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Abstract
In this paper we consider a new class of RBF (Radial Basis Function) neural networks, in
which smoothing factors are replaced with shifts. We prove under certain conditions on the
activation function that these networks are capable of approximating any continuous mul-
tivariate function on any compact subset of the d-dimensional Euclidean space. For RBF
networks with finitely many fixed centroids we describe conditions guaranteeing approxi-
mation with arbitrary precision.

Keywords RBF neural network · Activation function · Mean-periodic function · Centroid ·
Shift
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1 Introduction

RBF (Radial Basis Function) neural networks are being used for function approximation, time
series forecasting, classification, pattern recognition and system control problems. Besides
their strong approximation capability, these networks benefit from other powerful charac-
teristics such as the ability to represent complex nonlinear mappings and provide a fast and
robust learning mechanism without significant computational cost. The literature abounds
with different aspects and various applications ofRBFneural networks. For instance,Agarwal
et al. [1] employed RBF neural networks in face recognition, adapting hidden neuron centers
using a FireflyAlgorithm (FA). This approach resulted in improved recognition accuracy. The
higher performance of the proposed technique in face recognition was shown by experimen-
tal validation on well recognized face datasets, when compared to existing methods. Khan
et al. [9] employed the MATLAB neural network toolbox alongside RBF neural networks
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to predict corrosion-induced failures in subsurface oil and gas pipelines. They utilized fault
tree analysis to identify corrosion-related hazards. Through training, the RBF neural network
demonstrated accuracy in forecasting the likelihood of underground pipeline corrosion fail-
ures. Wang et al. [23] used RBF neural networks to improve the tracking stability control of
Unmanned Surface Vehicles (USVs). Wang et al. [22] used RBF neural networks for image
reconstruction in Electric Impedance Tomography (EIT) and achieved high accuracy. Fath et
al. [4] employedRBF neural networks in oil and gas industry. They developed reliablemodels
based on multilayer perceptron (MLP) and RBF neural networks for estimating the solution
gas-oil ratios. These models were tested using a total of 710 experiments across various
conditions. Both models outperformed existing empirical correlations, with the RBF neural
network provingmore efficient and accurate, offering a valuable tool for accurate calculations
of gas-oil ratios. Karamichailidou et al. [8] employed RBF neural network as a pivotal tool
in modeling wind turbine performance. This innovative approach takes into account various
environmental factors, such as wind direction, ambient temperature, and blade pitch angle,
to develop precise power curve models. Li et al. [10] achieved significant advancements in
credit rating modeling by augmenting RBF neural networks with an optimized segmentation
algorithm. Their research led to improved model robustness, accuracy, and adaptability, with
a particular emphasis on handling non-numeric data effectively. These enhancements have
important implications for the field of credit risk management in the banking and finance
sector.

The fundamental principles and advantages of RBF neural networkswere first displayed in
the papers of Broomhead and Lowe [3], Moody and Darken [14], Lipmann [12] and Bishop
[2]. A variant of RBF network with an input layer, a hidden layer and an output layer is
constructed by the following scheme. Each unit in the hidden layer of this RBF network has
its own centroid and for an input vector x = (x1, ..., xd) it computes the distance between
x and its centroid c ∈ R

d . Its output (the output of a given hidden unit) is some nonlinear
function of that distance.Hence each hidden unit computes a radial function, that is, a function
which is constant on the spheres ‖x − c‖ = α, α ∈ R. Each output unit gives a weighted
summation of the outputs of hidden units. For the clarity of exposition, we will consider in
the sequel only a one dimensional output space instead of outputs represented by multiple
units. The generalization of our results to the n-dimensional output space is straightforward.

