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Abstract
This paper concerns preference elicitation and learning of decision models in the context
of multicriteria decision making. We propose an approach to learn a representation of pref-
erences by a non-additive multiattribute utility function, namely a Choquet or bi-Choquet
integral. This preference model is parameterized by one-dimensional utility functions mea-
suring the attractiveness of consequences w.r.t. various point of views and one or two set
functions (capacities) used to weight the coalitions and control the intensity of interactions
among criteria, on the positive and possibly the negative sides of the utility scale. Our aim
is to show how we can successively learn marginal utilities from properly chosen prefer-
ence examples and then learn where the interactions matter in the overall model. We first
present a preference elicitation method to learn spline representations of marginal utilities
on every component of the model. Then we propose a sparse learning approach based on
adaptive L1-regularization for determining a compact Möbius representation fitted to the
observed preferences. We present numerical tests to compare different regularization meth-
ods. We also show the advantages of our approach compared to basic methods that do not
seek sparsity or that force sparsity a priori by requiring k-additivity.

Keywords Multicriteria decision making · Preference learning ·
Choquet and bi-Choquet integrals · Capacities · Möbius representations · Sparse learning

1 Introduction

Evaluation and decision making is often a matter of finding the most appropriate tradeoff
between multiple and possibly conflicting criteria [1]. In the field of multicriteria decision
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making, various evaluation and aggregation models have been proposed to evaluate and
compare the alternatives of a decision problem [2]. These models generally use and combine
objective and subjective information: on the one hand alternatives are described by conse-
quence vectors representing their outcomes with respect to multiple points of views under
consideration in the analysis of preferences. On the other hand, in order to go beyond straight-
forward preferences induced by Pareto dominance, more subjective preference parameters
are used to model the value system of the Decision Maker (DM), e.g., the relative impor-
tance of criteria and their possible interactions in the evaluation process. Thus, a body of
increasingly complex decision models is studied in decision theory to encompass an ever
more sophisticated set of decision behaviors. This effort motivated by descriptive objectives
comes at the cost of an additional complexity, both at the level of preference learning (fit-
ting the parameters of the preference model to the DM value system to explain or predict
her preferences) and at the recommendation level (finding an optimal alternative becomes
computationally more difficult). In this paper, we address the first challenge and propose
a methodology dedicated to the identification of utilities and capacities in decision models
involving Choquet integrals.

The Choquet integral is a well known aggregation function used in multicriteria decision
making to assign an overall score to any evaluation vector attached to an alternative [3].
It performs a kind of sophisticated weighted average where weights are defined for every
subset of components. The Choquet integral is also used in machine learning to replace the
linear function of variables which is commonly used in standard regression methods [4, 5].
For example, logistic regression was extended to Choquistic regression [6]. It is also used for
learning to rankwith the Choquet integral [7] where the data is providedwith the labels which
are preference degrees from an ordered categorical scale. Choquet integrals are also used to
aggregate one-dimensional utility functions in order to define a non-additive multiattribute
utility function. This preference model which is at the core of our paper will be referred to
as the CIU model (Choquet Integral of Utilities) in the sequel.

The CIU model is based on two types of preference parameters: utility functions defining
the attractiveness of consequences on every relevant criteria and a set function named capac-
ity, monotonic with respect to set inclusion, assigning a weight to every subset of criteria.
The Choquet integral was initially introduced in the framework of decision under uncertainty
[8]; it has been generalized to be applied in multicriteria analysis [3, 9]. In this paper, we
also consider the bipolar Choquet integral of utilities (bi-CIU) which is an extension of CIU
using two capacities that cooperate in weighting criteria or subset of criteria; one applies to
the positive part of the evaluation vector whereas the other applies to the negative part [10].
This extension inspired by Kanheman and Tversky’s cumulative prospect theory (CPT) [11]
allows the representation of decision behaviors that may vary depending on whether positive
or negative consequences come into play. CPT was initially introduced in the context of
decision making under risk and assumes that capacities are defined as monotone transforms
of probability measures. The bi-CIU model under consideration here is more general than
CPT by allowing any kind of (monotonic) capacity to weigh the subsets of criteria [10]. It
can be used in multicriteria optimization when criteria scales and preferences are bipolar
[12]. The bi-CIU model can be further generalized using bi-capacities in Choquet integrals
[10] but this latter generalization is not considered here for the sake of simplicity.

Our focus onCIU and bi-CIUmodels ismotivated by several reasons: first CIU is acknowl-
edged as one of the most general monotone compromise aggregators since it includes various
simpler decision models as special cases (e.g., additive utilities, weighted sums, OWA and
WOWA aggregators [13, 14]). Therefore CIU includes a rich family of aggregation functions
which provides a natural setting to study how model complexity can be fitted to the prefer-
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ence system we want to describe or implement. Moreover the use of possibly non-additive
capacities in CIU may require the definition of 2n weighting parameters in the worst case
where n is the number of criteria under consideration (one weight per subsets of criteria). The
multiplicity of these parameters obviously induces a significant gain of expressiveness. How-
ever, it also comes with an increase of model complexity and obviously raises the question of
the parsimonious learning of the parameters defining the capacity. Then, considering bi-CIU
is even more general and more powerful than CIU from a descriptive viewpoint. The bipolar
version of the model being based on two capacities, it requires 2n+1 weighting parameters,
beside utility functions, which raises even more crucially the need of methods to learn sparse
representations of capacities. It might indeed prevent over-fitting of preference data and lead
to more compact and more explainable decision models.

The definition of the CIU model requires learning the utilities and the capacity from pref-
erence information. For the determination of the utilities, the standard approaches proposed
in the literature on multicriteria decision making rely on direct queries on attribute values
and/or preference intensities using, e.g., the Macbeth method [15]. Another utility elicita-
tion method based on the comparison of risky prospects has been proposed for the Choquet
Expected Utility (CEU) model for decision-making under risk [16, 17]. Recently, the princi-
ple of the elicitation method has been exploited for the learning of the CEU utility function in
the context of decision-making under uncertainty[18]. We will further extend this approach
to cope with the multicriteria decision-making framework.

For the identification of capacities in CIU in multicrieria decision-making, standard meth-
ods either use a least square regression from examples of tuples labelled with their overall
utility, or an ordinal regressionmethod based on preference examples (pairwise comparisons)
[9, 19], assuming the utilities have been elicitated beforehand. Other methods have been pro-
posed to simultaneously learn utility and capacity [20–22]. More recently, an incremental
elicitation method proceeding by successive reductions of the set of admissible capacities
using well chosen preference queries was proposed in [23]. Also, an incremental Bayesian
approach used to iteratively revise a probability density on the space of admissible capacities
was proposed in [24]. In order to simplify the problem, all these contributions focus on simple
instances of CIU where interactions are only allowed between pairs of criteria. Using this
simplification, some direct methods simultaneously learn utilities and the capacity [20, 21],
using for instance neuronal modules [22].

The question of learning where the most significant interactions take place in the general
model and how a sparse representation of the capacity can be derived from preference exam-
ples is not directly addressed. For this reason, wewant to study the potential of sparse learning
to determine compact representations of capacities from preference data within the CIU or
bi-CIU model. This problem is challenging due to the interplay of utilities and capacities in
the computation of CIU values, making the learning of these two types of parameters interde-
pendent. Another challenge comes from the fact that utilities and capacities are not directly
observable and must be derived from preference statements (comparison of alternatives or
possibly value judgments). In this paper, we propose an approach to learn utility functions
and capacities in two successive steps: by properly selecting a first set of preference queries
we learn a spline representation of the utility function for every criterion; then we learn a
sparse representation of the capacities from a database of preference examples.

The paper is organized as follows: Section 2 introduces the CIU and bi-CIU models and
some related concepts. In Section 3 we present an elicitation approach to learn marginal
utility functions defined for each criterion. In Section 4 we propose an approach to learn
sparse representation of the capacities in CIU and bi-CIU model. In Section 5, we present
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numerical tests to compare the performances of our preference learning approach compared
to baseline methods.

2 Background on CIU and bi-CIU

We adopt the standard setting and notations for multiattribute or multicriteria decision mak-
ing. Let N = {1, . . . , n} be the set of criteria to be considered in a decision problem. Let
X = X1 × . . .× Xn be the n-dimensional evaluation space where Xi is a bounded set of con-
sequences. As usual in multicriteria problem, the elements of Xi are assumed to be weakly
ordered by a preference relation denoted �i . For any i ∈ N , for any pair (xi , yi ) ∈ Xi ,
xi �i yi (resp. xi �i yi ) means that xi is a better consequence than yi (resp. better or equiv-
alent). Within every set Xi we distinguish three reference elements denoted − 1i , 0i and 1i
representing the bottom level, the neutral level and the top level consequences respectively
[9]. These levels must be obtained in close cooperation with the DM. The alternatives to be
compared are seen as elements of X . Thus, every alternative x ∈ X is described by its conse-
quence vector (x1, . . . , xn) where xi ∈ Xi is the consequence of x w.r.t. i , for i = 1, . . . , n.
In this setting we consider n utility functions ui defined on Xi and strictly increasing with
preference �i for i = 1, . . . , n, such that ui (−1i ) = −1, ui (0i ) = 0 and ui (1i ) = 1.
Utilities are used to quantify the attractiveness of consequences on a common scale [-1, 1].
Consequences above the neutral level receive a positive utility whereas consequences below
the neutral level receive a negative utility.

2.1 CIU and bi-CIUmodels

We recall here the definition of models CIU and bi-CIU that use a Choquet integral to
aggregate the utilities defined above. Let v denote a capacity defined on 2N , i.e., a set function
such that v(∅) = 0, v(N ) = 1 and v(A) ≤ v(B) for all A, B ⊆ N such that A ⊆ B. The
CIU model combines utilities ui , i = 1, . . . , n and the capacity v to define the value of any
consequence vector x = (x1, . . . , xn) by the discrete Choquet integral of the utility vector
u(x) = (u1(x1), . . . , un(xn)). Formally, the CIU model reads as follows:

f uv (x) = Cv(u(x)) =
n∑

i=1

[
v(X(i)) − v(X(i+1))

]
u(i)(x(i)) (1)

=
n∑

i=1

[
u(i)(x(i)) − u(i−1)(x(i−1))

]
v(X(i)) (2)

where (.) is any permutation of N such that u(i)(x(i)) ≤ u(i+1)(x(i+1)) and X(i) = { j ∈ N :
u( j)(x( j)) ≥ u(i)(x(i))}, i ∈ N with u(0)(x(0)) = 0 and X(n+1) = ∅.
Example 1 If N = {1, 2, 3} and u2(x2) ≤ u1(x1) ≤ u3(x3) then Cv(u(x1, x2, x3)) =
u2(x2)v({1, 2, 3})+[u1(x1)− u2(x2)]v({1, 3})+[u3(x3)− u1(x1)]v({3}) by (2). Similarly,
if u3(x3) ≤ u2(x2) ≤ u1(x1) then Cv(u(x1, x2, x3)) = u3(x3)v({1, 2, 3}) + [u2(x2) −
u3(x3)]v({1, 2}) + [u1(x1) − u2(x2)]v({1}).
Then the preferences induced by CIU are obviously defined as follows: for any solutions
x, y ∈ X , x is at least as good as y (denoted x � y) if and only if f uv (x) ≥ f uv (y). Similarly,
x is indifferent to y (denoted x ∼ y) if and only if f uv (x) = f uv (y). Let us recall that
monotonicity of v w.r.t. set inclusion and the monotonicity of ui w.r.t. �i are assumed to
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make sure that f uv (x) ≥ f uv (y) when xi �i yi for all i ∈ N (monotonicity of preference
w.r.t. weak Pareto dominance).

