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Abstract
Contests are commonly used as a mechanism for eliciting effort and participation in multi-
agent settings. Naturally, and much like with various other mechanisms, the information
provided to the agents prior to and throughout the contest fundamentally influences its out-
comes. In this paper we study the problem of information providing whenever the contest
organizer does not initially hold the information and obtaining it is potentially costly. As the
underlying contest mechanism for our model we use the binary contest, where contestants’
strategy is captured by their decision whether or not to participate in the contest in the first
place. Here, it is often the case that the contest organizer can proactively obtain and provide
contestants information related to their expected performance in the contest. We provide a
comprehensive equilibrium analysis of the model, showing that even when such information
is costless, it is not necessarily the case that the contest organizer will prefer to obtain and
provide it to all agents, let alone when the information is costly.

Keywords Contest design · Information disclosure · Mechanism design · Equilibrium

Mathematics Subject Classification 68T01 · 91A10 · 91B03 · 91B26 · 91A27

1 Introduction

Many economic, political and social environments can be described as contests where par-
ties expand some resources in order to win a prize or control in resources. In recent decades,
contests are growingly being used as a mechanism for eliciting work (e.g., effort, ideas) from
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individuals rather than (or in addition to) a means for determining the best contestant. Well
known examples include the Netflix prize (netflixprize.com), DARPA challenges [2] and the
Hult prize (hultprize.org). As such, the study and analysis of contests have become prominent
in mechanism design and multi-agent systems literature [3–8], focusing primarily on how to
design the payoffs structure [9, 10]—that is, how to set the prize budget and its division among
contestants to optimize expected performance. Another important aspect of contest design
deals with information disclosure. In many cases the contest organizer is more informed than
the potential participants in the contest, hence has some control on the information to be
disclosed. As such, prior work has considered various information providing schemes [11–
14], analyzing their influence on contest outcomes. Traditionally, this information providing
problemwas studied in effort-based contests (e.g. Tullock), where performance is tightly cor-
related with the amount of effort exerted hence, naturally, the type of information considered
related to one’s cost of exerting effort in the contest or disambiguation nature’s state.

In this paper we focus on the provision of information relating to contestants’ own perfor-
mance in the contest, whenever such information is a priori uncertain. This is typically the
case in contests known as binary contests. In a binary contest prospective contestants need
to decide whether to participate in the contest in the first place, as opposed to deciding how
much effort to exert in the contest, where participation is costly [5, 6, 15–17]. The underlying
assumption in binary contest is that if deciding to participate, a contestant will give its best
in terms of effort, as it is the participation itself that incurs cost rather than the amount of
effort exerted. This is the case in beauty contests, sport contests, applications for academic
awards, applying for a post-doc, etc.

Most research on binary contests to date relates to two primary model variants: one
where prospective contestants’ performance in the contest (and consequently their winning
probability if participating) are a priori unknown [6, 16, 18, 19], and the other where each
contestant knows in advance its expected performance should participating [5, 9]. These
are actually two specific extreme cases of our model, mapping to not providing any of
the contestants information about their expected performance in the contest and obtaining
(and providing) such information to all contestants. Our model postulates that information
about a contestant’s performance is not a priori available to the contest organizer, however
she can acquire (or make an effort to obtain) it. Meaning that in order to provide such
information to a contestant the organizer needs to actively obtain it. This can be the case, for
example, whenever the information can be obtained from an external source (i.e., expert) or
when the organizer needs to collect and pre-process data about the contestant (rather than
receive it directly from the contestant when participating in the contest) in order to predict its
performance. The organizer therefore needs to decide on the subset of potential contestants,
to whom she should acquire and provide the information.

In the following sections we review related work, formally describe the model, and pro-
vide a detailed description of a game-theoretic-based analysis of the model. We show that in
equilibrium the participation decision of contestants that do not receive information is prob-
ablistic, whereas the decision of those receiving the information is threshold-based. This
complicates the equilibrium calculation (compared to the above mentioned specific model
variants), as both the participation probability to be used by the non-informed participants and
the participation threshold to be used by the informed participants influence each other. We
use numerical analysis to show that even when obtaining the information is costless, the con-
test organizerwill often find itmost rewarding to obtain (and provide) the information only for
some of the participants, let alone when the information is costly. Furthermore, we show that
as long as the organizer sets the reward rationally, providing such information to a subset of the
participants increases the average (cross all participants) benefit and the overall socialwelfare.
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While prior work has shown that partial information providing often dominates full dis-
closure, this was usually demonstrated in effort-based contests, i.e., when the information
provided relates to the cost of exerting effort or aim to reveal the true nature’s state. When it
comes to information related to contestants’ performance, providing all contestants with such
information (even if acquiring it is costless) is somehow non-intuitive. This is because the
essence of the contest is in revealing the participant associated with the highest performance
and luring it to take part in the contest. Hence such information which enables agents reason
about their actual performance if taking part in the contest is intuitively beneficial.

2 Related work

Contests are organizational structures in which contestants spend costly efforts (e.g., time,
resources) towinoneormore prizes [20].Much interest in literature focuses on contest design,
i.e., the settings that define a contest [5, 21, 22], differing primarily in the assumptions made
in the underlying contest model, e.g., offering several prizes [23–25], using more than a
single stage (most commonly in the form of a tournament [26–28] or in the form of sub-
contests [29–31]) and the contest organizer’s goals (e.g., maximizing overall effort, best
effort, fairness) [32, 33].

Traditionally, contest models have considered the decision problem of contestants to be
the amount of effort (or money) they exert in the contest, as this directly influences their
performance in the contest (and consequently their chance of winning) [4, 22, 34–37]. The
study of such effort-based contests constitutes the majority of literature on contest design.
In recent years there is a growing interest in the study of binary contests, which are the
focus of our paper, where contestants only strategize on participation itself (as participation
incurs a cost) rather than the amount of effort to exert [5, 7, 16, 17, 38–43]. This captures
settings where the "quality" of the participating agents does not depend on effort (e.g. beauty
contests), or where performance is pre-determined by the time evaluation takes place (e.g.
life-time achievement award). The binary contest model also maps well to settings where
upon deciding to participate in the contest, a contestant will do its best to shine and exert the
maximum possible effort (e.g., in sports contests).