Assuming that there are d input units and one output unit, the final response function has
the following form:

G(x) =
m∑

i=1

wi g

(‖x − ci‖
σi

)
. (1.1)

Here m ∈ N is the number of units in the hidden layer, (w1, ..., wm) ∈ R
m is the vector of

weights, x ∈ R
d is an input vector, ci ∈ R

d and σi ∈ R+ are the centroids and smoothing
factors (or widths) of the i-th node, 1 ≤ i ≤ m, respectively, ‖x − ci‖ is the Euclidean
distance between x and ci , and g : [0,+∞) → R is the so-called activation function.

Various activation functions in RBF neural networks can be implemented and the smooth-
ing factors may be the same or may vary across units.

The RBF neural networks have the universal approximation property. Theoretically, such
networks can approximate any continuous multivariate function within any degree of accu-
racy, if the activation function is suitably chosen. The most well-known result is due to Park
and Sandberg [15]. In 1993, they showed, along with other results, that for a continuous and
integrable g(‖x‖) (considered as a function of d variables) the set of functions (1.1) is dense
in C(Rd) in the topology of uniform convergence on compact subsets of R

d . That is, for any
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continuous function f : R
d → R, for any compact subset K ⊂ R

d and for any ε > 0, there
exists a function G of form (1.1) such that

‖ f − G‖K def= max
x∈K | f (x) − G(x)| < ε.

The requirement of the integrability of g(‖x‖) is relaxed in Liao, Fang and Nuttle [11].
They showed that for an activation function, which is continuous almost everywhere, locally
essentially bounded and nonpolynomial, the RBF networks (1.1) can approximate any con-
tinuous function with arbitrary accuracy. There are also other results on the universality of
RBF neural networks (see, e.g., [6, 11, 16, 24]).

In this paper we bring into consideration a new class of RBF neural networks. In this
class the smoothing factors σi are replaced with shifts νi ∈ R. That is, this class consists of
functions H : R

d → R of the form

H(x) =
m∑

i=1

wi g (‖x − ci‖ − νi ) . (1.2)

We are interested in the universal approximation property of such RBF neural networks.
Forwhich activations g, functions of form (1.2) are dense inC(Rd) in the topology of uniform
convergence on compact subsets of R

d . We will give various conditions on the activation g
which guarantee the density of the functions (1.2) in C(X) for any compact set X ⊂ R

d .
The utilization of RBF neural networks with shifts represents a novel approach that has yet

to find practical applications. However, because of its flexibility and possible versatility, this
novel technique is promising in a variety of fields. Note that by using shifts, one effectively
allows the activation function g to be translated to different positions, which may have
extra advantages. The use of shifts can make the RBF network more flexible in capturing
complex patterns in the data. It allows the model to adapt better to irregularly shaped data
distributions.

2 Universal approximation theorems

The following theorem is based on the results of Park and Sandberg [15], and Schwartz [18].

Theorem 2.1 Assume d ≥ 1, 1 ≤ p < ∞.Assume an activation function g ∈ C(R)∩L p(R)

and td−1g(t) is integrable on [0,+∞). Then for any continuous function f : R
d → R, for

any ε > 0 and for any compact subset X ⊂ R
d , there exist m ∈ N, wi , νi ∈ R, ci ∈ R

d such
that for all x ∈ X

∣∣∣∣∣ f (x) −
m∑

i=1

wi g (‖x − ci‖ − νi )

∣∣∣∣∣ < ε. (2.1)

Proof The result of Park and Sandberg (see [15, Theorem 5]) says that if K : R
d → R is

continuous, integrable and radially symmetric with respect to the Euclidean norm, then the
functions of the form

q(x) =
k∑

i=1

wi K

(
x − ci

σi

)
. (2.2)

are dense in C(X) for any compact set X ⊂ R
d .
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Consider the function K (x) = g(‖x‖). Clearly, K (x) is radially symmetric and since
td−1g(t) is integrable on [0,+∞), K (x) is integrable on R

d . Thus this function satisfies the
hypothesis of Park and Sandberg’s theorem. Assume any function f ∈ C(Rd), any number
ε > 0 and any compact subset X ⊂ R