Now, we consider the bi-CIU model that relies on the same utility functions than CIU but
uses two capacities:

f uv,w(x) = Cv(u(x)+) + Cw(−u(x)−) (3)

where u(x)+ (resp. u(x)−) is the utility vector u(x) (resp. −u(x)) in which negative com-
ponents are replaced by 0. It is well known that Cw(z) = −Cw̄(−z) for any utility vector z
where w̄ is the dual capacity ofw defined by w̄(A) = 1−w(N \ A) for all A ⊆ N . Therefore
f uv,w(x) = Cv(u(x)+)−Cw̄(u(x)−). This latter formulation makes more explicit the balance
between positive and negative arguments like in cumulative prospect theory. Moreover, if
v = w, f uv,w(x) = Cv(u(x)+) + Cv(−u(x)−) = Cv(u(x)) and therefore the bi-CIU model
boils down to CIU.
Example 1 (continued) If u2(x2) ≤ 0 ≤ u1(x1) ≤ u3(x3) then we have f uv,w(x1, x2, x3) =
Cv(u1(x1), 0, u3(x3)) + Cw(0, u2(x2), 0). Equivalently f uv,w(x1, x2, x3) also reads as fol-
lows: Cv(u1(x1), 0, u3(x3)) − Cw̄(0,−u2(x2), 0).

2.2 Möbius inverse and sparsity

An alternative representation of capacities and the Choquet integral relies on the Möbius
inverse of the capacity. The Möbius inverse of v is another set function mv defined on N by:
mv(A) = ∑

B⊆A(−1)|A\B|v(B) for all A ⊆ N . The coefficients mv(A) are called Möbius
masses, they completely characterize v. We indeed have v(A) = ∑

B⊆A mv(B). The values
of mv can be positive or negative but add up to 1 since

∑
B⊆N mv(B) = v(N ) = 1. It is

interesting to note that CIU can be directly expressed from the Möbius inverse by [25]:

f uv (x) =
∑

B⊆N

mv(B)min
i∈B {ui (xi )} (4)

This formulation suggests that Cv(u(x)) might admit a compact representation when the
Möbius inverse is sparse (i.e., when the vector of Möbius masses includes many zeros or
small values that will not significantly impact the calculation). A frequent option used to
obtain capacities having a sparse representation is to require that Möbius masses vanish for
all subsets of criteria larger than a given k < n. In this case, the resulting capacity is said to
be k-additive [26]. For instance, when the capacity is 1-additive then all Möbius masses are
null except for some singletons (at least one) where they are positive due to monotonicity. In
this case, (4) shows that CIU boils down to a simple additive utility function.

Considering only 2-additive capacities is a standard option to allow pairwise interactions
while keeping a sparse model. One may also wish to relax 2-additivity for k-additivity (2 <

k < n) with the aim of finding a better tradeoff between sparsity and expressivity. However
reasoning about sparsity in terms of k-additivity is a drastic reduction that may significantly
impact our ability to fit preference data with relevant CIU models. It may indeed happen that
very sparse but still n-additive capacities are necessary to describe preference data, as shown
hereafter:

Example 2 Let us consider a DM adopting an egalitarist attitude in the aggregation (focusing
on the worse consequence) refined by an utilitarist criterion (using the sum of utilities)
to break ties. Such a decision attitude can be obviously represented by the ε-min model
fε(x) = (1−∑n

i=1 εi )mini∈N ui (xi )+∑n
i=1 εi ui (xi )where ε = (ε1, . . . , εn) is a vector of

positive quantities chosen arbitrarily small. Clearly function f is an instance of CIU (see (4))
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obtained for a capacity v whose Möbius inverse mv is everywhere 0 excepted on singletons
and on N (mv({i}) = εi for all i ∈ N andmv(N ) = 1−∑n

i=1 εi ). We remark that due to the
monotonicity w.r.t. set inclusion, function v is non-null on every subset since Möbius masses
are positive and non-null on singletons. Despite the fact that v is never null, it admits a very
sparse representation in terms of Möbius masses where only n + 1 out of 2n coefficients are
non-null.

In the above Example, we remark that the most important Möbius mass is put on N , which
shows that preferences induced by fε could not be properly described by any k-additive
capacity with k < n despite the fact that it can be closely approximated by the min model
involving a single non-null Möbius mass (attached to N ). This shows that new approaches
are needed to find sparse representations of capacities that best fit observed preferences,
regardless of k-additivity. In this paper we propose a general approach to seek sparse Möbius
representations of capacities and use it to learn simple instances of the CIU or bi-CIU model
that best fit the preference data. This problem will be addressed in Section 4. We first present
the learning of utility functions ui .

3 Utility elicitation

In order to elicit utility functions we use indifference statements between carefully selected
alternatives to obtain useful constraints (on difference of utilities) restricting the set of
admissible utility functions ui independently of the capacity. More precisely our approach
consists in adapting the tradeoff method [16, 17] initially introduced in the context of
cumulative prospect theory to the case of multicriteria evaluation to learn utility functions
ui , i = 1, . . . , n within CIU or bi-CIU.

Let i be any element of N . The elicitation process to derive constraints on ui involves
tradeoffs between i and another element j of N that can be freely chosen. Starting from a
solution x and considering a givenmodification of component x j (sufficient to break indiffer-
ence), the tradeoff query consists in asking which variation of xi would exactly compensate
the variation of x j and restore the indifference. The existence of answers exactly achiev-
ing the indifference requires a certain richness of attribute Xi (solvability assumption). This
assumption is formalized by the restricted solvability axiom well known in mathematical
psychology [27]. For any two vectors x, y in X , let (xi , y−i ) denote the vector derived from
y by substituting the i th component by xi . Then restricted solvability can be stated as follows:

Definition 1 (Restricted solvability) A preference relation � on X satisfies restricted solv-
ability with respect to the i th component if for any x ∈ X , ai , bi ∈ Xi , t−i ∈ X−i with
(ai , t−i ) � x � (bi , t−i ), there exists yi such that x ∼ (yi , t−i ). When this holds for all
i ∈ I , the binary relation is said to satisfy restricted solvability.

Restricted solvability is not always satisfied, especially in the case of discrete attributes,
as shown in the following example.

Example 3 Let X1 = {0, 1} and X2 = {0, 1
2 , 1} and define � on X1 × X2 by (x1, x2) �

(y1, y2) iff x1 + x2 ≥ y1 + y2. We have (1, 0) � (0, 1
2 ) � (0, 0) but there is no x1 ∈ X1 such

that (x1, 0) ∼ (0, 1
2 ). Here restricted solvability does not hold w.r.t. the first component.

We present below the elicitation of utilities in the two cases (with and without restricted
solvability). First, we consider the case where solvability holds and we derive equality con-
straints on ui ; then we consider the case where it does not hold and we derive inequality
constraints on ui .
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3.1 Utility elicitation with restricted solvability

Let us present the elicitation process to derive constraints on ui successively below and above
the neutral level 0i . In this part we assume that restricted solvability holds.

Utility elicitation below the neutral level
For any attribute j ∈ N , let r j , R j ∈ X j , xi ∈ Xi such that 0 j � j r j ≺ j R j , (i.e.,

0 ≤ u j (r j ) < u j (R j )), xi �i 0i (i.e., ui (xi ) ≤ 0) and (0i , R j , 0−i j ) � (xi , r j , 0−i j ) �
(−1i , R j , 0−i j ), where (αi , β j , 0−i j ) is a vector of neutral consequences everywhere
excepted on components i and j where values are αi and β j . We consider the following
query:

Q−
i j (xi ) : What is the consequence yi such that (xi , r j , 0−i j ) ∼ (yi , R j , 0−i j )?

If we consider an instance of the restricted solvability axiom (Definition 1) obtained for
ai = 0i , bi = −1i , t−i = (R j , 0−i j ) and x = (xi , r j , 0−i j ) one can see that an answer
yi ∈ Xi to question Q−

i j (xi ) is guaranteed to exist by the restricted solvability assumption.
We couple the observed indifference with a second one associated to the answer zi to

Q−
i j (hi ) for some hi element of Xi \ {xi }: (hi , R j , 0−i j ) ∼ (zi , r j , 0−i j )

Assuming (−1i , 0−i ) ≺ 0, i.e., w(N \ {i}) < 1, these indifferences imply that ui (xi ) −
ui (yi ) = ui (hi ) − ui (zi ) as shown in Proposition 1 in the Appendix Section A.1.1. Then,
when hi is chosen equal to yi , we obtain the following simplified equation:

ui (xi ) − ui (yi ) = ui (yi ) − ui (zi ) (5)

Figure 1 (left) represents the two indifference statements in the plan Xi × X j , used to
obtain (5).

Utility elicitation above the neutral level
The process is symmetric to the one used to elicit utilities below the neutral level. Let

r j , R j ∈ X j and xi ∈ Xi such that r j ≺ j R j � j 0 j (i.e., u j (r j ) < u j (R j ) ≤ 0),
xi �i 0i (i.e., ui (xi ) ≥ 0) and (1i , r j , 0−i j ) � (xi , R j , 0−i j ) � (0i , r j , 0−i j ), we consider
the following query:

Q+
i j (xi ): What is the consequence yi such that (xi , R j , 0−i j ) ∼ (yi , r j , 0−i j )?

Here also, the existence of yi is due to restricted solvability. Similarly to the elicitation
under the neutral level, we couple this observed indifference with a second one associated
to the answer zi to a question Q+

i j (hi ) for any hi element of Xi \ {xi }: (hi , R j , 0−i j ) ∼
(zi , r j , 0−i j ).Assuming (1i , 0−i ) � 0, i.e.,v({i}) > 0, these indifferences imply thatui (yi )−

Fig. 1 Indifferences statements yielding to (5) (left) and (6) (right)

123



M. Herin et al.

ui (xi ) = ui (zi ) − ui (hi ) as shown in Proposition 2 in the Appendix Section A.1.2. Then,
when hi is chosen equal to yi , we obtain the following simplified equation:

ui (yi ) − ui (xi ) = ui (zi ) − ui (yi ) (6)

Figure 1 (right) represents the two indifference statements in the plan Xi × X j , used to
obtain (6).

3.2 Utility elicitation without restricted solvability

In this section we consider the case where restricted solvability w.r.t. component i does not
hold, i.e., when exact answers to queries Q+

i j or Q
−
i j do not necessarily exist. In particular, we

consider the case of discrete attributes (the most common case where restricted solvability
fails to hold). The elements of Xi are denoted xi,k and indexed according to their relative
values: xi,k �i xi,k+1, for any k.

Utility elicitation below the neutral level
Let r j , R j ∈ X j and xi ∈ Xi such that 0 j � j r j ≺ j R j , i.e., 0 ≤ u j (r j ) < u j (R j ) and

xi �i 0i i.e., ui (xi ) ≤ 0. We consider the two following queries:

- What is the lowest k such that (xi , r j , 0−i j ) � (xi,k+1, R j , 0−i j )? Then we set y+
i =

xi,k+1 and y−
i = xi,k .

Similarly, for any hi element of Xi\{xi } chosen such that hi � 0i , we ask:

- What is the highest k such that (hi , r j , 0−i j ) � (xi,k, R j , 0−i j )? Then we set z−i = xi,k
and z+i = xi,k+1.