Several prior works have studied information providing in the context of binary contests,
typically focusing in two-players settings and considering information that does not relate to
the agent’s own performance and capabilities. For example, Dubey [16] studies a two-players
contests, where each player has one of two abilities (which it knows) and can choose whether
to shirk (zero effort) or work (maximal effort). Each player’s output depends upon its innate
ability (over which he has no choice), and the effort he chooses to undertake. The author
explores the effect of the awarded prize over the preference of having a contestant know the
ability of its rival, and finds that to inspire performance, it is often better for the contest orga-
nizer neither to reveal all nor to conceal all, but to follow a middle path of partial revelation.
Building on a similar model, Ponce [17] studies a two-agent binary contest with incom-
plete information regarding the abilities of the players. The contest designer can send private
messages to players regarding the abilities of their rivals, according to some information dis-
closure rule which is common knowledge. The author shows that the optimal disclosure rule
is partial information disclosure. Somehow tangential to the current work, some prior work
has dealt with the design of temporal information provision, wherein information is revealed
over time during the course of the contest. For example, Hinnosaar [44] studies a sequential
contest in which the efforts of earlier contestants may be disclosed to later contestants and
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proves that in the case of homogeneity, full information revelation scheme is optimal. Levy
et al. [45, 46] investigate temporal disclosure in sequential binary contests where some of
the agents know the performances of some preceding agents and examine the effect of such
design on the organizer’s profit. They conclude that while information disclosure in binary
contests can be beneficial, it is not necessarily the case that disclosing all available informa-
tion is always the best strategy. Other works on binary contests have considered aspects of
optimal prize allocation [5, 7] and computational aspects of equilibrium-calculation [47, 48].

Unlike the above citedwork, ourmodel enables the contest organizer to obtain and provide
information that disambiguate the uncertainty related to agents’ own performance and offer
it only to a subset of the agents. To the best of our knowledge, such mechanism has not been
proposed in priorwork.Aswemanage to show in the following paragraphs, the organizer does
not necessarily find it beneficial to obtain and provide this kind of information information
to all agents.

More generally, information provision, and in particular the possible superiority of pro-
viding contestants with partial information regarding different aspects of the contest, can be
found in the rich literature on effort-based contests. Here, however, the focus is primarily on
information relating to the types of contestants, commonly modeled by their cost of exerting
effort. Fu et al. [13] study a two-players contest where players are allowed to send a (costly)
public message of confidence in winning the contest (which may disclose their private val-
uation of the prize) prior to the contest. They show that such pre-contest communication
may deter the rival’s entry into the contest and strategically manipulate its belief. Morath and
Munster [11] study incentives for information acquisition ahead of a contest, focusing on the
effect of whether the decision to acquire information is observable or not. Denter et al. [12]
study information policies of contestants who can decide and commit to acquire information
about their rival valuation of the prize or disclose their own private information. They show
that mandatory disclosure policy can decrease social welfare. Zhang and Zhou [49] study a
two-player contest, where one contestant’s valuation is commonly known and the other has
private valuation. The organizer can commit to a signal about the second player’s valuation,
before the contest begins. They reach the conclusion that the organizer should fully reveal
information about contestants if they are good enough but otherwise keep some uncertainties.
Kovenock et al. [14] study the incentives to share private information (e.g., signals related to
the value of winning in the contest) ahead of the contest. They show that with independent
values of winning the contest, expected effort is lower with than without information sharing.
Letina et al. [50] study the optimal design of contests when the principal can choose both the
prize profile and how the prizes are allocated to the agents as a function of a possibly noisy
signal about their efforts. They show that with perfect observability of effort, an appropriately
chosen nested Tullock contest is optimal. When efforts are imperfectly observed, they derive
an upper bound on the level of noise such that an all-pay contest is optimal. Aich et al. [51]
study a two-player Tullock contest with information advantage, and show that when one
player has information advantage over the other (in terms of the realization of the state of
nature which affects their cost of effort), the total effort exerted by the players is smaller. Einy
et al. [52] also study a two-player contest with asymmetric information, where one player
has an information advantage over its opponent in terms of the nature’s state. They show that
the highest expected total effort is obtained when the difference in the players information
is as small as possible. In a parallel research, Einy et al. [53] study a Tullock contest with
incomplete information, where the uncertainty is associated with the players’ common value
of the prize and each player’s cost function. They show that if players’ cost of effort is state
independent, players’ effort decreases with the level of information.
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While the bottom line in the latter reviewed works is similar to the conclusion reached in
the current paper, in the sense that partial information disclosure can be (at times) beneficial,
the nature of information addressed and the mechanics that lead to the similar conclusion
differ: in effort-based contests, the contestant himself controls its performance in the contest
based on the amount of effort he exerts. The information provided thus typically assists
in realizing the cost of exerting different levels of effort and the competence (in terms of
cost of exerting efforts) of others. In binary contests, contestants have no control over their
performance, hence the purpose of information is in having them realize their performance
as a means for guiding their decision whether to participate in the contest in the first place.

Finally, we note that the idea of (selective) information providing has been extensively
studied in recent years in the field of psychology and behavioral economics [54, 55] and in
multi-agent literature [56–61]. Nevertheless, the ideas provided there do not trivially carry
over to contest design.

3 The contest model

We rely on the standard binary contest model which is commonly used in prior work [5–7,
15–17, 19, 43, 46, 62, 63]. The model considers a contest organizer (denoted "organizer"
onward) and a set A = {A1, ..., An} of n > 1 potential contestants (denoted "agents"
onward). Each agent Ai can either participate in the contest, incurring some cost c,1 or opt to
avoid participating in the contest. The performance of an agent if taking part in the contest is
a priori unknown and determined according to some probabilistic function f (x) (where F(x)

is the corresponding cumulative distribution function). This latter assumption corresponds
to settings where contestants are a priori typically alike (e.g., chess masters, gifted painters,
professional Judo players, internationally renowned scientists) and their performance in the
contest is mostly influenced by (commonly external) factors, such as weather, momentary
focus, and subjective evaluation of referees.2 The contest is executed in parallel, i.e., all
agents make their participation decisions simultaneously, having no information related to
their own performance, should they participate, or the expected performances of others.

Both the organizer and the agents are fully-rational and self-interested. To elicit partici-
pation, the organizer offers a prize M > 0 to the agent ranked first (performance-wise) in
the contest.3 If none of the agents participates, the prize is not awarded and the performance
as perceived by the organizer is set to some preset fallback performance x0, which, w.l.o.g.
we normalize to zero. In line with previous work [5–7, 31], it is assumed that n, f (x), c and
M are common knowledge, i.e., known to all agents and the organizer.

