, v) be a pair of positive solutions of

system (1.1). Then for any ϕ(x) ∈ C∞
0 (Rn), we have

∫

Rn

u(x) ∇ϕ(x)dx = −λ

∫

Rn

∫

Rn

|x − y|λ−2(x − y)v−q(y)dyϕ(x)dx (2.15)

and
∫

Rn

v(x) ∇ϕ(x)dx = −λ

∫

Rn

∫

Rn

|x − y|λ−2(x − y)u−p(y)dyϕ(x)dx. (2.16)

Proof For convenience, we denote M1(x), M2(x), M3(y), M4(y) by

M1(x) , λ

∫

Rn

|x − y|λ−2(x − y)v−q(y)dy,

M2(x) , λ

∫

Rn

|x − y|λ−2(x − y)u−p(y)dy,

M3(y) ,

∫

Rn

|x − y|λ∇ϕ(x)dx, ϕ ∈ C∞
0 (Rn),

and

M4(y) , −λ

∫

Rn

|x − y|λ−2(x − y)ϕ(x)dx, ϕ ∈ C∞
0 (Rn).

First, we will show that these functions are well-defined for any given x, y ∈ R
n. To do this, it

suffices to prove that

S1(x) ,

∫

Rn

|x − y|λ−1[v−q(y) + u−p(y)]dy < ∞,

S2(y) ,

∫

Rn

|x − y|λ−1|ϕ(x)|dx < ∞,

and

S3(y) ,

∫

Rn

|x − y|λ |∇ϕ(x)|dx < ∞.

In view of ϕ ∈ C∞
0 (Rn) and λ ∈ (0,∞), it is easy to verify that S2(y) and S3(y) are

well-defined. What’s more, by integration by part, we have

M3(y) =

∫

Rn

(∇ϕ)(x)|x − y|λdx

= −λ

∫

Rn

|x − y|λ−2(x − y)ϕ(x)dx = M4(y). (2.17)

For S1(x), we can write

S1(x) =

∫

Rn

|x − y|λ−1 [v−q(y) + u−p(y)]dy

=

∫

|x−y|≤R

|x − y|λ−1 [v−q(y) + u−p(y)]dy

+

∫

|x−y|≥R

|x − y|λ−1 [v−q(y) + u−p(y)]dy

, S1,1(x) + S1,2(x). (2.18)

By (2.1) and (2.2) with p, q > 0, we have

v−q(y) + u−p(y) ≤ M < ∞, ∀ y ∈ R
n.
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Therefore for λ ∈ (0, 1),

S1,1(x) =

∫

|x−y|≤R

|x − y|λ−1 [v−q(y) + u−p(y)]dy

≤ C(M, n)

∫ R

0

r−2+λ+ndr < ∞,

and by (2.13),

S1,2(x) =

∫

|x−y|≥R

|x − y|λ−1 [v−q(y) + u−p(y)]dy

≤ Rλ−1

∫

Rn

[v−q(y) + u−p(y)] dy < ∞.

And for λ ∈ [1,∞), note that

|x − y|λ−1 ≤ [(1 + |x|)(1 + |y|)]λ,

by (2.6) and (2.7), we have

S1(x) =

∫

Rn

|x − y|λ−1 [v−q(y) + u−p(y)]dy

≤ (1 + |x|)λ

∫

Rn

(1 + |y|)λ[v−q(y) + u−p(y)]dy < ∞.

We then know that M1(y), M2(y), M3(x), M4(x) are well-posed.

Now we turn to the proofs of (2.15) and (2.16). Note that for any r > 1

‖u−p‖r
r + ‖v−q‖r

r ≤ C

∫

Rn

[(1 + |y|)−λp r + (1 + |y|)−λqr ]dy

≤ C

∫

Rn

[(1 + |y|)−λp + (1 + |y|)−λq]dy

= C(‖u−p‖1 + ‖v−q‖1) < ∞.