d are given. By the above result of Park and Sandberg,
there exist k ∈ N, wi ∈ R, σi > 0, ci ∈ R

d such that
∣∣∣∣∣ f (x) −

k∑

i=1

wi g

(‖x − ci‖
σi

)∣∣∣∣∣ <
ε

2
(2.3)

for all x ∈ X . Note that we can write inequality (2.3) in the form
∣∣∣∣∣ f (x) −

k∑

i=1

gi (‖x − ci‖)
∣∣∣∣∣ <

ε

2
, (2.4)

where gi (t) := wi g(t/σi ), t ∈ R. Since X is compact and the distance function ‖·‖ is con-
tinuous, the sets {‖x − ci‖ : x ∈ X} are compact subsets of R; hence {‖x − ci‖ : x ∈ X} ⊂
[ai , bi ] for some finite ai and bi , i = 1, ..., k.

In 1947, Schwartz [18] proved that continuous and p-th degree (1 ≤ p < ∞) Lebesgue
integrable univariate functions are not mean-periodic (see also [17, Proposition 3.12]). Note
that a function u ∈ C(Rd) is called mean periodic if the set span {u(x − a) : a ∈ R

d} is
not dense in C(Rd) in the topology of uniform convergence on compacta (see [18]). Since
g ∈ C(R) ∩ L p(R), by this result of Schwartz, the set

span {g(t − λ) : λ ∈ R}
is dense in C(R) in the topology of uniform convergence. This density result means that for
the given ε there exist numbers ρi j , λi j ∈ R, i = 1, 2, ..., k, j = 1, ..., si such that

∣∣∣∣∣∣
gi (t) −

si∑

j=1

ρi j g(t − λi j )

∣∣∣∣∣∣
<

ε

2k
(2.5)

for all t ∈ [ai , bi ]i , i = 1, 2, ..., k. From (2.4) and (2.5) it follows that
∣∣∣∣∣∣
f (x) −

k∑

i=1

si∑

j=1

ρi j g(‖x − ci‖ − λi j )

∣∣∣∣∣∣
< ε, (2.6)

for all x ∈ X . After writing the double sum in (2.6) as a single sum we obtain the validity of
(2.1).

Corollary 2.1 Assume g is a continuous, monotone and bounded function on R and td−1g(t)
is integrable on [0,+∞). Then for any continuous function f : R

d → R, for any ε > 0 and
for any compact subset X ⊂ R

d , there exist m ∈ N, wi , νi ∈ R, ci ∈ R
d such that

∣∣∣∣∣ f (x) −
m∑

i=1

wi g (‖x − ci‖ − νi )

∣∣∣∣∣ < ε

for all x ∈ X .

Proof In [5] Funahashi proved that if g is a continuous, monotone and bounded function on
R, then the function h(t) = g(t + α) − g(t − α) belongs to L1(R) for any real α. Thus the
function h(t) is not mean periodic being a continuous and L1 function. In addition, td−1h(t)
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On the universal approximation... 695

is integrable on [0,+∞). We can apply the above theorem to h and then changing h(·) to
g(· + α) − g(· − α) obtain the desired result.

In the following theorem, integrability condition is not required.

Theorem 2.2 Assume g is a nonconstant continuous bounded function onRwhich has a limit
at infinity or minus infinity. Then for any continuous function f : R

d → R, for any ε > 0
and for any compact subset X ⊂ R

d , there exist m ∈ N, wi , νi ∈ R, ci ∈ R
d such that for

all x ∈ X

∣∣∣∣∣ f (x) −
m∑

i=1

wi g (‖x − ci‖ − νi )

∣∣∣∣∣ < ε.