We extend the above model by enabling the contest organizer to obtain and consequently
provide specific agents with some information that can help them disambiguate the uncer-
tainty associated with their actual performance.4 We assume that getting a hold of such
information and providing it to the agents is costly. Specifically, the cost of obtaining and

1 e.g., time and money spent in getting to a contest, fee of participation, reputation loss if not winning etc.
2 As discussed later on, a modeling that uses a priori heterogeneous agents merely requires simple adaptation
to the equations representing the agents’ best response, and does not add much insight, qualitatively.
3 Due to the continuous nature of f (x), the chance of a tie is negligible and can be ignored.
4 This does not necessarily mean the organizer becomes a priori acquainted with the performance of the agents
receiving the information—the model only requires that the information provided enables the receiving agent
to extract its performance if taking part in the contest.
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providing such information to a subset A′ of agents is corg : A′ ⊆ A → R≥0,5 which is
a monotone increasing function of |A′|. We assume the organizer is truthful and does not
hold the information to herself once obtaining it [7, 44, 64–66]. This can be because only the
agent receiving the information can use it to extract its own performance (i.e., the information
complements other private information available to the agent, e.g., the information relates
to the efficiency of some specific equipment, and only the agent knows if it is planning to
use such equipment in the contest). However, even if the information enables the organizer
calculating the actual performance of the agent, it is quite common that "full disclosure" reg-
ulatory requirements force the organizer to disclose to each participating individual all the
information she holds related to that individual. Hence, if obtaining information related to a
specific agent Ai , the organizer necessarily discloses that information to the agent (and only
to that agent). We further assume that once the information was obtained and disclosed, all
agents are aware of the identity of those that have become informed, though the information
revealed to an agent remains unknown to others.

The goal of the organizer is to maximize her expected profit defined as the expected
best performance of agents participating in the contest minus the prize awarded minus, if
choosing to obtain information, the cost of obtaining the information. The goal of each agent
is to maximize its own expected profit, defined as the expected prize it receives minus the
cost incurred in case of participating in the contest.

A real-life example that maps to the above model is a National Renewable Energy Startup
Grant Competition which focuses on innovative solutions in the renewable energy sector.
Since this is a national contest, potential candidates, i.e., entrepreneurs developing new tech-
nologies for solar, wind, hydro, geothermal, and alike, are likely to be familiar with the list
of prospective contestants from their community. The contest is binary - participants can
either decide to participate (apply) or not participate. Applying involves participating in a
pitch event, which incurs costs associated with preparation and traveling. Additionally, par-
ticipants may need to invest in professional services like legal advice or consulting to refine
their pitch. Naturally, participants do not know their true performance in the contest as they
do not know how their ideas compare to other applicants. The contest organizer however
can provide to some or all participants information that will reveal to them their expected
performance in the contest. This can take the form of receiving an evaluation of their business
plans and an estimate of their standing among the applicants. Producing such information is
cosly in the sense that the information based on which the evaluation is made needs to be
actively seek rather than receiving it from the contestant as part of the submission. Knowing
the benefit of providing only some of the prospective applicants with such information, the
committee can announce that it will provide such services only to a limited number of appli-
cants which will be selected with a lottery (or the first N to register on the contest web-site).
The list of participants receiving the information will become available on the web-site so
that participants will know who received the information.

4 Analysis

We provide a comprehensive equilibrium analysis of the above contest model. This enables
highlighting several interesting properties of the solution, in particular those relating to the

5 Since the agents are a priori homogeneous, a simpler representation is corg : k → R≥0 , as only the number
(rather than identity) of agents becoming informed matters. Still, in Section 5 we extend the analysis to the
case of heterogeneous agents, where the specific subset of informed agents matters, hence we leave corg in
its more general form.
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subset of agents for which information should be obtained, and the expected profit of the
organizer and the agents.

An equilibrium specifies the subset of agents the organizer chooses to inform (i.e., to obtain
and disclose information to) and the participation decisions of all n agents (both informed
and non-informed). From the organizer’s point of view, this is a Stackelberg game, where she
is the first mover, picking the number of informed agents k, and the agents are the responders,
setting their strategies accordingly.

4.1 Agents’ strategies

Weuse {P,¬P} to denote the actions available to each agent, where P stands for participating
in the contest and ¬P for not participating. Similarly, we use B P

i and B¬P
i to denote the

expected profit of agent Ai when participating and when not participating, respectively. An
agent’s best-response strategy in our model depends on the information available to it at the
time of making the participation decision.

Consider agent Ai ∈ A and recall that the agent ranked first (performance-wise) in the
contest is awarded a prize M > 0. We use S−i to denote the strategies (in the form of
participation decisions) of all other agents A j ∈ A, j �= i . If not receiving information
from the organizer then the agent’s best response strategy is necessarily probabilistic and
captured by some participation probability 0 ≤ pi ≤ 1 (where pi ∈ {0, 1} indicates a pure
strategy). If receiving information, then the agent becomes "informed" and should rely on
this information to make its participation decision. In this case, we turn to the expected profit
of Ai if participating, given its performance x , denoted B P

i (x).6 Here, the expected-profit-
maximizing strategy is threshold-based as we show in the following proposition.

Proposition 1 When information regarding the performance of an agent is disclosed to
it, the agent’s best-response strategy given the information received t is threshold-based.
Meaning that the agent will set a threshold T and choose to participate in the contest only
if t ≥ T .

Proof Assume otherwise, i.e., given S−i , the best-response strategy of an informed agent Ai

is to participate when its performance is t and not participate when it is t ′ > t . Denote the
winning probability of an informed agent Ai , given S−i and its performance x , by pWin

i (x).
In order to win the contest while associated with performance x , it is required that all other
contestants that choose to participate will be associated with performance smaller than x .
Meaning that pWin

i (x) increases in x . Using pWin
i (x) we can express B P

i (x):

B P
i (x) = pWin

i (x) · M − c (1)

If not participating, the expected profit of the agent is B¬P
i = 0,∀x . From t ′ > t weobtain that

pWin
i (t ′) ≥ pWin

i (t), hence B P
i (t ′) ≥ B P

i (t). Since the best response strategy of the agent is
to participate when its performance is t then the following must hold: B P

i (t) ≥ B¬P
i (t) = 0,

and similarly for t ′: B P
i (t ′) < B¬P

i (t ′) = 0. We obtain: B P
i (t) ≥ B¬P

i (t) = 0 > B P
i (t ′)

which is a contradiction. 
�
Since the agents are a priori alike, we aim for the symmetric equilibrium, i.e., one where

the informed agents use the same threshold T and the non-informed agents use the same

6 As opposed to B P
i , which is the a priori expected profit, i.e., when the performance of the agent in the

contest is still unknown.
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participation probability p. Naturally this equilibrium can coexist alongside other equilibria,
yet this type is the most natural and fair one and therefore the one we relate to in our analysis
as well as in the numerical illustration.