Thus when 0 < λ < 1, by Hardy-Littlewood-Sobolev inequality, (2.1), (2.2) and (2.13), we have
∣

∣

∣

∣

∫ ∫

Rn×Rn

|x − y|λ−2(x − y)[v−q(y) + u−p(y)]ϕ(x)dxdy

∣

∣

∣

∣

≤

∫ ∫

Rn×Rn

|x − y|λ−1[v−q(y) + u−p(y)]|ϕ(x)|dxdy

≤ C(λ, n, r, s)(‖u−p‖r + ‖v−q‖r)‖ϕ‖s < ∞, (2.19)

where 1/r + 1/s + (1 − λ)/n = 2, r > 1, s > 1.

On the other hand, for λ ∈ [1,∞), note that

|x − y|λ−1 ≤ (1 + |x|)λ−1(1 + |y|)λ−1 ≤ (1 + |x|)λ(1 + |y|)λ.

It follows from (2.8) and (2.9) that
∣

∣

∣

∣

∫ ∫

Rn×Rn

|x − y|λ−2(x − y)[u−p(y) + v−q(y)] ϕ(x)dxdy

∣

∣

∣

∣

≤

∫ ∫

Rn×Rn

(1 + |x|)λϕ(x) (1 + |y|)λ[u−p(y) + v−q(y)]dydx < ∞,

which combining with (2.19) implies that

(x − y)|x − y|λ−2ϕ(x)u−p(y) and (x − y)|x − y|λ−2ϕ(x)v−q(y)
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are absolutely integrable on R
n × R

n. Hence, by (2.17) and Fubini’s theorem, we deduce that
∫

Rn

u(x)∇ϕ(x)dx =

∫

Rn

∫

Rn

|x − y|λv−q(y) ∇ϕ(x)dxdy

= −λ

∫

Rn

∫

Rn

|x − y|λ−2(x − y)v−q(y)ϕ(x)dxdy

= −λ

∫

Rn

∫

Rn

|x − y|λ−2(x − y)v−q(y)dyϕ(x)dx

and
∫

Rn

v(x)∇ϕ(x)dx =

∫

Rn

∫

Rn

|x − y|λu−p(y) ∇ϕ(x)dxdy

= −λ

∫

Rn

∫

Rn

|x − y|λ−2(x − y)u−p(y)ϕ(x)dxdy

= −λ

∫

Rn

∫

Rn

|x − y|λ−2(x − y)u−p(y)dyϕ(x)dx,

which completes the proof of Lemma 2.2. �

Lemma 2.3 Suppose that (u(x), v(x)) is a pair of positive solutions of (1.1) for λ > 0,

q > 0, p > 0. Then (u(x), v(x)) ∈ C∞(Rn) × C∞(Rn).

Proof Given R > 0, we rewrite (1.1) as follows

u(x) =

∫

|y|≤2R

|x − y|λv−q(y)dy +

∫

|y|≥2R

|x − y|λv−q(y)dy

, Iu(x) + IIu(x) (2.20)

and

v(x) =

∫

|y|≤2R

|x − y|λu−p(y)dy +

∫

|y|≥2R

|x − y|λu−p(y)dy

, Iv(x) + IIv(x). (2.21)

Set

g(x) = |x − y|λ.

It is easy to check that for any x ∈ R
n and x 6= y

|Dβg(x)| ≤ C(λ, n, β)|x − y|λ−|β|, |β| ≥ 1.

On the other hand, noting that for |x| ≤ R and |y| ≥ 2R, |x− y| ≥ |y| − |x| ≥ R. Then for any

β ∈ Z
n
+,

∫

|y|≥2R

Dβg(x)[v−q(y) + u−p(y)]dy

≤ C(λ, n, β, R)

∫

|y|≥2R

[u−p(y) + v−q(y)]dy < ∞.

Therefore, we can differentiate IIu(x) and IIv(x) under the integral for |x| < R and show that

IIu(x), IIv(x) ∈ C∞(BR).