Proof The conditions on g implies that the function K0(x) = g(‖x‖) is a nonconstant,
continuous, bounded multivariate function. Hence K0(x) is not a polynomial. Here we use
Liao, Fang and Nuttle’s result from [11], where they proved that for a function K (x), which
is continuous almost everywhere, locally essentially bounded and nonpolynomial, the RBF

networks
∑m

i=1 wi K
(
x−ci
σi

)
are dense in C(X) for any compact set X ⊂ R

d . Note that our

function K0(x) satisfy conditions of this result. In addition, it follows from one theorem of
Schwartz (see [18, p.907] and [17, Proposition 3.12]) that g is not mean-periodic. Therefore,
the set span{g(t − λ) : λ ∈ R} is dense in C[a, b] for any closed interval [a, b]. Now we
have all the necessary facts to repeat the above ideas from the proof of Theorem 2.1 and
obtain the desired final result.

Remark Corollary 2.1 can be obtained from Theorem 2.2 directly, without using Funahashi’s
above result on the Lebesgue integrability of the function h(t) = g(t + α) − g(t − α).

3 RBF networks with finitely many centroids

In this section we study approximation properties of RBF neural networks that have a finite
number of fixed centroids. We describe compact sets X ⊂ R

d , for which such networks are
dense in C(X).

Assume we are given k fixed centroids c1, ..., ck . Put S = {c1, ..., ck}. Consider the set of
RBF networks with only these centroids and arbitrary shifts

G(g, S) =
{

m∑

i=1

wi g (‖x − c‖ − νi ) : c ∈ S, wi , νi ∈ R, m ∈ N

}
.

In the above set we fix only the set S = {c1, ..., ck} and the activation function g ∈ C(R).
The difference between the set of RBF networks H(x) (1.2) implemented in the previous

section and G(g, S) is as follows. In H(x), all the parameters, including weights, centers,
and shifts, can vary independently for each term, allowing for flexibility and adaptation to
different situations. In contrast, functions within G(g, S) share a fixed set of centers S. While
weights and shifts can differ among functions, the centers remain constant across all functions
in the set, providing a common reference point. Fixing centers makes the network training
simpler and computationally less demanding. This is because one does not need to estimate
center locations during training, which can be particularly advantageous when dealing with
limited data and real-time applications.
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696 A. Ismayilova and M. Ismayilov

The following questions arise naturally:
1) Are the RBF networks from G(g, S) dense in C(Rd) in the topology of uniform con-

vergence on compacta. That is, if for any compact set X , G(g, S) = C(X)?
2) If the answer to the above question is negative, for which compact sets X ⊂ R

d ,
G(g, S) = C(X)?

Note that the answer to the 1st question is indeed negative. To see this, introduce the
following set of functions:

R(S) =
{

k∑

i=1

gi (‖x − ci‖) : gi ∈ C(R)

}
.

In this set S = {c1, ..., ck} is fixed and we vary continuous functions gi . Note that this is a
linear space. Since every summand wi g (‖x − c‖ − νi ) in G(g, S) is a function of the form
gi (‖x − ci‖) for some ci , we deduce that G(g, S) ⊂ R(S). Thus, the set of RBF networks
with fixed centroids is smaller than the set of linear combinations of radial functions with that
centroids. Therefore, if G(g, S)was dense inC(X), the setR(S)would be dense as well. But
unfortunately,R(S) is not dense in C(X) for exceedingly many compact sets X . The reason
for the lack of density here is related to the following theorem, which is due to Vitushkin and
Henkin [21]: For any k fixed continuously differentiable functions hi , i = 1, ..., k, defined
on a cube [a, b]d the set of functions

{
k∑

i=1

gi (hi (x1, ..., xd)) : gi ∈ C(R)

}

is nowhere dense in the space of all continuous functions on [a, b]d with the topology of
uniform convergence. Therefore, G(g, S) cannot be dense in C(X) if all compact sets X are
involved. For example, since any set with interior contains a sufficiently small cube [a, b]d ,
it follows from the result of Vitushkin and Henkin that G(g, S) is not dense in C(X) for
any compact set X with interior points. But there still may be compact sets X for which
G(g, S) = C(X) (Take, for example, a single point set X = {x}) How can we characterize
such sets? To answer this question we introduce the following objects called cycles:

Definition 3.1 A set of points l = {x1, . . . , xn} ⊂ R
d is called a cycle with respect to the

centroids c1, ..., ck if there exists a vector λ = (λ1, . . . , λn) ∈ Z
n \ {0} such that

n∑

j=1

λ jδ‖x j−ci‖(t) = 0, f or all i = 1, . . . , k. (3.1)

In the above definition δ‖x j−ci‖(t) is the characteristic function of the single point set

{∥∥x j − ci
∥∥}. That is,

δ‖x j−ci‖(t) =
{
1, if t = ∥∥x j − ci

∥∥
0, if t 
= ∥∥x j − ci

∥∥ .

Let us look at Eq. (3.1)more closely.Wewill see that in fact it stands for a system of simple
linear equations. To understand this, fix the subscript i . Let the set {∥∥x j − ci

∥∥), j = 1, ..., n}
have si different values, which we denote by γ i

1 , γ
i
2 , ..., γ

i
si . Take the first number γ i

1 . Putting
t = γ i

1 , we obtain from (3.1) that ∑

j

λ j = 0,
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On the universal approximation... 697

where the sum is taken over all j such that
∥∥x j − ci

∥∥ = γ i
1 . This is the first linear equation in

λ1, ..., λn . This equation corresponds to γ i
1 . Take now γ i

2 . By the same way, putting t = γ i
2 in

(3.1), we can form the second equation. Continuing until γ i
si , we obtain si linear homogeneous

equations in λ1, ..., λn . The coefficients of these equations are the integers 0 and 1. By varying
i , we finally obtain s = ∑k

i=1 si such equations. Thus we see that (3.1), in its expanded form,
stands for the system of these linear equations. Thus the set l = {x1, . . . , xn} is a cycle if
this system has a solution with nonzero integer components. In fact, it is not difficult to
understand that if the system (3.1) has a solution with nonzero real components, then it has
also a solution with nonzero integer components. This means that in the above definition we
can replace Z

n \ {0} with R
n \ {0}.

We provide two simple examples of cycles here. The reader can give many other examples
easily. Assume two centroids c1 = (0, 0) and c2 = (4, 0) are given in the xy plane. Then any
two points A and B on the straight line x = 2, which are also symmetric to the line y = 0,
form a cycle. Indeed, the distances from A and B to c1 are equal and Eq. (3.1) in case of i = 1
will be λ1+ λ2 = 0. Since the distances from A and B to c2 are also equal, Eq. (3.1) yields
the same equation for i = 2. Thus {A, B} is a 2-point cycle and the vector (λ1, λ2) can be
taken as (−1, 1). It is also easy to construct a 4-point cycle with respect to these centroids.
Consider four circles ‖x − c1‖ = 2, ‖x − c1‖ = 3, ‖x − c2‖ = 4, ‖x − c2‖ = 3 in the given
order. These circles meet at 4 points A, B,C, D in the 1-st quarter of the xy plane. Each
circle has only two of these points and it is not difficult to verify that Eq. (3.1) turns into the
system ⎧

⎪⎪⎨

⎪⎪⎩

λ1 + λ2 = 0
λ3 + λ4 = 0
λ2 + λ3 = 0
λ1 + λ4 = 0

which has a solution (−1, 1 − 1, 1). Hence, {A, B,C, D} is a cycle with respect to the
centroids c1 and c2.

The second example above inspires consideration of general cycles with respect to any
given two centroids c1 and c2. In this special case, we will use the term closed path instead
of cycle.