Recall that k is the number of informed agents. We can formally express the probability
for an informed agent Ai receiving information that its performance is t will win the contest
and be awarded the prize M :

pWin
i (t) =

{
F(T )(k−1) · ∑n−k

w=0

(n−k
w

)
pw(1 − p)n−k−w F(t)w t ≤ T

F(t)(k−1) · ∑n−k
w=0

(n−k
w

)
pw(1 − p)n−k−w F(t)w t > T

(2)

The above calculation is based on the fact that in order for Ai to win, all other k −1 informed
agents need to have a value smaller than t when t > T , or a value smaller than T if t ≤ T
(in which case they opt not to participate). The probability of this event is F(T )k−1 in case
t ≤ T , and F(t)k−1 otherwise. As for the remaining n − k non-informed agents, these are
divided tow ≤ n − k agents that participate and n−k −w agents that do not participate, with
probability

(n−k
w

)
pw(1 − p)n−k−w . In order for Ai to outrank them, we need the w agents

that participate to be associated with performance values smaller than t , which happens with
probability F(t)w .

Now consider any non-informed agent Ai . Here, again, we can formally express the
probability that the agent will win and be awarded the prize M should it participate and its
performance (at retrospect) is realized to be t , denoted p̂Win(t):7

p̂Win(t) =
{

F(T )k · ∑n−k−1
w=0

(n−k−1
w

)
pw(1 − p)n−k−w−1F(t)w t ≤ T

F(t)k · ∑n−k−1
w=0

(n−k−1
w

)
pw(1 − p)n−k−w−1F(t)w t > T

(3)

We note that our proposed model structure defines two extremes. The first is where k = n,
i.e., the organizer obtains and discloses the performance of all agents, and so each agent is
informed. The best-response strategy of agents in this case is purely threshold-based, and
so the probability an agent with performance t will win the contest (given in (2)) is simply
F(max(T , t))n−1, i.e., Ai is awarded the prize M whenever all other agents’ performances
are either below T (in which case they opt not to participate) or below t (in which case they
lose). A comprehensive analysis of this specific variant can be found in the work of Ghosh
and Kleinberg [5].

The second extreme is where k = 0, i.e., information is not obtained and so at the time
of making their participation decisions all agents rely only on their a priori distribution of
performances f (x). The best-response strategy of agents in this case is purely based on the
participation probability p (0 ≤ p ≤ 1) and so the probability an agent will win (given
in (3)) is simply (pF(y) + (1 − p))n−1. A comprehensive analysis of this specific case can
be found in the work of Levy et al [6].

4.2 Equilibrium in subgame

We move on to finding the equilibrium in the subgame resulting from the organizer’s choice
of the agents that will become informed, A ⊆ A (|A′| = k). Here, as discussed earlier,
we are interested the symmetric equilibrium, i.e., one where the informed agents use the
same threshold T and the non-informed agents use the same participation probability p. We
begin with finding the value of the expected profit-maximizing threshold, denoted T ∗

i , given
S−i = (p, T ). Recall that the expected profit of an informed agent Ai if not participating

7 The calculation is a modification of (2), hence we omit the explanation for how it was derived.
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is zero, and that pWin
i (x) (and consequently B P

i (x)) increases in x . The expected-profit-
maximizing threshold T ∗

i is therefore the one satisfying B P
i (T ∗

i ) = B¬P
i = 0, i.e., the

equilibrium participation-threshold T to be used by all agents receiving information is the
one satisfying:

B P
i (T ) = 0 (4)

The expected a priori profit of any agent Ai , denoted Bi , depends on whether or not it is
about to receive information, and is given by:8

Bi =
{∫ ∞

t=T (MpWin
i (t) − c) f (t)dt Ai is informed

p(M
∫ ∞

t=−∞ p̂Win
i (t) f (t)dt − c) otherwise

(5)

For a non-informed agent Ai that does not participate in the contest the expected profit is
B¬P

i = 0. Therefore the following must hold in equilibrium:{
Bi ≥ 0, p = 1

Bi = 0, 0 ≤ p < 1
(6)

A solution (p, T ) is thus in equilibrium if it satisfies both (4) and (6).
Since the equilibrium is defined both by p and T , it is possible that a given settingwill have

more than a single (symmetric) equilibriumsolution (i.e.,multi-equilibria).9 This is illustrated
in Fig. 1 which depicts the expected profit of the non-informed agents, when choosing to
participate in the contest, as a function of the participation probability p used. The setting
used includes four agents (n = 4), where two of them receive their exact performance from
the organizer (k = 2). All agents are characterized by a uniform performance distribution
function between 0 and 1. The prize is M = 0.38 and participation cost is c = 0.14. For
each value p we calculate the corresponding threshold T to be used by the informed agents
(according to (4)) and this threshold value is then used for calculating B P

i (p). Thus any p
value for which B P

i (p) = 0 constitutes an equilibrium solution along with its corresponding
T value. As can be seen from Fig. 1, in this setting there are two equilibria: p = 0.085
(corresponds to T = 0.408), and p = 0.603 (corresponds to T = 0.62). With both equilibria
the non-informed agents end up with zero expected profit. The informed agents, however,
end up with a profit B P

i = 0.067 and B P
i = 0.006 in the first and second equilibrium,

respectively.
For some classes of settings, we can prove somehow counter-intuitive properties of the

equilibrium, in particular, equivalence in the thresholds used for settings differing in the
number of informed agents and similar expected profits of informed and non-informed agents.
These are summarized in Propositions 2 and 3. This is stated in the following Proposition.

Proposition 2 In any two contests characterized by M, f (q) and corg(A′), in which the
equilibrium solution is of type (p = 1, T ), the threshold used by the informed agents is the
same, regardless of the number of informed agents 1 < k ≤ n.