Assuming (−1i , 0−i ) ≺ 0, i.e.,w(N \ {i}) < 1, we obtain (see Proposition 3 in Appendix
Section A.2.1):

ui (hi ) − ui (z
−
i ) ≥ ui (xi ) − ui (y

+
i )

ui (hi ) − ui (z
+
i ) < ui (xi ) − ui (y

−
i )

When hi is chosen equal to y+
i we obtain the following simplified inequations:

ui (y
+
i ) − ui (z

−
i ) ≥ ui (xi ) − ui (y

+
i ) (7)

ui (y
+
i ) − ui (z

+
i ) < ui (xi ) − ui (y

−
i ) (8)

Then we overcome the solvability issue by deriving two inequality constraints on the utility
function ui , instead of a unique equality constraint.

Utility elicitation above the neutral level
Let r j , R j ∈ X j and xi ∈ Xi such that r j ≺ j R j � j 0 j , i.e., u j (r j ) < u j (R j ) ≤ 0 and

xi �i 0i , i.e., ui (xi ) ≥ 0. Consider the two following queries:

– What is the highest k such that (xi , R j , 0−i j ) � (xi,k, r j , 0−i j )? Then we set y
−
i = xi,k

and y+
i = xi,k+1.

Similarly, for any hi element of Xi\{xi } chosen such that hi � 0i , we ask the following
question:
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– What is the lowest k such that (hi , R j , 0−i j ) � (xi,k+1, r j , 0−i j )? Then we set z
−
i = xi,k

and z+i = xi,k+1.

Assuming (1i , 0−i ) � 0, i.e., v({i}) > 0, we obtain (see Proposition 4 in Appendix
Section A.2.2):

ui (hi ) − ui (z
+
i ) ≤ ui (xi ) − ui (y

−
i )

ui (hi ) − ui (z
−
i ) > ui (xi ) − ui (y

+
i )

By choosing hi equal to y−
i , we obtain the following simplified inequations:

ui (y
−
i ) − ui (z

+
i ) ≤ ui (xi ) − ui (y

−
i ) (9)

ui (y
−
i ) − ui (z

−
i ) > ui (xi ) − ui (y

+
i ) (10)

In the next section, we use constraints of type (5)–(10) on the utility function ui to derive
the utility curve using spline regression.

3.3 Learning the utility curves

Let us present the learning of utility curves ui under the restricted solvability assumption, for
the sake of simplicity. It is based on preference information represented by linear equations
over utility values, obtained as explained in Section 3.1. The learning procedure can be
adapted to the other case (when retricted solvability does not hold) and will not be presented
in details. It is basically sufficient to replace linear equalities constraining the admissible
utilities by the linear inequalities obtained in Section 3.2.

In the original elicitation method [17], Q+
i j queries are involved in a recursive procedure

known as standard sequence aiming to construct a sequence of points on the utility curve
(zt , ui (zt ))

q
t=0 such that zt ∈ Xi . The sequence is obtained as follows: z0 = 0i and zt+1

is the answer to query Q+
i j (zt ). By construction this sequence is such that zt ≺i zt+1 and

this improving sequence stops at step q when consequence 1i is reached. Then we have
ui (zt+1) − ui (zt ) = ui (zt ) − ui (zt−1) by (6), yielding the following recursive definition:

ui (zt+1) = 2ui (zt ) − ui (zt−1) (11)

This completely determines the sequence since ui (z0) = 0 and ui (zq) = 1. We indeed have
ui (zt ) = t/q for t = 1, . . . , q . A symmetric sequence can be implemented to construct
points on the utility curve below the neutral level using Q− queries.

However, such a method is known to be extremely sensitive to errors in the responses
[28]. Indeed, if one considers that every answer is provided with some noise such that
ui (zt+1) = 2ui (zt ) − ui (zt−1) + εt for t = 1, . . . , q where εt ∼ U([−εmax , εmax ]) and
εmax > 0, the estimation error on the points of the standard sequence can be large. Indeed
ui (zt ) = t

q + ∑t
k=1 εk − t

q

∑q
k=1 εk for t = 1, . . . , q and the expected squared estima-

tion error on a point zt is: E[(ui (zt ) − t/q)2] = E[(∑t
k=1 εk)

2] + t2/q2E[(∑q
k=1 εk)

2] −
2t
q E[∑t

k1=1
∑q

k2=1 εk1εk2 ] = 2ε2max
3 (t − t2

q ).
Then the maximum expected estimation error is reached on the middle of the sequence

and is proportional to the length q of the sequence and to the squared noise intensity ε2max :

max
t

E[(u j (zt ) − t/q)2] = qε2max/12

Regression based on short standard sequences Since the error increases with the length
of the standard sequence, we propose an alternative approach that relies on multiple minimal
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length (q = 2) standard sequences of type (z0, z1, z2). Multiplicity is obtained by varying
the initial location z0, the reference dimension j and the mesh (r j , R j ). Note that if z0 is
below the neutral level we use decreasing sequences generated by Q− queries. Putting all
together, we obtain a set of p triplets (zι0, z

ι
1, z

ι
2)

p
ι=1 each associated with a linear constraint

on ui given by (6). Then we define ui as a I-spline function that best fits the resulting set of
equalities.

Spline functions are piecewise polynomial functions of class Ck widely used for data
interpolation or approximation due to their ability to smoothly approximate complex shapes.
Moreover they allow for a compact representation of utilities. Indeed, a spline function
can be expressed as a linear combination of basis functions and is thus characterized by
the coefficients of the combination. Since utility functions are supposed to be increasing,
we will use a basis (Il)Ll=1 of monotonically increasing spline functions, known as I-spline
functions [29] weighted by positive coefficients (adding up to 1 so as to have ui (1i ) = 1).
We use here cubic I-splines (k = 3) because they have matching first and second derivatives
while preserving a local influence of every components. Note that we use a translation
of the basis functions from [0; 1] to [−1; 1]. Formally, ui is defined by parameters αi =
(αi,1, . . . , αi,L) ∈ [0, 1]L such that:

∀xi ∈ [−1i , 1i ] , ui (xi ) = 2
∑L

l=1 αi,l Il(x) − 1 (12)

Using (12), the problem of finding the utility that best fits the equalities can be formalized
as a linear program with relaxed constraints:

min
∑p

ι=1(ε
+
ι + ε−

ι )
∑L

l=1 αi,l(2Il(zι1) − Il(zι0) − Il(zι2)) + ε+
ι − ε−

ι = 0, ι = 1 . . . p (13)

2
∑L

l=1 Il(1i )αl, j − 1 = 1 (14)

2
∑L

l=1 Il(−1i )αl, j − 1 = −1 (15)

2
∑L

l=1 Il(0i )αl, j − 1 = 0 (16)

ε+
ι ≥ 0, ε−

ι ≥ 0, αl,i ≥ 0.

Constraint (13) achieves the approximation of (11) for every triplet ι. Also, Constraint
(14), (15), and (16) respectively represent the conditions ui (−1i ) = −1, ui (−0i ) = 0 and
ui (1i ) = 1. A similar linear program can be considered in the case of non restricted solvabil-
ity where preference statements replace indifference statements. It is sufficient to substitute
linear inequalities used to approximate indifference judgements by linear inequality used to
approximate preference judgements.

4 Learning sparse representations of capacities

Once utility functionsui , i ∈ N are known, the second-stage is to learn a sparse representation
of capacity v. Given a set of preference statements {(x�, y�) ∈ X2 : x� � y�, � ∈ P}, a set
of indifference statements {(x�, y�) ∈ X2 : x� ∼ y�, � ∈ I } and utility functions ui , i ∈ N ,
we want to find a capacity v having as many zero Möbius masses as possible and such that
f uv well describes the observed preferences.

L1-regularization [30, 31] is a well studied approach to control the model’s complexity.
Several options have been proposed to obtain sparse solutions for the non-additive integrals
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via the L1 penalty term. For example, the sparsity inducing penaltywas applied to the capacity
[32, 33]. The L1 penalty was also applied to capacities represented by interaction indices
in [34]. Here, we also explore the L1 penalty term to obtain a sparse solution, however, we
focus on learning sparse Möbius representations. This choice is motivated by the fact that
capacities are known to be less compact than their Möbius inverse (due to monotonicity); the
same statement holds for interaction indices provided that Möbius masses are positive [18].

More precisely, our goal here is to fit preference exampleswith a simplemodel (i.e., with as
few interactions as possible) but also to show the descriptive advantage of theChoquet integral
compared to the standard linear aggregation model. The baseline model is therefore the
weighted sum including all singletons as components (some possibly with a null coefficient).
Then, when working with the Choquet integral, the aim of avoiding unnecessary interactions
in the model naturally leads to include only the Möbius masses of subsets larger than 1 in
the regularization term. This makes it possible to explore the tradeoff between simplicity
and empirical error of the learned model, by progressively increasing the weight of the
regularization term until it vanishes, yielding a linear model.

It is important to note that keeping the singletons in the regularization term (e.g., for
criteria selection purposes) would raise an issue due to the normalization constraint (v(N ) =∑

B⊆N mv(B) = 1). The regularization term ‖mv‖1 is indeed bounded by 1 since we have:
‖mv‖1 = ∑

B⊆N |mv(B)| ≥ ∑
B⊆N mv(B) = 1. By noticing that this bound is reached for

any positive Möbius transform, we have that increasing the level of regularization directly
favors positive solutions, and can harm the ability to recover negative Möbius masses.

Besides, the L1 regularization over the interaction factors might be impacted by the struc-
tural dependence that exists between the quantities of type mini∈B{ui (xi )} involved in CIU
(4). In particular, the statistical dependence can harm the ability to properly select the inter-
action factors. We thus propose to use a standard approach to correct this issue that consists
in using a weighted L1 regularization

∑
B⊆N λB |mv(B)| where the weights λB are adapted

to preference data (see Section 4.2). Note that another weighting system based on the car-
dinality of factors has been used in Choquistic regression problems to favor the selection of
small size factors [6]. However, this choice may prevent to recover preference systems where
large coalitions are essential. For instance, this is the case of the ε-min model introduced in
Example 2, and also of the so-called Hurwicz model [35] based on a convex combination of
min and max factors taken on the grand coalition N .

For the sake of clarity, we first present the unweighted version of the L1-regularized
problem (Section 4.1). A more sophisticated version using a weighting system is presented
in Section 4.2.

4.1 Unweighted L1-regularization on theMöbius inverse

The unweighted version of the regression problem reads as follows:

(P)min
∑

�∈I
| f uv (x�) − f uv (y�)| +

∑

�∈P

( f uv (x�) − f uv (y�))− + λ
∑

B⊆N ,|B|>1

|mv(B)|
∑

B⊆A,B�i mv(B) ≥ 0, ∀A ⊆ N ,∀i ∈ A (17)
∑

B⊆N mv(B) = 1 (18)

where λ is a nonnegative hyper-parameter that controls the level of regularization. The objec-
tive function aims at minimizing the magnitude of violation of indifference and preference
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examples. Constraints (17) and (18) respectively ensure the monotonicity of the capacity
w.r.t. set inclusion and its normalization. The monotonicity constraints, expressed in terms
of Möbius masses, guarantee that for any criteria coalition A ⊆ N , removing a criterion i
cannot increase the capacity value. In the optimization problem given above, the L1-penalty
allows sparse representations of capacities to be obtained by shrinkingMöbiusmassesmv(B)

towards zero (the intensity of the shrinkage depending on the level of regularization). Then,
a selection of the criteria coalitions that actually play in the model is performed. As a conse-
quence, it is of prime importance to assess the quality of such a selection. In the following,
we give theoretical insights justifying the need for a more sophisticated L1-regularization to
perform a qualitative criteria coalition selection.