Definition 3.2 Assume l = (x1, x2, ...,xn) with xi 
= xi+1, is an ordered set with the prop-
erty that ‖x1 − c1‖ = ‖x2 − c1‖ , ‖x2 − c2‖ = ‖x3 − c2‖ , ‖x3 − c1‖ = ‖x4 − c1‖ , ... or
‖x1 − c2‖ = ‖x2 − c2‖ , ‖x2 − c1‖ = ‖x3 − c1‖ , ‖x3 − c2‖ = ‖x4 − c2‖ , ... Then l is
called a path with respect to the centroids c1 and c2. A path having an even number of points
(x1, x2, ..., x2n) is said to be closed if (x1, x2, ..., x2n, x1) is also a path.

Note that a closed path is a cycle. Indeed if (x1, x2, ..., x2n) is a closed path, then it is
not difficult to see that for a vector λ = (λ1, . . . , λ2n) with the components λi = (−1)i , we
have

2n∑

j=1

λ jδ‖x j−c1‖ = 0,

2n∑

j=1

λ jδ‖x j−c2‖ = 0.

Thus, by Definition 3.1, the set {x1, x2, ..., x2n} forms a cycle with respect to the centroids
c1 and c2.
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698 A. Ismayilova and M. Ismayilov

Cycles and paths may be defined not only for distance functions d(x) = ‖x − c‖ but
also for other useful functions too. There is a rich history of these objects defined for inner
products a · x, which were proved to be very efficient in the theory of ridge functions (that
is, functions of the form g(a · x)). See, for example, the monograph by Ismailov [7].

Let c1, ..., ck be fixed centroids and X be a compact subset of R
d . For each i = 1, . . . , k,

consider the following set functions

τi : 2X → X , τi (Z) = {x ∈ Z : |d−1
i (di (x))

⋂
Z | ≥ 2},

where di (x) = ‖x − ci‖ and the symbol | | denotes the cardinality of a considered set.
Define τ(Z) to be

⋂k
i=1 τi (Z) and define τ 2(Z) = τ(τ (Z)), τ 3(Z) = τ(τ 2(Z)) and so on

inductively. Clearly, τ(Z) ⊇ τ 2(Z) ⊇ τ 3(Z) ⊇ ...It is possible that for some n, τ n(Z) = ∅.

In this case, one can see that Z does not contain a cycle. In general, if some set Z ⊂ X forms
a cycle, then τ n(Z) = Z . It should be remarked that the set functions τi first appeared in
Sternfeld [20], where instead of the distance functions di (x) general continuous functions
are involved.

The following theorem is valid.

Theorem 3.1 Let X be a compact subset of R
d . If ∩n=1,2,...τ

n(X) = ∅, then the set R(S) is
dense in C(X).

Since functions of the form gi (‖x − ci‖) generate a subalgebra of the space C(X), The-
orem 3.1 immediately follows from a general result of Sproston and Straus [19] proved for
a sum of continuous function algebras.

The following theorem establishes a sufficient condition and also a necessary condition
for the density of RBF neural networks G(g, S) in C(X).

Theorem 3.2 Assume g is a continuous p-th degree (1 ≤ p < ∞) integrable function, or g is
a nonconstant continuous, bounded function, which has a limit at infinity (or minus infinity).
Then the following statements hold:

(a) If
⋂

n=1,2,... τ
n(X) = ∅, then the set G(g, S) is dense in C(X);

(b) If G(g, S) is dense in C(X), then the set X does not contain cycles (with respect to S).

Proof (a) Suppose
⋂

n=1,2,... τ
n(X) = ∅. By Theorem 3.1, the set R(S) is dense in C(X).

Hence for any function f ∈ C(X) and any positive real ε there exist continuous functions
gi , i = 1, ..., k such that

∣∣∣∣∣ f (x) −
k∑

i=1

gi (‖x − ci‖)
∣∣∣∣∣ <

ε

k + 1
(3.2)

for all x ∈ X . Since X is compact, the sets Yi = {‖x − ci‖ : x ∈ X}, i = 1, 2, ..., k are
compacts as well. We know from Section 2 that the function g is not mean-periodic and
hence the set

span{g(t − θ) : θ ∈ R}
is dense in C(R) in the topology of uniform convergence on compacta (see the proofs of
Theorems 2.1 and 2.2). It follows that for the above ε there exist ci j , θi j ∈ R, i = 1, 2, ..., k,
j = 1, ...,mi such that ∣∣∣∣∣∣

gi (t) −
mi∑

j=1

ci j g(t − θi j )