Proof The proof is based on showing that any such contest with 1 < k < n is equivalent to a
contest with k = n informed agents. For k = n we obtain from (2) that pWin

i (t) = F(t)n−1

for t > T . Similarly, substituting k < n and p = 1 in (2) we obtain pWin
i (t) = F(t)n−1

8 In the extreme where k = n this can be simplified to Bi = ∫ ∞
t=T (M F(t)n−1 − c)dt , while in the other

extreme in which k = 0 it is Bi = p(M
∑n−1

j=0

(n−1
j

) p j (1−p)n− j−1

1+ j − c).
9 The question of which of those will be used is interesting, yet beyond the scope of the current paper.
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Fig. 1 The expected profit of a participating non-informed agent as a function of the participation probability
p of the other non-informed agents. The setting used is n = 4, k = 2, M = 0.38, c = 0.14, corg(·) = 0 and
f is uniform over (0, 1)

for t > T . Meaning that the winning probability of any informed agent does not change for
t > T—it only changes when t ≤ T , alas in those cases the agent will not participate in the
first place. Consequently, the calculation of the equilibrium threshold T (based on (1)-(4))
remains unchanged. 
�

Intuitively, the certain participation of the n−k non-informed agents will affect the informed
agents onlywhen their performance value turns to be greater than T . From the informed agents
point of view, this is equivalent to having all non-informed agents participate according to a
threshold T , hence the strategic situation is similar to the case where all agents are informed.

Proposition 3 For any contest characterized by M, f (q), corg(A′), k = n − 1 (i.e., only
one of the agents remains non-informed) and equilibrium solution (1, T ), all agents gain the
exact same expected profit, regardless of being informed or not.

Proof Consider the non-informed agent that always participates. For any performance t ≥ T ,
its winning probability is equal to the winning probability of an informed agent with the
same performance measure (this was already established in the proof of Proposition 2). As
for values t < T , the winning probability of the agent is F(T )k , as all k informed agents will
participate only if their performance is T or above. Recall that the threshold T was set such
that the expected profit from participating when t = T is zero (see (4)). Therefore, for the
non-informed agent, participating with a value t < T also results in a zero expected profit. To
summarize, for any performance measure t the non-informed agent gains the same expected
benefit as the informed agents, hence the agents’ expected overall profit is the same. 
�

Corollary 1 For any participation cost c for which disclosing the information to n −1 agents
results in having the non-informed agent always participating, the organizer’s choice of
disclosing the information to all agents is strictly dominated by disclosing the information to
n − 1 agents. The difference in the organizer’s expected profit is corg(A) − corg(A′), where
A′ is a subset of size n − 1.
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4.3 Organizer’s profit

Since the agents are a priori homogeneous the organizer has no preference of providing the
information to a specific agent and so her strategy is captured by the number of agents she
wants to purchase (and provide) information to, denoted k (0 ≤ k ≤ n). Let F̄(y) be the
probability that the maximum performance obtained in a contest involving k informed agents
is less than y:

F̄(y) =
{

F(T )k(pF(y) + (1 − p))n−k y ≤ T

F(y)k(pF(y) + (1 − p))n−k y > T
(7)

Here we require that all k informed agents are associated with performance lower than T
(i.e., ending up opting not to participate) when y ≤ T and performance lower than y when
y > T . Similarly, we require that all n − k non-informed agents will either not participate or
participate and realized later to be associated with a value lower than y. The corresponding
probability distribution function, denoted f̄ (y) is, by definition, the first derivative of F̄(y).
Consequently, the organizer’s expected profit from obtaining and revealing information to
subset A′ (|A′| = k), denoted Borg(A′), is given by:

Borg(A′) =
∫ ∞

y=−∞
y f̄ (y)dy − M

(
1 − F(T )k(1 − p)n−k

)
− corg(A′) (8)

where (1 − F(T )k(1 − p)n−k) is the probability that at least one of the agents participates,
hence the prize M is being awarded.

As mentioned earlier (below (3)), with the first extreme of the proposed model, in which
the organizer obtains and discloses the performance of all agents (i.e., k = n), the organizer’s
expected profit, given in (8), can be simplified to:

Borg(A) =
∫ ∞

y=T
y

d F̄(y)

dy
− M(1 − F(T )n) − corg(A) (9)

where F̄(y) = F(max(y, T ))n . With the second extreme, where information is not obtained
at all (i.e., k = 0), the organizer’s expected profit can be simplified to:

Borg(∅) =
∫ ∞

y=−∞
y

d F̄(y)

dy
dy − M(1 − (1 − p)n) (10)

where F̄(y) = (pF(y) + (1 − p))n .
Naturally, the organizer’s decision on the set A′ ⊆ A of agents for which information

will be obtained depends on the cost function corg(A′) that determines the cost of obtaining
the information. The greater the cost of obtaining the information, the smaller the benefit in
obtaining it. Consequently, examples where the organizer prefers obtaining information for
merely a subset of the agents are easy to construct. Interestingly, evenwhen the information is
costless, and the organizer needs not consume any resources in order to obtain it (corg(A′) = 0
∀A′ ⊆ A), one cannot trivially assume that the information should be obtained and provided
to all the agents. This is illustrated in Fig. 2. The figure depicts the organizer’s expected profit
as a function of the agents’ participation cost, for different number of informed agents, while
the information is costless (Graph (a)). It also provides the participation probability of the
non-informed agents and the threshold used by the informed agents under each condition
(Graphs (b) and (c), respectively). The optimal number of informed agents (k) as a function
of the agents’ participation cost is given in Graph (d)). The setting used includes four agents
(n = 4), a prize M = 0.38 and a uniform performance distribution function between 0 and
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Fig. 2 The influence of the participation cost over the organizer’s expected profit for different number of
informed agents (Graph (a)); the strategies of the non-informed agents (Graph (b)); the strategies of the
informed agents (Graph (c)); and the optimal number of informed agents (Graph (d)). The setting used is
n = 4, M = 0.38, corg(·) = 0 and f is uniform over (0, 1)
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1. From the figure we observe that for low participation costs (c ≤ 0.04) the organizer’s
preference is k = 4 (i.e., all agents become informed). This is somehow surprising, as from
Graph (b) we observe that even if not providing any information whatsoever, all four agents
will choose to participate if participation cost is small. With four informed agents there is
a chance that all four agents will realize their expected performance is below the threshold
set and opt not to participate (Graph (c)). Meaning that from the contest outcome point of
view (i.e., the contributed performance) the contest’s organizer loses from not having any
agent participating in the contest whenever all agents’ performances are low. Still, in the
latter case where none of the agents participate in the contest the organizer saves the prize
that needs to be awarded. Since the threshold used by the informed agents is rather small,
the saving from not awarding the prize is necessarily greater than the performance gained
in such cases. For 0.04 < c ≤ 0.1, the organizer benefits from having all the agents remain
uninformed (i.e., k = 0). This may seem counter-intuitive, as in most realistic settings the
common practice is to provide contestants as much information possible—providing agents
information about their own performance will result in having only the most competent ones
(i.e., those associated with the highest performances) taking part in the contest, whereas in
the absence of such information, agents whose performances might turn to be the highest will
potentially opt not to participate in the first place. Still, in this case, since the participation cost
is quite small, the organizer benefits from the relatively high participation probability which
compensates for cases where the agents, being fully informed, all end up not participating.
For 0.1 < c ≤ 0.12 the organizer’s best strategy is k = 2, for 0.12 < c ≤ 0.18 it is k = 4,
for 0.18 < c < 0.32 it is k = 3 and for c > 0.32 it is k = 1.10 The optimal number of
informed agents k as a function of the participation cost c for the above setting is illustrated
in Fig. 2(d). As can be seen from the figure, the change in the optimal number of informed
agents is not monotonic in the increase in the agents’ participation cost: in the setting used
the optimal number of informed agents drops from four to zero for a certain c value, and then
increases and decreases, with sharp changes (e.g., from two to four agents and three to one
agents).