Issue due to interdependent components In order to make explicit a possible issue with
L1-regularization, let us consider a special case of ProblemP wherein the database of learning
examples is onlymade of indifference statementswith specific pairs of examples (x�, y�), � ∈
I , chosen in such a way that y� has a constant utility vector (i.e., ui (y�) = θ� for all i ∈ N
for some θ� ∈ R). In such a case we have f uv (y�) = θ� whatever the capacity v. Therefore
the indifference x� ∼ y� translates into the constraint f uv (x�) = θ�. Hence, Problem P boils
down to approximate values θ� by Choquet values f uv (x�), � ∈ I . We obtain the following
regression problem:

min
∑

�∈I
| f uv (x�) − θ�| + λ

∑

B⊆N ,|B|>1

|mv(B)|

s.t. (17), (18)

This optimization problem is an instance of constrained least absolute deviation lin-
ear regression with L1-regularization. Indeed, (4) presents f uv as a linear aggregator θ =∑p

j=1 β jφ j within a specific feature space of size p. The features φ j are defined as the utility
minima taken over every possible criteria coalition and the attached coefficients β j are the
Möbius masses. More formally, let us index the subsets of N in the lexicographical order. For
any B ⊆ N , let ρ(B) be the rank of subset B in this order and ρ−1( j) the subset positioned at
rank j in the order. Then φ j = mini∈ρ−1( j){ui (xi )} and β j = mv(ρ

−1( j)) for j = 1, . . . , 2n .
Often referred to as LAD-LASSO [36, 37], L1-regularized least absolute deviation linear

regression has been extensively studied in the statistical learning literature and, in particular,
its properties concerning variable selection are nowwell understood.More precisely, consider
a linear model θ� = ∑p

j=1 β∗
j φ

�
j + ε� where ε = (ε�)�∈I is a vector of i.i.d centered random

variables and where θ� and φ� = (φ�
1, . . . , φ

�
p), � ∈ I , are respectively observations of the

response θ and the p-dimensional predictor φ = (φ1, . . . , φp). Let � = (φ�)�∈I denote

the |I | × p design matrix and assume that lim|I |→∞
��T

|I | = C where C is a positive definite

covariance matrix. Suppose that the ground truth coefficient vector β∗ is sparse in the sense
that it contains few non-null components, and that it can be split in two parts A1, A2 with
A1 = { j |β∗

j �= 0} and A2 = { j |β∗
j = 0}. Then it is known that, under mild assumptions,

LAD-LASSO is able to select exactly the set of ground truth non-null coefficients A1 only
if a condition on the feature covariance matrix C known as the “Irrepresentable Condition”
holds [37]. The condition reads as follows:

|C21C
−1
11 sign(β∗

A1
)| < 1 (19)
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where 1 = (1, . . . , 1) and the inequality holds element-wise. Moreover, βA1 = (β j∈A1),
C11 = (Ci j )i, j∈A1 ,C21 = (Ci j )i∈A2, j∈A1 and for any vector β, sign(β) refers to its sign
vector, i.e., sign(β) j = 1 if β j > 0, sign(β) j = −1 if β j < 0 and sign(β) j = 0 other-
wise. More formally, Condition (19) is necessary for guaranteeing that the probability of the
existence of a λ value for which it correctly affects signs to coefficients goes towards 1 as
the number of observations approaches infinity (general sign consistency), see [37] Theorem
4. A similar result [38, 39] is also available for least square L1-penalized linear regression
(a.k.a. LASSO [30, 31]).

In the case of CIU, the feature space is endowed with a very specific correlation
structure since for any pair of criteria coalition S1, S2 ⊆ N such that S1 ∩ S2 �= ∅,
φρ(S1) = mini∈S1{ui (xi )} and φρ(S2) = mini∈S2{ui (xi )} are obviously statistically corre-
lated due to the overlapping of the coalitions. Intuitively, the correlation is all the more
important that the cardinal of the intersection is close to the cardinal of the union. This is
well illustrated in Fig. 2 that compares the empirical correlation between mini∈S1{ui (xi )}
and mini∈S2{ui (xi )} (left handside) and the ratio R = |S1 ∩ S2|/|S1 ∪ S2| for any S1, S2 ⊆ N
(right handside). The number of criteria n is taken equal to 8 and for any i ∈ N , i.i.d. utility
samples (ui (xli ))�∈I of size |I | = 500 are simulated according to a uniform distribution
within [0, 1] to compute the empirical correlations. The similarity of the patterns in both
graphs suggests that the correlation scheme is indeed well described by ratio R introduced
above.

In Example 4, we show that this correlation structure undermines the respect of Condition
19, and thus the ability of LAD-LASSO to recover a sparse ground truth model.

Example 4 Consider the ε-min CIU model (see Example 2) for n = 3 (N = {1, 2, 3}):
θ = ε1u1(x1) + ε2u2(x2) + ε3u3(x3) + (1 − ∑3

i=1 εi )mini∈N {ui (xi )}. Then A1 =
{{1}, {2}, {3}, {1, 2, 3}}, A2 = {{1, 2}, {1, 3}, {2, 3}} and sign(β∗

A1
) = 1. Suppose that the

utilities ui (xi ), i = 1, 2, 3 follow a uniform distribution within [0, 1]. For any pair of criteria
coalition S1, S2 ⊆ N \ ∅ of cardinals s1 = |S1|, s2 = |S2| and s12 = |S1 ∩ S2| �= 0, denote
V s12
s1,s2 = Cov(φρ(S1), φρ(S2)) = Cρ(S1),ρ(S2). Then C11 is positive definite and Condition

Fig. 2 Empirical correlation betweenmini∈S1 {ui (xi )} andmini∈S2 {ui (xi )} (right) and ratio |S1∩S2|/|S1∩S2|
(left) w.r.t. S1, S2 ⊆ N
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(19) boils down to (see Propositon 8 in Appendix B):

|2V 1
1,2(V

3
3,3 − V 1

1,3) + V 2
2,3(V

1
1,1 − 3V 1

1,3)| < |V 3
3,3V

1
1,1 − 3(V 1

1,3)
2| (20)

Also, we show that for n ≤ 3, the covariance V s12
s1,s2 reads as follows:

V s12
s1,s2 =

3∑

k=1

gk(s12)γk(s1, s2, s12) − 1

(s1 + 1)(s2 + 1)
(21)

with gk(s12) = k!∏k
i=1(s12+i)

, γ1 = 1, γ2(s1, s2, s12) = − 1
2 ((s1 − s12)+ + (s2 − s12)+)

and γ3(s1, s2, s12) = 1
4 ((s1 − s12)+(s2 − s12)+) + 1

6 ((s1 − s12)+(s1 − s12 − 1)+ + (s2 −
s12)+(s2 − s12 − 1)+). The proof of this formula is provided in Propositon 7 of Appendix B.
Using the numerical values provided in Table 1, we obtain that Condition (19) is equivalent
to 19

1440 < 1
800 , which is obviously not true. Thus LAD-LASSO is not general sign consistent

in the ε-min model recovery for n = 3.

The violation of Condition (19) in Example 4 suggests some weaknesses in terms of
criteria coalition selection for the unweighted L1-regularization. In order to circumvent the
criteria coalition selection problem, we investigate the benefit of an adaptive L1-penalty, i.e.,
a weighted L1-penalty with data-dependent weights.

4.2 LearningMöbius masses with adaptive L1-penalty

The adaptive L1-penalty is of the form
∑

j λ j |β j | where the weights λ j are data-dependent
and adapted to each coefficient β j , implying a two-stage algorithm where the first step is
the weights computation. It has been introduced to correct LASSO and LAD-LASSO and
guarantee better variable selection properties [39–43]. In particular, when the weights are
the absolute values of the reciprocals of the L2-penalized solution it is shown [39] that the
adaptive LASSO selects the ground truth coefficients with a probability that tends to 1 when
the number of observation goes toward the infinity (variable selection consistency). We thus
propose to use this two-stage penalty in the learning of capacities. It yields the following
approximation problem:

ProblemP ′

min
∑

�∈I
| f uv (x�) − f uv (y�)| +

∑

�∈P

( f uv (x�) − f uv (y�))− +
∑

B⊆N ,|B|>1

λρ(B)|mv(B)|

s.t. (17), (18)

where λρ(B) = λ/(|m̂v(B)| + ε) for all B ⊆ N (ε > 0 being introduced to avoid zero
division) and m̂v is the optimal solution of the following initialization problem:

ProblemP ′
0

Table 1 Covariance numerical
values V 1

1,1 V 3
3,3 V 1

1,2 V 1
1,3 V 2

2,3

1
12

3
80

1
24

1
40

1
30
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min
∑

�∈I
| f uv (x�) − f uv (y�)| +

∑

�∈P

( f uv (x�) − f uv (y�))− + λ2‖mv‖22

s.t. (17), (18)

Note that solving P ′
0 requires the setting of an additional hyperparameter λ2. This can be

done using cross-validation. Observing that f uv (x�) = ∑2n
j=1 mv(ρ

−1( j))mini∈ρ−1( j){ui (x�
i )}

by (4), we have f uv (x�)− f uv (y�) = ∑2n
j=1 mv(ρ

−1( j))�
j with�

j = mint∈ρ−1( j){ut (x�
t )}−

mint∈ρ−1( j){ut (y�
t )}. Then we solve Problem P ′ using linear programming by introducing

auxiliary variables to linearize the objective function as follows:

min
∑

�∈I
(ε+

� + ε−
� ) +

∑

�∈P

ε� +
2n∑

j=n+1

λ j (a j + b j )

∑2n
j=1(a j − b j )

�
j + ε+

� − ε−
� = 0, � ∈ I (22)

∑2n
j=1(a j − b j )

�
j + ε� ≥ 0, � ∈ P (23)

∑
B⊆A,B�i aρ(B) − bρ(B) ≥ 0, ∀A ⊆ N ,∀i ∈ A (24)

∑2n
j=1 a j − b j = 1 (25)

ε+
� , ε−

� , ε�, a j , b j ≥ 0

Equations 22 and 23 are flexible constraints used to approximate indifference and prefer-
ence examples. The quantities |mv(ρ

−1( j))| are linearized using a standard reformulation
of absolute values based on the fact that |x | is the solution of minimizing a + b subject to
x = a − b and a, b ≥ 0. A similar linearization is used for terms | f uv (x�) − f uv (y�)| and
( f uv (x�) − f uv (y�))− using variables ε+

� , ε−
� and ε�. Constraints (24) and (25) respectively

impose the monotonicity and the normalization of the capacity. The weights λ j are computed
by solving P ′

0 with quadratic programming.
In order to derive a similar optimization problem for the learning of the bi-CIU model, let

us reformulate f uv,w from the Möbius inverses of capacities v and w. We obtain:

f uv,w(x) =
∑

B⊆N

mv(B)min
i∈B {ui (xi )+} +

∑

B⊆N

mw(B)min
i∈B {−ui (xi )

−}

=
∑

B⊆N

mv(B)min
i∈B {ui (xi )+} −

∑

B⊆N

mw(B)max
i∈B {ui (xi )−} (26)
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Using (26), we formulate the problem of learning sparse representations of the capacities
v and w in bi-CIU as follows:

min
∑

�∈I
(ε+

� + ε−
� ) +

∑

�∈P

ε� +
2n∑

j=n+1

λv
j (a j + b j ) +

2n∑

j=n+1

λw
j (c j + d j )

∑2n
j=1(a j − b j )

�
j − ∑2n

j=1(c j − d j )∇�
j + ε+

� − ε−
� = 0, � ∈ I

∑2n
j=1(a j − b j )

�
j − ∑2n

j=1(c j − d j )∇�
j + ε� ≥ 0, � ∈ P

∑
B⊆A,B�i (aρ(B) − bρ(B)) ≥ 0, ∀A ⊆ N ,∀i ∈ A

∑
B⊆A,B�i (cρ(B) − dρ(B)) ≥ 0, ∀A ⊆ N ,∀i ∈ A

∑2n
j=1(a j − b j ) = 1

∑2n
j=1(c j − d j ) = 1

ε+
� , ε−

� , ε�, a j , b j , c j , d j ≥ 0

Where �
j = mint∈ρ−1( j){ut (x�

t )
+} −mint∈ρ−1( j){ut (y�

t )
+} and ∇�

j = maxt∈ρ−1( j){ut (x�
t )

−} −
maxt∈ρ−1( j){ut (y�

t )
−}. The weights (λv

j ,λ
w
j ) are computed beforehand with a quadratic pro-

gram similar to P ′
0 but using a double L2-penalization λ2(‖mv‖22 + ‖mw‖22).