Next, we verify the smooth property of Iu(x) and Iv(x). Note that
∫

|y|≤2R

|x − y|λ−1[v−q(y) + u−p(y)]dy ≤ C(M)

∫

|x−y|≤3R

|x − y|λ−1
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≤ C(M, n)

∫ 3R

0

rλ−2+ndr < ∞.

We conclude that Iu(x), Iv(x) ∈ C1(BR). This, together with IIu(x), IIv(x) ∈ C∞(BR),

(2.20) and (2.21), implies that (u(x), v(x)) ∈ C1(BR) × C1(BR). Meanwhile, by chain rule of

derivatives and the arbitray of R, it is easy to check that v−q(x) and u−p(x) are derivative on

R
n. Therefore, we can improve the regularity of Iu(x) and Iv(x) to C2 in x ∈ BR(0) which with

(2.20) and (2.21), implies that (u(x), v(x)) ∈ C2(Rn)×C2(Rn). Similarly, by the bootstrapping

arguments, we eventually get that u(x), v(x) ∈ C∞(Rn). The proof of Lemma 2.3 is completed.

�

3 Proof of Theorem 1.1

Proof of Theorem 1.1 By Lemma 2.2, f(t) = t1−p (p 6= 1) being a C1 function and

the chain rule of weak derivatives, we conclude, in the sense of distribution, that

∇u1−p(x)

1 − p
= λ u−p(x)

∫

Rn

|x − y|λ−2(x − y) v−q(y)dy. (3.1)

Chooses η ∈ C∞
0 (R) such that

0 ≤ η ≤ 1, η(t) ≡ 1 for |t| ≤ 1

and

supp(η) ⊂ [0, 2), |η′(t)| ≤ 2, ∀ t ∈ R.

For any R > 1, multiplying by η( |x|R )x ∈ C∞
0 (Rn) on both side of (3.1), we have

∫

Rn

η(
|x|

R
) u−p(x) x · ∇u(x) dx

= λ

∫

Rn

η(
|x|

R
)u−p(x)

{
∫

Rn

|x − y|λ−2x · (x − y)v−q(y)dy

}

dx , E1. (3.2)

By integration by parts, we rewrite the left hand side of (3.2) as follows

1

1 − p

∫

Rn

η(
|x|

R
)x · ∇u1−p(x)dx

= −
n

1 − p

∫

Rn

η(
|x|

R
)u1−p(x)dx −

1

1 − p

∫

Rn

∇(η(
|x|

R
)) · xu1−p(x) dx

, A + B. (3.3)

By Lemma 2.1, we have u1−p(x) ∈ L1(Rn), which together with 0 ≤ η ≤ 1 implies that

lim
R→∞

A =

∫

Rn

−n

1 − p
u1−p(x) dx. (3.4)

Noting that |∇(η(|x|/R)) · x| ≤ 2|x|/R, we can conclude that

∣

∣

∣

∫

Rn

∇(η(
|x|

R
)) · x u1−p(x) dx

∣

∣

∣
≤ 4

∫

R≤|x|≤2R

u1−p(x)dx,

which together with u1−p ∈ L1(Rn) implies that

lim
R→∞

B = 0.
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This combining with (3.3) and (3.4) leads to

lim
R→∞

∫

Rn

η(
|x|

R
)u−p(x)x · ∇u(x)dx =

∫

Rn

−n

1 − p
u1−p(x)dx. (3.5)

Similarly, for q 6= 1, we have
∫

Rn

η(
|x|

R
)v−q(x)x · ∇v(x) dx

= λ

∫

Rn

η(
|x|

R
)v−q(x)

{
∫

Rn

x · (x − y)|x − y|λ−2u−p(y)dy

}

dx , E2 (3.6)

and

lim
R→∞

∫

Rn

η(
|x|

R
)v−q(x)x · ∇v(x)dx

=

∫

Rn

−n

1 − q
v1−q(x)dx − lim

R→∞

∫

Rn

1

1 − q
∇(η(

|x|

R
)) · xv1−q(x)dx

=

∫

Rn

−n

1 − q
v1−q(x)dx. (3.7)