The fact that for small participation costs it was found mostly beneficial to provide all
agents with the information is not occasional. In fact, we can prove that regardless of the
setting used, when information is costless there is always an interval of c-values for which
the organizer is better off obtaining and disclosing the information to all agents, as given in
the following proposition.

Proposition 4 For any contest characterized by M, f (q) and corg(A′) = 0 ∀A′ ⊆ A there is
at least one interval of c values where obtaining and disclosing the information to all agents
(k = n) dominates informing only a subset of the agents (k < n).

Proof Consider an arbitrarily small participation cost c → 0. With this cost, all the n − k
non-informed agents participate, as the expected profit according to (5) is positive. Alas, the
k informed agents participate only with performance greater than their optimal threshold
Tn−k as calculated based on (4). We therefore consider two possible scenarios: (i) the agent
associated with the highest performance among the n agents is a non-informed agent and
its performance is lower than the equilibrium threshold Tn holding when all n agents are
informed, and (ii) any other case. For the first case, we show that the organizer necessarily
benefits if all non-informed agents become informed. The difference between the two cases
is only when a winning non-informed participant opts not to participate once becoming
informed, i.e., when the maximum performance is of a non-informed agent and it is below

10 The setting is ill-defined for c > 0.38 as the prize offered is smaller than the participation cost.
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the threshold Tn . Since p = 1 for the non-informed agents in the case of k < n, the value Tn

(following (2) and (4)) is necessarily smaller than Tn−k . Therefore, in such case there is no
other winner (as all agents use Tn hence their performance dictates not participating)—the
organizer saves herself awarding the prize M and loses the gain from the performance of the
non-informed agent that once becoming informed chooses not to participate. The expected
net profit over all such cases is M − E[max(t1, ..., tn−k)|ti < Tn∀1 ≤ i ≤ n − k]. Since
c → 0, T is small enough to guarantee that the latter expression is positive. As for all other
cases (second-type above scenario), the prize awarded and the expected best performance
are the same both when the agents are informed and non-informed, hence there is no change
in the expected profit of the organizer. 
�

4.4 Influence of information providing cost

We now turn to illustrate the effect of the information cost corg on the optimal number of
informed agents, from the contest’s organizer point of view. Figure 3 depicts the organizer’s
expected profit for different number of agents becoming informed, when the cost of providing
the information to k agents is corg = α · k, and the horizontal axis represents the coefficient
α. The setting used is of four agents (n = 4), a prize M = 0.35, participation cost c = 0.26
and a uniform performance distribution function between 0 and 1. As can be seen from the
graph, when the cost of purchasing the information is relatively low (corg ≤ 0.01 · k) the
organizermaximizes its profit with three informed agents (k = 3).When the cost of obtaining
and providing the information is relatively high (corg ≥ 0.09 · k) the information is never
purchased. For 0.01 · k < corg ≤ 0.03 · k, the organizer purchases the information for two
agents (k = 2) while for 0.03·k < c < 0.09·k the information to only one agent (k = 1). The
intuition for this revealed pattern is that the gain in contributed performance when providing
k agents with information does not depend on corg . Therefore, when the cost of obtaining
and providing information increases, the optimal number of informed agents cannot increase
(as otherwise, that same number of agents should have been used also with a smaller value
of corg).

Fig. 3 The influence of the information-cost coefficient over the organizer’s expected profit, for different
number of informed agents. The setting used is n = 4, M = 0.35, c = 0.26 and f is uniform over (0, 1). The
cost of obtaining and providing the information to k agents is corg = α · k
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4.5 Agents’profit

Much like with the organizer’s preference of whether or not to obtain and provide the infor-
mation to all agents, we demonstrate that, somehow counter-intuitively, the agents themselves
are sometimes better offwithout having the information regarding their performance. Figure 4
depicts the agents’ average expected profit (calculated cross all agents, whether informed or
not), as a function of their participation cost c, in a four-agents contest, for different number
of informed agents. The setting used is the same as in Fig. 2. The two bottom graphs depict the
agents’ expected profit based on their type: informed (Graph (b)) and non-informed (Graph
(c)). Non-informed agents gain a positive expected profit as long as their equilibrium partic-
ipation probability is 1 (Graph (c)). When their participation probability drops below 1, they
are indifferent between participating to not participating, hence their expected profit is zero.
The greater the number of informed agents (k), the lesser the number of non-informed agents,
and consequently the greater the participation cost at which they become indifferent to partic-
ipation (as they can benefit from cases where the informed agents choose not to participate).
As for the informed agents, much like with the non-informed agents, here the general (and
natural) pattern is of a decrease in expected profit as the cost of participation increases. The
only exception is at the participation cost at which the non-informed agents become indiffer-
ent to participating in the contest (i.e., use a mixed strategy). Here, the expected profit of the
informed agents increases with any further decrease in the participation probability of the
non-informed agents. This continues until the increase in the cost of participation becomes
more significant than the reduced competition. From that point and on, the expected profit
of the informed agents decreases once again as the cost of participation increases.