Another possible variant of standard L1-regularization in the context of correlated vari-
ables is the Elastic Net [44]. This penalty is defined as a convex combination of L1 and L2

penalty : λ‖mv‖1 + λ2‖mv‖22. However, this method tends to jointly select correlated fea-
tures with uniformed coefficients values (grouping effect) as observed in [44]. This property
is not desirable in our context. For instance, in the ε-min model, the importance of mv(N )

in the ground truth model may thwart the elimination of sets having a large intersection with
N . This is confirmed by our tests. In Section 5.3.3 we will show that adaptive L1-penalty
significantly outperforms the Elastic Net penalty.

5 Experiments

In this section we show the results of numerical experiments on synthetic and real-world
preference data and we illustrate the advantage of our approach over some baseline methods.

5.1 Synthetic data

We generate the synthetic data as follows. First, random sparse Choquet models f uv or f uv,w

are created through the generation of n utility function ui and one or two (depending on
the choice for CIU or bi-CIU) capacities admitting a sparse Möbius representation. Sparse
Möbius masses are first generated without requiring for monotonicity, then mv or (mv,mw)

are taken as theMöbius representations of the closest (in the sense of the L1 norm)monotonic
capacities (obtained by linear programming).

Then, for n given utility functions ui and capacities v,w, we simulate Q-queries and
their answers for the utility learning. Answers to Q-queries are provided with some random
uniform noise ε ∈ [−εmax , εmax ]. For the capacity learning, we construct sets of preferences
{(x�, y�) ∈ X2 : x� � y�, � ∈ P} and of indifference statements {(x�, y�) ∈ X2 : x� ∼
y�, � ∈ I } compatiblewith f uv or f uv,w. For this, pairs (x�, y�) are drawn uniformlywithin X2.
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Fig. 3 Learned utility function with our method (left: red dotted line) and with standard sequences (right:
green and blue points) along with the ground truth (black plain line)

In order to introduce noise, each example is associated with a preference statement x� � y�

if ( f uv (x�)+σ�
x )− ( f uv (y�)+σy) ≥ σ and x� ∼ y� if |( f uv (x�)+σ�

x )− ( f uv (y�)+σ�
y )| < σ

(for CIU), where σ�
x , σ �

y are noise values uniformly taken within an interval [−σ, σ ]. This
process is used to generate training sets of size |P| + |I | which we vary in our experiments,
and test sets of size |P|+ |I | = 1000. The preference and indifference examples are in equal
proportions. In the following, the generalizing performance (test error) of any learned model
f̂ is evaluated as the average absolute violation of preferences on a test set: 1

|P|
∑

�∈P ( f̂ (y�)−
f̂ (x�))+ + 1

|I |
∑

�∈I | f̂ (y�) − f̂ (x�)|.
For all regularization methods, the hyper-parameter λ is chosen by cross-validation with

the one-standard-error rule. It consists in cutting the training set in folds (here the number
of folds is set to 3) and training the model as many times as the number of folds, each time
reserving a different fold for evaluating the model (validation fold). Then, λ is selected as the
highest value yielding a mean error on the validation folds lower than the minimum mean
error over all λ plus the standard error associated to thisminimum.A grid-search is performed
over the second hyper-parameter λ2 whenever it is needed (adaptive L1-penalty and elastic
net penalty).

5.2 Learning utilities

We conduct numerical tests on the utility learning. First, we generate a sparse model f uv,w

and learn the utility function ui for some i ∈ N with standard sequences and then with our
method. Answers to Q-queries are simulated with a level of noise εmax = 0.05. Figure 3
displays the estimated utility functions for both methods along with the ground truth ui . On
the left, the estimation provided by our method perfectly matches the ground truth while on
the right the estimation of the standard sequence clearly suffers from noise distortion.

We conducted the same experiment on 10 random sparse models, and obtained an average
mean absolute error (MAE) of 0.084± 0.052 for the standard sequence method and 0.022±
0.008 for our approach. The MAE is the mean absolute difference between the ground truth
and the estimated values on a fixed subdivision.

On Fig. 4 we represent the accuracy of both methods in terms of MAE as a function of
the number of questions asked. The MAE are averaged on 10 simulations of random sparse
models. Figure 4 shows the case εmax = 0.05 on the left and εmax = 0.1 on the right. The
test confirms that long standard sequences constructed recursively (grey) lead to very poor
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Fig. 4 MAE w.r.t. the number of questions for our method (dotted lines) and standard sequences (plain lines)
over 10 simulations for εmax = 0.05 (left) and εmax = 0.1 (right)

results. Also, the difference between both graphs shows the impact of the increase of noise
intensity on the estimation quality for both method. However, one can see that regardless
the level of noise, our approach converges to a null MAE. It appears to be a more robust
approach.

5.3 LearningMöbius representations of capacities

Wefirst illustrate the process of learning a sparseMöbius representation of the capacity in the
specific case of Example 2. Then,with other toy examples, we illustrate the benefit of adaptive
L1-regularization in terms of criteria coalition selection. Then we proceed to simulations to
demonstrate the benefits of our approach in the general case of sparse synthetic data and
real-world preference data.

Fig. 5 Selection of the hyperparameter λ with cross validation: mean test error on the 3 tests folds (left) and
L0-norm of the learned models according λ (right)
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5.3.1 Learning the�-min example (Example 2)

We generate preference data according to the ε-min model of Example 2 instantiated with
n = 8 and ε = (0.03, 0.03, 0.05, 0.05, 0.02, 0.02, 0.05, 0.05). More precisely, we generate
a training set of size |P| + |I | = 250 and introduce noise using σ = 0.03. We compare
our method based on adaptive L1-regularization to some baselines, such as the standard
L1-regularization, the unpenalized regression and the use of 2-additivity constraints for an
alternative control of model complexity. In Fig. 5 we illustrate the one-standard-error-rule
used to select the optimal value λ∗ of the regularization hyper-parameter λ (here λ2 = 0.05).
On the left of Fig. 5 we show the average generalizing performance (mean test error) obtained
through cross-validation for different values of λ, and λ∗ is highlighted. One can observe
(Fig. 5 on the right) that the number of non-null coefficients decreases as λ increases, and λ∗
corresponds to the optimal tradeoff between compactness and generalizing performance. On
Fig. 6 we show the learned Möbius masses for the adaptive L1-penalty with λ∗ (top left), the
L1-penalty also with optimal regularization parameter λ (top right), the unpenalized regres-
sion (bottom left) and the use of 2-additivity constraints (bottom right). For each method, the
learned model is superposed to the ground truth model. It is clear that the regression without
any penalty term fails to recover the ε-min model; it does not find any compact representation
either. It achieves, however, a reasonable generalizing performance on the test set (test error
of 0.066). The 2-additive model, while being compact, is far from the ground truth and does
not capture interactions involving a large number of attributes, leading to a poor generalizing
performance (test error of 0.535). Our approach combines both advantages of the baselines:
compactness and optimal generalizing performance (test error of 0.039). In fact, one can
see that the ground truth model is exactly recovered. This is not the case with the standard
L1-penalty that includes other coefficients than the non-null ground truth coefficients in the
estimated model. This directly illustrates the impact of the violation of Condition (19) for
the ε-min model, as demonstrated in Example 4 for n = 3.

Fig. 6 Learned models and hidden model (ε-min model of Example 2)
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5.3.2 Benefit of the adaptive L1-penalty : illustrative example

In this section, we provide a second illustration of the benefit of adaptive L1-regularization
compared to standard L1-regularization. To this end, we consider a model (n = 6) including
5 interaction terms attached to overlapping groups of criteria. The model is given by the
following Möbius masses vector: mv({i}) = ε

n for any i ∈ N , mv(B) = 1−ε
5 for any B ∈

{{1, 2}, {1, 2, 3}, {1, 2, 3, 5, 6}, {1, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}} and mv(B) = 0 everywhere
else, with ε = 0.2.

We generate a training set of size |P| + |I | = 120 and observe the effect of the increase
of the hyper-parameter λ for both standard and adaptive L1-penalization. In Figs. 7 and 8
we represent the regularization paths i.e., the evolution of the learned Möbius masses w.r.t.
λ, for both methods (for the adaptive penalty we take λ2 = 1). The non-null coefficients
of the hidden model are highlighted with blue star markers while the null coefficients are
displayedwith black plain lines.At first glance, the standard L1-penalization does not succeed
to efficiently distinguish ground truth non-null coefficients from null coefficients while the
adaptive penalization provides a clear distinction for λ ≈ 10−0.25. Note that for high values
of λ, theMöbius masses of singletons remain non-null for both methods. This is quite normal
since they are not included in the penalization term (the aim of regularization being only to
avoid unecessary non-linearities in the model).

In order to further evaluate and compare the quality of criteria coalition selection in both
methods we compute the false discovery rate (FDR), i.e., the proportion of selected coeffi-
cients that are not actually in the ground truthmodel.We also compute the false exclusion rate
(FER) which is the proportion of not selected coefficients that are actually in the ground truth
model. Figure 9 shows the results for standard (left) and adaptive (right) L1-regularization
according to λ. Contrarily to standard L1-regularization, adaptive L1-penalty reaches 0% of
false discovery rate (FDR) and 0% of false exclusion rate (FER) for λ ∈ [10−1.35, 10−1.1].
Thus adaptive L1-penalty exactly recovers the set of non-null ground truth coefficients. Stan-
dard L1 regularization appears to be less effective, the reduction of the false discovery rate
comes at the expense of its false exclusion rate.

Stability study In the previous tests, we assessed the ability of adaptive L1-regularization
to efficiently recover a ground truth model. Now, with another illustrative example, we study
the stability of the learned models w.r.t. the variability of the training preference data. We
use a 5-dimensional CIU model with sparse Möbius transform and generate training sets

Fig. 7 Regularization path for standard L1-penalty
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Fig. 8 Regularization path for adaptive L1-penalty (λ2 = 1)

of preference examples of size |P| + |I | = 100 with an increasing level of noise σ . In
Fig. 10 are presented in boxplots the learned Möbius masses with adaptive L1-regularization
obtained for 10 random generations of preference data. From top to bottom are represented
the results for increasing values of noise level σ ∈ {0, 0.03, 0.05, 0.1}. The ground truth
model is highlighted with grey bars. For σ = 0 (top), the exact ground truth model is always
recovered over the 10 simulations. Then, increasing the level of noise induces some variability
in the learned models. However, for σ = 0.03 (second from top), very few coefficients that
are not in the ground truth model are included in the learned model and the ground truth
coefficients are recovered with a nearly constant amplitude. Finally, when the level of noise
is high, i.e., σ = 0.1 (bottom), spurious coefficients such as the grand coalition are included
in the learned model and the Möbius masses values are highly variable.