Now we consider E1 and E2. For λ ∈ (0, 1), by Hardy-Littlewood-Sobolev inequality, we

have
∫∫

Rn×Rn

{

u−p(y)|x − y|−(1−λ)η(
|x|

R
)|x|v−q(x)

}

dydx

≤ C(n, λ, r, s)‖u−p‖r‖η(
|x|

R
)|x|v−q(x)‖s < ∞, (3.8)

where 1/r + 1/s + (1 − λ)/n = 2, r > 1, s > 1.

For λ ∈ [1,∞), we have
∫∫

Rn×Rn

{

u−p(y)|x − y|λ−1η(
|x|

R
) |x| v−q(x)

}

dydx

≤ C

∫∫

Rn×Rn

(|x| + |y| + 1 + |x||y|)λ−1|x|v−q(x)u−p(y)dxdy

≤ C

∫∫

Rn×Rn

(1 + |x|)λv−q(x)(1 + |y|)λu−p(y)dxdy < ∞.

This, with (3.8) yields that u−p(y)|x − y|λ−2x · (x − y)η(|x|/R) v−q(x) is absolutely integrable

on R
n × R

n.

Similarly, the function v−q(y)|x − y|λ−2x · (x − y)η(|x|/R) u−p(x) on R
n × R

n is also

absolutely integrable.

Therefore, by the Fubini theorem, we conclude that

E1 + E2 =

∫

Rn

λ η(
|x|

R
)

{
∫

Rn

u−p(x)|x − y|λ−2x · (x − y)v−q(y)dy

}

dx

+λ

∫

Rn

η(
|x|

R
) v−q(x)

{
∫

Rn

x · (x − y)|x − y|λ−2u−p(y)dy

}

dx

= λ

∫

Rn

∫

Rn

u−p(x)v−q(y)|x − y|λ−2(x − y)

{

xη(
|x|

R
) − yη(

|y|

R
)

}

dydx.

To pass to the limit on the above, we need to build up a prior estimate of E1 + E2. Let f̃(x) be

a vector-value function from R
n to R

n, given by

f̃(x) = (f1(x), f2(x), · · · , fn(x)) , η(
|x|

R
) x.
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It is easy to check that

∂fk(x)

∂xl
= η′(

|x|

R
)

xl

|x|

xk

R
+ η(

|x|

R
) δl

k, |x| 6= 0,

where δl
k is the Kronecker function. In view of the definition of η, we know that | ∂

∂xl

fk(x)| ≤ 5

and

|̃f(x) − f̃ (y)| ≤ |∇f̃(ξ) (x − y)| ≤ C(n)|x − y|, x, y ∈ R
n.

Therefore
∣

∣

∣

∣

∫

Rn

∫

Rn

u−p(x) v−q(y)|x − y|λ−2(x − y) ·

{

x η(
|x|

R
) − yη(

|y|

R
)

}

dydx

∣

∣

∣

∣

≤ C(n, λ)

∫

Rn

∫

Rn

(1 + |x|)λu−p(x)dx(1 + |y|)λv−q(y)dy < ∞,

and by (1.1)

lim
R→∞

E1 + E2 = λ lim
R→∞

∫

Rn

∫

Rn

∫

Rn

u−p(x) v−q(y)|x − y|λ−2(x − y)

×

{

x η(
|x|

R
) − yη(

|y|

R
)

}

dydx

= λ

∫

Rn

∫

Rn

|x − y|λ−2u−p(x) v−q(y) (x − y) · (x − y)dydx

= λ ‖u1−q‖1.

This together with (2.5), (3.2) and (3.5)–(3.7) yields that

1

1 − p
+

1

1 − q
= −

λ

n
.

Theorem 1.1 is proved. �
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