The above dynamics lead to a complex behavior of the cross-agent average expected
profit as reflected in Graph (a) of Fig. 4. From this graph we obtain that from the agents’
perspective, the highest expected profit is obtainedwhenonly someof thembecome informed:
for relatively low values of participation cost (c ≤ 0.14), the agents gain the highest expected
profit when k = 3, for 0.15 < c ≤ 0.16 whereas for high values of c (c > 0.17) k = 1
dominates. More specifically, when k = 0 (see black line), for c < M/4 = 0.095 all (non-
informed) agents participate and the expected profit decreases linearly as the participation
cost c increases. For c ≥ 0.095 a mixed-strategy equilibrium holds and the expected profit
of the agents is zero as they are indifferent between participating and not participating in the
contest. When k = 4 (see blue line), agents’ participation threshold increases in c and their
expected profit decreases consequently. For k ∈ {1, 2, 3} we observe a temporal increase
in the agents expected profit following an increase in the profit of the informed agents as
explained above. When k = 1, for c ≤ 0.1 all (non-informed) agents participate and so the
expected profit decreases linearly as the participation cost c increases. For higher values of
c, the non-informed agents use a decreasing mixed-strategy for their participation decision
while the threshold used by the informed agents increases; up to c = 0.26 in which the latter
becomes 1 (i.e., the non-informed agents do not participate). For 0.1 < c ≤ 0.18 the agents’
expected profit increases due to the sharp increase in the informed-agents’ expected profit,
up to c = 0.19 where the threshold used by the informed agents is high enough and so their
expected profit goes down again. Similar phenomenon is illustrated when k = 2 and k = 3,
only for different c values.

We note that from the agent’s profit point of view, regardless of the setting used, having at
least some of the agents become informed always dominates keeping them all non-informed.
This is because when the agents participate based on some participation probability p, as in
the case of keeping all agents non-informed, their expected profit is zero (according to (6)),
whereas with k > 0 informed agents, the profit of the non-informed agents remains zero
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Fig. 4 The influence of the participation cost c over the agents’ average expected profit (Graph (a)), the
informed-agents’ strategies (Graph (b)) and the non-informed strategies (Graph (c)). The setting used is
n = 4, M = 0.38, corg(·) = 0 and f is uniform over (0, 1)

and the profit of the informed ones becomes positive. The only exception is when all agents
initially use p = 1 when non-informed. Here, it is possible that the agents’ profit when being
non-informed is positive to begin with, and once some of them become informed the increase
in the profit of the informed ones does not compensate for the decrease in the profit of the
others. Still, from the organizer’s point of view, offering a prize M that results in p = 1 and
positive expected benefit to the agents is dominated by offering M ′ < M for which p = 1
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and the agents’ expected profit is zero. Therefore, the above exception is only theoretical and
a rational organizer will never run into it.

4.6 Social welfare

One interesting question that arises when analyzing the influence of partial information pro-
viding over the contest outcome is the change in social welfare. We stick with the traditional
definition of social welfare as the sum of the expected profit of all agents (organizer and
contestants). Since the organizer is rational, she will only obtain the information (for a partial
or the full set of agents) if this will increase her expected profit. As for the agents’ expected
profit, we have already established above that unless the prize M is exceptionally high, in
the sense that it pushes all agents to participate in the contest, informing a subset of the
agents regarding their performance can only improve the agents’ expected profit. Therefore,
the social welfare measure can only increase in value when providing information to the
agents. This does not necessarily mean that social welfare is maximized by making all n
agents informed. This is illustrated in Fig. 5 that depicts the social welfare in a four-agents
setting for different number of informed agents. The setting used is the same as the one used
in Fig. 2. As can be seen from the graph, the social welfare decreases as agents’ participation
cost increases. Specifically, the social welfare is maximized when k = 4 for low values of c
(c ≤ 0.19) and for high values of c (c > 0.29) when k = 1. For 0.19 < c ≤ 0.29 making
only a subset of the agents informed (i.e., k = 2) maximizes the social welfare.

5 Heterogeneous participants

Our model assumes all agents are a priori alike, in the sense that they all incur the same cost if
choosing to participate in the contest and their performance derives from a common probabil-
ity distribution function. This is a common practice in binary-contests literature [5–7]. Still,
the analysis can trivially be extended to support the case where agents are heterogeneous in
these two parameters. Assume each agent Ai ∈ A is characterized by a participation cost ci

and its performance derives from a probability distribution function fi (x). This difference

Fig. 5 Social welfare for different number of informed agents. The setting used is n = 4, M = 0.38,
corg(·) = 0 and f is uniform over (0, 1)
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in participation cost can be attributed to differences in the way agents value their time, or
when they arrive from different locations hence their cost of travel and accommodation is
different. The difference in the underlying performance probability distribution function can
be attributed to inherent differences in the agents’ capabilities.

5.1 Equilibrium analysis

Consider an informed agent Ai ∈ A′. The probability that this agent will win the contest,
if choosing to participate knowing that its performance will be t , given the strategies of all
other agents (Tj , ∀A j �=i ∈ A′ and p j ∀A j /∈ A′), can be calculated using the following
modification of (2):

pWin
i (t, A′) =

∏
A j ∈A′−Ai

Fj (max(t, Tj ))
∏

Aw∈A−A′
(pw Fw(t) + (1 − pw)) (11)

i.e., for Ai to win, all other informed agents need to have a value smaller than the threshold
they use (in which case they opt not to participate) or below t (in which case they lose). The
probability of this event is Fj (max(t, Tj )) for any A j �=i ∈ A′. As for the remaining n − k
non-informed agents, each such agent Aw /∈ A′ participates with probability pw and needs
to have a value smaller than t for Ai to win, and with probability 1− pw does not participate.
If not participating, Ai gains zero. The expected-profit-maximizing threshold T ∗

i is therefore
the one satisfying B P

i (T ∗
i ) = 0.

Now consider a non-informed agent Ai which participates with probability pi . The prob-
ability that the agent will win should it participate and its performance (at retrospect) is
realized to be t can be expressed using the following modification of (3):

p̄Win
i (t, A′) =

∏
A j ∈A′

Fj (max(t, Tj ))
∏

Aw∈A−A′−Ai

(pw Fw(t) + (1 − pw)) (12)

Similarly, the expected a priori profit of any agent Ai , depending on whether or not it is
about to receive information, is given by (5) except for using pWin

i (t, A′), p̄Win
i (t, A′) and

changing c and f to ci and fi . A solution (pi (∀Ai ∈ A− A′), Tj (∀A j ∈ A′) is an equilibrium
if it satisfies the condition given for our a priori homogeneous model.