5.3.3 Comparative performance on arbitrary sparse models

We observed that CIU used with a 2-additive capacity can fail to properly approximate pref-
erence data when the underlying preferences contains higher-order interactions. Also, a more
sophisticated L1 regularization is sometimes needed to proceed to a good model selection.
In this section, we provide broader tests on synthetic preference data and extend our compar-

Fig. 9 False discovery rate (FDR) and false exclusion rate (FER) for standard (left) and adaptive (right)
L1-regularization w.r.t. λ
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Table 2 Evaluation of ADA-L1 and the baseline methods with sparse CIU hidden models

Test error L0-norm ‖m̂ − m∗‖22 FDR FER

ADA-L1 0.07 ± 0.02 16.1 ± 8.6 0.05 ± 0.06 0.74 ± 0.09 0.01 ± 0.01

L1 0.07 ± 0.01 25.1 ± 10.9 0.07 ± 0.10 0.82 ± 0.06 0.01 ± 0.01

E-Net 0.07 ± 0.02 27.3 ± 9.9 0.08 ± 0.12 0.83 ± 0.07 0.01 ± 0.01

No Reg. 0.09 ± 0.03 206.7 ± 27.1 1.57 ± 2.48 0.97 ± 0.02 0.00 ± 0.01

2-ADD 0.37 ± 0.18 21.9 ± 2.7 0.61 ± 0.49 0.95 ± 0.05 0.02 ± 0.01

4-ADD 0.13 ± 0.05 148.2 ± 4.8 0.45 ± 0.46 0.98 ± 0.02 0.02 ± 0.01

k∗-ADD 0.09 ± 0.03 147.0 ± 54.4 0.23 ± 0.24 0.97 ± 0.03 0.02 ± 0.02

isons to the use of k-additive models for k = 1, . . . , n − 1, and for an optimal k∗ (chosen by
cross-validation). Also, we compare the adaptive L1-penalty to different penalizations such
as the standard L1-penalty and the elastic net. We finally compare the results of our method
to the unpenalized regression method.

First, we generate 20 hidden arbitrary sparse CIU models (with 10 non-null coefficients
in average) for n = 8. We also generate associated training preference datasets of size
|P| + |I | = 250 (with σ = 0.03) and test sets of size |P| + |I | = 1000. The generalizing
performance (test error) of our approach (ADA-L1) on test sets is averaged and displayed
in Table 2 along with the average sparsity of the learned models (L0 norm). The quality of
the ground truth model retrieval is further assessed with the average gap to the ground truth
model (‖m̂ − m∗‖22) and the false discovery rate (FDR) and false exclusion rate (FER). We
also present the results for the baseline methods: the standard L1-penalty (L1), the Elastic
Net penalty (E-Net), the unpenalized regression (No reg.) and methods that use k-additivity
constraints for k = 2, 4 and k∗.

Fig. 10 Ground truth model (grey bar) and boxplots of the learned Möbius masses over 10 simulations for an
increasing noise amplitude σ ∈ {0, 0.03, 0.05, 0.1} from top to bottom
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Fig. 11 Tradeoff between test error and L0-norm depending on λ (for ADA-L1, L1 and E-Net) and k (for
k-ADD)

Our approach (ADA-L1) clearly outperforms all the methods in terms of compactness,
distance to the ground truth model and false discovery rate. Concerning generalizing per-
formance, ADA-L1 outperforms the methods based on k-additive models, especially for
k = 2 which performs very poorly. The other regularization methods (E-Net and L1) main-
tain competitive generalizing performance but incorporate non-null ground truth coefficients
in the model as the higher falser discovery rate and L0-norm suggest it. Note that, while
having a generalizing performance close to the optimum, the unpenalized regression (No
Reg.) provides a dense model and thus is unable to recover an underlying sparse model. As
a consequence this method yields a null false exclusion rate. On Fig. 11 we show the eval-
uations obtained for each method using both the generalizing performance (test error) and
the number of non-null Möbius masses (L0-norm). Each curve represents various possible
tradeoffs between the test error and the L0-norm obtained for different values of the regular-
ization hyperparameter λ (for ADA-L1, L1, E-Net) or for different values of k (for k-ADD).
For the methods ADA-L1 and E-Net, λ2 has been priorely set to its best value. We observe
that our approach with adaptive L1-penalty provides significantly better compromises than
all the other methods. Moreover, k-additive models perform very poorly, providing models
with high L0-norm and high test error.

Finally, we conducted the same experiment with sparse bi-CIU hidden models and results
are presented in Table 3. The results for the learning of both capacities mv and mw are
averaged producing a unique result. Here again ADA-L1 produces significantly better results
than the othermethods in terms of generalizing performance, compactness and false discovery

Table 3 Evaluation of ADA-L1 and the baseline methods with sparse bi-CIU hidden models

Test error L0-norm ‖m̂ − m∗‖22 FDR FER

ADA-L1 0.06 ± 0.01 16.4 ± 12.9 2.06 ± 0.82 0.73 ± 0.11 0.02 ± 0.01

L1 0.07 ± 0.02 25.8 ± 15.8 2.07 ± 0.81 0.84 ± 0.06 0.02 ± 0.01

E-Net 0.07 ± 0.01 35.8 ± 16.7 1.15 ± 0.86 0.85 ± 0.04 0.02 ± 0.01

No Reg. 0.09 ± 0.02 217.1 ± 36.3 58.74 ± 117.65 0.98 ± 0.02 0.02 ± 0.01

2-ADD 0.30 ± 0.16 20.6 ± 3.8 2.55 ± 0.78 0.95 ± 0.06 0.02 ± 0.01

4-ADD 0.12 ± 0.05 243.9 ± 72.1 6.94 ± 5.97 0.98 ± 0.02 0.02 ± 0.02

k∗-ADD 0.09 ± 0.04 215.8 ± 141.5 13.03 ± 14.62 0.94 ± 0.07 0.02 ± 0.01
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Table 4 Average L0-norm for ADA-L1 and for the baselines on real datasets

ESL CITY CPU MPG

ADA-L1 5.42 ± 2.38 6.14 ± 3.82 6.11 ± 1.83 7.69 ± 2.48

L1 5.73 ± 2.81 6.69 ± 4.29 7.81 ± 3.45 7.58 ± 2.8

E-Net 5.93 ± 2.93 6.99 ± 5.67 17.44 ± 13.16 23.44 ± 12.51

No Reg. 12.71 ± 1.60 23.26 ± 4.77 42.04 ± 9.15 55.83 ± 14.69

2-ADD 7.80 ± 1.19 9.09 ± 1.61 9.73 ± 1.84 8.21 ± 1.58

4-ADD 12.71 ± 1.60 22.58 ± 4.42 36.73 ± 7.47 36.54 ± 12.29

k∗-ADD 5.77 ± 2.77 5.97 ± 3.52 12.05 ± 9.94 12.79 ± 12.12

rate. Concerning distance to the ground truth, the elastic net penalty provides slightly better
results. Remark that all methods perform equally in terms of false exclusion rate.

5.3.4 Real data

In this subsection, we test our method for learning sparseMöbius capacity representations on
real preference datasets. For this, we use standard monotonic multicriteria decision-making
datasets containing overall evaluations of alternatives described by continuous or discrete
criteria. Using these datasets, we make the assumption that the learning examples are directly
expressed in terms of utilities.

We use the dataset Employee Selection (ESL) from the Weka repository 1, the datasets
CPU2 and CarMPG3 (MPG) from the UCI repository and theMovehub city ranking4(CITY)
dataset. Below, we briefly describe the four datasets:

• ESL: psychologists evaluations on n = 4 criteria of some candidates (488) and overall
suitability to a position.

• CITY: overall evaluations of quality of life in some cities (216) and n = 5 associated
descriptors, e.g., purchase power, quality and access to health care.

• CPU: relative performance of some CPUs (209) and n = 6 associated technical charac-
teristics, e.g., machine cycle time in nanoseconds, cache memory in kilobytes.

• MPG: city-cycle fuel consumption in miles per gallon of some cars (398) and n = 7
associated technical characteristics, e.g., weight, acceleration, model year.

These datasets of overall evaluations are turned into datasets of preference and indifference
statements by randomly drawing pairs of alternatives (without replacing them) and comparing
their global scores. The criteria associated with a decreasing monotonicity are multiplied by
−1 and the utility values are made commensurate by means of linear normalization.

We compare ADA-L1 and the baseline methods in terms of test error (average magnitude
of preference violation on the test sets) and number of non-null coefficients of the learned
models (L0-norm). The results are averaged over 100 simulations for each dataset. For each
simulation, the models are trained on 80% of the dataset and tested over the 20% left with
a random split. In Table 4 are presented the average L0-norm of the learned models for the

1 https://www.openml.org
2 https://archive.ics.uci.edu/dataset/29/computer+hardware
3 https://archive.ics.uci.edu/dataset/9/auto+mpg
4 https://www.kaggle.com/datasets/blitzr/movehub-city-rankings
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Table 5 Average test error for
ADA-L1 on real datasets

ESL CITY CPU MPG

0.22 ± 0.04 0.05 ± 0.03 0.12 ± 0.05 0.15 ± 0.07

different methods. The results leading to the smaller L0-norms are highlighted in bold and the
second-best results are underlined. ADA-L1 provides very sparse models with significantly
lower L0-norms than the one obtained with the baseline methods. This model compacity is
obtained at no cost in terms of generalizing performance since ADA-L1 provides test errors
similar to the baseline methods. We indeed performed pairwise t-tests to test the significance
of the difference in test error between all the methods and we obtained p-values of magnitude
0.5. The test error numerical values obtained for ADA-L1 are provided in Table 5. This
suggests that ADA-L1 is able to identify the few criteria coalitions that really matter in the
preference value system underlying each dataset.

6 Conclusion

We have introduced a new approach to learn both utilities and capacities in CIU and bi-CIU
models in the context of multicriteria decision making. We first proposed a variant of the
tradeoff method to learn one-dimensional utility functions which appears to be more robust
than usual elicitation methods based on standard sequences. Then we presented a method
to learn compact representations of capacities in terms of Möbius masses using adaptive
L1-regularization. It determines where are the Möbius masses that really matter to define the
capacity. This reveals those interacting subsets of criteria that must be kept in the general
Choquet model to fit the observed preferences. One important advantage of this approach is
that interacting subsets of any size can be included in the model. No prior restriction on the
size of interaction factors is made, they are derived from the database of preference examples.

An important aspect concerns the complexity of the learning task. The linear reformulation
of problemP ′ introduced in Section 4 includes 2n+1+2|I |+ |P| variables and∑n

k=1 k
(n
k

)+
|I | + |P| + 1 constraints. Therefore the problem to be solved grows exponentially with the
number of criteria. It remains tractable up to a dozen of criteria which covers most of practical
cases5. In order to improve scalability of the method, several options could be investigated
but this goes beyond the scope of this paper. First, a hierarchical structure over criteria can
be used which may drastically reduce the number of criteria to be aggregated at every level
and therefore the size of the learning problem. This idea was implemented in [22] to learn
2-additive capacities and could be extended to learn general capacities [45]. Another option
would be to use the dual formulation of the optimization problem P ′ as in kernel-based
machine learning methods. Some recent attempts in this direction are proposed in [46].