∣∣∣∣∣∣
<

ε

k + 1
(3.3)
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for all t ∈ Yi , i = 1, 2, ..., k. From (3.2) and (3.3) we obtain that
∣∣∣∣∣∣
f (x) −

k∑

i=1

mi∑

j=1

ci j g(‖x − ci‖ − θi j )

∣∣∣∣∣∣
< ε. (3.4)

for all x ∈ X . Thus G(g, S) = C(X).

(b) Suppose G(g, S) is dense in C(X). Then for an arbitrary positive real number ε,
inequality (3.4) holds with some coefficients ci j , θi j , i = 1, 2, ..., k, j = 1, ...,mi . Since
for each i = 1, 2, ..., k, the function

∑mi
j=1 ci j g(‖x − ci‖ − θi j ) is a function of the form

gi (‖x − ci‖), it follows from (3.4) that the subspace R (S) is dense in C(X). Let us prove
that X does not contain a cycle. Assume the contrary. Assume X contains a cycle, which we
denote by l = (x1, . . . , xn). Let λ = (λ1, . . . , λn) be the vector known from Definition 3.1.
Introduce the functional

F : C(X) → R, F( f ) =
n∑

j=1

λ j f (x j ).

Clearly, F is a linear bounded functionalwith the norm
∑n

j=1 |λ j |. It is an exercise to check
that F(h) = 0 for any h ∈ R (S) . By Urysohn’s lemma, there exists a continuous function
f0 : X → R such that f0(x j ) = 1 if λ j > 0, f0(x j ) = −1 if λ j < 0 and −1 < f0(x) < 1,
for any x ∈ X\l. For this function, F( f0) 
= 0. We have constructed a nonzero annihilating
functional F . The existence of such a functional means thatR(S) cannot be dense in C(X).
The obtained contradiction proves the 2nd statement of the theorem.

At the end we want to point out that the solution to the density problem for RBF neural
networks with only two fixed centroids are geometrically explicit. In this special case, we
can completely characterize all compact sets X ⊂ R

d for which G(g, S) is dense in C(X).

To formulate the theorem, consider the following relation between points in X . The relation
x ∼ ywhen x and y belong to some path in X defines an equivalence relation. The equivalence
classes are called orbits (see [13]).

The following theorem holds.

Theorem 3.3 Assume g is a continuous p-th degree (1 ≤ p < ∞) integrable function, or g is
a nonconstant continuous, bounded function, which has a limit at infinity (or minus infinity).
Assume X is a compact subset of R

d with all its orbits closed and S = {c1, c2} is the set of
fixed centroids. Then the set G(g, S) is dense in C(X) if and only if X contains no closed
paths.

The proof can be carried out in a similar way to the one given for the previous theorem.
Only instead of Theorem 3.1 we use the following result, which is a corollary of the general
result of Marshall and O’Farrell [13] on the uniform approximation by a sum of two function
algebras: If all orbits of X are closed, then for the density of R(S) in C(X) it is necessary
and sufficient that X contain no closed paths.

Remark By definition, a closed path is a trace of some point jumping from one position to
another, alternatively on the spheres ‖x − c1‖ = r1, ‖x − c2‖ = r2 (r1 and r2 are not fixed),
and at the end returning to its primary position. InR

2 the circles‖x − c1‖ = r1,‖x − c2‖ = r2
form a circular grid. Thus for density G(g, S) in C(X) it is necessary and sufficient that X
does not contain any sequence of vertices (intersection points) {x1, x2, ..., xn, x1} of this grid
with the premise that the pairs xi , xi+1 and xi+1, xi+2 lie on different circles.
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