5.2 Organizer’s profit

We now turn to calculating the expected profit of the organizer. Let F̄(y) be the probability
that themaximum performance obtained in a contest involving a subset A′ of informed agents
is less than y:

F̄(y) =
∏

A j ∈A′
Fj (max(y, Tj )

∏
Aw∈A−A′

(pw Fw(y) + (1 − pw)) (13)

Here we require that every informed agent A j is associated with performance lower than
their threshold Tj (i.e., ending up opting not to participate) when y ≤ Tj and performance
lower than y when y > Tj . Similarly, we require that all non-informed agents will either
not participate or participate and realized later to be associated with a value lower than
y. The corresponding probability distribution function, denoted f̄ (y) is, by definition, the
first derivative of F̄(y). Consequently, the organizer’s expected profit from obtaining and
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revealing information to A′, denoted Borg(A′), is given by:

Borg(A′) =
∫ ∞

y=−∞
y f̄ (y)dy − M

(
1−

∏
A j ∈A′

Fj (Tj )
∏

Aw∈A−A′
(1− pw)

)
− corg(A′) (14)

where 1−∏
A j ∈A′ Fj (Tj )

∏
Aw∈A−A′(1− pw) is the probability that at least one of the agents

participates, hence the prize M is being awarded.

5.3 Numerical illustration

Similar to the homogeneous case, we can find examples where even if the information can
be obtained and provided for free, it is the best interest of the organizer to provide such
information only to a subset of the agents. However, in the heterogeneous case, we can also
illustrate some counter-intuitive organizer’s preference related to the type of agents to be
included in the contest. For example, we can show that for some settings the organizer will
prefer that some of the agents will be associated with high participation cost rather than low
ones. The common practice is that the smaller the participation cost of the agent, the stronger
is the agent, as the prize awarded is primarily intended to cover the participation cost of the
agents. Therefore the organizer is expected to prefer that the potential contestants will be
associated with low participation cost.

We provide an example where having a weaker agent (in terms of its participation cost)
improves the expected profit of both the agent and the organizer (compared to having a
strong agent). The setting used includes five agents, where c1 = c2 = c3 = 0.15 (i.e.,
three “homogenous” agents) and c4 and c5 are the independent parameters (i.e., two “het-
erogeneous” agents) with only c3 being informed (k = 1). Meaning that A1, A2, A4 and
A5’s equilibrium strategies are in the form of participation probability, while A3’s strategy
is threshold-based. All five agents are characterized by a uniform performance distribution
function between 0 and 1. The prize to be awarded to the winner is M = 0.42.

Figure 6 illustrates the agents’ expected profit as a function of the participation cost c4
(= c5). We note that since A1 and A2 are symmetric, the most natural (and fair) equilibrium
is the one where they use the same strategy p (and gain the same profit). This holds also
for agents A4 and A5 that use the same strategy ph for their participation decision. As
can be seen from the figure, up to c4 = 0.09, we obtain an equilibrium (0, 0, 0.597, 1, 1)
and so the expected profits of A4 and A5 decrease as their participation cost increases.
For 0.09 < c4 < 0.108, the heterogeneous non-informed agents A4 and A5 find it non-
beneficial to participate (since their cost is relatively high), which decreases the threshold
used by the single informed agent (A3) to T = 0.5, and consequently increases its expected
profit. For 0.108 < c4 ≤ 0.178, we obtain an equilibrium (p, p, T , ph, ph), i.e, all non-
informed agents use a mixed-strategy solution (results in a zero expected profit), which
causes a collapse in the informed-agent expected profit and an increase afterwards. When
c ≥ 0.179 we obtain an equilibrium (0, 0, 0.5, 0, 0) and so A3’s expected profit increases
to 0.135. Figure 7 complements the above figure by illustrating the organizer’s expected
profit as a function of c4 (= c5) under the same setting. Interestingly, in the transition that
takes place at c4 = 0.108 we observe a counter-intuitive phenomenon according to which a
decrease in the competence of A4 and A5 (i.e., an increase in their participation costs) results
in an increase in the organizer’s expected profit.
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Fig. 6 The agents’ expected profit as a function of participation cost c4 of the heterogeneous agents. The
setting used is n = 5, k = 1, M = 0.42, corg(·) = 0, c = 0.15 and f is uniform over (0, 1)

6 Discussion and conclusions

Obtaining and providing performance-related information to contestants in a contest offer
many advantages to the contestants and the organizer. The contestants, once becoming more
informed, can be more selective in their participation decisions, avoiding costly participation
in cases their chance of winning is a priori poor. Similarly, the organizer will benefit from
the improved selectiveness in contestants’ participation decision, potentially saving herself
paying the reward whenever all contestants are a priori poor. Still, as shown throughout
the paper, having fully informed contestants, in terms of knowing their own performance
measure if participating in the contest, is not always the best choice for the contest organizer.
We show this holds even in settings where the organizer can obtain and provide contestants
such information at no cost. Meaning that the benefits from partial information providing
(as opposed to making all participants fully informed) derive not only from reduced cost of
obtaining the information but also from the different equilibrium dynamics that hold in this
more generalized contest model. Having some contestants deciding on their participation

Fig. 7 The organizer’s expected profit as a function of participation cost c4 of the heterogeneous agents. The
setting used is n = 5, k = 1, M = 0.42, corg(·) = 0, c = 0.15 and f is uniform over (0, 1)
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decision probabilistically and some based on a performance threshold often leads to better
overall performance, as demonstrated in the paper. Partial information providing can be
advantageous also for the agents and at times can even improve overall social welfare. While
the benefit in partial information disclosure has been acknowledged in effort-based contests
literature, the type of information considered and the governing mechanisms are different
from those that hold in binary contests, as discussed throughout the first two sections of this
paper.

While the model used assumes the organizer benefits from the best performance of agents
participating in the contest, the analysis provided largely support also the case where the
organizer’s benefit is the sum of participants’ performances [5, 40, 41]. In particular, the
analysis of the subgame when the agents decide on participation remains unchanged and
the only change required is in the calculation of the organizer’s expected profit—taking
the sum of the expected contribution of each non-informed agent and expected conditional
contribution of each informed agent (based on the threshold used).
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