Beside scalability, several natural extensions of this work could be considered. First,
the construction of compact representations of CIU is based on (4) that combines Möbius
masses and terms of type mini∈B{ui }. Alternatives representations exist for CIU and bi-CIU,
combining Möbius masses and factors of type maxi∈B{ui }. They could lead to compact
representations as well. This suggests extending our approach and combining min and max
factors to produce even more compact representations of capacities. Another extension could

5 criteria represent the evaluations dimensions and must not be confused with attributes describing the alter-
natives that may be more numerous. It is generally the case that several attributes contribute to the definition
of one criterion
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be to adapt our approach to other decision models allowing interacting criteria. For example,
the multilinear utility model [47] admits a representation in terms of Möbius masses similar
to (4) where min factors are substituted by products

∏
i∈B ui . Clearly, the learning approach

we have proposed here for the capacity identification also applies to this model with very
minor modifications. Finally, interactions terms occurring in the model may be more general
than min, max or product of criterion values, and could also be learned from preference
data. This would be helpful to learn GAI models that are, by definition, decomposable as the
sum of utility factors defined on a collection of non-necessarily disjoint subsets of attributes
[48–50]. It is likely that the approach proposed here to learn the active interacting coalitions
may also be applied to the determination of the relevant factors in a GAI model.

Appendix A

In this appendix we explain how equations on utilities (5)–(6) and (7)–(10) are derived from
preference and indifference statements. The explanation is directly given for the bi-CIU
model but can be adapted to the particular case of the C IU model by taking w = v.

A.1 Utility elicitation with solvability

A.1.1 Utility elicitation below the neutral level with solvability assumption

Proposition 1 Let xi , hi ∈ Xi such that xi �i 0i and hi �i 0i and r j , R j ∈ X j such
that 0 j � j r j ≺ j R j . Suppose that (xi , r j , 0−i j ) ∼ (yi , R j , 0−i j ) and (hi , r j , 0−i j ) ∼
(zi , R j , 0−i j ). Assuming (−1i , 0−i ) ≺ 0, we have:

ui (yi ) − ui (xi ) = ui (zi ) − ui (yi )

Proof From (xi , r j , 0−i j )∼(yi , R j , 0−i j ) we have: f uv,w(xi , r j , 0−i j )= f uv,w(yi , R j , 0−i j ).
Also, since r j ≺ j R j we have yi ≺i xi . Moreover, since xi �i 0i and 0 j � j r j ≺ j R j ,
we have ui (yi ) < ui (xi ) ≤ 0 ≤ u j (r j ) < u j (R j ) and therefore f uv,w(xi , r j , 0−i j ) =
u j (r j )v({ j}) + ui (xi )(1 − w(N \ {i})).

Similarly, we have: f uv,w(yi , R j , 0−i j ) = u j (R j )v({ j}) + ui (yi )(1− w(N \ {i})). Hence
we have: (ui (xi ) − ui (yi ))(1 − w(N \ {i})) = (u j (R j ) − u j (r j ))v({ j}).

Moreover, using the second indifference (hi , r j , 0−i j ) ∼ (zi , R j , 0−i j ), we obtain
(ui (hi ) − ui (zi ))(1− w(N \ {i})) = (u j (R j ) − u j (r j ))v({ j}). Then (ui (xi ) − ui (yi ))(1−
w(N \ {i})) = (ui (hi ) − ui (zi ))(1 − w(N \ {i})). Assuming (−1i , 0−i ) ≺ 0, i.e.,
w(N \ {i}) < 1 we obtain:

ui (xi ) − ui (yi ) = ui (hi ) − ui (zi )

��

A.1.2 Utility elicitation above the neutral level with solvability assumption

Proposition 2 Let xi , hi ∈ Xi such that xi � 0i and hi � 0i and r j , R j ∈ X j and xi ∈ Xi

such that r j ≺ j R j � j 0 j . Suppose that (xi , R j , 0−i j ) ∼ (yi , r j , 0−i j ) and (hi , R j , 0−i j ) ∼
(zi , r j , 0−i j ). Assuming (1i , 0−i ) � 0, we have:

ui (xi ) − ui (yi ) = ui (hi ) − ui (zi )
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Proof From (xi , R j , 0−i j ) ∼ (yi , r j , 0−i j ), we have: f uv,w(xi , R j , 0−i j ) = f uv,w(yi , r j , 0−i j ).
Since r j ≺ j R j we have xi ≺i yi . Moreover, since xi �i 0i and r j ≺ j R j � j 0 j ,
we have u j (r j ) < u j (R j ) ≤ 0 ≤ ui (xi ) < ui (yi ) and therefore f uv,w(xi , R j , 0−i j ) =
ui (xi )v({i}) + u j (R j )(1 − w(N \ { j})).

Similarly f uv,w(yi , r j , 0−i j ) = ui (yi )v({i}) + u j (r j )(1 − w(N \ { j})). Hence we have:
(ui (yi ) − ui (xi ))v({i}) = (u j (R j ) − u j (r j ))(1 − w(N \ { j})).

Moreover, using the second indifference (hi , R j , 0−i j ) ∼ (zi , r j , 0−i j ), we obtain
(ui (zi )−ui (hi ))v({i}) = (u j (R j )−u j (r j ))(1−w(N \{ j})). Then (ui (yi )−ui (xi ))v({i}) =
(ui (zi ) − ui (hi ))v({i}). Assuming (1i , 0−i ) � 0, i.e., v({i}) > 0 we obtain:

ui (yi ) − ui (xi ) = ui (zi ) − ui (hi )

��

A.2 Utility elicitation without solvability

A.2.1 Utility elicitation below the neutral level without solvability assumption

Proposition 3 Assume that the elements of Xi are denoted xi,k and indexed according to
their relative values: xi,k �i xi,k+1, for any k. Let xi , hi ∈ Xi such that xi �i 0i and
hi �i 0i and r j , R j ∈ X j such that 0 j � j r j ≺ j R j . Let k be the lower integer such
that (xi , r j , 0−i j ) � (xi,k+1, R j , 0−i j ) and k′ the highest integer such that (hi , r j , 0−i j ) �
(xi,k′ , R j , 0−i j ). Assuming (−1i , 0−i ) ≺ 0, we have:

ui (hi ) − ui (z
−
i ) ≥ ui (xi ) − ui (y

+
i )

ui (hi ) − ui (z
+
i ) < ui (xi ) − ui (y

−
i )

where y+
i = xi,k+1, y

−
i = xi,k , z

−
i = xi,k′ and z+i = xi,k′+1.

Proof By construction y−
i necessarily verifies the following strict preference: (xi , r j , 0−i j ) �

(y−
i , R j , 0−i j ). Hence, with (xi , r j , 0−i j ) � (y+

i , R j , 0−i j ), we obtain the following inequa-
tions: (ui (xi )−ui (y

+
i ))(1−w(N \{i})) ≤ (ui (R j )−ui (r j ))v({ j}) and (ui (xi )−ui (y

−
i ))(1−

w(N \ {i})) > (ui (R j ) − ui (r j ))v({ j}).
Similarly, z+i verify (hi , r j , 0−i j ) ≺ (z+i , R j , 0−i j ). Hence, with (hi , r j , 0−i j ) �

(z−i , R j , 0−i j ) we obtain the following inequations: (ui (hi ) − ui (z
−
i )(1 − w(N \ {i})) ≥

(ui (R j )− ui (r j ))v({ j}) and (ui (hi )− ui (z
+
i ))(1−w(N \ {i})) < (ui (R j )− ui (r j ))v({ j}).

Hence we have (ui (xi ) − ui (y
+
i ))(1− w(N \ {i})) ≤ (ui (R j ) − ui (r j ))v({ j}) ≤ (ui (hi ) −

ui (z
−
i ))(1 − w(N \ { j})).

Moreover, (ui (hi ) − ui (z
+
i )(1 − w(N \ {i})) < (ui (R) − ui (r))v({ j}) < (ui (xi ) −

ui (y
−
i )(1 − w(N \ {i})). Assuming (−1i , 0−i ) ≺ 0, i.e., w(N \ {i}) < 1, we obtain:

ui (hi ) − ui (z
−
i ) ≥ ui (xi ) − ui (y

+
i )

ui (hi ) − ui (z
+
i ) < ui (xi ) − ui (y

−
i )

��

A.2.2 Utility elicitation above the neutral level without solvability assumption

Proposition 4 Assume that the elements of Xi are denoted xi,k and indexed according to
their relative values: xi,k �i xi,k+1, for any k. Let xi , hi ∈ Xi such that xi �i 0i and
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hi �i 0i and r j , R j ∈ X j such that r j ≺ j R j � j 0 j . Let k be the higher integer such
that (xi , R j , 0−i j ) � (xi,k, r j , 0−i j ) and k′ the lower integer such that (hi , R j , 0−i j ) �
(xi,k+1, r j , 0−i j ). Assuming (1i , 0−i ) � 0, we have:

ui (hi ) − ui (z
+
i ) ≤ ui (xi ) − ui (y

−
i )

ui (hi ) − ui (z
−
i ) > ui (xi ) − ui (y

+
i )

where y+
i = xi,k+1, y

−
i = xi,k , z

−
i = xi,k′ and z+i = xi,k′+1.

Proof By construction y+
i necessarily verifies the following strict preference: (xi , R j , 0−i j ) ≺

(y+
i , r j , 0−i j ). Hence, with (xi , R j , 0−i j ) � (y−

i , r j , 0−i j ), we obtain the following inequa-
tions: (ui (xi ) − ui (y

−
i ))v({i}) ≥ (ui (r j ) − ui (R j ))(1 − w(N \ { j})) and (ui (xi ) −

ui (y
+
i ))v({i}) < (ui (r j ) − ui (R j ))(1 − w(N \ { j})).

Similarly z−i verify (hi , R j , 0−i j ) � (z−i , r j , 0−i j ). Hence, with (hi , R j , 0−i j ) �
(z+i , r j , 0−i j ), we obtain the following inequations: (ui (hi ) − ui (z

+
i ))v({i}) ≤ (ui (r j ) −

ui (R j ))(1−w(N \ { j})) and (ui (hi )−ui (z
−
i ))v({i}) > (ui (r j )−ui (R j ))(1−w(N \ { j})).

Hence we have (ui (hi ) − ui (z
+
i ))v({i}) ≤ (ui (R j ) − ui (r j ))(1 − w(N \ { j})) ≤ (ui (xi ) −

ui (y
−
i ))v({i}). Moreover, (ui (xi ) − ui (y

+
i ))v({i}) < (ui (R j ) − ui (r j ))(1− w(N \ { j})) <

(ui (hi ) − ui (z
−
i ))v({i}). Assuming (1i , 0−i ) � 0, i.e., v({i}) > 0, we obtain:

ui (hi ) − ui (z
+
i ) ≤ ui (xi ) − ui (y

−
i )

ui (hi ) − ui (z
−
i ) > ui (xi ) − ui (y

+
i )

��

Appendix B

In the following, we use the convention that for any subset B ⊆ N ,
∫
IB

f (z1, . . . , zn)dzB
denotes themultiple integral of the function f w.r.t. the arguments zi , i ∈ B on the hypercube
IB = [0, 1]|B|.

Lemma 5 Let B ⊆ N \ ∅ and k ∈ N
∗, then the following equality holds:

∫

IB

min
i∈B {zi }kdzB = k!

∏k
i=1(|B| + i)

Proof Consider |B| randomvariables (Zi )i∈B independent and identically distributed accord-
ing a uniform distribution within [0, 1]. It can be easily shown that the random variable
Y = mini∈B{Zi } admits the following density function:

fY (y) =
{

|B|(1 − y)|B|−1 if y ∈ [0, 1]
0 else.
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Then we obtain:

E[Y k] =
∫ 1

0
yk |B|(1 − y)|B|−1dy = k

∫ 1

0
yk−1(1 − y)|B|dy

= k(k − 1)
∫ 1

0
yk−2 (1 − y)|B|+1

|B| + 1
dy

= . . .

= k!
∫ 1

0
yk−k (1 − y)|B|+k−1

∏k−1
i=1 (|B| + i)

dy

= k!
∏k−1

i=1 (|B| + i)

1

(|B| + k)
= k!

∏k
i=1(|B| + i)

Finally, we conclude:
∫

IB

min
i∈B {zi }kdzB = E[min

i∈B {Zi }k] = E[Y k] = k!
∏k

i=1(|B| + i)

��

Lemma 6 Let n ≤ 3 and B1, B2 ⊆ N such that B1 ∩ B2 = ∅ and B2 �= ∅. For any vector
(z j ) j∈B2 taking values in [0, 1], the following equality holds:

∫

IB1

min
i∈B2∪B1

{zi }dzB1 = ∧B2 − |B1|∧2
B2

2
+ |B1|(|B1| − 1)+∧3

B2

6

with ∧B2 = mini∈B2{zi } and x+ = max{0, x}.

Proof Firstly, for any A ⊆ N \∅, any vector (zi )i∈A valued in [0, 1] and any k ∈ N, we have:

∫ 1

0
min{x,∧A}kdx =

∫ ∧A

0
min{x,∧A}kdx +

∫ 1

∧A

min{x,∧A}kdx

=
∫ ∧A

0
xkdx +

∫ 1

∧A

∧k
A = ∧k+1

A

k + 1
+ (1 − ∧A)∧k

A

= ∧k
A − k

k + 1
∧k+1

A (B1)

where ∧A = mini∈A{zi }.
Remark that for B1 = ∅, the left-hand term boils down to∧B2 which equals the right-hand

term for |B1| = 0. Suppose now that B1 �= ∅. Since n ≤ 3, B2 �= ∅ and B1 ∩ B2 = ∅, B1 is
necessarily a singleton or a pair, then we have: |B1| ∈ {1, 2}.

Then let (π1, . . . , π|B1|) be any ordering of the elements of B1. Using (B1) with A =
(B1 ∪ B2) \ {π1}, x = zπ1 and k = 1, we have:

∫

IB1

min
i∈B2∪B1

{zi }dzB1 =
∫

IB1\{π1}

( ∫ 1

0
min

i∈B2∪B1
{zi }dzπ1

)
dzB1\{π1}

=
∫

IB1\{π1}

(
∧(B1∪B2)\{π1} −∧2

(B1∪B2)\{π1}
2

)
dzB1\{π1}
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Then if |B1| = 1, we have B1 \ {π1} = ∅ and therefore we obtain:

∫

IB1

min
i∈B2∪B1

{zi }dzB1 = ∧(B1∪B2)\{π1} − ∧2
(B1∪B2)\{π1}

2

= ∧B2 − |B1|∧2
B2

2
+ |B1|(|B1| − 1)+∧3

B2

6

Finally, if |B1| = 2, we have B1 \{π1} = {π2} and using (B1) for A = (B1∪B2)\{π1, π2} =
B2, x = zπ2 and k ∈ {1, 2}, we obtain:

∫

IB1

min
i∈B2∪B1

{zi }dzB1 =
∫ 1

0

(
∧(B1∪B2)\{π1} −∧2

(B1∪B2)\{π1}
2

)
dzπ2

=
∫ 1

0

(
min

i∈B2∪{π2}
{zi } − mini∈B2∪{π2}{zi }2

2

)
dzπ2

= ∧B2 − |B1|∧2
B2

2
+ |B1|(|B1| − 1)+∧3

B2

6

��

Proposition 7 Let n ≤ 3. Assume that the features (φ j )
2n
j=1 are defined such that φ j =

mini∈ρ−1( j){Zi } where (Zi )i∈N are i.i.d. random variables such that Zi ∼ U([0, 1]) for any
i ∈ N. Then, for any pair of criteria coalition S1, S2 ⊆ N \∅ of cardinals |S1| = s1,|S2| = s2
and |S1 ∩ S2| = s12 �= 0, the covariance between φρ(S1) and φρ(S2) reads as follows:

Cov(φρ(S1), φρ(S2)) =
3∑

k=1

gk(s12)γk(s1, s2, s12) − 1

(s1 + 1)(s2 + 1)

with gk(s12) = k!∏k
i=1(s12+i)

, γ1 = 1, γ2(s1, s2, s12) = − 1
2 ((s1 − s12)+ + (s2 − s12)+) and

γ3(s1, s2, s12) = 1
4 ((s1−s12)+(s2−s12)+)+ 1

6 ((s1−s12)+(s1−s12−1)++(s2−s12)+(s2−
s12 − 1)+) where x+ = max{x, 0}.

Proof Let S1, S2 ⊆ N \ ∅ such that S1 ∩ S2 �= 0. Firstly, recall that:

Cov(φρ(S1), φρ(S2)) = E[φρ(S1)φρ(S2)] − E[φρ(S1)]E[φρ(S2)]

Also, since the variables (Zi )i∈N are independent and identically distributed according a
uniform distribution within [0, 1], for any S ⊆ N , we have:

E[φρ(S)] =
∫

IS

min
i∈S {zi }dzS

Then using Lemma 5 for k = 1 and B = S, we obtain:

E[φρ(S)] = 1

|S| + 1
(B2)
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Moreover, since S1 ∩ S2 �= ∅, we have:
E[φρ(S1)φρ(S2)] = E[min

i∈S1
{Zi }min

i∈S2
{Zi }]

=
∫

IS1∪S2

min
i∈S1

{zi }min
i∈S2

{zi }dzS1∪S2

=
∫

IS2

min
i∈S2

{zi }
( ∫

IS1\S1∩S2

min
i∈S1

{zi }dzS1\(S1∩S2)

)
dzS2

Then, using Lemma 6 sequentially for B1 = S1 \ (S1 ∩ S2), B2 = S1 ∩ S2 and B1 =
S2 \ (S1 ∩ S2), B2 = S1 ∩ S2, we obtain:

E[φρ(S1)φρ(S2)] =
∫

IS1∩S2

( ∫

IS2\(S1∩S2)

min
i∈S2

{zi }
(

∧S1∩S2 − (s1 − s12)+∧2
S1∩S2

2

+ (s1 − s12)+(s1 − s12 − 1)+∧3
S1∩S2

6

)
dzS2\(S1∩S2)

)
dzS1∩S2

=
∫

IS1∩S2

(
∧S1∩S2 − (s1 − s12)+∧2

S1∩S2

2
+ (s1 − s12)+(s1 − s12 − 1)+∧3

S1∩S2

6

)

(
∧S1∩S2 − (s2 − s12)+∧2

S1∩S2

2
+ (s2 − s12)+(s2 − s12 − 1)+∧3

S1∩S2

6

)
dzS1∩S2

where ∧S1∩S2 = mini∈S1∩S2{zi } for any vector (zi )i∈S1∩S2 valued in [0, 1]. This expression
can be simplified remarking that since n ≤ 3 and S1∩S2 �= ∅, we have that the cross products
(s2 − s12)+(s2 − s12 −1)+(s1 − s12)+(s1 − s12 −1)+, (s2 − s12)+(s2 − s12 −1)+(s1 − s12)+
and (s1 − s12)+(s1 − s12 − 1)+(s2 − s12)+ necessarily equal zero. Finally, using Lemma 5
for B = S1 ∩ S2 and k ∈ {2, 3, 4}, we obtain that:

E[φρ(S1)φρ(S2)] = g2(s12) − g3(s12)
1

2
((s1 − s12)

+ + (s2 − s12)
+)

+ g4(s12)(
1

4
((s1 − s12)

+(s2 − s12)
+)

+ 1

6
((s1 − s12)

+(s1 − s12 − 1)+ + (s2 − s12)
+(s2 − s12 − 1)+)) (B3)

with gk(s12) = k!∏k
i=1(s12+i)

. We obtain the final result by combining (B3) and (B2). ��

Proposition 8 Suppose that n = 3 and that the underlying model β∗ is such that A1 =
{{1}, {2}, {3}, {1, 2, 3}}, A2 = {{1, 2}, {1, 3}, {2, 3}} and sign(β∗

A1
) = 1. Assume also that

the features (φ j )
2n
j=1 are defined such that φ j = mini∈ρ−1( j){Zi } where (Zi )i∈N are i.i.d.

random variables such that Zi ∼ U([0, 1]) for any i ∈ N. Then, Condition (19) boils down
to:

|2V 1
1,2(V

3
3,3 − V 1

1,3) + V 2
2,3(V

1
1,1 − 3V 1

1,3)| < |V 3
3,3V

1
1,1 − 3(V 1

1,3)
2|

where V l
j,k = Cov(φρ(S1), φρ(S2)) = Cρ(S1),ρ(S2) for any pair of criteria coalition S1, S2 ⊆

N such that j = |S1|, k = |S2| and l = |S1 ∩ S2|.
Proof Since the random variables (Zi )i∈N are supposed independent, for any pair of criteria
coalition S1, S2 ⊆ N such that S1 ∩ S2 = ∅, we have: Cov(φρ(S1), φρ(S2)) = 0. Also,
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indexing the columns and rows of C11 and C21 in the lexicographical order, we have:

C11 =

⎛

⎜⎜⎝

V 1
1,1 0 0 V 1

1,3
0 V 1

1,1 0 V 1
1,3

0 0 V 1
1,1 V 1

1,3
V 1
1,3 V 1

1,3 V 1
1,3 V 3

3,3

⎞

⎟⎟⎠ and C21 =
⎛

⎝
V 1
1,2 V 1

1,2 0 V 2
2,3

V 1
1,2 0 V 1

1,2 V 2
2,3

0 V 1
1,2 V 1

1,2 V 2
2,3

⎞

⎠

Then C11 can be rewritten as a block-matrix as follows:

C11 =
(
M1 MT

2
M2 M3

)
with M1 =

⎛

⎝
V 1
1,1 0 0
0 V 1

1,1 0
0 0 V 1

1,1

⎞

⎠ , M2 = (
V 1
1,3 V 1

1,3 V 1
1,3

)
, M3 = (

V 3
3,3

)

Since C11 is the covariance matrix of the random variables (φ j ) j∈A1 it is a positive semi-
definite matrix. Also, remarking that M1 is inversible and using Proposition 7, one can

compute the Schur complement S = M3 − MT
2 M−1

1 M2 = V 3
3,3V

1
1,1−3V 1

1,3

V 1
1,1

�= 0 and obtain that

C11 is a positive definite matrix the inverse of which reads as follows:

C−1
11 =

(
M−1

1 + M−1
1 MT

2 S−1M2M
−1
1 −M−1

1 MT
2 S−1

−S−1M2M
−1
1 S−1

)

= 1

SV 1
1,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

S + (V 1
1,3)

2

V 1
1,1

(V 1
1,3)

2

V 1
1,1

(V 1
1,3)

2

V 1
1,1

−V 1
1,3

(V 1
1,3)

2

V 1
1,1

S + (V 1
1,3)

2

V 1
1,1

(V 1
1,3)

2

V 1
1,1

−V 1
1,3

(V 1
1,3)

2

V 1
1,1

(V 1
1,3)

2

V 1
1,1

S + (V 1
1,3)

2

V 1
1,1

−V 1
1,3

−V 1
1,3 −V 1

1,3 −V 1
1,3 V 1

1,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

Then we finally obtain:

C21C
−1
11 sign(β∗

A1
) = 2V 1

1,2(V
3
3,3 − V 1

1,3) + V 2
2,3(V

1
1,1 − 3V 1

1,3)

V 3
3,3V

1
1,1 − 3(V 1

1,3)
2

⎛

⎝
1
1
1

⎞

⎠

Therefore Condition (19) is satisfied if and only if |2V 1
1,2(V

3
3,3−V 1

1,3)+V 2
2,3(V

1
1,1−3V 1

1,3)| <

|V 3
3,3V

1
1,1 − 3(V 1

1,3)
2|. ��
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